912 research outputs found

    Lossless Linear Integer signal Resampling

    Get PDF
    This paper describes about signal resampling based on polynomial interpolation is reversible for all types of signals, i.e., the original signal can be reconstructed losslessly from the resampled data. This paper also discusses Matrix factorization method for reversible uniform shifted resampling and uniform scaled and shifted resampling. Generally, signal resampling is considered to be irreversible process except in some special cases because of strong attenuation of high frequency components. The matrix factorization method is actually a new way to compute linear transform. The factorization yields three elementary integer-reversible matrices. This method is actually a lossless integer-reversible implementation of linear transform. Some examples of lower order resampling solutions are also presented in this paper

    Work design improvement at Miroad Rubber Industries Sdn. Bhd.

    Get PDF
    Erul Food Industries known as Salaiport Industry is a family-owned company and was established on July 2017. Salaiport Industry apparently moved to a new place at Pedas, Negeri Sembilan. Previously, Salaiport Industry operated in-house located at Pagoh, Johor. This small company major business is producing frozen smoked beef, smoked quail, smoke catfish and smoked duck. The main frozen product is smoked beef. The frozen smoked meat produced by Salaiport Industry is depending on customer demands. Usually the company produce 40 kg to 60 kg a day and operated between for four days until five days. Therefore, the company produce approximately around 80 kg to 120 kg per week. The company usually take 2 days for 1 complete cycle for the production as the first day the company will only receive the meat from the supplier and freeze the meat for use of tomorrow

    High capacity data embedding schemes for digital media

    Get PDF
    High capacity image data hiding methods and robust high capacity digital audio watermarking algorithms are studied in this thesis. The main results of this work are the development of novel algorithms with state-of-the-art performance, high capacity and transparency for image data hiding and robustness, high capacity and low distortion for audio watermarking.En esta tesis se estudian y proponen diversos métodos de data hiding de imágenes y watermarking de audio de alta capacidad. Los principales resultados de este trabajo consisten en la publicación de varios algoritmos novedosos con rendimiento a la altura de los mejores métodos del estado del arte, alta capacidad y transparencia, en el caso de data hiding de imágenes, y robustez, alta capacidad y baja distorsión para el watermarking de audio.En aquesta tesi s'estudien i es proposen diversos mètodes de data hiding d'imatges i watermarking d'àudio d'alta capacitat. Els resultats principals d'aquest treball consisteixen en la publicació de diversos algorismes nous amb rendiment a l'alçada dels millors mètodes de l'estat de l'art, alta capacitat i transparència, en el cas de data hiding d'imatges, i robustesa, alta capacitat i baixa distorsió per al watermarking d'àudio.Societat de la informació i el coneixemen

    Geobase Information System Impacts on Space Image Formats

    Get PDF
    As Geobase Information Systems increase in number, size and complexity, the format compatability of satellite remote sensing data becomes increasingly more important. Because of the vast and continually increasing quantity of data available from remote sensing systems the utility of these data is increasingly dependent on the degree to which their formats facilitate, or hinder, their incorporation into Geobase Information Systems. To merge satellite data into a geobase system requires that they both have a compatible geographic referencing system. Greater acceptance of satellite data by the user community will be facilitated if the data are in a form which most readily corresponds to existing geobase data structures. The conference addressed a number of specific topics and made recommendations

    Variational approach for learning Markov processes from time series data

    Full text link
    Inference, prediction and control of complex dynamical systems from time series is important in many areas, including financial markets, power grid management, climate and weather modeling, or molecular dynamics. The analysis of such highly nonlinear dynamical systems is facilitated by the fact that we can often find a (generally nonlinear) transformation of the system coordinates to features in which the dynamics can be excellently approximated by a linear Markovian model. Moreover, the large number of system variables often change collectively on large time- and length-scales, facilitating a low-dimensional analysis in feature space. In this paper, we introduce a variational approach for Markov processes (VAMP) that allows us to find optimal feature mappings and optimal Markovian models of the dynamics from given time series data. The key insight is that the best linear model can be obtained from the top singular components of the Koopman operator. This leads to the definition of a family of score functions called VAMP-r which can be calculated from data, and can be employed to optimize a Markovian model. In addition, based on the relationship between the variational scores and approximation errors of Koopman operators, we propose a new VAMP-E score, which can be applied to cross-validation for hyper-parameter optimization and model selection in VAMP. VAMP is valid for both reversible and nonreversible processes and for stationary and non-stationary processes or realizations

    Reconstruction from non-uniform samples: A direct, variational approach in shift-invariant spaces

    No full text
    International audienceWe propose a new approach for signal reconstruction from non-uniform samples, without any constraint on their locations. We look for a function that minimizes a classical regularized least-squares criterion, but with the additional constraint that the solution lies in a chosen linear shift-invariant space--typically, a spline space. In comparison with a pure variational treatment involving radial basis functions, our approach is resolution de- pendent; an important feature for many applications. Moreover, the solution can be computed exactly by a fast non-iterative algorithm, that exploits at best the particular structure of the problem

    Reversible, fast, and high-quality grid conversions

    Get PDF
    A new grid conversion method is proposed to resample between two 2-D periodic lattices with the same sampling density. The main feature of our approach is the symmetric reversibility, which means that when using the same algorithm for the converse operation, then the initial data is recovered exactly. To that purpose, we decompose the lattice conversion process into (at most) three successive shear operations. The translations along the shear directions are implemented by 1-D fractional delay operators, which revert to simple 1-D convolutions, with appropriate filters that yield the property of symmetric reversibility. We show that the method is fast and provides high-quality resampled images. Applications of our approach can be found in various settings, such as grid conversion between the hexagonal and the Cartesian lattice, or fast implementation of affine transformations such as rotations
    corecore