229 research outputs found

    Reverse engineering gene regulatory networks using approximate Bayesian computation

    Full text link
    Gene regulatory networks are collections of genes that interact with one other and with other substances in the cell. By measuring gene expression over time using high-throughput technologies, it may be possible to reverse engineer, or infer, the structure of the gene network involved in a particular cellular process. These gene expression data typically have a high dimensionality and a limited number of biological replicates and time points. Due to these issues and the complexity of biological systems, the problem of reverse engineering networks from gene expression data demands a specialized suite of statistical tools and methodologies. We propose a non-standard adaptation of a simulation-based approach known as Approximate Bayesian Computing based on Markov chain Monte Carlo sampling. This approach is particularly well suited for the inference of gene regulatory networks from longitudinal data. The performance of this approach is investigated via simulations and using longitudinal expression data from a genetic repair system in Escherichia coli.Comment: 16 pages, 11 figure

    Identification of direction in gene networks from expression and methylation

    Get PDF
    Background: Reverse-engineering gene regulatory networks from expression data is difficult, especially without temporal measurements or interventional experiments. In particular, the causal direction of an edge is generally not statistically identifiable, i.e., cannot be inferred as a statistical parameter, even from an unlimited amount of non-time series observational mRNA expression data. Some additional evidence is required and high-throughput methylation data can viewed as a natural multifactorial gene perturbation experiment. Results: We introduce IDEM (Identifying Direction from Expression and Methylation), a method for identifying the causal direction of edges by combining DNA methylation and mRNA transcription data. We describe the circumstances under which edge directions become identifiable and experiments with both real and synthetic data demonstrate that the accuracy of IDEM for inferring both edge placement and edge direction in gene regulatory networks is significantly improved relative to other methods. Conclusion: Reverse-engineering directed gene regulatory networks from static observational data becomes feasible by exploiting the context provided by high-throughput DNA methylation data. An implementation of the algorithm described is available at http://code.google.com/p/idem/

    Replaying the Evolutionary Tape: Biomimetic Reverse Engineering of Gene Networks

    Get PDF
    In this paper, we suggest a new approach for reverse engineering gene regulatory networks, which consists of using a reconstruction process that is similar to the evolutionary process that created these networks. The aim is to integrate prior knowledge into the reverse engineering procedure, thus biasing the search towards biologically plausible solutions. To this end, we propose an evolutionary method that abstracts and mimics the natural evolution of gene regulatory networks. Our method can be used with a wide range of nonlinear dynamical models. This allows us to explore novel model types such as the log-sigmoid model introduced here. To allow direct comparison with other methods, we use a benchmark dataset from an in vivo synthetic-biology gene network, which has been published as a reverse engineering challenge for the second DREAM conference

    A Bayesian Approach to Sparse plus Low rank Network Identification

    Full text link
    We consider the problem of modeling multivariate time series with parsimonious dynamical models which can be represented as sparse dynamic Bayesian networks with few latent nodes. This structure translates into a sparse plus low rank model. In this paper, we propose a Gaussian regression approach to identify such a model

    Improved prediction of protein interaction from microarray data using asymmetric correlation

    Get PDF
    Background:Detection of correlated gene expression is a fundamental process in the characterization of gene functions using microarray data. Commonly used methods such as the Pearson correlation can detect only a fraction of interactions between genes or their products. However, the performance of correlation analysis can be significantly improved either by providing additional biological information or by combining correlation with other techniques that can extract various mathematical or statistical properties of gene expression from microarray data. In this article, I will test the performance of three correlation methods-the Pearson correlation, the rank (Spearman) correlation, and the Mutual Information approach-in detection of protein-protein interactions, and I will further examine the properties of these techniques when they are used together. I will also develop a new correlation measure which can be used with other measures to improve predictive power.
 
Results:Using data from 5,896 microarray hybridizations, the three measures were obtained for 30,499 known protein-interacting pairs in the Human Protein Reference Database (HPRD). Pearson correlation showed the best sensitivity (0.305) but the three measures showed similar specificity (0.240 - 0.257). When the three measures were compared, it was found that better specificity could be obtained at a high Pearson coefficient combined with a low Spearman coefficient or Mutual Information. Using a toy model of two gene interactions, I found that such measure combinations were most likely to exist at stronger curvature. I therefore introduced a new measure, termed asymmetric correlation (AC), which directly quantifies the degree of curvature in the expression levels of two genes as a degree of asymmetry. I found that AC performed better than the other measures, particularly when high specificity was required. Moreover, a combination of AC with other measures significantly improved specificity and sensitivity, by up to 50%. 
 
Conclusions: A combination of correlation measures, particularly AC and Pearson correlation, can improve prediction of protein-protein interactions. Further studies are required to assess the biological significance of asymmetry in expression patterns of gene pairs. 
&#xa

    APPROXIMATE BAYESIAN APPROACHES FOR REVERSE ENGINEERING BIOLOGICAL NETWORKS

    Get PDF
    Genes are known to interact with one another through proteins by regulating the rate at which gene transcription takes place. As such, identifying these gene-to-gene interactions is essential to improving our knowledge of how complex biological systems work. In recent years, a growing body of work has focused on methods for reverse-engineering these so-called gene regulatory networks from time-course gene expression data. However, reconstruction of these networks is often complicated by the large number of genes potentially involved in a given network and the limited number of time points and biological replicates typically measured. Bayesian methods are particularly well-suited for dealing with problems of this nature, as they provide a systematic way to deal with different sources of variation and allow for a measure of uncertainty in parameter estimates through posterior distributions, rather than point estimates. Our current work examines the application of approximate Bayesian methodology for the purpose of reverse engineering regulatory networks from time-course gene expression data. We demonstrate the advantages of our proposed approximate Bayesian approaches by comparing their performance on a well-characterized pathway in Escherichia coli

    How to understand the cell by breaking it: network analysis of gene perturbation screens

    Get PDF
    Modern high-throughput gene perturbation screens are key technologies at the forefront of genetic research. Combined with rich phenotypic descriptors they enable researchers to observe detailed cellular reactions to experimental perturbations on a genome-wide scale. This review surveys the current state-of-the-art in analyzing perturbation screens from a network point of view. We describe approaches to make the step from the parts list to the wiring diagram by using phenotypes for network inference and integrating them with complementary data sources. The first part of the review describes methods to analyze one- or low-dimensional phenotypes like viability or reporter activity; the second part concentrates on high-dimensional phenotypes showing global changes in cell morphology, transcriptome or proteome.Comment: Review based on ISMB 2009 tutorial; after two rounds of revisio
    • …
    corecore