10 research outputs found

    Revisit on maximum ratio combining reception practically attained across correlated Nakagami-m branches

    No full text

    Code-division multiplexing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 395-404).(cont.) counterpart. Among intra-cell orthogonal schemes, we show that the most efficient broadcast signal is a linear superposition of many binary orthogonal waveforms. The information set is also binary. Each orthogonal waveform is generated by modulating a periodic stream of finite-length chip pulses with a receiver-specific signature code that is derived from a special class of binary antipodal, superimposed recursive orthogonal code sequences. With the imposition of practical pulse shapes for carrier modulation, we show that multi-carrier format using cosine functions has higher bandwidth efficiency than the single-carrier format, even in an ideal Gaussian channel model. Each pulse is shaped via a prototype baseband filter such that when the demodulated signal is detected through a baseband matched filter, the resulting output samples satisfy the Generalized Nyquist criterion. Specifically, we propose finite-length, time overlapping orthogonal pulse shapes that are g-Nyquist. They are derived from extended and modulated lapped transforms by proving the equivalence between Perfect Reconstruction and Generalized Nyquist criteria. Using binary data modulation format, we measure and analyze the accuracy of various Gaussian approximation methods for spread-spectrum modulated (SSM) signalling ...We study forward link performance of a multi-user cellular wireless network. In our proposed cellular broadcast model, the receiver population is partitioned into smaller mutually exclusive subsets called cells. In each cell an autonomous transmitter with average transmit power constraint communicates to all receivers in its cell by broadcasting. The broadcast signal is a multiplex of independent information from many remotely located sources. Each receiver extracts its desired information from the composite signal, which consists of a distorted version of the desired signal, interference from neighboring cells and additive white Gaussian noise. Waveform distortion is caused by time and frequency selective linear time-variant channel that exists between every transmitter-receiver pair. Under such system and design constraints, and a fixed bandwidth for the entire network, we show that the most efficient resource allocation policy for each transmitter based on information theoretic measures such as channel capacity, simultaneously achievable rate regions and sum-rate is superposition coding with successive interference cancellation. The optimal policy dominates over its sub-optimal alternatives at the boundaries of the capacity region. By taking into account practical constraints such as finite constellation sets, frequency translation via carrier modulation, pulse shaping and real-time signal processing and decoding of finite-length waveforms and fairness in rate distribution, we argue that sub-optimal orthogonal policies are preferred. For intra-cell multiplexing, all orthogonal schemes based on frequency, time and code division are equivalent. For inter-cell multiplexing, non-orthogonal code-division has a larger capacity than its orthogonalby Ceilidh Hoffmann.Ph.D

    Spatial diversity in MIMO communication systems with distributed or co-located antennas

    Get PDF
    The use of multiple antennas in wireless communication systems has gained much attention during the last decade. It was shown that such multiple-input multiple-output (MIMO) systems offer huge advantages over single-antenna systems. Typically, quite restrictive assumptions are made concerning the spacing of the individual antenna elements. On the one hand, it is typically assumed that the antenna elements at transmitter and receiver are co-located, i.e., they belong to some sort of antenna array. On the other hand, it is often assumed that the antenna spacings are sufficiently large, so as to justify the assumption of independent fading. In this thesis, the above assumptions are relaxed. In the first part, it is shown that MIMO systems with distributed antennas and MIMO systems with co-located antennas can be treated in a single, unifying framework. In the second part this fact is utilized, in order to develop appropriate transmit power allocation strategies for co-located and distributed MIMO systems. Finally, the third part focuses on specific synchronization problems that are of interest for distributed MIMO systems

    Cooperative diversity architecture for wireless networks

    Get PDF
    The burgeoning demand for wireless networks necessitates reliable and energy-efficient communication architectures that are robust to the impairments of the wireless medium. Cooperative communication emerges as an appropriate technique that mitigates the severe effects of channel impairments through the use of cooperative diversity. Notwithstanding the fact that cooperative diversity is a very suitable technique to provide robust and reliable communication, the realization of cooperation idea precipitates many technical challenges that are associated with the overhaul of the wireless network design. This dissertation proposes a cooperative diversity architecture for wireless networks, that spans the physical, medium access and routing layers with parameters (jointly) optimized for overall system performance, taking into account the cost of cooperation in each layer. First, we present a new cooperative MAC protocol, COMAC, that enables cooperation of multiple relays in a distributed fashion. Through the proposed protocol, we investigate and demonstrate at what rate and for which scenarios cooperation brings benefits in terms of throughput and energy-efficiency. Our results demonstrate that cooperation initiation has a significant cost on both the throughput and energy-efficiency, which have been often disregarded in the literature. We next study the energy minimal joint cooperator selection and power assignment problem under transmit power constraints such that the cooperative transmissions satisfy an average bit error rate (BER) target. We derive the average BER of the cooperative system and we propose a simple yet close approximation to facilitate cooperator selection methods with closed form power assignment solutions. We formulate the joint cooperator selection and power assignment problem, we present the optimal solution (O-CSPA) and we also propose a distributed implementation (D-CSPA). Our results demonstrate that smart cooperator selection is essential, as it provides efficient resource allocation with reduced overhead leading to improved system performance. Our implementation and simulations of D-CSPA algorithm in COMAC protocol demonstrate that our distributed algorithm causes minimal overhead, yields improved throughput and reduced delay, while reducing the energy consumption. Finally, we propose a cooperative routing framework and a cross-layer architecture, RECOMAC, for wireless ad hoc networks. The RECOMAC architecture facilitates formation of cooperative sets on the fly in a decentralized and distributed fashion, requiring no overhead for relay selection and actuation, and resulting in opportunistically formed cooperative links that provide robust and reliable end-to-end communication, without the need for establishing a prior non-cooperative route, unlike existing schemes. The results demonstrate that under wireless channel impairments, such as fading and path loss, our cooperative forwarding framework and cross-layer architecture, RECOMAC significantly improve the system performance, in terms of throughput and delay, as compared to non-cooperative conventional layered network architecture with AODV routing over IEEE 802.11 MAC

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    UVR8 mediated spatial differences as a prerequisite for UV-B induced inflorescence phototropism

    Get PDF
    In Arabidopsis hypocotyls, phototropins are the dominant photoreceptors for the positive phototropism response towards unilateral ultraviolet-B (UV-B) radiation. We report a stark contrast of response mechanism with inflorescence stems with a central role for UV RESISTANCE LOCUS 8 (UVR8). The perception of UV-B occurs mainly in the epidermis and cortex with a lesser contribution of the endodermis. Unilateral UV-B exposure does not lead to a spatial difference in UVR8 protein levels but does cause differential UVR8 signal throughout the stem with at the irradiated side 1) increase of the transcription factor ELONGATED HYPOCOTYL 5 (HY5), 2) an associated strong activation of flavonoid biosynthesis genes and flavonoid accumulation, 3) increased GA2oxidase expression, diminished gibberellin1 levels and accumulation of DELLA protein REPRESSOR OF GA1 (RGA) and, 4) increased expression of the auxin transport regulator, PINOID, contributing to local diminished auxin signalling. Our molecular findings are in support of the Blaauw theory (1919), suggesting that differential growth occurs trough unilateral photomorphogenic growth inhibition. Together the data indicate phototropin independent inflorescence phototropism through multiple locally UVR8-regulated hormone pathways

    Joe Pawsey and the Founding of Australian Radio Astronomy

    Get PDF
    This open access book is a biography of Joseph L. Pawsey. It examines not only his life but the birth and growth of the field of radio astronomy and the state of science itself in twentieth century Australia. The book explains how an isolated continent with limited resources grew to be one of the leaders in the study of radio astronomy and the design of instruments to do so. Pawsey made a name for himself in the international astronomy community within a decade after WWII and coined the term radio astronomy. His most valuable talent was his ability to recruit and support bright young scientists who became the technical and methodological innovators of the era, building new telescopes from the Mills Cross and Chris (Christiansen) Cross to the Parkes radio telescope. The development of aperture synthesis and the controversy surrounding the cosmological interpretation of the first major survey which resulted in the Sydney research group's disagreements with Nobel laureate Martin Ryle play major roles in this story. This book also shows the connections among prominent astronomers like Oort, Minkowski, Baade, Struve, famous scientists in the UK such as J.A. Ratcliffe, Edward Appleton and Henry Tizard, and the engineers and physicists in Australia who helped develop the field of radio astronomy. Pawsey was appointed the second Director of the National Radio Astronomy Observatory (Green Bank, West Virginia) in October 1961; he died in Sydney at the age of 54 in late November 1962. Upper level students, scientists and historians will find the information, much of it from primary sources, relevant to any study of Joseph L. Pawsey or radio astronomy. This is an open access book

    Joe Pawsey and the Founding of Australian Radio Astronomy

    Get PDF
    This open access book is a biography of Joseph L. Pawsey. It examines not only his life but the birth and growth of the field of radio astronomy and the state of science itself in twentieth century Australia. The book explains how an isolated continent with limited resources grew to be one of the leaders in the study of radio astronomy and the design of instruments to do so. Pawsey made a name for himself in the international astronomy community within a decade after WWII and coined the term radio astronomy. His most valuable talent was his ability to recruit and support bright young scientists who became the technical and methodological innovators of the era, building new telescopes from the Mills Cross and Chris (Christiansen) Cross to the Parkes radio telescope. The development of aperture synthesis and the controversy surrounding the cosmological interpretation of the first major survey which resulted in the Sydney research group's disagreements with Nobel laureate Martin Ryle play major roles in this story. This book also shows the connections among prominent astronomers like Oort, Minkowski, Baade, Struve, famous scientists in the UK such as J.A. Ratcliffe, Edward Appleton and Henry Tizard, and the engineers and physicists in Australia who helped develop the field of radio astronomy. Pawsey was appointed the second Director of the National Radio Astronomy Observatory (Green Bank, West Virginia) in October 1961; he died in Sydney at the age of 54 in late November 1962. Upper level students, scientists and historians will find the information, much of it from primary sources, relevant to any study of Joseph L. Pawsey or radio astronomy. This is an open access book
    corecore