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Abstract

There have been numerous recent proposals for key predistribution schemes for wireless
sensor networks based on various types of combinatorial structures such as designs and codes.
Many of these schemes have very similar properties and are analysed in a similar manner. We
seek to provide a unified framework to study these kinds of schemes. To do so, we define a
new, general class of designs, termed “partially balanced t-designs”, that is sufficiently general
that it encompasses almost all of the designs that have been proposed for combinatorial key
predistribution schemes. However, this new class of designs still has sufficient structure that we
are able to derive general formulas for the metrics of the resulting key predistribution schemes.
These metrics can be evaluated for a particular scheme simply by substituting appropriate
parameters of the underlying combinatorial structure into our general formulas. We also compare
various classes of schemes based on different designs, and point out that some existing proposed
schemes are in fact identical, even though their descriptions may seem different. We believe
that our general framework should facilitate the analysis of proposals for combinatorial key
predistribution schemes and their comparison with existing schemes, and also allow researchers
to easily evaluate which scheme or schemes present the best combination of performance metrics
for a given application scenario.

1 Introduction

A wireless sensor network (WSN) is comprised of small sensor nodes that have very limited storage,
power and computational capabilities. The nodes in a wireless sensor network should be able to
communicate with each other in order to accumulate information and relay it to a base station in a
secure manner. Because this communication often takes place in a hostile environment, encryption
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and/or authentication should be used. This requires the establishment of secure keys between the
sensor nodes in the WSN.

One possible approach is to establish secret keys using public-key protocols such as key agree-
ment schemes. However, for many examples of WSN, public-key cryptography is regarded as being
unsuitable due to expensive computational costs [17]. A different approach, which is commonly
considered for a WSN and which we follow in this paper, is to employ a key predistribution scheme
(or KPS), where secret keys are installed in each node before the sensor nodes are deployed.

Two trivial examples of KPS can be considered. If every node is given the same secret “master
key”, then memory costs are low. However, this situation is unsuitable because the compromise
of a single node would render the network completely insecure. On the other hand, for every pair
of nodes, there could be a secret pairwise key given only to these two nodes. This scheme would
have excellent resiliency to node compromise, but memory costs would be prohibitively expensive
for large networks because every node would have to store n − 1 keys, where n is the number of
nodes in the WSN.

The unsuitability of these two “extreme” KPS suggests that a suitable “intermediate” solution
would be useful. In the seminal paper by Eschenauer and Gligor [17], a probabilistic approach to
key predistribution for sensor networks is proposed: every node is assigned a random subset of keys
chosen from a given pool of secret keys. The number of keys assigned to each node can be tailored
to provide a good trade-off between various metrics of interest in the WSN (these metrics will be
discussed in more detail in Section 1.4).

There have been dozens of papers that have investigated variations of this basic idea of assigning
subsets of keys to nodes in a WSN. We briefly mention a few of these now.

• The basic Eschenauer-Gligor scheme [17] was generalized by Chan, Perrig and Song [12],
who stipulated that two nodes will compute a pairwise key only if they share at least η
common keys, where the integer η is a pre-specified intersection threshold. Given that two
nodes have at least η common keys, they use all their common keys to compute their pairwise
key, by means of an appropriate key derivation function (e.g., see Section 1.2). Roughly
speaking, network connectivity decreases and resiliency increases as η is increased. Note that
the Eschenauer-Gligor scheme is essentially the case η = 1 of this more general approach.

• The use of deterministic methods in selecting subsets of keys for each node (as opposed to
the random techniques used in [17] and elsewhere) has been investigated by a number of
authors. Deterministic methods have some advantages as compared to randomised schemes;
this is discussed in some detail in [24]. For example, security and connectivity properties of
the schemes can be proven to hold in a deterministic scheme, whereas the desired properties
may only hold with high probability in a randomised scheme. There are also performance
advantages to some deterministic schemes (see Section 1.4). Constructions for deterministic
KPS are usually based on combinatorial designs or error-correcting codes. This approach will
be discussed in more detail in Section 1.1, and pertinent combinatorial designs will be treated
in Section 1.5.

• It has been suggested to “combine” subset-based schemes with other key predistribution
schemes such as Blom schemes [4] or the generalization due to Blundo et al. [5]. This kind
of KPS is sometimes called a multiple space KPS. Works investigating this approach include
[16, 24, 26, 38]. In a multiple space scheme, each key in the underlying “outer” scheme is
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replaced by certain partial keying information for a corresponding “inner” scheme. If the
inner scheme is a basic Blom scheme, this process would provide improved resiliency against
node compromise, but at the same time it would increase the memory requirements by a
factor of two.

In this paper, we will concentrate on KPS based on combinatorial designs (for a survey on this
topic, see Martin [28]). We will utilise various intersection thresholds in the schemes we study,
but we will not explicitly discuss multiple space schemes in this paper. However, we note that any
subset-based scheme can easily be modified to yield a multiple space scheme. The use of multiple
space schemes in a combinatorial setting was studied in [24], where it was concluded that it was a
useful technique to improve the resilience of the resulting KPS.

1.1 Combinatorial Framework for Key Predistribution

In this section, we formally define the combinatorial framework we use in this paper. This framework
is employed in several recent papers. We begin with the definition of a design.

Definition 1.1. A combinatorial design (or, more briefly, a design) is a pair (X,A), where A is
a finite set of subsets of X called blocks. The degree of a point x ∈ X is the number of blocks
containing x. (X,A) is regular (of degree r) if all points have the same degree, r. The rank of
(X,A) is the size of the largest block. If all blocks have the same size, say k, then (X,A) is said to
be uniform (of rank k).

In this paper, we will mainly be making use of designs that are both regular and uniform.

Example 1.1. Let

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

A = {123, 456, 789, 147, 258, 369,

159, 267, 348, 168, 249, 357}.

Then (X,A) is a design in which there are nine points and twelve blocks. This design is regular of
degree 4 and uniform of rank 3.

Once the network size (denoted by b) and the number of keys per node (denoted by k) are
specified, the centre chooses a regular, uniform design of rank k, say (X,A), having exactly b
blocks. The design (X,A) is used as the key ring space. The key ring space will be used as a key
predistribution scheme for a sensor network having b nodes.

Let the sensor nodes be denoted U1, . . . , Ub. Let

X = {xi : 1 ≤ i ≤ v}

and let
A = {Aj : 1 ≤ j ≤ b}.

The v points in X are associated with a set of v keys, as follows: For 1 ≤ i ≤ v, a key, denoted
by keyi, is chosen uniformly at random from some specified key-space, say L (e.g., L = {0, 1}128).
Then, for each j, 1 ≤ j ≤ b, the sensor node Uj receives the set of k keys

{keyi : xi ∈ Aj}.
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We say that each point xi acts as the key identifier for keyi, and we can view each block as a
set of key identifiers: the block Aj is used to identify the keys that are given to the node Uj . In
this model, the Eschenauer-Gligor scheme [17] is obtained when the key ring space is a set of n
random k-subsets of the v-set X. A variation on this model is to use a key ring space with b blocks
to set up a network with b′ nodes, where b′ < b. In this case, we would randomly choose b′ of the
b blocks in the key ring space and use them to assign keys as described above. In the future, the
network could be expanded if desired, by using additional blocks from the same key ring space to
assign keys to new nodes which are added to the network.

1.2 Node Deployment Model

In the section, we discuss the standard node deployment model for WSN and how pairs of nodes
construct pairwise keys. This requires use of the intersection threshold, denoted by η, that we
mentioned earlier.

We assume that nodes are distributed randomly over a certain area, i.e., there is no precise
control over where the nodes will end up. Two nodes N1 and N2 can construct a pairwise key to
enable secure direct communication between them if and only if the following two conditions are
satisfied:

(1) the two nodes N1 and N2 are within each other’s communication range, and

(2) the two nodes N1 and N2 have at least η common keys.

Suppose that Ui and Uj have exactly ` common keys, say {keya1 , . . . , keya`}, where a1 < a2 < · · · <
a` and ` ≥ η. Then they can each compute the same pairwise secret key,

Ki,j = h(keya1 ‖ . . . ‖ keya` ‖ i ‖ j),

using an appropriate public key derivation function h, which has suitable input and output sizes.
Such key derivation functions could be constructed from a secure cryptographic hash function.

Since the two properties enumerated above are independent, it is useful to define two graphs
which together determine the connectivity of the network. Both these graphs have vertices defined
by the b nodes in the network. The physical graph has an edge joining two nodes N1 and N2

whenever property (1) is satisfied, and the block graph has an edge joining two nodes whenever
property (2) is satisfied. The key-sharing graph, which indicates when two nodes can communicate
directly, is the intersection of the physical graph and the block graph.

Note that the block graph depends only on the key predistribution scheme that is used, while
the physical graph depends only on the actual distribution of the nodes when they are deployed.
Separating these two aspects of WSN allows us to concentrate on them independently. In this paper,
we focus on properties of the WSN that can be determined by analysing the block graph, which
in turn depend on combinatorial properties of the underlying scheme used for key predistribution.
Thus, we will be ignoring the physical graph and therefore we will always use the term link to refer
to a pair of nodes that comprise an edge in the block graph.

1.3 Attack Model

The most studied adversarial model in wireless sensor networks is random node compromise [17],
wherein an adversary compromises a fixed number of randomly chosen nodes in the network and
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extracts the keys stored in them. Under the assumption that these nodes are then removed from
the network, it is obvious that any links involving the compromised nodes are broken. However,
a more pernicious consequence is that the compromise of certain nodes can also cause other links
to be broken that do not directly involve the compromised nodes. More precisely, a link formed
by two nodes corresponding to two blocks A1, A2, where |A1 ∩ A2| ≥ η, will be broken if a node
corresponding to a block B 6∈ {A1, A2} is compromised, provided that A1∩A2 ⊆ B. More generally,
if nodes corresponding to blocks B1, . . . , Bs are compromised, then a link corresponding to two other
blocks A1, A2 will be broken whenever

A1 ∩A2 ⊆
s⋃
i=1

Bi.

1.4 Metrics for Evaluating Key Predistribution Schemes

There are various metrics that quantify different performance and security aspects of a key pre-
distribution scheme for a wireless sensor network. We summarise four of these metrics now in the
case of combinatorial schemes that follow the framework in Section 1.1.

Network size

The maximum number of nodes in a wireless sensor network supported in a combinatorial
key predistribution scheme is equal to the number of blocks, which we denote by b.

Storage requirements

The number of keys stored in each node is equal to k, which is the rank of the underlying
design.

Network connectivity

Recall that two nodes have a common key when the corresponding blocks contain at least η
common points, i.e., when they form an edge in the block graph. It is common to measure
local connectivity of a network by computing the probability that a randomly chosen pair of
nodes can compute a common key (see, for example, [12, 16, 24]). This probability will be
denoted by Pr1. It is obvious that Pr1 increases as η decreases.

Network resilience

Resilience against node capture is commonly measured by computing the probability that a
random link is broken by the compromise of a set of s random nodes not in the link (see
[12, 16, 24]), for suitable values of s. We denote this probability by fail(s). For simplicity, we
will primarily consider the value of fail(1) in this paper.

Some authors measure resiliency differently, by also considering broken links directly involving
the compromised nodes. We will discuss this issue in Section 4.1.1.

One of the fundamental problems in designing a KPS for a WSN is how best to trade off the
metrics described above. Given a desired network size, it suffices to choose any design that has
enough blocks to accommodate the number of desired nodes. Therefore, we will concentrate mainly
on storage, connectivity, and resiliency.

It is easy to optimize any two of these three metrics:
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• We can achieve optimal storage and connectivity by giving every node the same key; however,
this scheme has no resiliency.

• Giving every pair of nodes a different key provides optimal connectivity and resiliency at the
expense of requiring every node to store b−1 keys, which may be a prohibitively large storage
requirement.

• If we give every node a different key, we have low storage and high resiliency, but no connec-
tivity at all (such a network is completely useless, of course).

It should be clear that the fundamental problem is to simultaneously obtain high connectivity and
resilience with low storage requirements, where “high” and “low” depend on the specific application
scenario under consideration.

There are a huge number of possible combinations of the triples (k,Pr1, fail(1)) for combinatorial
schemes that have been proposed in the literature. As mentioned above, we want Pr1 to be large,
but at the same time, we want fail(1) to be small. In [14], the ratio ρ = Pr1/fail(1) is considered
for several classes of schemes. It is desirable for this ratio to be as large as possible. This provides
a good single measure for the utility of a scheme, especially when the ratio can be parametrised by
the value of k.

We should also mention one other important aspect of WSN performance, namely shared-key
discovery [17]. This refers to the method by which a node will learn the identifiers of the keys held by
a neighbouring node, based on a succinct description of a node’s identity. The underlying algebraic
structure of many combinatorial schemes facilitates efficient algorithms for shared-key discovery. In
contrast, if a node is given a random subset of keys, shared-key discovery is inherently less efficient.
These issues, and other related potential performance advantages of combinatorial schemes, are
further discussed in [24].

1.5 Previous Related Work and Outline of the Paper

We have already mentioned that the study of key predistribution in WSN began with the seminal
2002 paper of Eschenauer and Gligor [17], which proposed a randomised key predistribution scheme.
Deterministic schemes were suggested a couple of years later by different researchers [7, 20, 38].
Since then, numerous schemes have been advocated that are based on various types of combinatorial
structures such as codes and designs. We give a sample of some of the types of schemes that have
been proposed, in (roughly) chronological order. Unless otherwise indicated, the schemes use
intersection threshold η = 1.

Projective planes

Using projective planes for KPS for WSN was suggested in 2004 by Çamtepe and Yener [7, 8]
and independently by Lee and Stinson [20] (also see [11]).

Generalised quadrangles

These were suggested by in 2004 by Çamtepe and Yener [7, 8].

Configurations and common intersection designs

These were suggested in 2005 by Lee and Stinson [21, 22, 23, 24].

Transversal designs of strength 2

These were suggested in 2005 by Lee and Stinson [21, 22, 24] (also see [9, 10, 11]).
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Transversal designs of strength 3

These were suggested in 2005 by Lee and Stinson [22, 24], using intersection threshold η = 2.

Partially balanced incomplete block designs

These were suggested in 2007 by Ruj and Roy [33].

Inversive planes/spherical geometries

These were suggested in 2008 by Dong, Pei and Wang [15].

Orthogonal arrays

These were suggested in 2008 by Dong, Pei and Wang [14] (also see [39]).

Reed Solomon codes

These were suggested in 2008 by Ruj and Roy [14].

Mutually orthogonal latin squares

These were suggested in 2008 by Xu, Chen and Wang [39].

Rational normal curves in projective spaces

These were suggested in 2010 by Pei, Dong, and Rong [32].

All of the above papers deal with the basic model for key predistribution that we have presented
earlier. However, there have also been situations where combinatorial structures have been proposed
for more specialised types of WSN. One example is grid-based networks, where the nodes are
deployed in a square or hexagonal grid. This additional deployment knowledge can be exploited
through the use of distinct difference configurations and Costas arrays [1, 2]. Other papers that
consider a combinatorial approach to grid-based networks include [35, 36]. Another specialised
model for WSN concerns networks where nodes are deployed randomly in groups. In this setting,
a scheme based on transversal designs has been proposed in [29].

It quickly becomes evident from reading the papers in the itemised list above that there is a
great deal of similarity among many of them. Typically, formulas are developed for the metrics
defined in Section 1.4 and then some data is tabulated. Sometimes comparisons are made with
other schemes in the literature relating to one or more of the metrics. However, it can be difficult
to get an overall picture as to how these schemes really compare with each other.

In some instances, identical schemes were published using different descriptions. For example,
the Reed-Solomon code based scheme in [34] is identical to the earlier TD-based scheme proposed
in [21], despite claims made in [34] that the two schemes are “different” (the schemes are easily seen
to be identical, based on the equivalence of the underlying combinatorial objects; see Section 2.7).
The scheme based on mutually orthogonal latin squares [39] is also basically another presentation
of the same scheme.

There are other examples of two or more schemes that have very similar behaviour in terms of
the metrics. Again this can be explained in terms of similarities of the underlying combinatorial
structures used to construct the schemes, and we will discuss this further in later sections of the
paper.

Another issue concerns formulas obtained to compute the various metrics. Many of these
formulas are rather complicated, but there are clear similarities between formulas for schemes
based on different types of designs. Therefore we felt it would be useful to develop a general
approach to computing the relevant formulas. To do so, we define a new, general class of designs,
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termed “partially balanced t-designs”, that is sufficiently general that it encompasses almost all
of the designs that have been proposed for combinatorial key predistribution schemes. However,
this new class of designs still has sufficient structure that we are able to derive general formulas
for the metrics of the resulting key predistribution schemes. These metrics can be evaluated for a
particular scheme simply by substituting appropriate parameters of the underlying combinatorial
structure into our general formulas.

We also compare various classes of schemes based on different designs, and point out that some
existing proposed schemes are in fact identical, even though their descriptions may seem different.
We believe that our general framework should facilitate the analysis of proposals for combinatorial
key predistribution schemes and their comparison with existing schemes, and also allow researchers
to easily evaluate which scheme or schemes present the best combination of performance metrics
for a given application scenario.

The rest of this paper is organized as follows. In Section 2, we discuss the necessary design-
theoretic background. In Section 3, we derive some block-intersection properties of designs that
will be used in later sections of the paper. In Section 4.1, we state and prove all the formulas for
for computing the metrics of the resulting KPS. Applications of the formulas and comparisons of
the resulting schemes is the subject of Section 4.2 and additional discussion is provided in Section
4.3. Finally, we summarise the contributions of the paper in Section 5.

2 Design-theoretic background

2.1 Partially Balanced t-designs

We will be studying KPS based on a general class of designs that includes many familiar types
of designs as special cases. To the best of our knowledge, this is a new definition, though it has
obvious similarities with other, previously defined classes of designs. The challenge here is to specify
a class of designs that is sufficiently general that it includes almost all of the designs that have been
proposed as combinatorial KPS, but sufficiently structured that general explicit formulas for the
metrics of these schemes can be derived.

Let v, k, t be positive integers and let λi be a positive integer, for 0 ≤ i ≤ t − 1. A t-
(v, k, λ0, . . . , λt−1)-partially balanced t-design (or PBtD) is a pair (X,A) that satisfies the following
properties:

1. A is a set of k-subsets of X (elements of X are called points and members of A are called
blocks).

2. There are exactly λ0 blocks.

3. For 1 ≤ i ≤ t− 1, every i-subset of points occurs in either 0 or λi blocks.

4. For t ≤ i ≤ k, every i-subset of points occurs in either 0 or 1 blocks.

The number of blocks in the design, λ0, can also be denoted by b. We can assume that every point
occurs in at least one block, so it then follows that every point occurs in exactly λ1 blocks. Thus
a partially balanced t-design is a design of degree r = λ1.

In the next subsections, we introduce various special types of designs that are partially balanced
t-designs.
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2.2 Transversal Designs

Let t, n and k be positive integers such that t ≤ k ≤ n. A transversal design TD(t, k, n) is a triple
(X,H,A), where X is a finite set of cardinality kn, H is a partition of X into k parts (called groups)
of size n and A is a set of k-subsets of X (called blocks), which satisfy the following properties:

1. |H ∩A| = 1 for every H ∈ H and every A ∈ A, and

2. every subset of t elements of X from t different groups occurs in exactly one block in A.

Note that the parameter t is called the strength of the transversal design. The following well-
known result follows from simple counting.

Lemma 2.1. For 0 ≤ i ≤ t, any i points from different groups of a TD(t, k, n) occur together in
exactly λi = nt−i blocks.

Corollary 2.2. Suppose (X,H,A) is a TD(t, k, n). Then (X,A) is a t-(v, k, λ0, . . . , λt−1)-PBtD
where v = kn and λi = nt−i for 0 ≤ i ≤ t− 1.

We note that transversal designs are easy to construct for any desired value of t. The following
well-known construction is originally due to Bush [6].

Theorem 2.3. [6] Suppose that q is a prime power, t ≤ min{q − 1, k} and k ≤ q + 1. Then there
exists a TD(t, k, q).

We will describe this construction later, using the language of orthogonal arrays; see Section
2.8.

2.3 t-designs

A t-(v, k, λ)-design is a pair (X,A) which satisfies the following properties:

1. A is a set of k-subsets of X (called blocks)

2. Every t-subset of points occurs in exactly λ blocks.

The following well-known result is proven in many textbooks, e.g., [37, Theorem 9.4].

Lemma 2.4. For 0 ≤ i ≤ t, every i-subset of points in a t-design occurs in exactly

λi =
λ
(
v−i
t−i
)(

k−i
t−i
) (1)

blocks.

When λ = 1, we get a PBtD:

Corollary 2.5. Suppose (X,A) is a t-(v, k, 1)-design. Then (X,A) is a t-(v, k, λ0, . . . , λt−1)-PBtD
where the λi’s are given by (1).

Nontrivial t-(v, k, 1)-designs are known to exist only for t ≤ 5. Infinite families of t-designs that
have been suggested for combinatorial KPS include the following:
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• A projective plane of order q is a 2-(q2 + q + 1, q + 1, 1)-design. Projective planes are known
to exist for orders that are prime powers. These designs were proposed for use as KPS in
[7, 8, 20].

• For any prime power q and any d ≥ 2, there is a 3-(qd + 1, q + 1, 1)-design which is termed a
spherical geometry. Spherical geometries were proposed for use as KPS in [15]. These designs
are easy to construct; one well-known way is to take the blocks of the design to be the orbit
of Fq ∪ {∞} under the action of the group PSL(2, qd). When d = 2, the spherical geometries
are also known as inversive planes.

2.4 Generalised Quadrangles

An (s, t)-generalized quadrangle is a pair (X,A) that satisfies the following properties:

1. A is a set of (s + 1)-subsets of X (elements of X are called points and members of A are
called lines).

2. Every point occurs on exactly t+ 1 lines.

3. There are exactly λ0 blocks.

4. Every pair of points is on at most one line.

5. Given a line L and a point x 6∈ L, there is a unique point y ∈ L such that x and y occur on
a line.

For information about generalised quadrangles, see Payne and Thas [30]. Well-known properties of
generalised quadrangles immediately yield the following result:

Theorem 2.6. An (s, t)-generalized quadrangle is a 2-((st + 1)(s + 1), s + 1, λ0, λ1)-PBtD where
λ0 = (st+ 1)(t+ 1) and λ1 = t+ 1.

2.5 Configurations

A configuration is just a PBtD with t = 2. Therefore, generalised quadrangles, 2-designs and
transversal designs with t = 2 are all examples of configurations. A special type of configuration,
termed a common intersection design, has been defined for use in KPS; see [21, 22, 23, 24]. (The
“common intersection” property concerns the existence of two-hop paths in the resulting WSN,
which we do not consider in the present paper.)

2.6 Normal Rational Curves and Conics

A class of PBtD based on normal rational curves in projective spaces was described by Pei in [31].
We provide a summary of this approach now. Let q ≥ n be a prime power. A normal rational
curve (or NRC) of PG(n, q) is a set of points that can be mapped by an element of PGL(n+ 1, q)
into the set

{(δn, δn−1, . . . , δ, 1) : δ ∈ GF(q)} ∪ {(1, 0, 0, . . . , 0)}.

An NRC contains q + 1 points, no n+ 1 of which lie in any hyperplane of PG(n, q). (This can be
seen by interpreting the coordinates of the points as the rows of a Vandermonde matrix.)

The following results are presented in [31]. We present a proof here for the sake of completeness.
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Lemma 2.7.

1. If q ≥ n+ 2, then there is a unique NRC through any set of n+ 3 points of PG(n, q) no n+ 1
of which lie in a hyperplane, so λn+3 = 1.

2. There are

λ0 = q2n−2
n−2∏
i=0

(qn+1 − qi)

NRC in PG(n, q).

3. There are

λ1 = qn−1
n−1∏
i=1

(qn+1 − qi)

NRC through each point of PG(n, q).

4. For r = 2, 3, . . . , n, the number of NRCS through any set of r linearly independent points of
PG(n, q) is given by

λr =
n∏
i=r

(qn+1 − qi)(q − 1)r−1
r−2∏
i=2

(q − i).

5. The number of NRCS through any set of n+ 1 points of PG(n, q), no n+ 1 of which lie in a
hyperplane, is

λn+1 = (q − 1)n−1
n−1∏
i=1

(q − i).

6. The number of NRCS through any set of n+ 2 points of PG(n, q), no n+ 1 of which lie in a
hyperplane, is

λn+2 =
n∏
i=2

(q − i).

Proof. For i = 0, 1, 2, . . . , n, a set of i linearly independent points span a space of dimension
i− 1, so the number of ways of choosing an additional point that is not contained in this space is
(qn+1 − qi)/(q − 1).

Given n + 1 linearly independent points, without loss of generality their coordinates can be
taken to be (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1). Then any n of these points span a
hyperplane having the equation xi = 0 for some i ∈ {0, 1, 2, . . . , n}. The number of ways of
choosing an additional point such that no n+ 1 of the resulting set of points lie in a hyperplane is
thus equal to the number of ways of choosing a point that has no coordinate equal to zero, namely
(q − 1)n+1/(q − 1) = (q − 1)n.

Given n + 2 points, no n + 1 of which lie in a hyperplane, without loss of generality their
coordinates can be chosen to be (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1), (1, 1, 1, . . . , 1). A
hyperplane through n of the first n + 1 of these points has the equation xi = 0 for some i ∈
{0, 1, 2, . . . , n}. A hyperplane through the (n + 2)nd point and n − 1 of the first n + 1 points has
the equation xi = xj for some i 6= j. Thus, in order to choose one further point to obtain a set of
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n+ 3 points, no n+ 1 of which lie in a hyperplane, it is necessary (and sufficient) to choose a point
with no zero coordinates, and in which no two of the coordinates are equal. There are

(q − 1)(q − 2) · · · (q − n+ 1)/(q − 1) =
n+1∏
i=2

(q − i)

ways of doing this.
In order to count how many NRC pass through a given set of i points, it suffices to count the

number of ways of adding points to the set until a set of n + 3 points, no n + 1 of which lie in a
hyperplane, is obtained, then divide by

(
q+1−i
n+3−i

)
, which is the number of ways of choosing n+ 3− i

further points from a given NRC.

Theorem 2.8. Let X be the set of points of PG(n, q), and let A be the set of NRC. Then (X,A)
is a t-(v, k, λ0, . . . , λt−1)-PBtD with t = n + 3, v = q2 + q + 1, k = q + 1 and where the λis are
established in Lemma 2.7.

When n = 2, an NRC is an irreducible conic in PG(2, q). In this case we have t = 5, and we
obtain the following.

Corollary 2.9. Suppose that q is a prime power. Then there is a 5-(q2 + q + 1, q + 1, λ0, . . . , λ4)-
PBtD where the λis are as follows:

λ0 = q5 − q2,
λ1 = q4 − q2,
λ2 = q3 − q2,
λ3 = q2 − 2q + 1,

λ4 = q − 2.

2.7 Equivalence of Transversal Designs, Orthogonal Arrays and MDS Codes

Combinatorial schemes for KPS in WSN have been proposed that are based on transversal designs,
orthogonal arrays, and maximum distance separable codes (MDS codes). However, these structures
are all equivalent to each other in a very strong sense. Basically, they’re all the same thing! Here
we briefly review these concepts and discuss their equivalence.

We have already given the definition of a TD(t, k, n). We define a (t, k, n)-orthogonal array (or
(t, k, n)-OA) to be a k× nt array of n symbols, such that the restriction of the array to any t rows
contains every possible column vector of the n symbols exactly once.

An (`,M, d, n)-code is a set of M `-tuples (called codewords) defined over an alphabet of n
symbols, such that the hamming distance between any two distinct codewords is at least d. The
well-known Singleton bound asserts that d ≤ n− lognM + 1; if equality occurs, the code is termed
a maximum distance separable code (or MDS-code). The best-known examples of MDS codes are
the Reed-Solomon codes.

The following theorem states the equivalence of the above-defined objects. Its proof is straight-
forward, but it seems to be difficult if not impossible to find a proof of all these equivalences in one
place in the literature. Therefore, for completeness, we include a proof here.

Theorem 2.10. The following are equivalent:
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1. a (k,M, d, n)-MDS-code;

2. a (t, k, n)-OA; and

3. a TD(t, k, n).

Proof. We first show that the hypothesised OA and code are equivalent. Given a (t, k, n)-OA,
construct a code whose codewords are the nt columns of the OA. We will prove that this code is
a (k, nt, d = n− t+ 1, n)-MDS-code. Suppose there exist two codewords whose hamming distance
is at most n − t. Then these two codewords have identical entries at least t coordinates. This
contradicts the assumption that the nt codewords form an orthogonal array.

Conversely, suppose we have a (k, nt, d = n− t+ 1, n)-MDS-code. Construct a k×nt array, say
D, whose columns are the codewords. Consider the restriction of D to any subset of t = n− d+ 1
rows. The nt t-tuples obtained from the columns of the array in this restriction must all be different
(otherwise, the distance of the code is less than d). Since there are nt different t-tuples, it follows
that every possible t-tuple occurs in exactly one column of the array in this restriction. Because
this property holds for all possible subsets of t rows of the array D, it follows that we have a
(t, k, n)-OA.

Now we show that the hypothesised TD and OA are equivalent. We first show how to construct
a TD(t, k, n) from a (t, k, n)-OA. Let D be a (t, k, n)-OA on symbol set {1, . . . , n}. Label the rows
of D as 1, . . . , k, and label the columns of D as 1, . . . , nt. Define

X = {1, . . . , n} × {1, . . . , k}.

For 1 ≤ i ≤ k, define
Gi = {1, . . . , n} × {i},

and then define
G = {Gi : 1 ≤ i ≤ k}.

For 1 ≤ r ≤ nt, define
Br = {(D(i, r), i) : 1 ≤ i ≤ k},

and define
B = {Br : 1 ≤ r ≤ nt}.

Then it is essentially trivial to prove that (X,G,B) is a TD(t, k, n).
The construction can be reversed: given a TD(t, k, n), we can use it to construct a (t, k, n)-

OA. Suppose (X,G,B) is a TD(t, k, n). By relabelling the points if necessary, we can assume that
X = {1, . . . , n} × {1, . . . , k} and G = {Gi : 1 ≤ i ≤ k}, where Gi = {1, . . . , n} × {i} for 1 ≤ i ≤ k.
For each block B ∈ B and for 1 ≤ i ≤ k, let (i, bi) ∈ B ∩Gi (recall that each block intersects each
group in a unique point). Then, for each B ∈ B, form the k-tuple (b1, . . . , bk). Construct an array
A whose columns consist of all these k-tuples; it is easy to see that A is a (t, k, n)-OA.

The equivalence of orthogonal arrays and MDS codes is well-documented; the above proof is
taken from [37, Theorem 10.21]. The equivalence of TD and OA is a classical and well-known result
when t = 2. When t > 2, it is harder to find explicit statements of the equivalence of these two
objects. Perhaps this is because TD with t > 2 are less frequently discussed in the literature than
TD with t = 2. Furthermore, the proof of the equivalence of TD and OA for t > 2 is exactly the
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same as the proof for t = 2, so in some sense it would probably not even be considered a separate
result in the case t > 2.

As a historical note, the earliest explicit statement of equivalence for t > 2 that we could find
was in Keith Martin’s 1991 PhD thesis [27, p. 32]. The earliest mention of this (that we are aware
of) in a published paper is in a 1995 paper by Blanchard [3]. In fact, the earliest reference of any
sort to TD with t > 2 that we could find was in 1979 by Hanani [18].

In the case t = 2, there are additional equivalent structures. We do not define these structures
here (for their definitions, see [13]), but we record the equivalences for completeness. Proofs of the
following equivalences can be found in many textbooks, e.g., [25, Theorem 22.2] and [37, Theorem
6.44].

Theorem 2.11. The following are equivalent:

1. a net of order n and degree k;

2. k − 2 mutually orthogonal latin squares of order n;

3. a (2, k, n)-OA; and

4. a TD(2, k, n).

In addition, we should mention that a projective plane of order n is equivalent to any of the
structures listed in Theorem 2.11 when k = n+ 1.

In view of the equivalences of combinatorial structures discussed in this section, one should be
careful when proposing a KPS based on one of these combinatorial structures. Not surprisingly, if
two structures are equivalent, it usually turns out that the KPS constructed from them are also
“equivalent” in a natural way, and the metrics of the resulting schemes will in fact be identical.
This has in fact happened in several published papers, as we already mentioned in Section 1.5.

2.8 Bush’s Construction for Orthogonal Arrays

For historical interest, we briefly describe Bush’s 1952 construction for orthogonal arrays. The
orthogonal arrays constructed in [6] are in fact (t, q+ 1, q)-OA, where q is a prime power and t < q.
We note that Bush’s construction predates by several years the corresponding construction for the
MDS codes that are generally known as Reed-Solomon codes.

Let the elements of Fq be enumerated as αi, 0 ≤ i ≤ q − 1. For every polynomial f(x) =
f0 + f1x+ · · ·+ ft−1x

t−1 ∈ Fq[x] having degree at most t− 1, we construct the (q + 1)-tuple

(f(α0), . . . , f(αq−1), ft−1).

The resulting set of qt (q + 1)-tuples are taken to be columns of an array that can be shown to be
a (t, q + 1, q)-OA.

If we desire a (t, k, q)-OA where t ≤ k ≤ q and t < q, then we simply delete q + 1− k columns
from the (t, q + 1, q)-OA constructed above.
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3 Block Intersection Properties of PBtD

It turns out that the metrics of interest for a KPS constructed from a combinatorial design de-
pend on block intersection properties of the design. A PBtD has very regular block intersection
properties, for which we derive formulas in this section.

Suppose we have a t-(v, k, λ0, . . . , λt−1)-PBtD, (X,A). Let B ∈ A and suppose C ⊆ B with
|C| = i, where 0 ≤ i ≤ t− 1. Define

µ′(i) = |{A ∈ A : A ∩B = C}|.

We will develop formulas for µ′(i) (in doing so, it will clear that these formulas are independent of
the particular choice of B and C used to define µ′(i)).

Given t− 1 points on a block B, there are precisely λt−1 − 1 further blocks that contain those
t−1 points. Since each of those blocks contain no further points of B, we have µ′(t−1) = λt−1−1.

Given i points on B, where 0 ≤ i < t − 1, there are λi − 1 further blocks that contain those i
points. However, some of these blocks contain additional points of B. In particular, given j further
points of B, where 1 ≤ j ≤ t− 1− i, by definition µ′(i+ j) of those blocks intersect B in precisely
those i + j points. There are

(
k−i
j

)
ways of selecting j additional points and hence µ′(i) satisfies

the following recursion:

µ′(t− 1) = λt−1 − 1,

µ′(i) = λi − 1−
t−1−i∑
j=1

(
k − i
j

)
µ′(i+ j) (t− 2 ≥ i ≥ 0). (2)

Now we present a non-recursive formula to compute the µ′(i)’s.

Theorem 3.1. For any t-(v, k, λ0, . . . , λt−1)-PBtD, the following formula holds for 0 ≤ i ≤ t− 1:

µ′(t− i) =

i−1∑
j=0

(−i)j
(
k − t+ i

j

)
(λt−i+j − 1). (3)

Proof. Assume (3) holds for µ′(t− 1), µ′(t− 2), . . . , µ′(t− i+ 1). Then, rewriting (2), we have:

µ′(t− i) = λt−i − 1−
i−1∑
j=1

(
k − t+ i

j

)
µ′(t− i+ j),

= λt−i − 1−
i−1∑
j=1

(
k − t+ i

i− j

)
µ′(t− j),

= λt−i − 1−
i−1∑
j=1

(
k − t+ i

i− j

) j−1∑
s=0

(−1)s
(
k − t+ j

s

)
(λt−j+s − 1),

= λt−i − 1−
i−1∑
j=1

j−1∑
s=0

(−1)s
(
k − t+ i

i− j + s

)(
i− j + s

s

)
(λt−j+s − 1),
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(replace s with j − s and collect like values of λt−s)

= λt−i − 1−
i−1∑
s=1

i−1∑
j=s

(−1)j−s
(
k − t+ i

i− s

)(
i− s
j − s

)
(λt−s − 1),

= λt−i − 1−
i−1∑
s=1

i−1−s∑
j=0

(−1)j
(
k − t+ i

i− s

)(
i− s
j

)
(λt−s − 1),

(use the binomial theorem)

= λt−i − 1−
i−1∑
s=1

(−1)(−1)i−s
(
k − t+ i

i− s

)
(λt−s − 1),

(set j = i− s)

= λt−i − 1 +

i−1∑
j=1

(−1)j
(
k − t+ i

j

)
(λt−i+j − 1),

=

i−1∑
j=0

(−1)j
(
k − t+ i

j

)
(λt−i+j − 1).

Some block intersection properties of transversal designs were previously presented in [14]. The
formulas in [14] are just the special case of the recursive formulas (2) we stated above, when
λi = nt−i.

In the case of transversal designs, it may be of interest to point out that there is an alternative
approach to derive these formulas that makes use of known results. We have observed previously
that a TD(t, k, n) is equivalent to an MDS code of length k and minimum distance k − t+ 1 over
an alphabet of size n. The number of blocks of the transversal design that intersect a given block
in precisely t − i points is equal to the number of codewords that have distance k − t + i from a
given codeword, which in turn equals the number Ak−t+i of codewords that have weight k − t+ i.
For an MDS code, this quantity is known to be given by

Ak−t+i =

(
k

k − t+ i

) i−1∑
j=0

(−1)j
(
k − t+ i

j

)
(ni−j − 1),

(see [19, Theorem 7.4.1], for example). Since there are
(

k
k−t+i

)
ways of choosing t− i specific points

of a given block, this gives

µ′(t− i) =
i−1∑
j=0

(−i)j
(
k − t+ i

j

)
(ni−j − 1). (4)

Our Theorem 3.1 can be seen as a direct generalisation of this result: (4) is a corollary of Theo-
rem 3.1, obtained by substituting λi = nt−i for i = 0, 1, 2, . . . , t.
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4 Constructing KPS From PBtD

In this section we restrict our attention to KPS with intersection threshold η constructed from a
t-(v, k, λ0, . . . , λt−1)-PBtD. Here are some definitions of important quantities that will determine
properties of the resulting KPS. As always, the blocks of the design correspond to the nodes in the
resulting sensor network.

• Recall from Section 1.2 that a link is a set of two blocks {A1, A2} such that |A1 ∩A2| ≥ η.

• For an integer i such that η ≤ i ≤ t − 1, an i-link is a set of two blocks {A1, A2} such that
|A1 ∩A2| = i.

• A block A is contained in a link {A1, A2} if A ∈ {A1, A2}. For η ≤ i ≤ t − 1, let αi denote
the number of i-links that a fixed block A is contained in.

• A block A breaks a link {A1, A2} if A 6∈ {A1, A2} and A1 ∩A2 ⊆ A. For η ≤ i ≤ t− 1, let βi
denote the number of i-links that a fixed block A breaks.

• Define β =
∑t−1

i=η βi and α =
∑t−1

i=η α. Thus α is the total number of links that a fixed block
A is contained in and β is the total number of links that a fixed block A breaks.

• Let Li denote the total number of i-links and let L =
∑t−1

i=η Li denote the total number of
links.

• For a given i-link, let γi denote the number of nodes that break the given link.

• The probability that a random pair of nodes is a link is denoted by Pr1.

• fail(1) is defined to be the probability that a random link is broken by the compromise of a
random node not in the link.

4.1 Formulas for the Metrics

Now we state and prove some simple lemmas giving formulas for the quantities defined above.

Lemma 4.1. For η ≤ i ≤ t− 1, it holds that

αi =

(
k

i

)
µ′(i).

Proof. Let B be a block. There are
(
k
i

)
ways to choose i points C ⊆ B, and for each such choice of

C there are exactly µ′(i) blocks A such that A ∩B = C.

Lemma 4.2. For q ≤ i ≤ t− 1, it holds that

βi = µ′(i)

(
λi
2
− 1

)(
k

i

)
.
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Proof. Suppose A is a block. The number of i-links containing A is
(
k
i

)
µ′(i). For each C ⊆ A with

|C| = i, there are λi blocks that contain C, say BC,1, . . . , BCλi , one of which is the block A. For
each of these blocks BC,j , there are µ′(i) blocks that will form an i-link with BC,j . It follows that
the total number of i-links {B,B′}, where B ∩ B′ = C, is λiµ

′(i)/2, since each i-link is counted
twice in the above analysis. Letting C vary over all the i-subsets of A, the number of i-links whose
intersection is an i-subset of A is

(
k
i

)
λiµ
′(i)/2. Therefore, the number of i-links that are broken by

A is (
k
i

)
λiµ
′(i)

2
−
(
k

i

)
µ′(i) = µ′(i)

(
λi
2
− 1

)(
k

i

)
.

Lemma 4.3. For η ≤ i ≤ t− 1, it holds that Li = bαi/2. Furthermore, L = bα/2.

Proof. Define
C = {(A, {A1, A2}) : {A1, A2} is a link and A ∈ {A1, A2}}.

By first choosing A and then choosing an i-link containing A, we have that |C| = bαi. On the other
hand, if we first choose a link {A1, A2} and then choose A ∈ {A1, A2}, we obtain

|C| = 2Li.

This shows that 2Li = bαi. Summing over i, we get 2L = bα.

Lemma 4.4. For η ≤ i ≤ t− 1, it holds that

γi = λi − 2.

Proof. Suppose A and B are blocks such that A ∩B = C, where |C| = i. There are λi blocks that
contain C, including A and B. If we exclude A and B, the λi − 2 remaining blocks are precisely
the blocks that break the link {A,B}. Therefore, γi = λi − 2.

Lemma 4.5. The probability that an i-link is broken by a random node not in the link is γi/(b−2).

Proof. Suppose A and B are blocks such that A ∩ B = C, where |C| = i. There are b − 2 blocks
other than A and B, of which γi break the link {A,B}.

Corollary 4.6. It holds that

fail(1) =
1

L(b− 2)

t−1∑
i=η

Liγi.

Proof. For each i, η ≤ i ≤ t− 1, there are Li i-links. It was shown in Lemma 4.5 that every i-link
is broken by a random node not in the link with probability γi/(b− 2). Averaging over all L links,
the result follows.

We now establish a simpler alternative formula that can be used to compute fail(1).

Theorem 4.7. It holds that

fail(1) =
β

L− α
.
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Proof. We want to prove that

1

L(b− 2)

t−1∑
i=η

Liγi =
β

L− α
,

or, equivalently,

(L− α)

t−1∑
i=η

Liγi = βL(b− 2).

Using the fact that 2L = bα (from Lemma 4.3), it follows that

L(b− 2)

L− α
= b.

Therefore the equality to be proved can be written as

t−1∑
i=η

Liγi = βb. (5)

Define
D = {(A, {A1, A2}) : {A1, A2} is a link and A1 ∩A2 ⊆ A}.

By first choosing A and then choosing a link broken by A, we have that |D| = βb. On the other
hand, if we first choose a link {A1, A2} and then choose A such that A breaks the link, we obtain

|D| =
t−1∑
i=η

Liγi.

Therefore, (5) holds and the proof is complete.

Theorem 4.8. It holds that

Pr1 =
L(
b
2

) =
α

b− 1
.

Proof. There are
(
b
2

)
pairs of nodes, of which L are links, so it is clear that Pr1 = L

(b2)
. Using the

fact that 2L = bα (from Lemma 4.3), we see that

L(
b
2

) =
α

b− 1
.

4.1.1 Alternative Measures of Resiliency

We mentioned earlier that there are different measures of resiliency used in different papers. For
example, the paper [14] studies schemes based on OA(t, n+ 1, n) with η = 1 (these are identical to
schemes based on TD(t, n+ 1, n) with η = 1). We remark that the formula (3) in [14, p. 827] (see
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also [15]) does not yield fail(1) as we have defined it in Section 1.4. This formula in fact computes
the quantity

α+ β

L
=

the number of links that a fixed block is contained in or breaks

the total number of links
. (6)

For example, when t = 3, the value of fail(1) (as we have defined it) is

fail(1) =
3n2 − 2n− 4

(n3 − 2)(n+ 2)
,

whereas the value computed in [14, p. 828] using the formula (6) is

3

n(n+ 2)
.

Both of these values are approximately 3/n2, but they are not the same.
Of course one can define resiliency in various ways, but it makes things confusing when different

definitions are used in different papers, and even more confusing when different definitions are used
in different places in the same paper, without pointing out these differences.

4.2 Evaluating the Metrics for Various Schemes

It is straightforward to use the formulas developed in the previous sections to compute Pr1 and
fail(1) for schemes based on PBtD. The necessary steps are as follows:

1. Starting with the λi values (η ≤ i ≤ t− 1), compute the µi values using Theorem 3.1.

2. Compute the αi, βi and Li values using Lemmas 4.1, 4.2 and 4.3, respectively.

3. Use Theorem 4.7 to compute fail(1) and use Theorem 4.8 to compute Pr1.

We have mentioned the fundamental problem of trading off connectivity against resiliency.
We want Pr1 to be large, but at the same time, we want fail(1) to be small. In [14], the ratio
ρ = Pr1/fail(1) is considered for several TD-based schemes. It is desirable for this ratio to be as
large as possible. In [14], the value of k is fixed to be n + 1 and only the intersection ratio η = 1
is considered. We perform more general analyses for varying values of k and η, including some
asymptotic analyses similar to [14].

The TD-based schemes and metrics we are considering involve two independent parameters,
namely k and n. It is therefore convenient to write k = cn, where 0 < c ≤ 1, and consider the
behaviour of Pr1, fail(1) and ρ as n → ∞. Actually, for the schemes under investigation, we need
to take k = Ω(n) (otherwise, Pr1 → 0 as n → ∞). When k = cn, it turns out that limn→∞ Pr1
is a positive constant that depends on c. We also explicitly consider the special cases k = n and
k = n+ 1 for some TD-based schemes.

4.2.1 TD(2, k, n) with intersection threshold η = 1

It was first proposed in [21] to build a scheme from a TD(2, k, n) with intersection threshold η = 1.
In this scheme, we have b = n2, α1 = k(n− 1), β1 = k

(
n−1
2

)
, and L1 = kn2(n− 1)/2. Exact values

of Pr1 and fail(1) are given in Table 1. Asymptotic estimates of Pr1, fail(1) and ρ are listed in Table
2.
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Table 1: Metrics for some PBtD-based schemes

scheme Pr1 fail(1)

TD(2, k, n)
k

n+ 1

n− 2

n2 − 2

TD(3, k, n), η = 2
k(k − 1)

2(n2 + n+ 1)

n− 2

n3 − 2

TD(3, k, n), η = 1
k(2n− k + 3)

2(n2 + n+ 1)

2n3 + (4− 2k)n2 + (k − 5)n+ 2k − 6

(2n− k + 3)(n3 − 2)

inversive plane, η = 1
n3 + 3n2 − 2

2(n3 + n− 1)

3n2 + 2n− 4

n4 + 3n3 + 2n2 + 2n− 4

inversive plane, η = 2
n3 + n2

2(n3 + n− 1)

1

n2 + n+ 2

4.2.2 TD(3, k, n) with intersection threshold η = 2

This scheme was first proposed in [22]. Here, we have b = n3, α2 =
(
k
2

)
(n− 1), β2 =

(
k
2

)(
n−1
2

)
, and

L2 =
(
k
2

)
n3(n− 1)/2. Exact values of Pr1 and fail(1) are given in Table 1. Asymptotic estimates of

Pr1, fail(1) and ρ are listed in Table 2.

4.2.3 TD(3, k, n) with intersection threshold η = 1

This scheme was first proposed in [14]. Here, we have b = n3, α1 = k(n − 1)(n − k + 2), α2 =(
k
2

)
(n− 1), β1 = k(n− 1)(n− k + 2)(n2 − 2)/2, β2 =

(
k
2

)(
n−1
2

)
, L1 = n3k(n− 1)(n− k + 2)/2, and

L2 =
(
k
2

)
n3(n− 1)/2. Exact values of Pr1 and fail(1) are given in Table 1. Asymptotic estimates of

Pr1, fail(1) and ρ are listed in Table 2.

4.2.4 Comparing TD(3, n+ 1, n) to Inversive Planes

An inversive plane is a 3-(n2 + 1, n + 1, 1)-design. It is a 3-(n2 + 1, n + 1, λ0, λ1, λ2)-PBtD where
the λis are computed from (1) as follows:

λ0 = n3 + n,

λ1 = n2 + n,

λ2 = n+ 1.

It is most natural to compare a KPS constructed from an inversive plane to one obtained from
a TD(3, n+ 1, n) (we take k = n+ 1 in the TD so the blocks of the TD have the same size as the
blocks of the inversive plane).
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Table 2: Asymptotic values of metrics for some PBtD-based schemes

scheme Pr1 fail(1) ρ

TD(2, k, n), k = cn c
1

n
cn

TD(3, k, n), η = 2, k = cn
c2

2

1

n2
c2n2

2

TD(3, k, n), η = 2, k = n+ 1
1

2

1

n2
n2

2

inversive plane, η = 2
1

2

1

n2
n2

2

TD(3, k, n), η = 1, k = cn, c < 1
c(2− c)

2

2(1− c)
(2− c)n

c(2− c)2n
4(1− c)

TD(3, k, n), η = 1, k = n
1

2

5

n2
n2

10

TD(3, k, n), η = 1, k = n+ 1
1

2

3

n2
n2

6

inversive plane, η = 1
1

2

3

n2
n2

6

TD(4, k, n), η = 3, k = cn
c3

6

1

n3
c3n3

6

TD(4, k, n), η = 2, k = cn, c < 1
c2(3− 2c)

6

3(1− c)
(3− 2c)n2

c2(3− 2c)2n2

18(1− c)

TD(4, k, n), η = 2, k = n
1

6

10

n3
n3

60

TD(4, k, n), η = 2, k = n+ 1
1

6

7

n3
n3

42

TD(4, k, n), η = 1, k = cn
c(c2 − 3c+ 6)

6

3(c2 − 2c+ 2)

(c2 − 3c+ 6)n

c(c2 − 3c+ 6)2n

18(c2 − 2c+ 2)
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Exact values of Pr1 and fail(1) for inversive plane schemes, for different values of η, are given
in Table 1. The asymptotic estimates of Pr1, fail(1) and ρ are presented in Table 3. We observe
that these TD-based schemes have exactly the same asymptotic behaviour as the inversive plane
schemes.

Table 3: Asymptotic values of metrics for TD(5, n+ 1, n) and NRC-PBtD (t = 5)

η Pr1 fail(1) ρ

1
5

8

8

15n

75n

64

2
7

24

6

7n2
49n2

144

3
1

24

13

n4
n4

312

4
1

24

1

n4
n4

24

4.2.5 TD(4, k, n)

For TD(4, k, n) and η = 1, 2, 3, we just provide the asymptotic estimates for Pr1, fail(1) and ρ in
Table 2. (It is straightforward to work out the exact formulas, but they are quite complicated and
the asymptotic estimates provide an easier way to summarise the behaviour of the schemes.)

4.2.6 Comparing TD(5, n+ 1, n) to NRC with t = 5

It is interesting to compare a scheme based on a TD(5, k, n) to a scheme constructed from an
NRC-PBtD with t = 5 (Corollary 2.9). In the TD, we set k = n + 1 so the block size is the same
as in the NRC. We summarise the asymptotic estimates of Pr1, fail(1) and ρ for different values of
η in Table 3. The interesting thing to note is that these TD-based schemes have exactly the same
asymptotic behaviour as the NRC-based KPS.

4.3 Discussion

We believe that transversal designs (or any of the structures equivalent to them) offer the most
flexibility of the PBtD-based schemes, due to several facts:

1. They are easy to construct for a wide variety of useful parameters, by using Bush’s construc-
tion for orthogonal arrays, as described in Section 2.8 (in this construction, n can be any
prime power).

2. The block size k can be chosen independently of n, whereas schemes based on t-designs or
NRC tend to have fixed values of k dependent on n.
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3. In addition, the values of t and η can be chosen independently to best satisfy the constraints
of a given application scenario.

It is worthwhile to investigate how changing the values of t, k, n, and η in a TD-based scheme
affect the metrics of interest. Here are a few observations:

• In general, connectivity (i.e., the parameter Pr1) is increased by increasing k relative to n or
by decreasing η.

• Resilience increases as t is increased (i.e., fail(1) decreases as t is increased). The ratio ρ also
increases as t increases.

• Complexity of the system increases as t is increased, since higher degree polynomials are
required in order to construct the orthogonal arrays.

It is also of interest to comment on an interesting observation made in [14] concerning asymptotic
values of ρ for orthogonal array schemes. It was observed for the parameters considered in [14]
(namely, k = n + 1 and η = 1) that ρ is O(n) except when t = 3, in which case ρ is O(n2). The
computations we have shown in Table 2 explain this phenomenon. Basically, what happens is that,
when we set k = cn, the value of ρ contains a factor of (1− c) in the denominator when η = t− 2.
If we set k = n or k = n+ 1 in these situations, then the value of ρ increases by a factor of O(n).
Since [14] only considered η = 1, the consequence was that t = 3 ended up being an exceptional
case in the data they computed.

5 Summary

We have presented a general and unified treatment of key predistribution schemes for wireless
sensor networks based on combinatorial structures. We derived general formulas for the metrics of
the resulting schemes and analysed several classes of schemes in detail. We believe that our general
framework should facilitate the analysis of proposals for combinatorial key predistribution schemes
and their comparison with existing schemes, and also allow researchers to easily evaluate which
scheme or schemes present the best combination of performance metrics for a given application
scenario. We also pointed out that many schemes presented in the literature as “different” schemes
are in fact very similar and/or identical in some situations.
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