
Improved prediction of protein interaction from microarray
data using asymmetric correlation

Kojiro Yano∗1

1Department of Physiology, Development and Neuroscience,University of Cambridge, Downing Street, Cambridge, UK

Email: Kojiro Yano∗- ky231@cam.ac.uk;

∗Corresponding author

Abstract

Background: Detection of correlated gene expression is a fundamental process in the characterization of gene

functions using microarray data. Commonly used methods such as the Pearson correlation can detect only a

fraction of interactions between genes or their products. However, the performance of correlation analysis can

be significantly improved either by providing additional biological information or by combining correlation with

other techniques that can extract various mathematical or statistical properties of gene expression from

microarray data. In this article, I will test the performance of three correlation methods-the Pearson correlation,

the rank (Spearman) correlation, and the Mutual Information approach-in detection of protein-protein

interactions, and I will further examine the properties of these techniques when they are used together. I will

also develop a new correlation measure which can be used with other measures to improve predictive power.

Results: Using data from 5,896 microarray hybridizations, the three measures were obtained for 30,499 known

protein-interacting pairs in the Human Protein Reference Database (HPRD). Pearson correlation showed the

best sensitivity (0.305) but the three measures showed similar specificity (0.240 - 0.257). When the three

measures were compared, it was found that better specificity could be obtained at a high Pearson coefficient

combined with a low Spearman coefficient or Mutual Information. Using a toy model of two gene interactions, I

found that such measure combinations were most likely to exist at stronger curvature. I therefore introduced a

new measure, termed asymmetric correlation (AC), which directly quantifies the degree of curvature in the

expression levels of two genes as a degree of asymmetry. I found that AC performed better than the other
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measures, particularly when high specificity was required. Moreover, a combination of AC with other measures

significantly improved specificity and sensitivity, by up to 50%.

Conclusions: A combination of correlation measures, particularly AC and Pearson correlation, can improve

prediction of protein-protein interactions. Further studies are required to assess the biological significance of

asymmetry in expression patterns of gene pairs.

Background

In microarray data analysis, it is common to examine correlations among gene expression levels [1].

Correlated expression of a group of genes implies that the genes are involved in the same biological process

or form a protein complex, and correlation measures have been used to predict disease markers [2] and

protein-interaction partners [3]. For linear correlations, measures such as Euclidean distance or Pearson

correlation (PC) have been used, whereas more general correlations may be quantified by rank (Spearman)

correlation (SC) [4], Mutual Information (MI) [5]. However, the reliability of these measures when used to

infer gene interactions is not always satisfactory [6], and new methods have been proposed to improve the

functional annotation of genes from microarray data. Some of these techniques seek to enhance the

performance of measures by incorporating evolutionary information, such as orthologous

co-expression [7, 8], or by considering conditional correlations mediated by a third gene [9–11]. In addition

to correlation measures, statistically more sophisticated but computationally more intensive methods have

also been developed; these include Bayesian networks [12–14] and support vector machines [15,16].

Gene interactions cover a wide variety of mechanisms, and different methods of gene network inference are

based on various models of gene interaction. Therefore, a combination of such approaches can improve the

performance of network inference. For example, it has been shown that direct inference methods such as

PC are suitable for detecting stable protein complexes whereas conditional methods, including partial PC

or the Graphical Gaussian model, are better at defining causal interactions [17]. This means that different

methods can be mutually complementary, when used to expand detection of protein interactions. In this

article, I examine the performance of three commonly used measures - PC, SC, and MI - in predicting

known human protein-protein interactions from microarray data, and assess the possibility of achieving

improved performance through data combination. Based on this analysis, I introduce a new measure,
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termed asymmetric correlation (AC), and show that AC improves the performance of other measures.

Results and Discussion
Data source

The pre-processed meta-analysis data set E-TABM-185 from ArrayExpress [18] was used in all analyses.

The dataset contained measurements from 5,896 arrays of human cell and tissue samples, all of which were

hybridized with the Affymetrix GeneChip Human Genome HG-U133 (22215 probes). In this dataset, raw

data from the microarray were re-normalized with gcrma from Bioconductor [19] and output data were all

log2-transformed. Human protein interaction data were from the Human Protein Reference Database

(HPRD) [20], which has information on 30,499 interactions (excluding self-interactions). I also randomly

selected 30,499 pairs of genes from the microarray dataset, as a negative control.

Quantification of correlated gene expression

PC and SC were calculated using corr function from MATLAB (Mathworks, Inc. Natick, MA) and MI was

estimated using information MATLAB function constructed by Moddemeijer [5]. More specifically, when

I(X;Y) is MI of variables X and Y, I(X; Y ) = H(X) + H(Y )−H(X,Y ), where H(X) are H(Y) are the

entropies of variable X and Y, respectively and H(X,Y) is the joint entropy of X and Y. To obtain H(X),

the maximum and minimum values of X, namely Xmax and Xmin were calculated and the range

Xmin ≤ X ≤ Xmax were divided into ten equal intervals (called bins) Bi = B1, B2..., B10. Next the

number of elements Ci in bin Bi was calculated for all bins. Finally H(X) was calculated as

H(X) = −
∑

Pi(X)log(Pi(X)), where Pi(X)=Ci/
∑

Ci. H(Y) is obtained by the same manipulation. To

obtain H(X,Y), the number of elements Ci,j of a vector Zi,j=(Xi, Yi) was calculated for 10-by-10 bins Bi,j

with equal intervals in the ranges Xmin ≤ X ≤ Xmax and Ymin ≤ Y ≤ Ymax. Next H(X,Y) was calculated

as H(X, Y ) = −
∑

Pi,j(X, Y )log(Pi,j(X, Y )), where Pi,j(X,Y )=Ci,j/
∑

Ci,j . Correlation measures for

both protein-protein interaction pairs and control pairs are shown as histograms in Figure 1. With all

three measures, mean values were higher using HPRD genes than control genes (HPRD; PC, 0.167; SC,

0.244; MI, 0.0981; Control: PC, 0.0139; SC, 0.1127; MI, 0.0558).

Sensitivity and specificity of protein interaction prediction by gene expression correlation

To compare the performance of the three measures, I calculated sensitivity and specificity in discovery of

protein-protein interactions. At various threshold levels above which correlations were considered to be
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significant, specificity (proportion of below-threshold pairs to the total in the control group) and sensitivity

(proportion of above-threshold pairs to the total in the protein-interaction group) were calculated, and are

plotted in Figure 2. When the specificity was 0.9, the sensitivity was 0.305 with PC, 0.255 with MI, and

0.125 with SC. When the sensitivity was 0.9, the specificity was 0.257 with PC, 0.244 with MI, and 0.240

with SC. Therefore, PC performed best when high specificity was required, but there was no significant

difference in measure performance at high sensitivity.

Combined measures yield better specificity

To improve prediction performance, I compared the combined distributions of pairs of measures using the

HPRD pairs and controls. Figure 3 shows scatter plots for PC and SC, PC and MI, and SC and MI, for all

pairs in the protein-interacting group (blue) and the control group (red). It was found that at high PC

(>0.5), protein-interacting pairs became more predominant in the lower range of MI or SC. Such properties

were not seen when the relationship between SC and MI was examined; in all ranges of SC the

protein-interacting group predominated over the control group at higher levels of MI.

In what situation will SC or MI be reduced when PC is still high? I approach this question using a toy

model. Let us consider genes X and Y and assume that the expression level of gene Y (termed Ye) is a

function of the expression level of gene X (termed Xe), and that they system follows Michaelis-Menten

kinetics, as shown below:

dYe/dt = V1Xe/(Xe + K)− keYe

where V1, K and ke are constants. At the steady state, the relationship between Ye and Xe is:

Ye = V1Xe/ke/(Xe + K) = V2Xe/(Xe + K)

where V2 = V1/ke. Now the measured levels of Ye and Xe (termed Ym and Xm) are expressed as

Ym = d1Ye + D1, Xm = d2Xe + D2

where d1 and d2 are biological noise modelled as normally distributed noise with a mean = 1 and a

standard deviation = R1. D1 and D2 are technical noise modelled as evenly distributed random variables

ranging between 0 and R2 [21]. Note that the parameters for noise are arbitrarily chosen and are used

solely for demonstration of potential effects on correlation measures. Now, I vary K, R1, and R2 as follows:

K = 10, 000, 1, 000 or 100, and [R1, R2] = [0.01, 10], [0.03, 30] or [0.09, 90]. Figure 4 shows the log2

transformed plot of Xm(10 < Xm < 1, 000) against Ym and Table 1 shows PC, SC and MI outputs with
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different combinations of K and [R1, R2]. At low and moderate noise levels ([R1, R2] = [0.01, 10] and

[0.03, 30], respectively), SC was relatively unaffected by the decrease in K (i.e. the increase of

non-linearity). At the high noise level ([R1, R2] = [0.09, 90]), however, SC was strongly affected by the

decrease in K, but PC was less affected. At all noise levels, MI was highly sensitive to the value of K.

These results show that the elevated PC, and the low SC and MI, on analysis of the protein-interacting

group, are more likely to be evident at high levels of non-linearity and noise. As the level of noise will not

be significantly different between HPRD and control groups, nonlinearity will probably be higher when the

protein-interacting pairs are considered.

Defining asymmetric correlation

In the toy model above, the increase in non-linearity seen as K decreased caused the plot to diverge from

the diagonal line and become more asymmetric. This has been noted not only when Michaelis-Menten

kinetic is applied, but also in a system where reaction activation involves cooperativity between

activators [22–24]. I now attempt to define and quantify the asymmetry of expression of a pair of genes.

When the expression levels of genes X and Y are Xe and Ye, and their means are Xav and Yav,

respectively, I define

Q =
∑
|(Xe −Xav)(Ye − Yav)|

and

Q1 = Q for all (Xe,Ye) with Xe > Xav & Ye > Yav,

Q2 = Q for all (Xe,Ye) with Xe < Xav & Ye > Yav,

Q3 = Q for all (Xe,Ye) with Xe < Xav & Ye < Yav,

Q4 = Q for all (Xe,Ye) with Xe > Xav & Ye < Yav,

Xe and Ye are symmetric when all of Q1, Q2, Q3 and Q4 are equal, and asymmetric if they are not. Please

note that linear plots, such as Y=X are also considered to be asymmetric by this definition. Therefore

nonlinear curves are asymmetric but asymmetry alone does not guarantee nonlinearity.

Now let me give a simple example to explain this concept more clearly. Here is a microarray dataset Z

which has three samples Z1, Z2 and Z3, with expression levels of genes X and Y being (X1,Y1), (X2,Y2)

and (X3,Y3), respectively, and X1=5,X2=X3=2, Y1=Y2=5, Y3=2, Zav = (Xav, Yav)=(3,4) (Figure 5).

Therefore, according to the definition above, Q1 = |(X1 −Xav)(Y1 − Yav)|=2, which is the area of the
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rectangle defined by Z1 and Zav. Similarly, Q2 = |(X2 −Xav)(Y2 − Yav)|=1, Q3 =

|(X3 −Xav)(Y3 − Yav)|=2 and Q4= 0. Therefore Z is asymmetric.

When Qz is the smallest value of Q1...Q4, Xe and Ye are termed asymmetric with respect to Qz.

Alternatively, it could be stated that Xe and Ye are asymmetric with respect to the upper right quadrant if

Q1 is the smallest, with respect to the upper left quadrant if Q2 is the smallest, with respect to the lower

left quadrant if Q3 is the smallest, or with respect to the lower right quadrant if Q4 is the smallest. Finally

the asymmetric correlation coefficient Sz with respect to Qz is defined by Sz =
∑

Qi/4−Qz. In the

example above, Z is asymmetric with respect to Q4, or lower right quadrant, and the asymmetric

coefficient S4 = (Q1+Q2+Q3 + Q4)/4 - Q4=

(|(X1 −Xav)(Y1 − Yav)|+|(X2 −Xav)(Y2 − Yav)|+|(X3 −Xav)(Y3 − Yav)|)/4=(2+1+2)=1.25. On the other

hand, if X2=(X1+X3)/2 = 3.5 and Y2=(Y1+Y3)/2=3.5, Z1, Z2 and Z3 will form a straight line and S4 =

(|(5− 3.5)(5− 3.5)|+0+|(2− 3.5)(2− 3.5)|)/4=1.125, which is smaller than when Z was asymmetric.

Inplementation of the asymmetric correlation coefficient

A difficulty with asymmetric correlation is that it is highly sensitive to the distribution of Xe and Ye. In

other words, Xe and Ye will be asymmetric if their distribution is skewed, even when they are entirely

independent. Therefore it is important to eliminate the asymmetry which comes from the individual

distribution of Xe and Ye. I employed the following procedures to this end. First, an n ∗ n two-dimensional

matrix Msx,y
is calculated from a two-dimensional histogram of a scatter plot for V (Xe, Ye), where V is an

expression level vector for genes X and Y . Next two 1 ∗ n one-dimensional vectors VX and VY are

calculated from one-dimensional histograms of Xe and Ye, respectively. In the third step a matrix Mrx,y is

derived by Mrx,y
= V

′

X ∗ VY /(total number of samples). This matrix represents the expected distribution of

combinations of Xe and Ye when Xe and Ye are independent. Finally, I normalize Msx,y
by Mrx,y

to obtain

the normalized expression matrix Mnx,y = Msx,y ./(Msx,y + Mrx,y ), where ./ indicates element-wise

division. Now, the asymmetric coefficient with respect to the lower right quadrant S4 is obtained by∑4
i=1 Si/4−

∑
S4 =∑n,n

x=1,y=1(Mnx,y
|(x− (n + 1)/2)(y − (n + 1)/2)|)/4−

∑n,n/2
x=n/2,y=1(Mnx,y

(x− (n + 1)/2)((n + 1)/2− y)).

Performance of asymmetric correlation

Figure 6 shows histograms of the asymmetric correlation coefficient with respect to the lower right

quadrant for HPRD data and the control data used above. The mean values of the coefficients are 1,599 for
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HPRD data and 1,002 for control data. When specificity and sensitivity were examined as for other

correlation measures, the asymmetric coefficient performed better than did PC. When the specificity was

0.9, sensitivity was 0.347 (0.305 with PC), and when the sensitivity was 0.9, specificity was 0.290 (0.257

with PC).

However, better performance could be obtained by combining the asymmetric coefficient with other

measures. Figure 7 shows scatter plots for asymmetric coefficients and PC, SC, and MI of all HPRD pairs

(blue) and control pairs (red). As can be seen in the top-right portion of all three scatter plots, the HPRD

pairs were very specifically detected when AC was high and the other measure (i.e. PC, SC or MI) was

positive. As a result of this observation, I introduced a measure which combines PC, SC or MI with AC:

RPC,AC = rP + A

RSC,AC = rS + A

RMI,AC = rM + A

where RPC,AC , RSC,AC and RMI,AC are combined measures for PC and AC, SC and AC, and MI and AC,

respectively. P, S, M and A in the equations are values of PC, SC, MI, and AC respectively and r is a

constant. Figure 8 shows specificity at 90% sensitivity and sensitivity at 90% specificity when r was varied

between 0 and 5,000. With PC and MI, specificity was relatively unaffected by r (maximum values = 0.293

and 0.290 for PC and MI, respectively). However, the sensitivity increased significantly as r increased and

attained peaks (0.448 for PC and 0.389 for MI) when r = 2,400 and 5,000, respectively. On the other hand,

both specificity and sensitivity improved with SC when r was increased to some extent, but all

improvements were modest (peak specificity and sensitivity = 0.378 and 0.313, respectively, at r = 1,000)

and a further increase in r caused significant deterioration in specificity. These results demonstrate that a

combination of asymmetric correlation with other measures could improve performance by as much as

50%, depending on the measures chosen for combination.

Why did AC perform better when it was combined with PC? Both PC and AC can show large magnitudes

for both linear and non-linear curves, but PC favors linear curves and AC favors non-linear curves.

Therefore non-linear curves can be captured better by selecting gene pairs with relatively high AC and low

PC. In Figure 7, some protein-interacting pairs which did not overlap with the negative controls had high

PC (¿0.8) and modest AC (2000 2500), meaning they had linear relationships. However, there are also

protein-interacting pairs which had high AC (¿3000) with relatively low PC ( 0.4), corresponding to
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nonlinear asymmetric relationships, and they were found more frequently from protein-interacting pairs

than the negative controls. Therefore the combination of PC and AC is more robust than using PC or AC

alone in detecting both linear and nonlinear relationships between protein-interacting pairs.

Conclusions

A number of sophisticated mathematical and computational microarray analysis techniques have been

developed in recent years, but more work is needed to exploit the wealth of gene expression data in

microarray and other databases. I found that, by using a new asymmetric correlation measure, it was

possible to extract new information from passive microarray data (i.e. with no external perturbations) at a

relatively low computational cost. However, the proposed method is not intended to replace existing

methods for gene network inference, because gene regulatory mechanisms are so complex that no single

analysis can ever extract all information from microarray data. Indeed, I found that asymmetric

correlation can enhance the performance of existing inference methods when the techniques are used

together. However, it should be noted that the method will not work when microarray data show little

nonlinearity, in which case the PC and MI measures will demonstrate linear relationships. Moreover,

asymmetry is just one of the many properties of nonlinearity and even the combination of AC and PC will

not quantify the all properties of nonlinearity. Although I do not fully explore the topic in this article,

another important property of asymmetric correlation is that it can produce directed graphs based on the

direction of asymmetry. As asymmetry is one of the fundamental properties of causal relationships [25,26],

it may be possible to extract information on causality from asymmetric correlations. This should be

examined systematically in future work, using both simulated datasets and a large collection of

experimental data on causal relationships between proteins.
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Figures
Figure 1. Distribution of correlation measures for the Human Protein Reference Database (HPRD)
and control data.

Pearson coefficient, Spearman coefficient, and Mutual Information were calculated for 30,499 known

interacting pairs from HPRD (top) and the same number of randomly selected negative control pairs

(bottom).

Figure 2. Sensitivity and specificity for detection of protein-protein interactions, and in distinguishing
such interactions from random pairs.

Pearson coefficient (black), Spearman coefficient (blue), and Mutual Information (red) were calculated for

gene pairs from the protein-protein interaction data in the Human Protein Reference Database (HPRD)

and randomly selected negative control pairs. At different threshold levels, the proportion of HPRD pairs

with above-threshold values, with respect to the total (sensitivity), and the proportion of control pairs with

below-threshold values, with respect to the total (specificity), were calculated.

Figure 3. Scatter plots of correlation measures for the Human Protein Reference Database (HPRD)
and control data.

Pearson coefficient, Spearman coefficient, and Mutual Information for known interacting pairs from HPRD

(blue) and randomly selected control pairs (red) were plotted against each other. left, Pearson coefficient

against Spearman coefficient; Middle, Pearson coefficient against Mutual Information; Right, Spearman

coefficient against Mutual Information.

10

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
43

0.
1 

: P
os

te
d 

9 
M

ay
 2

01
0



Figure 4. Measured expression levels of genes X and Y in the toy model at different levels of
nonlinearity and noise

The scatter plots show log2-transfored measured expression levels of genes X and Y in the toy model.

Nonlinearity (K) and noise levels (R1 and R2) were varied between 100 and 1000, 0.01 and 0.09, and 10

and 90, respectively, and their effects on the distribution of the measured levels of X and Y are shown.

Figure 5. An example for quantification of asymmetric correlation

This is a scatter plot of the expression levels of genes X and Y (Xe and Ye, respectively) for microarray

data Z with three samples, Z1, Z2 and Z3 (open circles). Zav (filled circle) is the average of Z1, Z2 and Z3.

The asymmetric coefficient Q is calculated from Q1, Q2, Q3 and Q4 and the area of the hatched rectangle

in the figure represent Q1, Q2, and Q3 as indicated. Q4 is zero in this example.

Figure 6 - Distribution of asymmetric correlation for the Human Protein Reference Database (HPRD)
and the control datasets.

Asymmetric correlation with respect to the lower-right quadrant (please see the main text for definition)

was calculated for protein-interacting pairs from the HPRD (top) and negative control pairs from the

control (bottom) datasets.

Figure 7 - Scatter plots of asymmetric and Pearsson coefficients for the Human Protein Reference
Database (HPRD) and control datasets.

Asymmetric coefficient and Pearson coefficient (left), Spearman coefficient (center) and Mutual

Information (right) for known interacting pairs from HPRD (blue) and randomely selected control pairs

(red) were plotted against each other. Note the top right-hand corner of the scatter plots where blue spots

are predominant.

Figure 8 - Sensitivity and specificity of a combined measure for detecting protein-protein interactions

The performances of a combined measure R=r(Pearson coefficient, Spearman coefficient or Mutual

Information)+(asymmetric coefficient) are shown. The plot shows the proportion of HPRD pairs with

above-threshold values with respect to total pairs (sensitivity, shown in blue) at 90% specificity, and the

proportion of control pairs with below-threshold values with respect to total pairs (specificity, shown in red)

at 90% sensitivity, respectively. Solid lines with no markers indicate values obtained with a combination of

the asymmetric coefficient and the Pearson coefficient, those with square markers indicate values obtained
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with a combination of the asymmetric coefficient and the Spearman coefficient, and those with circles

indicate values obtained with a combination of the asymmetric coefficient and Mutual Information.

Tables
Table 1. Correlation measures for measured expression levels of genes X and Y in the toy model using
different combinations of parameters.

Parameters Pearson coefficient Spearman coefficient Mutual Information
K = 10000, [R1, R2] = [0.01, 10] 0.999 0.999 1.33
K = 1000, [R1, R1] = [0.01, 10] 0.993 0.999 1.17
K = 100, [R1, R2] = [0.01, 10] 0.932 0.989 0.768

K = 10000, [R1, R2] = [0.03, 30] 0.994 0.995 1.31
K = 1000, [R1, R2] = [0.03, 30] 0.985 0.993 1.19
K = 100, [R1, R2] = [0.03, 30] 0.918 0.942 0.793

K = 10000, [R1, R2] = [0.09, 90] 0.957 0.962 0.960
K = 1000, [R1, R2] = [0.09, 90] 0.955 0.947 0.907
K = 100, [R1, R2] = [0.09, 90] 0.845 0.776 0.564
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