2,787 research outputs found

    Painterly rendering techniques: A state-of-the-art review of current approaches

    Get PDF
    In this publication we will look at the different methods presented over the past few decades which attempt to recreate digital paintings. While previous surveys concentrate on the broader subject of non-photorealistic rendering, the focus of this paper is firmly placed on painterly rendering techniques. We compare different methods used to produce different output painting styles such as abstract, colour pencil, watercolour, oriental, oil and pastel. Whereas some methods demand a high level of interaction using a skilled artist, others require simple parameters provided by a user with little or no artistic experience. Many methods attempt to provide more automation with the use of varying forms of reference data. This reference data can range from still photographs, video, 3D polygonal meshes or even 3D point clouds. The techniques presented here endeavour to provide tools and styles that are not traditionally available to an artist. Copyright © 2012 John Wiley & Sons, Ltd

    A pointillism style for the non-photorealistic display of augmented reality scenes

    Get PDF
    The ultimate goal of augmented reality is to provide the user with a view of the surroundings enriched by virtual objects. Practically all augmented reality systems rely on standard real-time rendering methods for generating the images of virtual scene elements. Although such conventional computer graphics algorithms are fast, they often fail to produce sufficiently realistic renderings. The use of simple lighting and shading methods, as well as the lack of knowledge about actual lighting conditions in the real surroundings, cause virtual objects to appear artificial. We have recently proposed a novel approach for generating augmented reality images. Our method is based on the idea of applying stylization techniques for reducing the visual realism of both the camera image and the virtual graphical objects. Special non-photorealistic image filters are applied to the camera video stream. The virtual scene elements are rendered using non-photorealistic rendering methods. Since both the camera image and the virtual objects are stylized in a corresponding way, they appear very similar. As a result, graphical objects can become indistinguishable from the real surroundings. Here, we present a new method for the stylization of augmented reality images. This approach generates a painterly "brush stroke" rendering. The resulting stylized augmented reality video frames look similar to paintings created in the "pointillism" style. We describe the implementation of the camera image filter and the non-photorealistic renderer for virtual objects. These components have been newly designed or adapted for this purpose. They are fast enough for generating augmented reality images in real-time and are customizable. The results obtained using our approach are very promising and show that it improves immersion in augmented reality

    Image preprocessing for artistic robotic painting

    Get PDF
    Artistic robotic painting implies creating a picture on canvas according to a brushstroke map preliminarily computed from a source image. To make the painting look closer to the human artwork, the source image should be preprocessed to render the effects usually created by artists. In this paper, we consider three preprocessing effects: aerial perspective, gamut compression and brushstroke coherence. We propose an algorithm for aerial perspective amplification based on principles of light scattering using a depth map, an algorithm for gamut compression using nonlinear hue transformation and an algorithm for image gradient filtering for obtaining a well-coherent brushstroke map with a reduced number of brushstrokes, required for practical robotic painting. The described algorithms allow interactive image correction and make the final rendering look closer to a manually painted artwork. To illustrate our proposals, we render several test images on a computer and paint a monochromatic image on canvas with a painting robot

    Computationally rendered painterly portrait spaces

    Get PDF
    This work is ongoing output from research work by Steve DiPaola that attempts to build a computational painting system (called ‘painterly’) that allows aspects of art (the creative human act of fine art painting) and science (cognition, vision and perception; as well as computational design) to both enhance and validate each other. The research takes a novel approach to non photorealistic rendering (NPR) which relies on parameterizing a semantic knowledge space of how a human painter paints, that is, the creative and cognitive process

    Spatiogram features to characterize pearls in paintings

    Get PDF
    Objective characterization of jewels in paintings, especially pearls, has been a long lasting challenge for art historians. The way an artist painted pearls reflects his ability to observing nature and his knowledge of contemporary optical theory. Moreover, the painterly execution may also be considered as an individual characteristic useful in distinguishing hands. In this work, we propose a set of image analysis techniques to analyze and measure spatial characteristics of the digital images of pearls, all relying on the so called spatiogram image representation. Our experimental results demonstrate good correlation between the new metrics and the visually observed image features, and also capture the degree of realism of the visual appearance in the painting. In that sense, these results set the basis in creating a practical tool for art historical attribution and give strong motivation for further investigations in this direction

    Abstraction’s ecologies : post-industrialization, waste and the commodity form in Prunella Clough’s paintings of the 1980s and 1990s

    Get PDF
    This article’s aims are twofold: firstly, it argues that Prunella Clough’s engagement with consumer items in her paintings of the 1980s and 1990s constitute a sustained engagement with the fluctuating nature of the commodity form, moving beyond the established critical narrative whereby these works are understood as simply redeeming “everyday” materials. Secondly, in order to do this, it proposes new artistic frameworks for Clough’s work, moving away from her early association with Neo-Romanticism to foreground her relationship with Pop and Minimalism, and with Post-Conceptual painting. Clough’s late works, it finds, powerfully condense histories of industrial production and painting in Britain.Publisher PDFPeer reviewe

    Hooke's figurations: a figural drawing attributed to Robert Hooke

    Get PDF
    The experimental philosopher Robert Hooke (1635–1703) is known to have apprenticed to the leading painter Peter Lely on his first arrival in London in the late 1640s. Yet the relevance of Hooke's artistic training to his mature draughtsmanship and identity has remained unclear. Shedding light on that larger interpretive problem, this article argues for the attribution to Hooke of a figural drawing now in Tate Britain (T10678). This attributed drawing is especially interesting because it depicts human subjects and bears Hooke's name functioning as an artistic signature, both highly unusual features for his draughtsmanship. From evidence of how this drawing was collected and physically placed alongside images by leading artists in the early eighteenth century, I suggest how it can offer new insight into the reception of Hooke and his graphic work in the early Enlightenment

    Reference-based Painterly Inpainting via Diffusion: Crossing the Wild Reference Domain Gap

    Full text link
    Have you ever imagined how it would look if we placed new objects into paintings? For example, what would it look like if we placed a basketball into Claude Monet's ``Water Lilies, Evening Effect''? We propose Reference-based Painterly Inpainting, a novel task that crosses the wild reference domain gap and implants novel objects into artworks. Although previous works have examined reference-based inpainting, they are not designed for large domain discrepancies between the target and the reference, such as inpainting an artistic image using a photorealistic reference. This paper proposes a novel diffusion framework, dubbed RefPaint, to ``inpaint more wildly'' by taking such references with large domain gaps. Built with an image-conditioned diffusion model, we introduce a ladder-side branch and a masked fusion mechanism to work with the inpainting mask. By decomposing the CLIP image embeddings at inference time, one can manipulate the strength of semantic and style information with ease. Experiments demonstrate that our proposed RefPaint framework produces significantly better results than existing methods. Our method enables creative painterly image inpainting with reference objects that would otherwise be difficult to achieve. Project page: https://vita-group.github.io/RefPaint
    corecore