893 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Public key cryptography in resource-constrained WSN

    Get PDF
    In this paper we present a detailed review of the works on public key cryptography (PKC) in wireless sensor networks (WSNs). In the early days of sensor networks, public key cryptography was thought to be completely unfeasible considering its computational complexity and energy requirements. By this time, several works have proved that the lightweight versions of many well-known public key algorithms can be utilized in WSN environment. With the expense of a little energy, public key based schemes could in fact be the best choice for ensuring data security in high-security demanding WSN applications. Here, we talk about the notion of public key cryptography in WSN, its applicability, challenges in its implementation, and present a detailed study of the significant works on PKC in WSN

    Adaptable Security in Wireless Sensor Networks by Using Reconfigurable ECC Hardware Coprocessors

    Get PDF
    Specific features of Wireless Sensor Networks (WSNs) like the open accessibility to nodes, or the easy observability of radio communications, lead to severe security challenges. The application of traditional security schemes on sensor nodes is limited due to the restricted computation capability, low-power availability, and the inherent low data rate. In order to avoid dependencies on a compromised level of security, a WSN node with a microcontroller and a Field Programmable Gate Array (FPGA) is used along this work to implement a state-of-the art solution based on ECC (Elliptic Curve Cryptography). In this paper it is described how the reconfiguration possibilities of the system can be used to adapt ECC parameters in order to increase or reduce the security level depending on the application scenario or the energy budget. Two setups have been created to compare the software- and hardware-supported approaches. According to the results, the FPGA-based ECC implementation requires three orders of magnitude less energy, compared with a low power microcontroller implementation, even considering the power consumption overhead introduced by the hardware reconfiguratio

    A unified approach to combinatorial key predistribution schemes for sensor networks

    Get PDF
    There have been numerous recent proposals for key predistribution schemes for wireless sensor networks based on various types of combinatorial structures such as designs and codes. Many of these schemes have very similar properties and are analysed in a similar manner. We seek to provide a unified framework to study these kinds of schemes. To do so, we define a new, general class of designs, termed “partially balanced t-designs”, that is sufficiently general that it encompasses almost all of the designs that have been proposed for combinatorial key predistribution schemes. However, this new class of designs still has sufficient structure that we are able to derive general formulas for the metrics of the resulting key predistribution schemes. These metrics can be evaluated for a particular scheme simply by substituting appropriate parameters of the underlying combinatorial structure into our general formulas. We also compare various classes of schemes based on different designs, and point out that some existing proposed schemes are in fact identical, even though their descriptions may seem different. We believe that our general framework should facilitate the analysis of proposals for combinatorial key predistribution schemes and their comparison with existing schemes, and also allow researchers to easily evaluate which scheme or schemes present the best combination of performance metrics for a given application scenario

    Routing Security Issues in Wireless Sensor Networks: Attacks and Defenses

    Get PDF
    Wireless Sensor Networks (WSNs) are rapidly emerging as an important new area in wireless and mobile computing research. Applications of WSNs are numerous and growing, and range from indoor deployment scenarios in the home and office to outdoor deployment scenarios in adversary's territory in a tactical battleground (Akyildiz et al., 2002). For military environment, dispersal of WSNs into an adversary's territory enables the detection and tracking of enemy soldiers and vehicles. For home/office environments, indoor sensor networks offer the ability to monitor the health of the elderly and to detect intruders via a wireless home security system. In each of these scenarios, lives and livelihoods may depend on the timeliness and correctness of the sensor data obtained from dispersed sensor nodes. As a result, such WSNs must be secured to prevent an intruder from obstructing the delivery of correct sensor data and from forging sensor data. To address the latter problem, end-to-end data integrity checksums and post-processing of senor data can be used to identify forged sensor data (Estrin et al., 1999; Hu et al., 2003a; Ye et al., 2004). The focus of this chapter is on routing security in WSNs. Most of the currently existing routing protocols for WSNs make an optimization on the limited capabilities of the nodes and the application-specific nature of the network, but do not any the security aspects of the protocols. Although these protocols have not been designed with security as a goal, it is extremely important to analyze their security properties. When the defender has the liabilities of insecure wireless communication, limited node capabilities, and possible insider threats, and the adversaries can use powerful laptops with high energy and long range communication to attack the network, designing a secure routing protocol for WSNs is obviously a non-trivial task.Comment: 32 pages, 5 figures, 4 tables 4. arXiv admin note: substantial text overlap with arXiv:1011.152

    Key Establishment Protocol for Wireless Sensor Networks

    Get PDF
    corecore