785 research outputs found

    RDF Querying

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    NLProlog: Reasoning with Weak Unification for Question Answering in Natural Language

    Full text link
    Rule-based models are attractive for various tasks because they inherently lead to interpretable and explainable decisions and can easily incorporate prior knowledge. However, such systems are difficult to apply to problems involving natural language, due to its linguistic variability. In contrast, neural models can cope very well with ambiguity by learning distributed representations of words and their composition from data, but lead to models that are difficult to interpret. In this paper, we describe a model combining neural networks with logic programming in a novel manner for solving multi-hop reasoning tasks over natural language. Specifically, we propose to use a Prolog prover which we extend to utilize a similarity function over pretrained sentence encoders. We fine-tune the representations for the similarity function via backpropagation. This leads to a system that can apply rule-based reasoning to natural language, and induce domain-specific rules from training data. We evaluate the proposed system on two different question answering tasks, showing that it outperforms two baselines -- BIDAF (Seo et al., 2016a) and FAST QA (Weissenborn et al., 2017b) on a subset of the WikiHop corpus and achieves competitive results on the MedHop data set (Welbl et al., 2017).Comment: ACL 201

    Reasoning-Driven Question-Answering For Natural Language Understanding

    Get PDF
    Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA) and Textual Entailment (TE). In this thesis, we investigate the NLU problem through the QA task and focus on the aspects that make it a challenge for the current state-of-the-art technology. This thesis is organized into three main parts: In the first part, we explore multiple formalisms to improve existing machine comprehension systems. We propose a formulation for abductive reasoning in natural language and show its effectiveness, especially in domains with limited training data. Additionally, to help reasoning systems cope with irrelevant or redundant information, we create a supervised approach to learn and detect the essential terms in questions. In the second part, we propose two new challenge datasets. In particular, we create two datasets of natural language questions where (i) the first one requires reasoning over multiple sentences; (ii) the second one requires temporal common sense reasoning. We hope that the two proposed datasets will motivate the field to address more complex problems. In the final part, we present the first formal framework for multi-step reasoning algorithms, in the presence of a few important properties of language use, such as incompleteness, ambiguity, etc. We apply this framework to prove fundamental limitations for reasoning algorithms. These theoretical results provide extra intuition into the existing empirical evidence in the field

    6 Access Methods and Query Processing Techniques

    Get PDF
    The performance of a database management system (DBMS) is fundamentally dependent on the access methods and query processing techniques available to the system. Traditionally, relational DBMSs have relied on well-known access methods, such as the ubiquitous B +-tree, hashing with chaining, and, in som

    Incremental query answering over semantic contextual information

    Get PDF
    Master'sMASTER OF SCIENC

    Explainable and Resource-Efficient Stream Processing Through Provenance and Scheduling

    Get PDF
    In our era of big data, information is captured at unprecedented volumes and velocities, with technologies such as Cyber-Physical Systems making quick decisions based on the processing of streaming, unbounded datasets. In such scenarios, it can be beneficial to process the data in an online manner, using the stream processing paradigm implemented by Stream Processing Engines (SPEs). While SPEs enable high-throughput, low-latency analysis, they are faced with challenges connected to evolving deployment scenarios, like the increasing use of heterogeneous, resource-constrained edge devices together with cloud resources and the increasing user expectations for usability, control, and resource-efficiency, on par with features provided by traditional databases.This thesis tackles open challenges regarding making stream processing more user-friendly, customizable, and resource-efficient. The first part outlines our work, providing high-level background information, descriptions of the research problems, and our contributions. The second part presents our three state-of-the-art frameworks for explainable data streaming using data provenance, which can help users of streaming queries to identify important data points, explain unexpected behaviors, and aid query understanding and debugging. (A) GeneaLog provides backward provenance allowing users to identify the inputs that contributed to the generation of each output of a streaming query. (B) Ananke is the first framework to provide a duplicate-free graph of live forward provenance, enabling easy bidirectional tracing of input-output relationships in streaming queries and identifying data points that have finished contributing to results. (C) Erebus is the first framework that allows users to define expectations about the results of a streaming query, validating whether these expectations are met or providing explanations in the form of why-not provenance otherwise. The third part presents techniques for execution efficiency through custom scheduling, introducing our state-of-the-art scheduling frameworks that control resource allocation and achieve user-defined performance goals. (D) Haren is an SPE-agnostic user-level scheduler that can efficiently enforce user-defined scheduling policies. (E) Lachesis is a standalone scheduling middleware that requires no changes to SPEs but, instead, directly guides the scheduling decisions of the underlying Operating System. Our extensive evaluations using real-world SPEs and workloads show that our work significantly improves over the state-of-the-art while introducing only small performance overheads

    Complex Event Processing with XChangeEQ

    Get PDF
    The emergence of event-driven architectures, automation of business processes, drastic cost-reductions in sensor technology, and a growing need to monitor IT systems (as well as other systems) due to legal, contractual, or operational considerations lead to an increasing generation of events. This development is accompanied by a growing demand for managing and processing events in an automated and systematic way. Complex Event Processing (CEP) encompasses the (automatable) tasks involved in making sense of all events in a system by deriving higher-level knowledge from lower-level events while the events occur, i.e., in a timely, online fashion and permanently. At the core of CEP are queries which monitor streams of "simple" events for so-called complex events, that is, events or situations that manifest themselves in certain combinations of several events occurring (or not occurring) over time and that cannot be detected from looking only at single events. Querying events is fundamentally different from traditional querying and reasoning with database or Web data, since event queries are standing queries that are evaluated permanently over time against incoming streams of event data. In order to express complex events that are of interest to a particular application or user in a convenient, concise, cost-effective and maintainable manner, special purpose Event Query Languages (EQLs) are needed. This thesis investigates practical and theoretical issues related to querying complex events, covering the spectrum from language design over declarative semantics to operational semantics for incremental query evaluation. Its central topic is the development of the high-level event query language XChangeEQ. In contrast to previous data stream and event query languages, XChangeEQ's language design recognizes the four querying dimensions of data extractions, event composition, temporal relationships, and, for non-monotonic queries involving negation or aggregation, event accumulation. XChangeEQ deals with complex structured data in event messages, thus addressing the need to query events communicated in XML formats over the Web. It supports deductive rules as an abstraction and reasoning mechanism for events. To achieve a full coverage of the four querying dimensions, it builds upon a separation of concerns of the four querying dimensions, which makes it easy-to-use and highly expressive. A recurrent theme in the formal foundations of XChangeEQ is that, despite the fundamental differences between traditional database queries and event queries, many well-known results from databases and logic programming are, with some importance changes, applicable to event queries. Declarative semantics for XChangeEQ are given as a (Tarski-style) model theory with accompanying fixpoint theory. This approach accounts well for (1) data in events and (2) deductive rules defining new events from existing ones, two aspects often neglected in previous work of semantics of EQLs. For the evaluation of event queries, this work introduces operational semantics based on an extended and tailored form of relational algebra and query plans with materialization points. Materialization points account for storing and maintaining information about those received events that are relevant for, i.e., can contribute to, future query answers, as well as for an incremental evaluation that avoids recomputing certain intermediate results. Efficient state maintenance in incremental evaluation is approached by "differentiating" algebra expressions, i.e., by deriving expressions for computing only the changes to materialization points. Knowing how long an event is relevant is a prerequisite for performing garbage collection during event query evaluation and also of central importance for developing cost-based query planners. To this end, this thesis introduces a notion of relevance of events (to a given query plan) and develops methods for determining temporal relevance, a particularly useful form based on time-related information

    Big Data Analytics in Static and Streaming Provenance

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics and Computing,, 2016With recent technological and computational advances, scientists increasingly integrate sensors and model simulations to understand spatial, temporal, social, and ecological relationships at unprecedented scale. Data provenance traces relationships of entities over time, thus providing a unique view on over-time behavior under study. However, provenance can be overwhelming in both volume and complexity; the now forecasting potential of provenance creates additional demands. This dissertation focuses on Big Data analytics of static and streaming provenance. It develops filters and a non-preprocessing slicing technique for in-situ querying of static provenance. It presents a stream processing framework for online processing of provenance data at high receiving rate. While the former is sufficient for answering queries that are given prior to the application start (forward queries), the latter deals with queries whose targets are unknown beforehand (backward queries). Finally, it explores data mining on large collections of provenance and proposes a temporal representation of provenance that can reduce the high dimensionality while effectively supporting mining tasks like clustering, classification and association rules mining; and the temporal representation can be further applied to streaming provenance as well. The proposed techniques are verified through software prototypes applied to Big Data provenance captured from computer network data, weather models, ocean models, remote (satellite) imagery data, and agent-based simulations of agricultural decision making
    corecore