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Identification of direction in gene networks
from expression and methylation
David M Simcha1*, Laurent Younes2, Martin J Aryee3,4 and Donald Geman5

Abstract

Background: Reverse-engineering gene regulatory networks from expression data is difficult, especially without
temporal measurements or interventional experiments. In particular, the causal direction of an edge is generally not
statistically identifiable, i.e., cannot be inferred as a statistical parameter, even from an unlimited amount of non-time
series observational mRNA expression data. Some additional evidence is required and high-throughput methylation
data can viewed as a natural multifactorial gene perturbation experiment.

Results: We introduce IDEM (Identifying Direction from Expression and Methylation), a method for identifying the
causal direction of edges by combining DNA methylation and mRNA transcription data. We describe the
circumstances under which edge directions become identifiable and experiments with both real and synthetic data
demonstrate that the accuracy of IDEM for inferring both edge placement and edge direction in gene regulatory
networks is significantly improved relative to other methods.

Conclusion: Reverse-engineering directed gene regulatory networks from static observational data becomes feasible
by exploiting the context provided by high-throughput DNA methylation data.
An implementation of the algorithm described is available at http://code.google.com/p/idem/.

Keywords: Gene regulation, Methylation, Microarrays, Bayesian networks

Background
As the analysis of high-throughput gene expression data,
notably phenotypic classification of samples [1-7], has
expanded and matured, the focus has begun to shift
towards mechanism and systems modeling [8-10]. In par-
ticular, much of the unrealized value of high-throughput
molecular data may be in increasing our understanding
of how various molecules interact in vivo, i.e., by reverse-
engineering biological networks, hopefully revealing how
disease states form and what targets might be available for
their treatment. In the case of transcript data the most rel-
evant type of network is one modeling transcriptional reg-
ulation. This may be thought of as a causal graph, wherein
each node represents a variable and a directed edge is
placed from every cause to each of its direct effects. From
a causal gene regulatory graph, one then infers the effects
of under- or over-expressing the mRNA level of one gene
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on the mRNA expression of other genes. The definition in
terms of mRNA expression is a pragmatic choice, as this
can be easily measured in a high-throughput fashion and
can serve as a surrogate for protein concentration under
some circumstances [11].

Whereas causality is not a statistical concept, there
is an important relationship between causal graphs and
Bayesian networks, which are stochastic graphical models
commonly used to represent large-scale biological net-
works, in particular gene regulatory networks. Bayesian
networks are probability distributions over directed
acyclic graphs (DAG) such that each node represents a
variable and each variable is statistically independent of its
non-descendents given its parents. The connecting con-
cept between causal graphs and Bayesian networks is the
Causal Markov Condition [12,13], which states that a vari-
able is independent of its non-effects given all of its direct
causes. If a complete causal DAG (one that includes all
common causes of any pair of variables) is interpreted as a
Bayesian network, the statistical properties of the system
will be correctly represented. Despite this relationship,

© 2013 Simcha et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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the mapping from a Bayesian network graph to a causal
DAG is non-trivial; see Methods. For one thing, multiple
Bayesian network DAGs can map to the same indepen-
dence relationships. In other words, these models are not
statistically “identifiable” and multiple causal situations
represented by different DAGs can map to a single set of
independence assumptions. One example of this is shown
in Figure 1.

Because of this non-identifiability, the central challenge
in reverse-engineering a gene regulatory network from
observational data is placing directed edges: determin-
ing the direction of the causal arrow between a pair
of genes that are irreducibly statistically dependent and
believed at least provisionally to be causally related. How-
ever, an isolated causal assumption cannot be tested
using only observational data [14]. Therefore, most past
attempts to reverse-engineer gene regulatory networks
using expression data fall into one of three categories. The
first category of methods requires time series data and
assumes that cause will temporally preceed effect, exam-
ples being dynamic Bayesian networks [15,16], Granger
causality [17] or a similar time shifted correlation tech-
nique [18]. The second category uses techniques such as
ordinary differential equations and requires targeted per-
turbation of specific genes in quantitatively well-defined
ways [19]. Compounding these difficulties, time series or
perturbation data is often difficult to obtain, either for
ethical or technical reasons, from human in vivo biolog-
ical states. Methods in the third category utilize static
data but allow edge directions to remain unidentifiable
for many or all subgraphs; these include information-
theoretic algorithms [20,21], decision tree based algo-
rithms [22], and static Bayesian network algorithms
[23-25].

Our approach to dealing with causal direction is to
broaden the context beyond mRNA expression and
extract information from high-throughput data about
auxiliary variables associated with each gene. We use
causal assumptions which are justified on biological rather
than computational grounds about connections in the

Figure 1 Causal Vs. Bayesian networks. Three DAGs with different
meanings when interpreted as causal graphs but identical meanings
when interpreted as Bayesian networks. As Bayesian networks, all
three graphs represent different forms of the same probability
factorization, namely A ⊥ C|B. Therefore, the correct causal graph
cannot be identified statistically by examining independence
relationships among variables.

extended network between the genes and the auxiliary
variables. Finally, we then test whether the observed data
is consistent with additional causal assumptions under the
Causal Markov Condition. Even though a causal assump-
tion cannot be tested in isolation using observational data,
a set of causal assumptions can yield predictions that can
be tested using such data [14]. We use methylation data
in this study to illustrate our approach although other
choices are possible. In mammalian cells, DNA methyla-
tion in the promoter region of a gene is frequently used
as an epigenetic gene silencing signal. Notably, changes
in promoter region methylation appear to cause targeted,
gene-specific effects. For example, methylation appears
to play a role in maintaining gene silencing in genomic
imprinting [26]. Similarly, tumor suppressor genes are fre-
quently hypermethylated in cancer [27,28]. Techniques
have been recently developed for measuring methylation
in a high-throughput fashion [29]. In many cases, such
measurements provide the context necessary to make
edge directions identifiable when reverse-engineering
gene regulatory networks.

This context is exploited by building enhanced directed
regulatory network using two types of nodes for each
gene: conventional ones representing mRNA expres-
sion and others representing methylation levels, both
measurements being obtained from non-time series,
high-throughput, observational data. A key simplifying
assumption usually made in methodologies designed for
large-scale reverse-engineering [20,21], including ours,
is that biological interactions among genes (such as
regulator-target relationships) imply statistical depen-
dence at a pairwise level. Therefore, for every pair of genes
with a significant statistical interaction, we construct a
simple, four-variable Bayesian network representing two
mRNA variables (i.e., two genes) and two corresponding
methylation states. This construction includes estimating
the direction of the arrow between the two genes using
a likelihood ratio test. In effect, the resulting algorithm,
IDEM (Identification of Direction from Expression and
Methylation) can be thought of as a taking advantage
of a natural multifactorial gene perturbation experiment.
When a gene promoter region becomes differentially
methylated across samples, the expression of the tar-
get gene may be perturbed. Measuring promoter region
methylation can be thought of as measuring how the sys-
tem has been perturbed. A key model assumption, there-
fore, is that methylation of the promoter region of a gene
directly affects the mRNA expression of the downstream
gene and does not directly causally affect the expression
of any other gene. Under this assumption, discovering the
direction of a causal edge from non-time series observa-
tional data becomes possible in some cases, especially in
subnetworks that are acyclic (tree-like). (Details are in the
Theoretical results section).
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Our main contribution is then a simple and novel sta-
tistical test to determine the direction of regulatory edges
from the joint distribution of methylation and mRNA
expression data. No time-series or intervention data is
used. We explore the conditions under which this test is
consistent from a theoretical perspective and measure its
accuracy empirically using both real and simulated data,
demonstrating that causal gene regulatory networks can
at least be partially inferred from static observational data
provided there is sufficient auxiliary information about
the regulatory context.

Methods
Data acquisition and pre-processing
Expression and methylation data were obtained from
The Cancer Genome Atlas [30] (TCGA). The expres-
sion platform chosen was the Agilent G4502A_07, and
the methylation platform was the Illumina Infinium
HumanMethylation27 panel. Approximately 12,000 genes
(depending on how many probes were discarded due to
missing data) are common to both platforms. The sam-
ple sizes and number of available genes for these datasets
are shown in Table 1. All ovarian serous cystadenocar-
cinoma (Ovarian) and glioblastoma multiforme (GBM)
patient samples containing data for both platforms were
used. We omit detailed results for the colon adenocarci-
noma, breast invasive carcinoma and lung squamous cell
carcinoma samples even though methylation and expres-
sion data are available for these datasets because the much
smaller sample sizes result in very few significant edges
being found and poor accuracy among the edges that are
found.

Where technical replicates existed, the values were aver-
aged. Probes for which data was missing for any sample
were discarded. To reduce the severity of batch effects
[31], the batch-specific mean expression or methylation
value for each gene was subtracted out, and then the
global mean added back. Thus, all batches were forced to
have the same mean for any given gene. Both expression
and methylation data were then transformed to rank space
on a per-sample basis. Finally, to simplify computations
involving mutual information, each probe was binned into
B equal frequency bins. Where multiple probe sets (for
expression or methylation) mapped to the same gene, the
pair of probe sets (one for methylation, one for expres-
sion) with the highest mutual information was selected to

Table 1 Sample size

Dataset N samples N genes

GBM 279 11834

Ovarian 536 11270

The sample sizes of the TCGA datasets used.

represent that gene. Preprocessed data can be found in
Additional files 1, 2, 3 and 4.

Causal graphs and Bayesian networks
As indicated earlier, the relationship between causal
graphs and Bayesian networks is complex. First, the
Causal Markov Condition holds for a causal graph G con-
taining vertices V only if all common causes of any pair
of variables in V are included in the set of vertices V
[12]. Marginalizing over common causes excluded from
V can introduce statistical dependencies not predicted by
the Causal Markov Condition as applied to G. Even under
the strong assumptions that all common causes are mea-
sured (causal sufficiency [12]) and that no independences
not implied by the causal DAG and Causal Markov Con-
dition are present (causal faithfulness [12,13]), the Causal
Markov Condition does not imply that a Bayesian net-
work graph that accurately describes the independence
relationships among the variables under study accurately
represents causality when interpreted as a causal graph.
Finally, there is the identifiability problem illustrated in
Figure 1.

Note, however, that causal direction may be identifiable
under the Causal Markov Condition for some subgraphs
from static data alone given correct edge placement; see
Figure 2 for illustration of such a scenario. For a more
thorough discussion of this issue we refer the reader to
[23].

Statistical framework
As mentioned above, a standard assumption in learn-
ing regulatory networks is that the mRNA levels of pairs
of genes which are biologically interacting are depen-
dent statistically as random variables. Plausible scenarios
where this assumption is untrue do exist. For example,
if a gene is regulated by the interaction of two regu-
lators via XOR logic (activation if both regulators are
active or if both are inactive and inhibition otherwise),
then the gene can be independent of each of its regula-
tors taken individually. On the other hand, the number of
parameters to be estimated increases exponentially in the
order (binary, ternary, etc.) of interactions to be learned.
Therefore, we argue that for realistic sample sizes the
bias error created by ignoring these higher-order scenar-
ios will likely be smaller than the variance error suffered
by attempting to recover them. It’s also important to
note that statistical dependence alone does not imply
causal dependence, for example if the expression of two
genes has a common regulator or hidden variable. We
attempt to mitigate this with the non-causal (NC) pruning
and data processing inequality steps detailed later in this
section.

Let G be the set of all genes for which both mRNA
expression and promoter region methylation data are
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Figure 2 Identifiability. A hypothetical four-gene network for which
a subset of causal edge directions might be statistically identifiable
under the Causal Markov Condition only from non-time series
observational expression data assuming all edge placements are
correct. If treated as a Bayesian network, this graph represents the
probability distribution factorization P(A, B, C, D) = P(A)P(C)P(D|C)

P(B|A, C). The directions of the edges in the subnetwork {A, B, C} may
be identifiable, as no other subgraph with these edge placements
could produce a situation such that A is absolutely independent of C
but these variables may become dependent when conditioned on B.
However, the direction of the C − D edge is not identifiable.
Reversing it would produce a different form of the same factorization
as the direction shown.

available. For any gene g ∈ G, let Mg be the promoter
region methylation of gene g and let Eg be the mRNA
expression level of gene g. As is common practice, the
mutual information I(X; Y ) between two random vari-
ables X, Y [32] will serve as a test statistic for indepen-
dence, recalling that X ⊥ Y if and only if I(X; Y ) = 0.
Similarly, for three random variables X, Y , Z, we have X ⊥
Y |Z if and only if I(X; Y |Z) = 0. (Here and in the rest of
this paper, we will use the standard notation X ⊥ Y to
indicate that variables X and Y are independent and X ⊥
Y |Z to indicate that they are conditionally independent
given a third variable, Z).

The first step of IDEM is to construct a mutual informa-
tion relevance network [21] for mRNA expression. This
means placing an undirected edge between every pair
of genes G1 and G2 if the empirical evaluation of the
mutual information of their mRNA expression (that we
will denote Î(E1; E2)) exceeds a threshold and conclud-
ing that E1 and E2 are not statistically independent. Using
the fact that, under null hypothesis that E1 ⊥ E2, Wilks’
Theorem [33] implies that 2NÎ(E1, E2) approximately fol-
lows a chi-square with (B − 1)2 degrees of freedom where
N represents the sample size, we place an undirected edge

between E1 and E2 when the corresponding p-value is less
than some value α.

Local Bayesian network
Let g1, g2 be the two genes for which the hypothesis of sta-
tistical independence has been rejected. These are linked
in the relevance network by a nondirected edge. Let E1,
E2 be their mRNA expression levels and M1, M2 be their
methylation levels in the measured parts of their promoter
regions. Since methylation of several genes might be
influenced by a single hidden variable, such as a methyl-
transferase mutation or environment, we also postulate a
hidden (possibly multidimensional) variable V that may
affect both M1 and M2. V is a theoretical construct; its
exact nature is both unknown and unimportant. We now
specify two competing local Bayesian network models for
the joint distribution of (E1, E2, M1, M2, V ). First, denote
the (true) underlying joint distribution by

P(e1, e2, m1, m2, v) = P(E1 = e1, E2 = e2,
M1 = m1, M2 = m2, V = v)

where we can assume all variables except V take val-
ues in {1, . . . , B}. For simplicity we will write p(e1) for
P(E1 = e1), p(e1|e2) for P(E1 = e1|E2 = e2), and so forth.
The meaning of all marginal and conditional distributions
should be clear from the context.

Under the provisional assumption of a causal edge
between E1 and E2, our objective is to determine which
direction best explains the data. Ideally, this direction
would be determined for a sufficiently large amount of
data (sufficiently many realizations of of E1, E2, M1, M2)
under the Causal Markov Condition; in other words, the
direction of the edge would be “identifiable” as a statisti-
cal parameter. For this purpose, we assume the following
as possible, competing models, illustrated in Figure 3:

Model 1 : Q1(e1, e2, m1, m2, v) = P(v)P(m1|v)P(m2|v)
× P(e1|m1)P(e2|e1, m2)

Model 2 : Q2(e1, e2, m1, e2, v) = P(v)P(m1|v)P(m2|v)
× P(e2|m2)P(e1|e2, m1)

Of course, we can marginalize the V variable and write,
for example,

Q1(e1, e2, m1, m2) = P(m1, m2)P(e1|m1)P(e2|e1, m2).

The key difference is between the two models how the
methylation of one gene affects the expression of the
other. In Model 1 we are assuming that E1 ⊥ M2|M1 and
E2 ⊥ M1|E1, M2, whereas in Model 2 it is the reverse:
E2 ⊥ M1|M2 and E1 ⊥ M2|E2, M1.
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Figure 3 Competing models. The two direct causal models
explaining the existence of significant mutual information between
E1 and E2. These local models are interpreted as causal networks and
as Bayesian networks via the Causal Markov Condition. V represents
any hidden variables, such as methyltransferases, that may affect both
M1 and M2. For each pair of genes with a putative edge, one of these
models is selected using a likelihood ratio test.

From biological knowledge about methylation we know
that one of these models is the correct causal graph for
{M1, M2, E1, E2} if a causal link exists between E1, E2.
This model is also accurate as a Bayesian network graph
if marginalizing over all other relevant variables in the
full network (such as the expression and methylation of
other genes) does not introduce any additional statisti-
cal dependencies among {M1, M2, E1, E2}. This is because
the Causal Markov Condition assumes that all common
causes are included in a model. However, only low-order
analysis is statistically and computationally feasible for
large gene regulatory networks.

A likelihood ratio test for direction
Assuming that one of these models represents the sta-
tistical ground truth, conditions under which the correct
model is statistically identifiable can be derived. Consider
the expected log likelihood ratio EP(llr) where the log
likelihood ratio is:

llr (E1, E2, M1, M2) = log
(

Q1(E1, E2, M1, M2)

Q2(E1, E2, M1, M2)

)

= log
(

Q1(E1, E2|M1, M2)P(M1, M2)

Q2(E1, E2|M1, M2)P(M1, M2)

)

= log
(

P(E1|M1)P(E2|E1, M2)

P(E2|M2)P(E1|E2, M1)

)

If P = Q1, then this expected value is the Kullback-
Leibler divergence between Q1 and Q2 and is necessar-
ily non-negative. Similarly, by symmetry, if P = Q2,

this value is non-positive. In fact, it can be shown (see
Theoretical results ) that

EP(llr(E1, E2, M1, M2))= I(E2; M1|M2)+I(E1; M2|M1, E2)

− (I(E1; M2|M1)

+ I(E2; M1|M2, E1)).

This expression is the difference between two non-
negative terms, and the first one vanishes if and only if
P = Q2 and the second one vanishes if and only if P = Q1.
Assuming that either Q1 or Q2 holds, this expression is
zero if and only if we are in the intersection of the two
model classes:

I(E2; M1|M2) = 0, I(E1; M2|M1) = 0, I(E2; M1|M2, E1)

= 0, I(E1; M2|M1, E2) = 0.

In summary, assuming a local Bayesian network for
which the Causal Markov Condition holds, and assuming
E1 and E2 are causally linked, the direction of the edge
between them is identifiable except in the degenerate case
in which all four independence statements are true.

We can now use the Law of Large Numbers to put this
result into practice. Suppose our data consist of N sample
observations {e1,i, e2,i, m1,i, m2,i}, i = 1, . . . , N . The classi-
cal likelihood ratio of the data under the two models is
then

ρ =
N∏

i=1

P(e1,i|m1,i)P(e2,i|e1,i, m2,i)

P(e2,i|m2,i)P(e1,i|e2,i, m1,i)
.

By the Law of Large Numbers, log ρ converges to
EPllr(E1, E2, M1, M2) when the sample size goes to infin-
ity. This is the test statistic for our test for edge direction.
Except in the degenerate case mentioned above, the log-
arithm of ρ divided by N converges to a strictly positive
value under Model 1 and a strictly negative value under
Model 2. Hence:

IDEM Decision Rule: Select Model 1 if ρ > 1 and Model
2 if ρ < 1.

Another interpretation of this rule can be obtained by
writing

EP(llr) = (H(E2|M2) − H(E2|E1, M2)) − (H(E1|M1)

− H(E1|E2, M1))= I(E1, E2|M2)−I(E1, E2|M1).

Consequently, IDEM places an oriented edge from E1 to
E2 if and only if Î(E1, E2|M2) > Î(E1, E2|M1), i.e., if M1 has
a stronger effect in decoupling E1 and E2 than M2.

Pruning
We now introduce two pruning criteria that will reduce
the large number of edges typically returned by relevance
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networks. The first criterion attempts to detect dependen-
cies between E1 and E2 that could be due to co-regulation
induced by a third, unobserved, variable, while the sec-
ond ones prunes triangles by removing their weakest edge
based on the data processing inequality.

Non-causal pruning
After direction is determined, the edge may be eliminated
via a non-causal (NC) pruning step if the mutual infor-
mation between the methylation of the outgoing gene and
the expression of the incoming gene is not significantly
greater than zero given the methylation of the incom-
ing gene. Our goal is to detect and discard situations in
which the relationship between E1 and E2 is obtained via
the causal effect of a third (possibly hidden) variable, say
W, as depicted in Figure 4. For such causal relationship,
one has M1 ⊥ E2|M2 and M2 ⊥ E1|M1. One of these is
assumed to be true even if there is a direct causal rela-
tionship between E1, E2 depending on whether Model 1 or
Model 2 is chosen in the likelihood ratio test. NC prun-
ing tests whether the other of these can be statistically
ruled out, e.g. if Model 1 is chosen in the likelihood ratio
test then I(M1; E2|M2) significantly > 0. This is tested

Figure 4 Common causes. A scenario where E1, E2 are regulated by
a common cause W but do not causally affect one another.

using Wilks’ theorem, where under the null hypothesis of
conditional independence M1 is constrained to be inde-
pendent of E2 at every level of M2. The α value used for
this test is the same as the one used to build the rele-
vance network. If the null hypothesis cannot be ruled out,
the edge is removed. Beside removing common regulator
cases, NC pruning also tends to remove edges for which
the log likelihood ratio (| log ρ|) is close to zero and thus
the confidence in the direction assigned is low.

Indirect edge removal
After edges are placed, maximum likelihood directions
determined, and NC pruning is carried out, the graph is
pruned using the data processing inequality method as
introduced in ARACNE [20]. The goal here is to remove
spurious edges, for which nonzero mutual information
can be attributed to indirect interactions among modeled
variables. For example, if Gene A regulates gene B and
gene B regulates gene C, then I(A; C) may be strictly posi-
tive even if no direct regulatory link exists. Since feedback
loops cannot be detected from non-time series obser-
vational data and inconsistencies in the likelihood ratio
test in loopy scenarios prevent reliable detection of feed-
forward loops, the most parsimonious explanation for a
three-clique in the relevance network is that the weakest
edge (the one with the smallest mutual information) is due
to indirect regulation. Therefore, this edge removed.

GENIE3 comparison
The results of IDEM were compared to those produced
by GENIE3 [22]. GENIE3 attempts to reverse engineer
directed edges (though the biological interpretation of the
direction is not explicitly stated) using only expression
data, even though causal direction is often not identifi-
able from such data even under the strong assumptions
of causal sufficiency and causal faithfulness. The purpose
of this comparison is to demonstrate the value added
by methylation data, especially when inferring directed
networks. The data provided to GENIE3 was the same
expression data provided to IDEM and was fully prepro-
cessed except for the binning step. Since GENIE3 pro-
duces a weight for each edge rather than a hard decision,
we considered the top M edges for each dataset, where M
is the number of edges (both true and false) discovered
by IDEM on the same dataset. Since GENIE3 produces a
weight for both directions for every edge, only the larger of
the two were considered when selecting the top M edges.

Results
IDEM was applied to the TCGA datasets mentioned pre-
viously, as well as the synthetic datasets, with B = 2. At
the sample sizes available, using B = 2 proved empiri-
cally more successful than larger values of B. (Data not
shown). Since α = 10−3 provided a good balance between
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high precision and sufficient recall to draw meaningful
conclusions, detailed analyses (all analyses except the PR
curve) were performed using α = 10−3. The full network
that we reverse-engineered for each dataset is available in
Additional files 5 and 6.

Synthetic data
We first attempted to validate IDEM using synthetic
expression data generated using GeneNetWeaver [34-36],
the software used to simulate data for the DREAM chal-
lenge. Since differential methylation constitutes a natural
multifactorial perturbation experiment in our model and
GeneNetWeaver does not include any facilities to simulate
methylation data, we created a set of perturbations anal-
ogous to methylation data as described below. We then
used GeneNetWeaver’s multifactorial perturbation fea-
ture to generate expression data with these perturbations.
The perturbations were generated by a procedure that was
designed to make the distribution of absolute correlations
between methylation variables and corresponding expres-
sion variables similar to that observed on the real GBM
and ovarian data. For each gene g, first generate a standard
deviation σg from a uniform distribution over [ 0, 0.05],
and then generate perturbation values mg,j, j = 1, . . . , N ,
from a Normal(0, σg) density. The matrix of perturba-
tions (i.e., genes by samples) was supplied to IDEM as the
“methylation” data.

A network of 1,000 genes was generated by randomly
placing approximately 2,000 edges. Each gene g was
assigned a random outgoing and incoming weight, which
were proportional to the probabilities of each edge being
outgoing from g and incoming to g respectively, or in other
words proportional to the expected out and in degree of
each gene. The outgoing weights were sampled from the
distribution P(W ) = w−2, w ≥ 1. The intent was for the
out degree distribution to approximate a scale-free net-
work. The incoming weights were sampled from P(W ) =
2e−2w, w ≥ 0. This network is available in Additional file 7.

After the network and perturbation data were
generated, the expression data was generated using
GeneNetWeaver, using the stochastic differential
equation model and otherwise using the default settings.
The expression data used included the simulated microar-
ray noise that GeneNetWeaver is capable of producing.
The synthetic datasets are available in Additional files 8
and 9.

The above simulation was performed at sample sizes
of 100, 500 and 1,000. Since the full ground truth net-
work was available for this dataset, traditional precision
and recall statistics can be used to assess the accuracy of
edge placement (EP) in the reverse-engineered network.
For the purpose of this benchmark, an edge is considered
a true positive only if the direction is correct. The contin-
gency table used is shown in Table 2, where R represents

Table 2 Edge placement benchmark

No predicted R → T Predicted R → T

No actual R → T TN FP

Actual R → T FN TP

Contingency table used for the edge placement (EP) benchmark. The row
determines whether an edge R → T exists according to the knockdown data.
The column determines whether an edge R → T is predicted. The symbols TP,
TN, FP and FN stand for true positives, true negatives, false positives and false
negatives respectively.

a regulator gene and T represents a target of a given reg-
ulator. From this table recall and precision statistics can
be calculated. The recall is TP/(TP + FN) and the preci-
sion is TP/(TP + FP). The null recall, or expected recall
if IDEM has no predictive ability, is (TP + FP)/E where E
is the total number of edges classified. The null precision
is (TP + FN)/E. The statistical significance of this bench-
mark was assessed using the one-sided version of Fisher’s
Exact Test. Additionally, we measured the accuracy of
edge direction (ED) prediction given that a correct undi-
rected edge was discovered. Since complete ground truth
data is available, the significance of this can be assessed by
a simple one-sided binomial test. The reverse-engineered
networks are available in Additional file 10.

Tables 3 and 4 display the result of IDEM on the syn-
thetic dataset. The results are compared to GENIE3 [22],
a method that attempts to learn directed regulatory edges
using expression data only. In terms of edge placement
(Table 3), the recall is poor for both algorithms, which is
frequently the case in computational methods for reverse-
engineering regulatory networks; on the other hand, the
precision of IDEM quite reasonable. In terms of edge
direction (Table 4), IDEM is virtually perfect in identifying
the direction of edges given that an edge is predicted.

Knockdown validation
Knockdown experiments, where the expression of indi-
vidual genes is perturbed in a targeted manner, can pro-
vide valuable information about regulatory networks. To
the best of our knowledge, no publicly available knock-
down data exists for the same tissue types for which

Table 3 Synthetic data edge placement results

Method N Precision Null Recall Null Fisher
samples prec. recall p-value

IDEM 100 0.565 0.0039 0.007 4.6e-5 3.6e-28

IDEM 500 0.681 0.0039 0.032 1.8e-4 5.1e-127

IDEM 1000 0.692 0.0039 0.057 3.3e-4 6.1e-226

GENIE3 100 0.130 0.0039 0.002 4.6e-5 9.7e-5

GENIE3 500 0.165 0.0039 0.008 1.8e-4 2.7e-20

GENIE3 1000 0.119 0.0039 0.010 3.3e-4 1.5e-22

The results of the edge placement (EP) benchmark using synthetic data.
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Table 4 Synthetic data edge direction results

Method N samples Fract correct Binomial p-value

IDEM 100 1 0.001

IDEM 500 1 2.2e-19

IDEM 1000 1 7.7e-34

GENIE3 100 0.43 0.77

GENIE3 500 0.48 0.64

GENIE3 1000 0.5 0.56

The results of the edge direction (ED) benchmark using synthetic data.

TCGA methylation and expression data are available.
We therefore evaluted IDEM’s predictions using a pub-
licly available siRNA knockdown dataset from a human
myeloid leukemia cell line [37]. This dataset was used
under the assumption that gene regulatory networks are
partially conserved across tissue types. It contains expres-
sion levels for control samples as well as samples with
approximately 50 genes knocked down. The genes that
were knocked down are referred to as “knockdown genes”.
Seventeen negative control replicates were included and
for most knockdown genes three replicates were included.
Where multiple probe sets mapped to the same gene, the
maximum expression level was used.

Since knocking down a gene is an intervention in the
context of a controlled experiment, changes in a gene’s
expression upon knocking down the knockdown gene are
assumed to be caused by the knockdown. Therefore, we
declared a target gene T to be regulated by a regulator R
if T was differentially expressed between control samples
and samples with R knocked down with a p-value ≤ 0.01
as assessed by the Wilcoxon Rank Sum Test and with a
fold change greater than two between the median con-
trol and knockdown expression levels. We also required
that T be expressed in either the control or knockdown
samples with a geometric mean detection p-value ≤ 0.001
for the probe set used to represent each gene. This def-
inition allows R to regulate T indirectly. Distinguishing
direct from indirect regulation was not feasible given the
nature of the knockdown dataset. To accommodate this
ambiguity, the indirect edge removal step of the IDEM
algorithm was skipped when preparing IDEM predictions
for this validation.

The edge placement benchmark determines whether an
R → T edge is more likely to be predicted by IDEM when
T is differentially expressed upon knocking out R than
when T is not differentially expressed. This is identical
to the EP benchmark used on they synthetic data except
that it is only performed for the subset of edges for which
knockdown data is available. The edge direction bench-
mark is similar to the EP benchmark but is conditioned
on IDEM predicting an edge between R and T in either
direction (either R → T or T → R). The null hypothesis

is that Psignif , the probability that IDEM predicts an edge
R → T given that an R → T edge exists according to
the knockdown data, is equal to Pnon−signif , the probability
that IDEM predicts R → T given that this edge does not
exist according to the knockdown data. The alternative is
Psignif > Pnon−signif . This benchmark is meant to test only
the accuracy of the inferred edge direction, which is the
novel part of IDEM. This formulation is necessary since
only approximately 50 genes were knocked down in these
experiments. For most knockdown genes R, the majority
of edges GENIE3 and to a lesser extent IDEM predict are
outgoing (R → T) regardless of whether T is differentially
expressed when R is knocked down. Demonstrating pre-
dictive value requires demonstrating further enrichment
when T is differentially expressed. The contingency table
used for this benchmark is shown in Table 5. Psignif can be
written as N22/(N21 + N22) and Pnon−signif can be written
as N12/(N11 +N12). The statistical significance of this was
also assessed with Fisher’s Exact Test.

The ED benchmark measures how well IDEM predicts
edge direction given that it predicts the existence of an
edge. We also measured the extent to which our likelihood
ratio test predicts edge direction when edge placement
is given. For each edge in the knockout data as defined
above, we applied IDEM’s likelihood ratio test to the
methylation and expression data for the relevant gene pair
to predict direction. Since larger absolute log likelihood
ratio (| log ρ| where ρ is the likelihood ratio test statistic
described in Methods) indicates greater confidence in the
edge direction selected, we plotted the accuracy vs. min-
imum | log ρ| quantiles. Note that no non-causal pruning
step is used in Figure 5, and this step tends to remove
edges with small | log ρ|. Therefore, accuracies when little
constraint is placed on | log ρ| (those near the left edge of
Figure 5) are much lower than those observed in the ED
benchmark (Table 5).

Tables 6 and 7 validate IDEM’s results when the knock-
down data described in Methods is treated as ground
truth. The results are again compared to GENIE3. The
accuracy of IDEM in determining both edge placement
and edge direction is significantly better than chance but
still modest at available sample sizes. However, Figure 5
demonstrates that, when edge placement is given, the
likelihood ratio test becomes increasingly accurate for

Table 5 Knockdown data edge direction benchmark

Predicted T → R Predicted R → T

No Knockdown R → T N11 N12

Knockdown R → T N21 N22

Contingency table used for the edge direction (ED) benchmark. This table is
conditioned on IDEM predicting that an edge exists either R → T or T → R. The
row determines whether an edge R → T exists according to the knockdown
data. The column determines which direction IDEM predicts for the edge.
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Figure 5 LR Vs. Accuracy. The accuracy of our likelihood ratio method of inferring edge direction as a function of minimum | log ρ| when edge
placement is given. For example, among edges with | log ρ| in the top 1% the accuracy is approximately 67% on the GBM dataset and 64% on the
ovarian dataset.

high-confidence predictions (those with large | log ρ|). For
example, among edges with | log ρ| in the top 1% the accu-
racy is approximately 67% on the GBM dataset and 64% on
the ovarian dataset. Additionally, a precision-recall (PR)
curve of IDEM’s performance on real data is shown in
Figure 6.

KEGG validation
We attempted to validate IDEM’s edge direction predic-
tion on a small set of known cancer-related interactions
from the KEGG [38] hsa05200 pathway. IDEM was run
with α = 1 and DPI tolerance of 1 so that all possible
edges would be predicted and only the direction of the
edge remained to be reverse-engineered. The transcrip-
tion factor-target interactions in this dataset overlapped
with 51 IDEM interactions in the GBM dataset and 44 in
the ovarian dataset. (These numbers differ due to the cri-
teria for eliminating genes in the case of missing values.)
The results are shown in Table 8.

Table 6 Knockdown data edge placement results

Dataset Method Precision Null Recall Null Fisher

prec. recall P-Val

GBM IDEM 0.0367 0.017 0.015 0.0073 1.13e-16

Ovarian IDEM 0.0397 0.018 0.018 0.0081 7.68e-21

GBM GENIE3 0.032 0.017 0.010 0.0057 1.76e-08

Ovarian GENIE3 0.033 0.018 0.011 0.0058 3.87e-09

The results of the edge placement (EP) benchmark using knockdown data.

Computational complexity
IDEM is designed to scale computationally to large
datasets. Therefore, each step is of reasonable time com-
plexity. Let N be the number of samples and M be the
number of genes. The time complexity of the binning step
is O(MN log N). The complexity of building the relevance
network is O(M2N). The time complexity of performing
the likelihood ratio test is O(EN) where E is the num-
ber of edges remaining at this step. The time complexity
of the indirect edge removal is O(M3) in the worst case
but in practice much smaller because the graph to which
it is applied is typically sparse. Every major step can also
be efficiently parallelized, and the building of the rel-
evance network, the application of the likelihood ratio
test and the application of the data processing inequal-
ity are parallelized in our reference implementation. The
reference D implementation takes under 10 minutes to
run an 8-core Xeon X5647 machine for any dataset
described.

Table 7 Knockdown data edge direction results

Dataset Method Psignif Pnon−signif Fisher P-val

GBM IDEM 0.606 0.51 0.0019

Ovarian IDEM 0.618 0.529 0.0025

GBM GENIE3 0.680 0.656 0.305

Ovarian GENIE3 0.705 0.696 0.452

The results of the edge direction (ED) benchmark using knockdown data.
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Figure 6 PR curve. A PR curve produced as described in the “Knockdown validation” section, using the real ovarian and GBM data. At the far right of
the curve, the observed precision approaches the null precision (or the precision expected if edges were placed randomly. Therefore, only the
portion of the curve where the observed precision is noticeably above the null precision is shown.

Theoretical results
This section proves a set of results with regard to the
consistency of IDEM. Consistency means that, given infi-
nite samples, the correct causal graph would be recovered.
Since this section discusses consistency, it is assumed that,
given adequate sample size, an arbitrarily large number of
bins could be used for the binning process. This would
asymptotically eliminate any biases due to the binning
process.

Proof of consistency of likelihood ratio test
Let

R1 = EP

(
log

P(E1, E2|M1, M2)

P(E1|M1)P(E2|E1, M2)

)

and

R2 = EP

(
log

P(E1, E2|M1, M2)

P(E2|M2)P(E1|E2, M1)

)

so that EP(llr) = R2 − R1.

Table 8 KEGG validation

Dataset N correct direction N interactions binomial P-Val

Ovarian 20 44 0.774

GBM 33 51 0.024

The results of comparing IDEM’s edge direction prediction to the directions of
TF-target interactions in the KEGG hsa05200 pathway.

We have

R1 = H(E1|M1) + H(E2|E1, M2) − H(E1, E2|M1, M2)

= H(E1|M1) + H(E2|E1, M2) − H(E1, E2, M1, M2)

+ H(M1, M2)

= H(E1|M1) + H(M1, M2) − H(M1|E1, M2)

− H(E1, M2) + I(E2, M1|E1, M2)

= H(E1|M1) + H(M2|M1) − H(M1, E1, M2)

+ H(M1) + I(E2, M1|E1, M2)

= I(E1, M2|M1) + I(E2, M1|E1, M2)

By symmetry,

R2 = I(E2, M1|M2) + I(E1, M2|E2, M1)

so that

EP(llr) = I(E2, M1|M2) + I(E1, M2|E2, M1)

− (I(E1, M2|M1) + I(E2, M1|E1, M2)).

Effects of marginalization
This subsection examines the effects of marginalizing on
any variables not present in {M1, M2, E1, E2} on the identi-
fiability of the E1 −E2 edge, assuming that marginalization
adds dependencies not present in Model 1 or Model 2. In
this section, graphs are to be interpreted only as Bayesian
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networks and not as causal graphs, since the intent is
to explore the effects of missing causal variables that
introduce additional dependencies.

To simplify the notation, we marginalize over V first,
which is equivalent to placing an edge between M1, M2.
The direction of this edge is not important since both
directions lead to the same independence relationships
among {M1, M2, E1, E2}.

There are two edges that can be added to this graph
while keeping it directed acyclic and without adding ver-
tices: M1 − E2 or M2 − E1. (Since these edges appear on
the diagonal in all figures in this section, we refer to them
as “diagonal edges”). Again, the direction is not important
as long as the directions of these edges and the M1 − M2
edge are chosen such that the graph is acyclic. The diag-
onal edges are not to be interpreted biologically as direct
causal relations. They only model the statistical effects of
marginalizing over variables excluded from Models 3 and
4. If both edges are added, the graph is fully connected.
No independence relationships remain regardless of the
direction of the edge between E1, E2, so this direction is
unidentifiable.

When one of the two diagonal edges is added, the
edge direction remains identifiable but a modification of
the likelihood ratio test is required. This modification
requires knowing or inferring which diagonal has been
added and estimation of a quadruple distribution instead
of a triple. Similarly to the previous section, consider the
two models illustrated in Figure 7. We consider only one
possible diagonal edge. This is without loss of generality
due to symmetry. The likelihood ratio here is:

R34 = P(E1|M1)P(E2|E1, M1, M2)

P(E2|M1, M2)P(E1|M1, E2)
(1)

Under Model 3 E1 ⊥ M2|M1 and under Model 4 E1 ⊥
M2|M1, E2. Using notation and arguments similar to those

Figure 7 Models 3, 4. Bayesian network graphs for Models 3 and 4.
These are not causal graphs and are intended to represent possible
effects of marginalizing over variables outside the subgraph
{M1, M2, E1, E2} on the independence relationships among these
variables.

in the previous section it can be shown that EP[R34] =
I(M2; E1|M1, E2) − I(M2; E1|M1).

Therefore, these models are identifiable via a likelihood
ratio test unless the independence relationships implied
by both models apply simultaneously.

Proof of consistency for acyclic causal Markov graphs
In this section we derive a useful set of sufficient condi-
tions for IDEM to be consistent. Consistency means that,
given infinite samples, the correct causal graph would
be recovered. Given a sufficiently large sample size an
arbitrarily large number of bins could be used for estimat-
ing mutual informations and likelihood ratios, eliminating
information loss due to binning. We demonstrate that
IDEM can correctly recover the any causal graph G where,
in addition to the assumptions described in the main text,
the following are true:

1. The Causal Markov Condition applies for G. Most
importantly, this means no common causes have
been omitted [12].

2. Causal faithfulness [12,13] applies. This means that
only the independence relationships specified by the
causal graph and Causal Markov Condition exist.

3. The causal graph must be acyclic. This means no
directed or undirected cycles.

4. The Data Processing Inequality must be strict. Let
A − B − C be a Markov chain implied by a causal
graph and the Causal Markov Condition. Then
I(A; C) < min(I(A; B), I(B; C)). If
I(A; C) = min(I(A; B), I(B; C)) then direct vs.
indirect causality will not be identifiable.

This proof consists of three elements:

1. The ARACNE [20] method is consistent in its
recovery of irreducible pairwise statistical
dependencies if the graph of these dependencies is a
tree. (Since the graph produced by ARACNE is
undirected, a tree is equivalent to an acyclic graph.)
The proof can be found in the ARACNE reference.
Since IDEM uses the mutual information relevance
network and data processing inequality steps from
ARACNE, the same logic applies to it. IDEM will also
recover irreducible pairwise statistical dependences.

2. Given an acyclic graph G for which the Causal
Markov Condition applies, irreducible statistical
dependency between variables A, B as defined in [20]
exists only if a causal edge exists in G between A, B.
This is best demonstrated by enumerating cases. In
an acyclic causal graph there are three possible
scenarios:

a.) There is a causal path between A and B. If
this is not a direct causal path, then the A − B
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edge will be eliminated by the Data
Processing Inequality step if the Data
Processing Inequality is strict.

b.) There is no causal path between A and B but
there is still statistical dependency. Then A
and B must have a common cause.
Then the A − B edge will be eliminated by
the Data Processing Inequality step.

c.) There is no causal path between A and B and
no common cause. A will then be
independent of B.

The causal faithfulness assumption requires that an
irreducible statistical dependency exists if a causal
edge exists. These first two elements then prove that
the correct undirected causal graph can be recovered.

3. If there are no cycles the likelihood ratio test as
described previously is consistent with respect to
edge direction between E1, E2. The degenerate case
cannot occur under causal faithfulness. Assume
without loss of generality that for some set of
variables {E1, E2} the edge direction is E1 → E2.
Adding the respective methylation variables and all
possible connections that {M1, M2, E1, E2} might
have to the larger causal graph yields the graph shown
in Figure 8. This is the most general acyclic model
since the variables in {A, B, C, D, F , G, H , K} may be
multidimensional and cannot be connected to each
other without forming a cycle. Under this model the
two independence relationships that apply to Model

Figure 8 General acyclic model. The most general acyclic model
where E1 → E2, M1 regulates E1 and M2 regulates E2. Under this
model both of the independence assumptions of Model 1 as
depicted in Figure 3 hold.

1 as depicted in Figure 3 apply to {M1, M2, E1, E2}, so
the likelihood ratio test is consistent.

This set of conditions is more general than it appears at
first glance. While the complete causal graph of all genes is
almost certainly not acyclic, some subgraphs may be. If no
two nodes in this subgraph have a common cause outside
the subgraph then the Causal Markov Condition applies
and if all other conditions are met IDEM will produce
consistent results.

Discussion
To the best of our knowledge, this work is the first attempt
to mitigate the problem of identifying edge direction in
gene regulatory networks using only high-throughput,
non-time series, observational data. The performance of
the algorithm on synthetic data using the GeneNetWeaver
simulator is excellent. However, the discrepancy between
the accuracy of IDEM as assessed by synthetic data vs.
real expression, methylation and knockdown data is sub-
stantial. The knockdown benchmark results should be
taken as a lower bound on the performance of IDEM. The
knockdown data comes from a different cell type than
those available in TCGA. Typically only three replicates
are available for each knockdown experiment, decreasing
the power to infer weak regulation. To compensate we
considered differential expression statistically significant
if the p-value was ≤ 0.01 without adjusting for multiple
testing. Therefore, a significant number of edges in our
“ground truth” data are likely false positives. Furthermore,
it is possible that a substantial number of edges inferred
from the knockdown data are the result of batch effects.
Finally, since the knockdown data does not allow direct vs.
indirect regulation to be distinguished, the indirect edge
pruning step of IDEM is not used for this benchmark.
Weak, indirect edges may be much harder to reverse-
engineer in practice than strong, direct edges. Nonethe-
less our highest confidence edge direction predictions
achieve an accuracy of 64–67% using only non-time series
observational data. Likewise, IDEM’s performance in cor-
rectly predicting edge direction between members of the
Pathways in Cancer KEGG gene set also represents a
lower performance bound. This pathway represents gene
relationships described across a multitude of experiments
in many different cancer systems. As a result, it is likely
that many of these edges are weak or non-existant in our
test datasets, hampering IDEM’s ability to correctly infer
directionality.

The consideration of only pairwise and (for prun-
ing indirect edges) three-way interactions can clearly
lead to biases, especially in the case of loopy net-
works. A significant difficulty, detailed in Theoretical
results, is that marginalization over variables outside
the {M1, M2, E1, E2} subnetwork might add statistical
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dependencies not suggested by Model 1 or Model 2 and
make our likelihood ratio test inconsistent. However this
is not an issue for acyclic subgraphs for which the Causal
Markov Condition holds. Furthermore, in some cases
a more complex likelihood ratio test can work around
the marginalization issue even while involving only vari-
ables in {M1, M2, E1, E2}. Examining higher- order joint
probabilities would increase the amount of data required
to maintain a constant level of estimation error by an
exponential factor in the dimensionality of the interac-
tions examined. Empirically, despite the biases introduced
by low-order analysis, accuracy of more traditional pair-
wise methods on real and simulated data is compara-
ble to the accuracy of methods that use higher-order
analyses [39].

It is important to note that, in our network, an edge need
not represent direct transcription factor binding. The
reverse-engineered network is a purely phenomenological
prediction of what genes would be affected if the mRNA
expression of a given gene were perturbed. For example,
consider a hypothetical gene K. When K is expressed, it
produces a kinase protein that interacts at the protein-
protein level with a constitutively expressed transcription
factor protein F. When F is phosphorylated, it activates
or inhibits the transcription of a target gene T. Since F
is constitutively expressed, its expression will not have
high mutual information with any other gene’s expression.
Biologically, the gene most relevant in explaining varia-
tion in the expression of T is K. In our method, K will
have large mutual information with T and the edge K – T
will likely be inferred. This edge does not represent direct
transcription factor-target binding but is nonetheless bio-
logically meaningful in that perturbing K would affect
the expression of T with no other mRNA concentrations
being affected as a necessary condition. Similarly, due to
our lack of either expression or methylation data for about
half of all known genes, an edge placed between two avail-
able genes might physically involve a third, unmodeled
gene as an intermediary.

The primary practical use for IDEM will likely be gener-
ating hypotheses about the nature of human disease states,
or treatment targets for such diseases. A significant ben-
efit to the methodology is that the amount of publicly
available joint methylation and mRNA expression data is
rapidly increasing. As such data increases in availability,
various datasets can be combined to produce a network
with increasing sensitivity. Two limitations of IDEM are
i)the use of methylation-induced epigenetic silencing to
provide context for reverse-engineering directed edges
precludes the use of this method in lower organisms in
which methylation-induced silencing is not widely used;
and ii) a graph of a regulatory network, built from pub-
licly available data, does not provide clear conclusions on
its own, but provides a useful starting point from which

further studies can be undertaken to confirm and quantify
the results.

Moving forward, several expression context variables in
addition to methylation can be used to make edge direc-
tion identifiable. Methylation was used because it was
the most practical at this time. However, variables such
as copy number and the concentrations of highly tar-
geted microRNAs can also be used. In principle, gene
sets of higher order than pairs could also be considered
given sufficient data and computational power. Consider-
ing higher order interactions would allow situations such
as XOR logic to be discovered and remove some incon-
sistencies from likelihood ratio test for direction in loopy
scenarios.

Conclusions
We demonstrate the feasibility of using DNE methylation
data to make directed gene regulatory edges statistically
identifiable from non-time series observational data. This
is shown both theoretically and empirically, on both syn-
thetic and real data.
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