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Dimitrios Palyvos-Giannas
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
In our era of big data, information is captured at unprecedented volumes and
velocities, with technologies such as Cyber-Physical Systems making quick
decisions based on the processing of streaming, unbounded datasets. In such
scenarios, it can be beneficial to process the data in an online manner, using
the stream processing paradigm implemented by Stream Processing Engines
(SPEs). While SPEs enable high-throughput, low-latency analysis, they are
faced with challenges connected to evolving deployment scenarios, like the
increasing use of heterogeneous, resource-constrained edge devices together
with cloud resources and the increasing user expectations for usability, control,
and resource-efficiency, on par with features provided by traditional databases.

This thesis tackles open challenges regarding making stream processing
more user-friendly, customizable, and resource-efficient. The first part out-
lines our work, providing high-level background information, descriptions of
the research problems, and our contributions. The second part presents our
three state-of-the-art frameworks for explainable data streaming using data
provenance, which can help users of streaming queries to identify important
data points, explain unexpected behaviors, and aid query understanding and
debugging. (A) GeneaLog provides backward provenance allowing users to
identify the inputs that contributed to the generation of each output of a
streaming query. (B) Ananke is the first framework to provide a duplicate-
free graph of live forward provenance, enabling easy bidirectional tracing of
input-output relationships in streaming queries and identifying data points
that have finished contributing to results. (C) Erebus is the first framework
that allows users to define expectations about the results of a streaming query,
validating whether these expectations are met or providing explanations in the
form of why-not provenance otherwise. The third part presents techniques for
execution efficiency through custom scheduling, introducing our state-of-the-art
scheduling frameworks that control resource allocation and achieve user-defined
performance goals. (D) Haren is an SPE-agnostic user-level scheduler that can
efficiently enforce user-defined scheduling policies. (E) Lachesis is a standalone
scheduling middleware that requires no changes to SPEs but, instead, directly
guides the scheduling decisions of the underlying Operating System. Our
extensive evaluations using real-world SPEs and workloads show that our work
significantly improves over the state-of-the-art while introducing only small
performance overheads.
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1 Introduction

“The world’s most valuable resource
is no longer oil, but data”

— The Economist (2017) [1]

During the last decades, data has become an incredibly powerful force that
affects, directly or indirectly, most aspects of our daily lives. This data revolution
has enabled cutting-edge applications that seemed like science fiction a few years
ago, such as recommendation engines that know what you want to buy before
you even realize it, Smart Cities with traffic lights that can coordinate based
on road conditions to reduce traffic jams and car emissions, and computers
that can recognize human faces better than humans themselves [2–4].

Similar to other valuable resources such as oil, data is not very useful in
its raw form. Instead, it needs to be refined or processed before value can
be extracted out of it. However, data processing is becoming increasingly
challenging due to the rapid increase in the complexity and volume of modern-
day datasets, also referred to as big data. Big data materialized as a result of the
widespread digitization of our society that expanded the number and variety of
data sources and applications that continuously collect raw information about
people and their environment, such as smartphones, social media, connected
vehicles, and financial transactions [5, 6].

Looking back in time, in the 1970s researchers and industry were studying
the concept of database machines, all-in-one solutions for storing and processing
data, with a focus on robustness and performance [7]. A bleeding-edge database
machine in the 1980s, called DBC/1012, could store and process one terabyte
of data (one terabyte is equal to 1012 bytes, thus the machine’s name) [8].
DBC/1012 was impressive for its time: it could store approximately fifty times
the entire content found in the English Wikipedia in 2022 [9]. However, as

2018

2025

2014

The Data  
Revolution
All the data in the world, in terabytes

1 Billion
33 Billion

175 Billion

Figure 1: The data revolution in numbers. The area of each circle is proportional
to the volume of all data in the world at that year.



4 THESIS OVERVIEW

visualized in Figure 1, the data gathered in the recent years is growing so
quickly that, in 2014, the world would have needed one billion DBC/1012
machines to store all of its data (i.e., one zettabyte), with the figure growing to
33 billion in 2018 and 175 billion by 2025 [10]. This growth of modern datasets
is not only in volume but also in velocity: in order to extract the most value
out of the data, it must be collected and analyzed as quickly as possible [11].
For instance, traffic lights in a Smart City need to be able to react quickly to
changing road conditions. Suppose the system that processes the data for such
traffic lights responds with long delays. This could lead to situations where
the environment has changed when the respective action takes place, causing
potentially undesirable consequences.

Aiming to maximize the extracted value from today’s rapidly growing
datasets, we propose state-of-the-art solutions that make such processing
more efficient and explainable and enable the next generation of novel data-
centric applications. This thesis focuses on stream processing (also known
as data streaming) [12–14], a processing paradigm ideal for today’s high-
velocity datasets, in which the processing happens in an online manner, as
the data arrives, without having to wait for all of it to become available.
We study how stream processing applications can transition from centralized,
cloud-based deployments to edge architectures, which move part of the data
processing closer to the end devices that collect and react to the data [15].
Such architectures can, on the one hand, bring benefits due to their proximity
to the data sources and the users but, on the other hand, introduce challenges
due to their heterogeneity and resource limitations. In the context of streaming
queries deployed on heterogeneous edge and cloud nodes, we propose techniques
that explain unexpected behaviors through data provenance, which can trace
important inputs and outputs of such queries. Additionally, we explore custom
scheduling, which can increase the efficiency and level of control over the
available processing resources. As described later in the thesis, we design and
implement novel frameworks that address pressing issues in data provenance
and scheduling, and evaluate our work on real-world streaming applications.

In the remainder of this overview, we dive deeper into data processing and
discuss different processing models (§2, §3, §4), present a short background
of data provenance (§5) and scheduling (§6), outline open research problems,
defining the research questions posed by the thesis (§7), and summarize the
contributions made to address these questions (§8).

2 The Era of (Big) Data
Modern datasets are characterized by an “increase in the volume of data
that are difficult to store, process and analyze through traditional database
technologies” [5]. Previous works discuss four dimensions, also known as the
four V’s [5, 6] of (big) data, which can be a useful way to characterize datasets
and identify challenges associated with processing them:
(1) Volume: The size of the datasets is increasing dramatically due to an

expanding array of new technologies and data sources.

(2) Variety: Present-day datasets come in heterogeneous formats, e.g., video,
audio, text. Unstructured datasets are becoming increasingly common.
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(3) Velocity: New data points are produced (and, thus, need to be processed)
at a fast rate, frequently as data streams.

(4) Value: Significant value concealed inside the datasets needs to be extracted
through processing that can keep up with the other three dimensions.

The exponential increase in data volumes has been fueled by the expansion
of various data sources, including smartphones, environmental sensors, industry
processes, transactions, video, and positional reports [3,16]. Two of the leading
technologies connected to this dramatic increase in the volume of high-velocity
data produced daily are the World Wide Web (or simply the web) and the
Internet of Things.

Web-based social networking platforms such as Facebook, Twitter, Instagram,
and YouTube provide the companies that own these platforms with vast amounts
of data related to their users’ interactions. For example, during every minute
of 2019, more than 500 hours of new videos were uploaded to YouTube, on
average [17]. Facebook, with its more than 2.32 billion users connected in a
social graph with more than 140 billion friend connections, has had more than
219 billion photos uploaded to its systems [18, 19]. These data volumes are
only expected to increase: by 2025, people are expected to engage in digital
services 4900 times per day (i.e., once every 18 seconds) [10].

The Internet of Things (IoT) is a rapidly growing paradigm that focuses
on expanding the functionality of everyday devices such as fridges, washing
machines, and bus stops by embedding sensors into them and giving them
networking capabilities. Different from the web, such sensors usually require no
manual user interaction and thus collect vast amounts of heterogeneous data
such as positional reports, environmental measurements (e.g., temperature,
humidity), health data (e.g., from smartwatches), etc. [11]. For instance, a
modern vehicle can generate dozens of gigabytes per day [20], a jet engine can
generate a terabyte per day [21] and an autonomous car more than 70 terabytes
per day [10]. Estimates predict 1 trillion active IoT sensors by 2030, which
would make the IoT one of the largest (if not the largest) contributors to the
volume of available big data. In contrast to other big data sources, IoT devices
frequently produce noisy data, the majority of which can be uninteresting [11].
For example, imagine an IoT temperature sensor in a smart fridge that monitors
the temperature inside the fridge every 30 seconds to verify it stays within the
food safety limits. In the usual scenario, such a sensor will report a huge volume
of regular temperature reports until an abnormal event that requires further
action is observed (e.g., a component failure). Noisy IoT data introduces new
data processing challenges, which are discussed later in this part.

2.1 How Does Data Create Value?
The vast amount of information created by and about individuals from the
sources discussed above has been an enabler of a new generation of applications
that are changing the daily lives of billions of people worldwide [5, 6].

To begin with, data has been a significant enabler of the vast improve-
ments in the capabilities of Artificial Intelligence (AI). Many now-popular AI
algorithms were developed decades ago, but it was the availability of large
training datasets (together with advancements in hardware capabilities) that
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allowed such algorithms to be used in real-world scenarios [22]. The social and
behavioral interaction data captured by web-based services, social networks,
and IoT sensors has helped businesses make big leaps in fields such as image
analysis, speech recognition, natural language processing, and recommendation
systems [2] that have brought applications such as personalized advertising
campaigns, voice-controlled virtual assistants, accurate machine translation
services, and semi-autonomous vehicles that can recognize road characteristics
and automatically respond to road hazards.

Big data is also revolutionizing our daily lives in less obvious ways, through
its effect on the IoT and especially on Cyber-Physical Systems (CPSs). The
latter are physical systems that integrate computation with actions in the
physical environment [23, 24]. Unlike traditional embedded systems, CPSs
are not isolated devices but, instead, are designed around networking numer-
ous sensors, actuators, and processing units to make intelligent decisions by
utilizing the increased information exchange and processing capacity of such
architectures [25]. CPSs can have ground-breaking applications in fields such
as medicine, manufacturing, avionics, smart buildings, and critical infrastruc-
ture [24]. An example of a CPS is the expanding Smart Grid infrastructure,
which can allow power companies to observe the electricity consumption of
each customer in real-time [26–28]. Not only can such real-time measurements
inform analysts about urgent events (e.g., a localized blackout), but they can
also assist in large-scale projects and predictions, such as long-term planning
for the infrastructure of the power grid. Notice that the Smart Grid is only
a small part of a larger group of Smart City applications, which extend to
many aspects of citizens’ daily lives, including education, vehicle traffic control,
and waste management [3]. Furthermore, in contrast to traditional embedded
systems enclosed inside a single device, Cyber-Physical Systems can become
enormous, stretching across cities, countries, or even the whole planet [29].
For instance, planet-scale social networks can act as Cyber-Physical Systems,
having “social sensors” that can detect large-scale anomalous events through
the interactions of the users in the social graph, as indicated by a research
prototype that detected earthquakes by analyzing Twitter data [30].

3 Stream Processing

3.1 From Batch to Stream Processing
Since data is becoming “too big, too fast, or too hard for traditional databases”
[31], researchers and practitioners have been experimenting with novel pro-
cessing paradigms to extract the value out of such datasets. The two leading
paradigms nowadays are 1) batch processing, which focuses on high-throughput
processing of vast but bounded datasets, and 2) stream processing, which focuses
on the processing of unbounded datasets with high throughput and low latency,
and is the topic of this thesis.

Batch processing is a natural way for humans to process data. It involves
waiting until all the necessary data is available and then executing the desired
computation. People have experimented with (semi-)automated batch pro-
cessing for more than 100 years: during the 1890 US Census, the Hollerith
tabulating machines aggregated data such as age, gender, etc. from punched
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cards, replacing the need for tedious manual counting that took a long time to
complete [32]. Modern batch processing is represented by frameworks such as
MapReduce [33], Hadoop [34], and Spark [35], which can handle the process-
ing of petabyte-scale datasets by transparently parallelizing the computations
on commodity hardware and reducing the complexity of issues such as fault-
tolerance, load balancing, and data distribution. Batch processing frameworks
are designed around the assumption that the datasets to be processed might
be vast in volume, but they are bounded, i.e., the whole dataset is available
in some persistent storage. Batch processing systems are usually executed in
periodic intervals (e.g., every day or every month), with the processing taking
hours to days to complete. While batch processing can extract value from
large datasets with high throughput, its assumption about bounded datasets is
problematic when analysts need to process unbounded datasets of streaming
data and receive answers with low response times.

Stream processing (or data streaming) is a complement to batch processing
that targets use cases where the data is unbounded [14]. For example, imagine a
Smart Grid application that computes the average electricity consumption in a
city, based on data collected by smart energy meters. The data reported by such
meters is unbounded since there exists no point in time at which the dataset is
complete: the meters continuously report the electricity consumption for as
long as they are active. Batch processing systems could approach this problem
by gathering a subset of the data, e.g., for each day, and then computing
the desired average over only that subset. However, such an approach can
introduce unacceptable high latency (i.e., delay in getting a result), which can
make it impractical to make decisions based on the output of the data analysis.
On the other hand, stream processing is designed from the ground up on the
assumption that data is unbounded. Stream processing systems continuously
process data as it arrives by windowing the data items based on the time of
the corresponding event and offering the option for incremental computations.
Because of this, stream processing can produce much lower latency results
than its batch counterpart while potentially requiring fewer resources by not
requiring all data to be loaded at once. In the Smart Grid example discussed
above, an analyst could use stream processing to incrementally compute the
average electricity consumption every minute (e.g., by maintaining two counter
variables, one for the total consumption and one for the number of reports)
without requiring the data to be persistently stored or available beforehand.

Stream processing has been studied since the 2000s with researchers im-
plementing pioneering Stream Processing Engines (SPEs) such as Aurora and
Borealis [12, 36]. Nowadays, academia and industry take advantage of the
low-latency results offered by the data streaming model by actively developing
new SPEs suited for modern computing architectures and datasets. Notable
examples include Google DataFlow [14], Apache Flink [37], Facebook Puma,
Stylus, and Swift [38], Microsoft Trill [39], Twitter Storm and Heron [38,40],
Apache Samza [41]. Though these SPEs can exhibit significant differences
in their API, runtime architecture, query optimization, and deployment op-
tions, they are based on some fundamental shared assumptions of the stream
processing model, outlined below.
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3.2 Stream Processing Background

The work of this thesis builds on the DataFlow model [14] that is adopted
by SPEs such as Apache Flink [37]. Streams represent unbounded sequences
of tuples, each of which has a timestamp (i.e., its event-tine, which is the
time when the event corresponding to the tuple happened) and a list of user-
defined attributes. A streaming query is a Directed Acyclic Graph (DAG) of
Sources, operators and Sinks. Sources (also referred to as Ingress operators)
generate source tuples that correspond to events (e.g., from IoT sensors, mobile
phones, social network interactions) and send them through streams to one
or several operators. Operators process tuples using user-defined functions
and can discard tuples and/or forward (potentially new) tuples downstream
in the query DAG. Query results eventually reach the query Sinks (or Egress
operators) as sink tuples and are sent to end-users or other applications.

SPEs come with native operators such as Filter, Map, Aggregate, and
Join, which generally behave similarly to their relational database counterparts.
SPEs also allow users to define custom operators if necessary. Operators can
be stateless, processing one tuple at a time, or stateful, maintaining groups of
tuples as time windows and computing the results based on the contents of such
windows. SPEs ensure correctness even in parallel/distributed executions with
potentially out-of-order input data through mechanisms such as watermarks [14],
which bound on the degree of out-of-orderness present in each stream, or sorting
the input tuples of each operator based on their timestamps [42].

Figure 2 shows an example streaming query that uses native operators.
Events arrive at the query from external data sources and are converted to
tuples by the query Source. In this example, the tuples are messages posted
by social network users. The tuple attributes include the timestamp (τ), the
user that posted the message (user), the message itself (msg), and the number
of “likes” that the message received (likes). The query uses a Map operator to
convert each message to lowercase (top stream) and a Filter to keep only users
below 500 (bottom stream). Notice that the Map keeps the same timestamp
and can change (some of) the other attributes, whereas tuples that match the
Filter pass through it unaltered. After the Map, an Aggregate computes the
average likes per message over all users for each hour. The outputs of the
Aggregate are new tuples, with a timestamp (usually) equal to the end of the
window they refer to. Then, a Join computes the ratio of likes of each message
compared to the average over that hour, with the output timestamps being
(usually) equal to the end of the Join’s window. Finally, the query results arrive
at the Sink, to be returned to the analyst or forwarded to another system.

When deploying a streaming query, SPEs transform the logical DAG of the
query (i.e., the DAG that was defined by the user, also known as a topology [43])
of logical operators, to a physical DAG, of physical operators. The physical
DAG is the entity executed by the SPE on the underlying machine, with
the physical operators being the smallest execution units of the SPE. During
the transformation from the logical to the physical DAG, the SPEs can apply
optimizations such as parallelism (or operator fission) and chaining (or operator
fusion) [44]. Since parallelism and chaining interact with several aspects of our
research contributions, we discuss them in more detail below.
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(τ: 13:05:00, user: 238, msg: "Hello", likes: 100)

(τ: 13:37:00, user: 759, msg: "HeLLo", likes: 50) (τ: 14:00:00, n_users: 2, msg: "hello", average_likes: 75)

(τ: 14:00:00, user: 238, msg: "hello", like_ratio: 1.33)

user < 500

WS: 1 hour, KB: msg 
average_likes := AVERAGE(likes)

WS: 1 hour, KB: user 
like_ratio := likes / average_likes

msg := LOWER(msg)

(τ: 13:05:00, user: 238, msg: "hello", likes: 100)

(τ: 13:37:00, user: 759, msg: "hello", likes: 50)

Tuples

Stream

Tuple

τ : timestamp
KB : key by
WS : window size

Figure 2: Example streaming query that finds how “liked” each user message is,
compared to the average likes over the last hour for messages with identical content.
Tuples are illustrated as shapes of different colors, with the detailed attributes of
each tuple shown at the bottom of the figure.

Parallelism (Operator Fission) SPEs can deal with demanding workloads
by utilizing several CPU cores and machines by parallelizing and distributing
the computations, respectively. Parallel processing is achieved by splitting a
computation into smaller parts and assigning each of these parts to a different
computational unit (e.g., CPU core or processing node). In the field of data
streaming, parallelism appears either as task parallelism, where different opera-
tors are executed in parallel, and data parallelism (i.e., operator fission), where
multiple instances of the same operator are running in parallel to (usually)
process different parts of the data. A particular case of task parallelism, fre-
quently found in modern SPEs, is pipeline parallelism, where operators with a
producer-consumer relationship are executed independently and in parallel [44].

These different forms of parallelism are shown in Figure 3. Figure 3a
illustrates task parallelism for operators B and C, as well as the special case
of pipeline parallelism. In data parallelism, shown in Figure 3b, there is a
splitter responsible for deciding which parallel operator instance should receive
each tuple (e.g., based on hashing), and a merger that merges the outputs
of multiple instances, possibly enforcing ordering or watermark constraints.
Depending on the implementation of the SPE, the splitter and merger can be
separate runtime components or integrated inside the operator [45].

In this thesis, we are primarily interested in data parallelism, as this
technique can help resolve bottleneck operators, whose processing speed cannot
keep up with the arrival rate of their inputs. Such operators can activate an
SPE-specific backpressure mechanism [37,46] that slows down the rest of the
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(a) Task Parallelism

(b) Data Parallelism

Special case: Pipeline Parallelism

Figure 3: The different types of parallelism found in stream processing.

pipeline, leading to a degradation of the throughput and latency of the query.
Data parallelism causes each parallel operator instance to process less data per
time unit, allowing the operator to keep up with its inputs and preventing the
activation of backpressure and any related performance degradation. Modern
SPEs can transparently parallelize their native operators but might require
guidance in the case of user-defined custom operators.

Chaining (Operator Fusion) When the processing performed by an op-
erator is small, its communication and runtime costs might be higher than
the operator’s processing logic. In such cases, SPEs can perform operator
fusion (also referred to as chaining) to improve query performance by merging
lightweight logical operators in the same physical operator [44].

4 Cloud and Edge Computing

4.1 Cloud Computing
Cloud computing is a paradigm that aims to provide “computing as a utility” by
making hardware and software resources available to anyone in a “pay-as-you-
go” model [5,47]. Cloud computing revolutionized data processing by removing
the upfront costs related to purchasing expensive computing infrastructure
and the running costs of maintenance and administration. Instead, a cloud
provider rents out such infrastructure, with the user being charged only for
the resources actually utilized. Cloud computing can be provided in various
levels of abstraction, such as Software As a Service (SaaS), which includes
services such as Gmail and Dropbox, Platform as a Service (PaaS), including
services like AWS Lambda and Google App Engine, or Infrastructure as a
Service (IaaS), which includes services like AWS and Microsoft Azure. The
three main hardware characteristics [47] of cloud computing are:

(1) The illusion of infinite resources that can be requested when necessary,
which means that users of cloud services do not need to have long-term
provisioning plans. This is different from traditional computing, where a
company would need, e.g., to order and configure new servers a long time
before they need to be up and running to support growing demand.
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(2) The absence of any upfront costs, as the cloud users only pay for the
resources they utilize, and only for as long as they are utilizing them.

(3) The ability to scale on demand, which allows a cloud user to quickly
switch, for example, from using one machine to one thousand machines
and pay a proportional price for the utilized resources, mitigating issues
related to over- and under-provisioning.

In connection to parallel processing, we note that cloud computing usually
offers “cost associativity”, where users are charged equally whether they use one
machine for a thousand hours or a thousand machines for one hour, a feature
that encourages and rewards the utilization of massively-parallel architectures,
as the latter can deliver results much quicker for the same infrastructure cost.

4.2 Edge Computing
The increasing volume and velocity of data, with an expectation of 29 billion
connected devices in 2022 [48] are challenging the cloud paradigm since, in
many cases, it is neither feasible nor desirable to transfer all raw data to
the cloud for processing as such communication round-trips can introduce
non-trivial delays to the end applications [10]. Furthermore, especially in IoT
applications, only a tiny fraction of that raw data might actually be important,
so processing all raw data in the cloud can also waste significant amounts of
network bandwidth with minimal increase in the extracted value [15, 49, 50].
Lastly, privacy and other regulations might make it difficult to get permission
to transfer non-aggregated data to the cloud [51].

Edge computing (also known as fog computing [52] or cloudlets [53]) aims to
mitigate the above issues by introducing an additional processing step between
the data sources and the cloud, allowing the applications to move (part of) the
processing to infrastructure closer to the devices and applications by taking
advantage of the increasing computational capacity of edge nodes such as base
stations, switches or routers, as well as edge devices such as smartphones and
energy meters [15]. The edge refers to the fact that such devices are further
away from the core of the network, i.e., the big data centers that comprise
the cloud. Figure 4 outlines the layering of the cloud and the edge, including
example devices of each layer. In general, as one moves further down the
pyramid, the computational capacity decreases, but the proximity to the user
increases, and thus the communication delays and costs decrease. For simplicity,
in the following, we use the term edge device to refer to both edge nodes and
edge devices, except if there is a need to distinguish between the two.

Edge devices are by definition close to the data sources, and thus they
can reduce the response time and the bandwidth usage of data processing
by either processing all the data locally or, if the analysis requires data from
multiple devices, performing initial filtering and aggregations of the data before
sending it to the next layer in the processing hierarchy (e.g., the cloud) for
further processing [49]. Such performance improvements are critical enablers
of Cyber-Physical Systems, as the lower response times make it possible to
make timely decisions based on the (processed) sensor data [29]. Additionally,
the physical proximity of edge devices to the data sources allows them to
have location awareness, enabling exciting new features such as the detection



12 THESIS OVERVIEW

Edge Devices

Edge Nodes

The Cloud

smartphones, smartwatches, 
connected vehicles, smart energy meters

base stations, routers,  
switches

servers, 
datacenters

Figure 4: The cloud and the edge, with example devices of each layer.

and transmission of relevant alerts only to users in the same geographical
area [52–54]. Furthermore, edge computing allows the design of applications
that transfer only filtered or aggregated data to the cloud, offering much stronger
privacy and security guarantees than pure cloud computing [50,53,55,56].

4.3 Stream Processing at the Cloud and the Edge
Edge computing is a natural complement to stream processing since the former
can facilitate the production of low latency results, one of the main goals
of the latter. Thus, streaming queries can span the whole spectrum of the
available processing devices to fully utilize the available hardware resources.
In that scenario, queries can preprocess huge volumes of high-velocity raw
data in edge devices before (optionally) transmitting it to the cloud for further
processing [49]. That way, edge nodes can filter, aggregate, encrypt, encode,
etc., the raw data received by end devices before they are transmitted to
the cloud, removing uninteresting “noisy” measurements and increasing the
privacy and security guarantees of the processing pipeline [11]. Edge computing
can also assist at the opposite processing end, e.g., IoT sensors and similar
end-devices with limited computational capacity, allowing them to offload some
(or all) of the necessary computations to edge nodes [15].

Despite all the advantages of edge computing, expanding data processing
from the cloud to the edge also comes with new challenges. As hinted above, in
contrast to cloud infrastructure, edge nodes can have limited computational and
storage resources and might lack the homogeneity of a data center. Thus, to take
full advantage of the edge paradigm, it is necessary to develop processing systems
designed around such heterogeneity and resource constraints. Such processing
systems should be based on optimized algorithms and techniques that run
equally well on high-powered servers and resource-constrained devices [15, 57],
as well as programming paradigms that encourage parallel processing, allowing
to split the work into multiple processors and/or nodes [58,59]. Furthermore,
queries deployed at the cloud and the edge can benefit from information that
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identifies important, unusual, or problematic data points and assists in query
debugging and compliance while also allowing to prioritize the transmission and
storage of specific subsets of the data [60]. Such information can be extracted
by data provenance, discussed below.

5 Data Provenance

Increasing data velocities together with applications and users that expect
low-latency responses are leading to an increased number of analysts relying
on data streaming for their queries. Such increased demand for data streaming
means that non-experts might also be tasked with developing streaming queries.
However, the transition from the widely understood relational data model to
stream processing is not always trivial because, in contrast to batch processing,
the time of the events is a “first-class citizen” in stream processing. For
example, consider a simple database query that computes the average electricity
consumption of each house in a Smart City application. If analysts want to
express the above to a streaming query, they have to reason about the event-
and processing-time, windows, delayed data, and out-of-order data [14]. This
transition can aided by bringing the streaming model closer to the relational one
by treating streams and tables as “two sides of the same coin” [61,62]. However,
such approaches cannot completely hide the intrinsic differences of stream
processing that, together with the inherent velocity of the inputs and outputs,
can make it challenging to develop, test and debug streaming applications [63].
To make matters worse, depending on the application requirements and the
resource constraints, it might not be possible or desirable to persistently store
all input data, and thus it can be impractical to rerun a query on the exact
same inputs in order, e.g., to verify that it is correct or to debug a problem [38].

Another issue is that, as streaming applications increase in complexity and
importance, it is necessary to reason about their results and explain unexpected
behaviors. Such robustness and predictability is crucial in use cases such as
social sensors [30, 38] and Cyber-Physical Systems [24]. In the former case,
large-scale social networks (e.g., Facebook) use data streaming to identify
“trending” discussion topics in the network and verify the trustworthiness of
such topics, e.g., by detecting misinformation campaigns by malicious actors. In
the latter case, data streaming applications can be deployed in mission-critical
settings such as avionics, health care, and road traffic to detect and react to
anomalous events (e.g., a fire). In both cases, it is not only useful but frequently
necessary to be able to explain 1) why an alert was produced, 2) all the alerts
connected to a specific input, and 3) why an expected alert was not produced.

One technique for explaining the behavior of streaming applications is
provenance, which is generally defined as “any information that describes the
production process of an end product” [64]. Our work focuses on a specific
subset of provenance known as data provenance (or simply provenance in
the following), which tracks individual data items (i.e., tuples) through the
application, along with the operators that process them. Data provenance
can provide detailed explanations about the results of a streaming application,
easing debugging and making the system more explainable. Below, we discuss
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the aspects of provenance most related to the work in the thesis, referring the
reader to [64] for a comprehensive study on provenance.

5.1 Backward and Forward Why-Provenance

A subset of data provenance called why-provenance is especially useful in
Cyber-Physical Systems because it can explain important or critical events
identified by queries and allow analysts to perform further investigation [64,65].
Why-provenance can either be backward, from the outputs to the query inputs,
or forward, from the inputs to the query outputs [64].

Starting with backward provenance, we can consider a streaming application
that produces alerts for blackouts in a Smart Grid by identifying households
with zero power consumption in a specific time window. When an alert is
produced, it could be important for the analyst to know which houses are
without power so that necessary steps can be taken to resolve the issue. Fine-
grained backward provenance can provide such information by connecting each
output (e.g., alert) to all inputs that led to that output’s generation (e.g.,
electricity consumption reports by smart meters in each house) [65].

Turning our attention to forward provenance, we have observed above that
it might not be practical or desirable to store all the raw data generated by
present-day data sources, either locally or by transmitting it to cloud storage.
Instead, it might be advantageous to employ edge processing techniques to
preprocess, filter, and aggregate the raw data and only keep “important”
raw data points, e.g., inputs that led to an interesting output. Additionally,
debugging, testing, or legal reasons might require analysts to be able to identify
all outputs connected to a specific input, e.g., a privacy-sensitive data point [51].
Forward provenance can identify such “important” inputs by tracing each input
to all outputs produced due to it, allowing applications to discard irrelevant
inputs that are essentially “noise” [50] and identify outputs that were produced
because of certain inputs.

Figure 5 shows two example queries (a) along with their backward (b) and
forward (c) provenance. The two queries monitor the position and speed of
vehicles: Q1 produces an alert every 5 minutes if a vehicle has been in a specific
area R for more than 2/3 of the time in the last 15 minutes, and Q2 produces
an alert every five minutes if the mean speed of a vehicle was higher than 110
km/h in the last 15 minutes. The left side of Figure 5a shows the movement of
two cars, and the right side of the figure shows the alerts produced for these
two cars over time. As seen in Figure 5b, the backward provenance of the two
queries connects each alert α to the inputs t that contributed to its generation.
Notice that the backward provenance graph contains duplicate information
when an input contributes to multiple alerts. This issue is solved when using
forward provenance, shown for the same alerts in Figure 5c. In that case,
we can immediately traverse the graph to identify all outputs connected to a
specific input without having to manually preprocess the graph. Furthermore,
the forward provenance in this example is live: the ticks signify tuples that
have expired, i.e., will not have any edges added to them in the future.
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Figure 5: a) Two example queries that monitor the location (Q1) and the mean speed
(Q2) of vehicles over time, with the right side of the figure showing the inputs over
time; b) the backward provenance of the queries and the inputs shown in the figure;
c) the live forward provenance of the queries for the same data. Figure originally
presented in the paper introducing Ananke [60].

5.2 Why-Not Provenance
While backward and forward why-provenance can give fine-grained explanations
about the relationships between critical inputs and outputs of streaming queries,
they cannot help users that observe the absence of expected results from the
query outputs. This task can be nonetheless achieved with why-not provenance,
or provenance of missing answers, which can explain why an expected result
was not produced by a query [64, 66]. Provenance of missing answers can
be very beneficial in understanding the correctness of a query and the input
data, allowing analysts to quickly identify issues without the need for manual,
error-prone debugging [67], where the analyst would have to manually inspect
the inputs and outputs of individual operators to understand the reasons for
the absence of an expected result. Explanations for missing answers can have
different forms, depending on which component can be responsible for the
absence of the expected results [66]. More specifically, they can be 1) instance-
based, describing changes to the input data that would cause the result to be
produced, 2) query-based, describing which operators are responsible for pruning
intermediate tuples that could have led to a result, or 3) modification-based,
proposing changes to the query semantics that would produce the expected
result. In this work, we study query-based explanations for streaming queries
to identify tuples that could have led to a result but were discarded by some
query operator, along with the responsible operator(s).

6 Scheduling

When data streaming applications are deployed on — possibly resource-
constrained — edge nodes, the efficient utilization of all available computation
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Figure 6: a) Logical query DAG of a simplified implementation of query from the
Linear Road benchmark to compute tolls on highways; b) an example physical DAG
of the query, along with an illustration of user-level scheduling; c) an example of
OS-level scheduling for the same physical query DAG. The figure was first presented
in the paper introducing Lachesis [68].

resources becomes a pressing issue [15,24]. Furthermore, cloud infrastructure
and edge nodes can have multi-tenancy, i.e., execute multiple applications
simultaneously, each with its own performance goals and Quality-Of-Service
(QoS) guarantees. Thus, it is also important for users to be able to control
the resource allocation of the deployed streaming applications and optimize
the heterogeneous goals of each of them. Such fine-grained resource allocation
control is crucial in Cyber-Physical Systems, as interactions with the physical
world are inherently sensitive on timing, especially when the system needs
to respond to its environment [24,29]. One way to achieve such fine-grained
control and efficiency is through custom scheduling.

Scheduling is defined as the process of assigning certain units of work to
specific resources. In data streaming, scheduling is used to refer both to
operator placement and thread scheduling. The former, outside the scope of this
thesis, refers to choosing where to deploy (e.g., which node) each processing
unit (e.g., operator or query) in order to balance the processing load and
minimize communication overheads and improve performance metrics such as
throughput and latency [69,70]. Thread scheduling, on the other hand, refers to
prioritizing specific computations inside a processing group [71] and is usually
more fine-grained than operator placement in the frequency of decisions as well
as in the magnitude of the scheduled units. Notice that operator placement and
thread scheduling are orthogonal to each other and can be used in conjunction
to combine their benefits.

Custom operator scheduling in SPEs is usually done at the user-level. This
technique, already utilized by pioneer SPEs [12, 72], involves the SPE using
only a few OS threads (usually close to the number of available CPU cores)
with the scheduler running as a user-level component of the SPE and choosing
which operator is executed by which Operating System (OS) thread, and for
how long. User-level scheduling allows for fine-grained control of the scheduling
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decisions, as the scheduler has access to detailed, low-level information about
the runtime characteristics of the query and the SPE. An alternative to user-
level scheduling is OS-level scheduling, an approach frequently adopted by
modern SPEs [37, 73]. In OS-level scheduling, the SPE does not include a
separate scheduler component; instead, each physical operator is assigned its
own OS thread, which in turn is scheduled by the OS scheduler.

Figure 6 outlines user- and OS-level scheduling on an example query. More
specifically, Figure 6a shows a simplified implementation of a query from the
Linear Road benchmark [74] that computes, for a set of highways, variable tolls
based on congestion (Branch 1) and fixed tolls (Branch 2). Figures 6b/c show
a possible transformation of the logical DAG of the query to a physical DAG,
where (logical) operators C, D, E are fused together into the same physical
operator and operator F is replicated twice. In Figure 6b, the SPE uses only
two OS threads to run the operators. The operators are scheduled by a user-
level scheduler that controls which operator runs on which thread and for how
long (top switches in the figure). The two OS threads of the SPE are eventually
scheduled by the OS (bottom switches in the figure). On the other hand, in
Figure 6c, each operator is assigned to a dedicated OS-level thread, and the
Operating System scheduler is solely responsible for the scheduling decisions.
OS- and user-level scheduling have their own advantages and disadvantages,
which are outlined later in this chapter.

7 Research Problems and State-of-the-Art

7.1 Data Provenance
As discussed in §5, data provenance can be valuable in explaining the behavior
of streaming queries, allowing analysts to understand the presence or absence
of specific outputs, making debugging easier, and helping validate the logic of
streaming queries. Though data provenance has been studied in detail in the
context of databases [64,75,76], it has not been a focus of stream processing
research and practice until recently. Initial approaches for streaming provenance
were coarse-grained [77, 78], tracing time intervals instead of individual tuples,
or producing only approximate answers [79]. Other approaches focused on
specialized use cases such as query debugging and data visualization [63,80],
while they also required manual guidance by the user.

Backward Provenance In order to track fine-grained backward provenance
in data streaming queries, it is necessary to link each output to the inputs
that led to its generation and vice-versa, something that previous works have
shown to be an intrinsically heavy operation [65], with the potential to severely
limit the performance of the original streaming query, especially when the
data volume and velocity is high. The previous state-of-the-art solution for
streaming backward why-provenance, called Ariadne, is based on instrumenting
(i.e., encapsulating) the operators of streaming queries so that each processed
tuple is annotated with provenance-specific metadata, allowing to link each
output to the inputs that led to its generation in a fine-grained manner [65,81].
However, this technique can lead to annotations that grow arbitrarily large,
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increasing the memory impact of the provenance while it also requires the
system to (temporarily) maintain all the raw input data, causing potentially
prohibitive overheads, especially when streaming applications are deployed
in resource-constrained edge devices [15,57,78]. These limitations lead us to
our first research question about the development of efficient ways to record
fine-grained backward provenance in stream processing:

Research Question 1

How can we maintain fine-grained backward data provenance in streaming systems
with small processing and memory overheads?

Live Forward Provenance Forward provenance in streaming applications
could be produced by traversing the backward provenance graph in reverse,
but such an approach is inefficient in the streaming context. More specifically,
the above approach would require maintaining the raw backward provenance
in order to answer forward provenance questions. Since each input can lead
to multiple outputs, such storage could maintain potentially huge volumes of
duplicate information and cause significant overheads in resource-constrained
devices. A general-purpose approach should deduplicate the backward prove-
nance, which in turn requires the analyst to find a point in (event) time after
which a source tuple will not contribute to any more results. This problem is
not explored by previous works, which only focus on specific debugging and
visualization use cases [77,80]. Other previous works hint at the use of static
query analysis to identify tuples that cannot contribute to any more results
but do not study the problem in detail [65]. The following question expresses
this gap in the research on live forward provenance for stream processing:

Research Question 2

How can we enrich data streaming frameworks that deliver backward provenance
to efficiently provide live, duplicate-free, fine-grained, forward provenance for
arbitrarily complex sets of queries?

Why-Not Provenance Provenance of missing answers has been studied in
the context of relational queries, (reverse) top-k [82,83], and skyline queries [84,
85], as well as in the context of more general architectures [86]. When focusing
on query-based explanations, “Why Not?” [67] discusses the problem of missing
answers in workflows when the analyst cannot inspect the input dataset and/or
alter the query, proposing a solution that relies on replaying the query (with the
same inputs) to identify the transformations that discarded the latest successors
of tuples that could have contributed to the expected answer. NedExplain [66]
follows a similar technique that, however, uses more accurate identification of
source data to return more comprehensive and correct answers. Other works
such as [87] compute query-based explanations in queries with nested data
through reparameterizations of the operators, which allows them to include
additional operators, such as projections, in the possible explanations.

However, the above batch-focused solutions are designed with the assump-
tion that the query can be replayed with identical input data, which is usually
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not the case in data streaming queries. This is because streaming queries
focus on a one-pass analysis of input data that might be inefficient to maintain
persistently [13]. Thus, replaying a streaming query with the same data to
explain missing answers goes against the foundational principles of stream pro-
cessing. Furthermore, the temporal nature of stream processing introduces the
possibility of results that are not really missing but just delayed, something not
present in traditional databases, which are based on a closed-world assumption.
In particular, since streaming queries continuously process data, explanations
for missing answers in stream processing must treat time as a “first-class
citizen”. The above challenges necessitate new research on missing answers,
specifically in the context of general-purpose stream processing. This area has
seen minimal research, apart from a single approach by Song et al. [88], which
focuses solely on Complex Event Processing (CEP) and returns explanations
that focus on time and not on all the attributes of the tuples. Thus, in order
to allow analysts that rely on stream processing to get the benefits offered by
why-not provenance, we want to answer the following research question:

Research Question 3

How can we efficiently monitor user-defined expectations about query results and
explain missing answers in a streaming manner?

7.2 Custom Scheduling

Previous works have demonstrated improvements in the Quality-of-Service of
streaming queries and the utilization of the available resources through the
enforcement of custom scheduling policies [12, 69, 70, 89] and have proposed
specific algorithms that optimize user-defined performance metrics such as
latency, throughput and fairness [12,72,90–93].

User-Level Scheduling Pioneer SPEs, such as Aurora, included their own
user-level schedulers, which were focused on running many operators on hard-
ware with a small number of CPU cores, with the goal of optimizing throughput,
latency, memory, or other Quality-of-Service metrics [94, 95]. As discussed
above, modern SPEs, such as Apache Flink and Apache Storm, rely on OS-level
scheduling, where each physical operator is assigned to a separate OS thread
whose scheduling is controlled by the OS scheduler. While the OS scheduler
is sophisticated and comprehensively tested on a wide range of workloads,
it is usually unaware of the particular goals of data streaming applications.
Thus, a research problem is how to easily allow practitioners and researchers
to implement custom scheduling policies in modern SPEs, at a high level of
abstraction without needing to re-implement the scheduler for each new SPE.
This challenge is captured by the following research question:

Research Question 4

How can we provide resource-efficient and application-aware thread scheduling
for streaming systems?
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OS-Level Scheduling State-of-the-art scheduling solutions for stream pro-
cessing require alterations to the core runtime of the SPE in order to schedule
the query operators as user-level threads [43, 96]. While these alterations allow
for fine-grained control of the scheduling decisions, the tight coupling between
the implementation of the SPE and the scheduler can come with huge imple-
mentation and compatibility risks. Furthermore, user-level scheduling foregoes
valuable facilities provided by the scheduler of the OS, such as the transparent
handling of blocking operations and the transparent scheduling of operators
belonging to different processes (of the same or different SPEs). Thus, it might
be beneficial for SPE users to have access to custom scheduling without chang-
ing the SPE. Attempts in that direction have been made in Apache Storm,
which can use Linux mechanisms such as nice and cgroup [97] to control
resource allocation in a coarse-grained manner, as well as in resource con-
trollers [98,99], that aim to reduce Quality-of-Service violations by controlling
how many resources are given to each application in multi-tenancy scenarios.
However, previous works have not explored fine-grained schedulers that can
control individual streaming operators through the use of OS mechanisms, as
expressed by the research question below:

Research Question 5

Is it beneficial to implement custom scheduling by assisting the OS instead of
altering the SPE to rely on a user-level scheduler?

7.3 Full Utilization of Edge and Cloud Infrastructure
Through Parallel and Distributed Computation

Increasingly challenging analyses and deployments at resource-constrained edge
nodes make data parallelization a necessity for streaming applications, especially
when the latter require high Quality-of-Service [45,100–102]. As discussed in
§3, SPEs can transparently parallelize and distribute their native operators
with minimal user involvement. However, stream processing extensions such
as provenance might require the usage of custom logic not already included
in such native operators. Thus our contributions should be designed from the
ground up with scalability in mind so that they can keep up with the increasing
requirements of modern stream processing applications. Furthermore, custom
scheduling solutions that control the resource allocation of SPEs must be able
to handle parallel and distributed deployments with minimal user interaction
so that they can be used in conjunction with real-world query deployments.
Such issues are described by our final research question:

Research Question 6

How can we allow the provenance and scheduling extensions for streaming
queries to take advantage of modern parallel and distributed architectures to run
efficiently in both low- and higher-end devices?
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Table 1: Research questions defined in §7 and the thesis chapters that address them,
together with the name of the technique discussed in each chapter.

Part II: Provenance Part III: Scheduling

Chapter A Chapter B Chapter C Chapter D Chapter E
GeneaLog Ananke Erebus Haren Lachesis

RQ1
RQ2
RQ3
RQ4
RQ5
RQ6

8 Thesis Contributions
In this part, we briefly describe the main contributions of each chapter of the
thesis concerning the research questions defined in §7. Table 1 outlines the
chapters of the thesis, along with the name of the technique discussed in each
chapter and the research question addressed by it.

8.1 Explainable Stream Processing Through Provenance

Low-Overhead Backward Provenance

We begin discussing data provenance in Chapter A by presenting our state-of-
the-art solution for fine-grained backward data provenance in data streaming,
called GeneaLog. GeneaLog is a framework that improves on the previous
state-of-the-art by minimizing the overheads of backward provenance in stream
processing, both in single- and multi-node deployments. It achieves this by
using a small set of fixed-size metadata for each query tuple, in contrast with the
variable-length tuple metadata annotations used in the previous state-of-the-art.
Furthermore, GeneaLog utilizes process-level memory management facilities to
avoid maintaining all input data and instead distinguishes on-the-fly the source
tuples that actually contribute to some result. GeneaLog is designed to work in
conjunction with parallelization and distribution of the operators, allowing the
query to scale as necessary. GeneaLog is implemented and evaluated on top
of two SPEs, Apache Flink [37] and Liebre [103]. Its evaluation using several
real-world queries shows small overheads, even in resource-constrained devices,
such as those deployed at the edge of Cyber-Physical Systems, in contrast to
the previous state-of-the-art that resulted in at least one order of magnitude
higher overheads and rapidly exhausted the memory of the evaluation devices.

Live Forward Provenance

In Chapter B, we continue our work on data provenance by proposing a
framework, called Ananke, that efficiently records live forward provenance
in data streaming queries. Ananke can use metadata from any backward
provenance tool such as GeneaLog to produce a streaming bipartite graph
of live forward provenance. The live forward provenance graph’s vertices are
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the deduplicated input tuples that contributed to some output as well as the
outputs themselves. An input and an output vertex are connected in the graph
if the input is part of the specific output’s backward provenance. Furthermore,
vertices contain liveness metadata which indicates if they have expired or if they
can have more edges added to them in the future. We describe and formally
prove the correctness of two implementations of Ananke, a compact one based
on a custom operator and a more scalable one based on native SPE operators.
We implement Ananke on top of Apache Flink, and we thoroughly evaluate it
using real-world queries, comparing its overheads with the state-of-the-art in
backward provenance, as well as ad-hoc, database-based solutions. As shown in
the evaluation, Ananke’s overheads are usually less than 5% compared to the
state-of-the-art in backward provenance, indicating that Ananke can efficiently
compute live forward provenance even in resource-constrained edge devices.

Result Expectations in Stream Processing

Chapter C focuses on why-not provenance, aiming to explain missing but
expected results. It proposes Erebus, a framework that allows users to define
their expectations about the results of a streaming query as boolean predicates
and either validate that their expectations are met or produce query-based
streaming explanations that describe why an expected result did not get
produced by the query. In this chapter, we formally define the problem of
missing answers in stream processing and study the challenges that arise
from the temporal nature of the processing and are absent in previous works
targeting traditional databases. We analytically solve these challenges, proving
the solution’s correctness, and use the developed techniques to implement
Erebus as a framework on top of Apache Flink. We evaluate Erebus, the first
framework of its kind, using real-world and synthetic queries deployed both in
low- and higher-end devices. The evaluation shows that Erebus can produce
explanations for the outputs of streaming queries while imposing only small
to moderate overheads over the original streaming query. We consider the
overheads of Erebus are an acceptable trade-off for its functionality, in light of
the fact that explaining missing answers has been shown to cause overheads of
more than one order of magnitude in related works.

8.2 Efficiency and Control Through Scheduling

User-Level Thread Scheduling for Data Streaming

Chapter D marks the beginning of the second part of the thesis that focuses on
custom scheduling for stream processing applications. This chapter presents our
framework called Haren, a user-level scheduler that can control the allocation
of CPU resources to the operators of streaming queries to optimize user-defined
performance goals. In contrast to previous works, Haren defines a general
set of abstractions that can describe an SPE’s runtime and the operator’s
behavior, providing APIs that allow users to develop custom scheduling policies
to control resource allocation by executing operators as user-level threads
that are application-aware. When applying a user-defined scheduling policy,
Haren uses fine-grained synchronization mechanisms to efficiently compute the
policy priorities and execute the selected operators with minimal scheduling
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overheads. We design and implement Haren as a framework that can be
integrated into an SPE to offer such custom scheduling with a small effort
from the user, enabling the reuse of the scheduling policies and offering an
optimized scheduling infrastructure across different SPEs. Haren’s detailed
evaluation shows that it can outperform the default OS scheduling in a variety
of scenarios and achieve custom scheduling goals even in resource-constrained
devices, where custom scheduling can be essential.

Customizing OS Scheduling of Streaming Queries

Chapter E introduces Lachesis, a scheduling middleware for stream processing
that does not require any changes to the SPE or even redeployment of the
running streaming queries. In contrast to state-of-the-art user-level schedulers
like Haren, Lachesis runs as a standalone application and guides the scheduling
of streaming operators through OS mechanisms such as nice and cgroup.
This allows Lachesis to enforce custom, user-defined scheduling policies on
streaming queries running on one or several nodes, and even on multiple SPEs.
Lachesis is implemented in a modular fashion and is easily extensible to more
SPEs, scheduling policies, and OS scheduling mechanisms. We extensively
evaluate our implementation of Lachesis, using three different SPEs, and
several real-world and synthetic workloads on local, distributed, and multi-SPE
deployments. Our evaluation shows that not only can Lachesis bring significant
performance improvements over the default OS scheduling, but it can also
outperform previous state-of-the-art user-level schedulers while avoiding the
implementation and maintainability risks that come with user-level scheduling.

9 Conclusions and Future Directions
This thesis proposes techniques that can improve the efficiency and usability of
stream processing applications and prepare SPEs for new types of deployments
that extend from the cloud and embrace new paradigms, such as the edge.
We study data provenance and scheduling challenges in stream processing,
proposing solutions that work equally well on high-powered servers and resource-
constrained devices, such as those found at the edge of Cyber-Physical Systems.
The work of this thesis is distilled into three state-of-the-art data provenance
frameworks and two schedulers for streaming queries.

Regarding data provenance, GeneaLog dramatically improves the perfor-
mance of backward streaming provenance compared to the previous state-of-the-
art, Ananke is the first framework to provide live forward provenance for stream
processing, and Erebus is the first framework to provide streaming explanations
for the (missing) answers of streaming queries. Those three frameworks have
been shown to induce small overheads, allowing provenance to be recorded
together with the original streaming queries in a wide range of deployments
while being able to scale to support increasing data volumes.

Regarding scheduling, Haren is our state-of-the-art user-level scheduler for
SPEs with a focus on reusability, and Lachesis is a state-of-the-art middleware
with a pioneering approach to controlling the scheduling of streaming queries
through OS mechanisms. The evaluation of Haren and Lachesis shows that our
scheduling frameworks can drastically improve the performance of streaming
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queries compared to the default scheduling of modern SPEs while abstracting
away the complexity of custom scheduling from the user.

In future work, it would be interesting to explore how to take advantage of
the heterogeneous architectures present at the edge of Cyber-Physical Systems,
using GPUs and other accelerators to improve the performance of stream pro-
cessing applications. Furthermore, it is crucial to explore innovative techniques
to reduce the impact of data transfers in modern SPEs, such as compression
or smart serialization, which can potentially decrease the overheads of data-
intensive operations, such as data provenance. Additionally, elasticity, i.e., the
ability to automatically add or remove processing resources depending on the
processing requirements, is an important research direction (especially at the
edge) that needs further exploration. Machine learning techniques should also
be explored both in the context of streaming data provenance (e.g., taking
advantage of provenance for training purposes) and in the context of custom
scheduling to explore the possibility of automated, goal-focused scheduling
policies. Finally, location-aware processing is an exciting direction, along with
better visualization techniques of stream processing that would further aid in
understanding and debugging streaming pipelines.
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