87 research outputs found

    Controlling Reversibility in Reversing Petri Nets with Application to Wireless Communications

    Full text link
    Petri nets are a formalism for modelling and reasoning about the behaviour of distributed systems. Recently, a reversible approach to Petri nets, Reversing Petri Nets (RPN), has been proposed, allowing transitions to be reversed spontaneously in or out of causal order. In this work we propose an approach for controlling the reversal of actions of an RPN, by associating transitions with conditions whose satisfaction/violation allows the execution of transitions in the forward/reversed direction, respectively. We illustrate the framework with a model of a novel, distributed algorithm for antenna selection in distributed antenna arrays.Comment: RC 201

    Contents

    Get PDF

    Towards Reversible Sessions

    Full text link
    In this work, we incorporate reversibility into structured communication-based programming, to allow parties of a session to automatically undo, in a rollback fashion, the effect of previously executed interactions. This permits taking different computation paths along the same session, as well as reverting the whole session and starting a new one. Our aim is to define a theoretical basis for examining the interplay in concurrent systems between reversible computation and session-based interaction. We thus enrich a session-based variant of pi-calculus with memory devices, dedicated to keep track of the computation history of sessions in order to reverse it. We discuss our initial investigation concerning the definition of a session type discipline for the proposed reversible calculus, and its practical advantages for static verification of safe composition in communication-centric distributed software performing reversible computations.Comment: In Proceedings PLACES 2014, arXiv:1406.331

    Retractable Contracts

    Get PDF
    In calculi for modelling communication protocols, internal and external choices play dual roles. Two external choices can be viewed naturally as dual too, as they represent an agreement between the communicating parties. If the interaction fails, the past agreements are good candidates as points where to roll back, in order to take a different agreement. We propose a variant of contracts with synchronous rollbacks to agreement points in case of deadlock. The new calculus is equipped with a compliance relation which is shown to be decidable.Comment: In Proceedings PLACES 2015, arXiv:1602.0325

    Reverse Bisimulations on Stable Configuration Structures

    Full text link
    The relationships between various equivalences on configuration structures, including interleaving bisimulation (IB), step bisimulation (SB) and hereditary history-preserving (HH) bisimulation, have been investigated by van Glabbeek and Goltz (and later Fecher). Since HH bisimulation may be characterised by the use of reverse as well as forward transitions, it is of interest to investigate forms of IB and SB where both forward and reverse transitions are allowed. We give various characterisations of reverse SB, showing that forward steps do not add extra power. We strengthen Bednarczyk's result that, in the absence of auto-concurrency, reverse IB is as strong as HH bisimulation, by showing that we need only exclude auto-concurrent events at the same depth in the configuration

    A Modular Formalization of Reversibility for Concurrent Models and Languages

    Full text link
    Causal-consistent reversibility is the reference notion of reversibility for concurrency. We introduce a modular framework for defining causal-consistent reversible extensions of concurrent models and languages. We show how our framework can be used to define reversible extensions of formalisms as different as CCS and concurrent X-machines. The generality of the approach allows for the reuse of theories and techniques in different settings.Comment: In Proceedings ICE 2016, arXiv:1608.0313

    Reversible Multiparty Sessions with Checkpoints

    Full text link
    Reversible interactions model different scenarios, like biochemical systems and human as well as automatic negotiations. We abstract interactions via multiparty sessions enriched with named checkpoints. Computations can either go forward or roll back to some checkpoints, where possibly different choices may be taken. In this way communications can be undone and different conversations may be tried. Interactions are typed with global types, which control also rollbacks. Typeability of session participants in agreement with global types ensures session fidelity and progress of reversible communications.Comment: In Proceedings EXPRESS/SOS 2016, arXiv:1608.0269

    How Reversibility Can Solve Traditional Questions: The Example of Hereditary History-Preserving Bisimulation

    Get PDF

    Compliance for reversible client/server interactions

    Get PDF
    In the setting of session behaviours, we study an extension of the concept of compliance when a disciplined form of backtracking is present. After adding checkpoints to the syntax of session behaviours, we formalise the operational semantics via a LTS, and define a natural notion of checkpoint compliance. We then obtain a co-inductive characterisation of such compliance relation, and an axiomatic presentation that is proved to be sound and complete. As a byproduct we get a decision procedure for the new compliance, being the axiomatic system algorithmic.Comment: In Proceedings BEAT 2014, arXiv:1408.556
    • …
    corecore