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Summary

In the vision of ubiquitous computing, users should get the right information, at the

right time, at the right situation. Such provision of appropriate information will assist

users in performing their daily tasks in a natural and transparent way. Context-aware

systems are more flexible, adaptable, and autonomous.

Formal representation of context information is gaining an ever increasing number

of advocates in the literature. It fosters interoperability among heterogeneous context

sources and eases the development of context-aware applications. Thanks to the repre-

sentation and reasoning power of their underlying logics, it is also possible to describe

complex context data, share and integrate context between heterogeneous entities, de-

duce abstract or hidden knowledge, and deal with the inconsistency of the data. The

Web Ontology Language (OWL) is the standard way for representing the semantics of

information in the web, and is the main formal and practical method for modeling con-

text.

One major issue with regards to the application of OWL is the overhead of query

answering when changes occur in the observed facts. Traditionally, reasoning on an

updated knowledge base is performed from the scratch. As the query answering mecha-

nisms are based on available reasoning techniques, this also results in the re-evaluation

of the query from the beginning.

In this dissertation, a novel incremental query answering technique for semantic

(OWL-based) contextual information is proposed. The aim is to avoid redundant com-

putations and alleviate the cost of reasoning from scratch. Our method can be applied

to the fragments of OWL which can be axiomatized as a set of rules, including Re-

source Description Format Schema (RDFS) and Description Horn Logics. We consider

instance retrieval queries which ask for instances of the contextual situations predefined

in the ontology. In addition, we only consider changes in the facts (ABox) and not the
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changes in the definition of knowledge structure (TBox).

Our technique consists of first translating the ontology schema as well as queries into

rules. By targeting the Description Horn Logic fragment of OWL, we are able to repre-

sent the ontology schema as a set of definite Horn rules, i.e. rules with only one literal at

the head. These rules are then used to build the Rete network which incrementally main-

tains the query results as changes occur in the observed data. As the evaluation of the

rules can be computationally expensive, we further introduce an optimization to prune

the rules which do not affect query results. The empirical results suggest the practicality

of our method for the perceived application domains.

To the best of our knowledge, we are the first to address the problem for context

aware systems. The novelty of our method lies in the identification of the proper tools

and language fragments that can work in tandem for the expected results. Our method

does not need alteration of existing OWL-based reasoners, enabling context aware sys-

tems to achieve incremental query answering functionality with minimal changes. In

addition, our method supports hybrid inference method where application-specific rules

can be used in conjunction with pure OWL based reasoning.
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CHAPTER 1

INTRODUCTION

“The most profound technologies are those that disappear. They weave themselves

into the fabric of everyday life until they are indistinguishable from it.” This is how

Mark Weiser describes the vision of ubiquitous computing in his seminal paper [3].

Such a utopia is saturated with pervasive computing and communication technologies.

Everyday objects and places are smart, sensors and actuators maintain rich connections

between the physical and virtual worlds, and computing is spread throughout the envi-

ronment [4]. A highly anticipated property of this new paradigm is its graceful integra-

tion with human lives. To be minimally intrusive, a ubiquitous computing environment

must be context-aware. Contextual information can be used for adapting user interface,

tailoring the set of application-relevant data, increasing the precision of information re-

trieval, discovering services, or making the user interaction implicit [5].

Despite the maturity of required technologies, this vision is still far from reality.

The major challenge has been attributed to the seamless integration of the component

technologies [6]. The sheer diversity of the context sources as well as different soft-

1
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ware which collect, process, and change the context information results in heterogene-

ity which makes interoperability challenging. The ubiquitous computing community in-

creasingly understands benefits of formal context information modeling. A well-defined

semantics alleviates the heterogeneity of context sources and fosters reuse and sharing

of information which can be expensive to gather, evaluate and maintain. In fact, it re-

duces the complexity of context-aware applications and simplifies their development

and maintenance. Moreover, a well-defined semantics also enables a number of rea-

soning services which can be used to derive implicit or abstract information, answer

queries, and detect the inconsistencies peculiar to context data [7]1.

Proposed formal context models usually take advantage of the well-known standards

such as the Web Ontology Language (OWL) [8]. This language is characterized by the

formal semantics of Description Logics (DL) [9] and its RDF-based serializations [10].

However, the main limitation in using OWL as the underlying representation model is in

the overhead of query answering over under changing data. Traditionally, reasoning on

an updated Knowledge Base (KB) is performed from scratch. As the query answering

mechanisms are based on available reasoning techniques, this also results in the re-

evaluation of the query from the beginning [11]. This problem makes the use of the

semantic models impractical due to the efficiency and scalability issues. Nonetheless,

none of the proposed work in the literature consider the issue, and readily rely on the

inappropriate tools without any reservation. This problem has been considered recently

in the semantic web community [11] [12]. The proposed methods, however, are overly

complex or limited to theoretical studies. In fact, none of the existing OWL and DL

reasoners support incremental query-answering functionality.

The problem I tackle in this dissertation is the incremental query answering for se-

1The inconsistency in context data can stem from contradictory information reported by different
sources. For example, while camera may identify the location of a user to be in room 1, the indoor
positioning system may report his location to be in room 2. The imperfection and uncertainty of context
data are further elaborated in section 2
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mantic contextual information. The method is to alleviate the cost of reasoning from

scratch by reusing the results of previous computations. We rely on the observation that

the Rete algorithm [13] - used for the evaluation of rules in expert systems - provides

sufficient infrastructure for incremental reasoning. Therefore, we target a limited, yet

expressive, subset of the OWL which can be axiomatized as a set of rules. This allows

transforming the original OWL query answering problem into rule-based reasoning and

therefore leveraging the incremental Rete algorithm.

The Rete algorithm performs inference in a forward chaining manner, which can be

costly in terms of computation run time. To alleviate the issue, we further develop an

optimization where the set of rules to maintain are adaptively selected based on their

effect on the query results. We formally define this property in section 3.3. Given a

query, all the rules corresponding to the ontology schema are recursively checked and

pruned if they do not influence the query results. The complexity of the optimization is

linear in size of the rule base, and thus the size of the ontology schema (Tbox). As we

show in our experiments, it can reduce the query answering time significantly, compared

with the default Rete implementation.

To the best of our knowledge, we are the first to tackle the problem in the ubiqui-

tous computing community. We highlight the contributions of the work as follows. (i)

Proposing a novel approach for incremental reasoning and query answering by identi-

fying a proper subset of OWL and using existing algorithms. (ii) The proposed method

requires no significant change in the implementation of existing tools, as we rely on

the available Rete-based rule engines. This provides the context aware systems to ad-

dress the problem with minimal changes. (iii) Our proposed method allows a hybrid

inference method when the rules resulting from the translation can be augmented with

further application specific rules. This is specifically important as rule-based reason-

ing can complement the limitations of pure OWL based reasoning [7][14][15]. More
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discussion regarding these arguments are presented in sections 3.1 and 3.4.

Like any other piece of research, the work presented here is based on certain as-

sumptions. For this proposal to be applicable, we assume that the contextual information

is expressed in the Description Horn Logic fragment of the Web Ontology Language.

Former studies have shown that this fragment is expressive enough for many of the ap-

plication scenarios [16]. In addition, the changes made to the knowledge base are to be

in the assertional level (ABox) and not about the knowledge structure (TBox). Lastly,

we study long-running conjunctive retrieval queries which are interested to receive up-

dates for query results as changes occur in the observed facts. A formal definition of

this category of the queries is presented in section 3.

The dissertation is organized as follows. In chapter 2, I elaborate on our definition

of context and its properties. An argument in favor of semantic models is presented and

the rest of chapter discusses their application. In chapter 3, I focus on the query an-

swering problem with regards to the dynamic context information which are expressed

in OWL. I detail the problem, assumptions, and the method in this chapter. In the end,

we assess the performance of our method on a benchmark where we expect that such an

incremental solution should deliver acceptable results in practice. I present the related

work in chapter 4 where I discuss how this work stands in relation to existing work. The

future research directions are presented in chapter 5, and the dissertation is concluded

in chapter 6.



CHAPTER 2

SEMANTIC CONTEXT MODELS

Context aware computing is a new paradigm which has recently become the focus

of attention, due to the widespread use of mobile devices and advances in ubiquitous

technologies. The overall goal is to make systems and applications more intelligent by

personalizing their behavior based on the context. The more context-aware a system is,

the more usable and acceptable it will be for human users. Abowd et. al. [17] define the

context to be:

“Any information that can be used to characterize the situation of entities

(i.e., whether a person, place or object) that are considered relevant to the

interaction between a user and an application, including the user and the

application themselves.”

Useful context information can be retrieved from physical or virtual sensors. Physi-

cal sensors refer to hardware sensing devices capturing a wide range of data types. These

include location, motion and acceleration, audio, light, visual context (camera images),

5
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touch, temperature, ECG sensors and so on. These sources of information can be con-

sumed directly or be used in deriving more abstract information such as the activity of

the users. On the other hand, virtual sensors refer to information sources which are pro-

vided by various software applications and services through different APIs. Consider,

for example, traffic and weather information, identity, profile, and calendar of users, and

flight information.

The choice of a context model is closely related to the performance, flexibility and

scalability of context aware systems. The context model should capture the properties

of the context and facilitate development of context aware systems. In the rest of this

section, I will provide a discussion on the properties of context and the resulting im-

plications for a good model. For in-depth reviews on context properties and existing

modeling approaches please refer to survey [18].

Distribution and Heterogeneity

The context is usually derived from a number of heterogeneous data sources and it

needs to be filtered, aggregated, and abstracted before use. Each of these data sources

may have different data type, representation, and specifications. In fact, context aware

systems are distributed and without a central instance responsible for creation, deploy-

ment, and maintenance of data and services. The sheer diversity of the context sources

as well as different entities which collect, process, and change the context information,

will pose serious interoperability issues. In fact, this concern has been attributed as

the main problem for development of context aware systems, despite the availability of

constituent technologies [4].

The ideal context model should be able to provide seamless interoperability between

the context sources and the entities involved. In order to ease the aggregation of the data,

powerful knowledge representation methods should be taken. Ad-hoc formalisms with

insufficient expressivity and formalism make this process difficult [19]. A formal model
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enables knowledge sharing among context sources and the inter-operating systems.

Reasoning

Different application scenarios require data in varying levels of abstraction. For

instance, while one may be interested in the location of people in a building, another

may be interested to know if a Meeting is going on. Generally, low-level data are harder

to process, interpret, and act upon. To bridge the gap, we need to abstract low-level

context data to more abstract representations through reasoning. The inferred high-level

contexts give meaning to a set of lower level contexts, are more stable, and are easier

to define and maintain than low level context. Also, more abstract contexts are less

susceptible to change and adapting to them is easier for applications [7]. In addition, the

high level representation of context will simplify querying for applications as less details

needs to be specified (e.g. exact sources of the data). In fact, sophistication of supported

queries characterizes the difference between middlewares for context aware systems and

sensor networks. Sensor networks usually provide means for trivial operators such as

computing for min, max, and average. Context aware systems, on the other hand provide

richer and more abstract queries, which implies more complex processing [20].

Imperfection, Uncertainty, and Incompleteness

Context can be imperfect in an undesired way, due to hardware problems or non-

optimal user behavior. In [21], the authors highlight four types of imperfect context

information. Context can be unknown when we have no information (e.g. a faulty

sensor); ambiguous, when we receive conflicting reports (e.g. two different positions

reported for a single person, from RFID and camera); imprecise, when the data is correct

but not exact enough (e.g. reporting the location of a person to be in a region and no

exact location are available); and erroneous, when the received data are considered to

be false. Hence, the model should allow for specifying the quality of context. In this

way, applications will be able to work around the issue, e.g. by discarding the retrieved
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data or looking for alternative sources of context information.

Moreover, the complexities of contextual interrelationships make any modeling ef-

fort error prone [22]. In a formal setting, it is possible to describe context in terms of

other context or domain definitions. This will ease the verification of any inconsistency

in the knowledge about the context.

Performance

In a real world setting, a context aware system will comprise numerous sensors,

users accessing the system, and uncountable information available through other re-

sources such as external databases and the web. We may need to persist context data

to perform temporal reasoning, predict future context, or recommend services. Efficient

organization, manipulation, and provision of context data are crucial for scalability. Fur-

thermore, context is susceptible to frequent changes (e.g. location, temperature, and

road traffic data). The processing and delivery of context data should be efficient and

timely, so that the applications are not delivered stale data.

Many context-aware systems using various context models have been developed

over the years. For a more comprehensive and detailed study of different context mod-

els, interested reader may refer to surveys [7] [23][18][20].

Models based on Key-value pairs use simple dictionary like structures for represen-

tation of context. The key can represent the temperature context and the value part,

the current reading of a sensor. Markup scheme models usually extend the XML based

models such as Composite Capabilities/ Preferences Profile (CC/PP)1 . Object oriented

methods introduce concepts such as encapsulation, inheritance, and reusability into the

modeling process. The details of context processing are hidden within objects and ac-

cess to the context data is provided through specified interfaces. Spatial models stress

the significance of location information and provide constructs as well as data storage

1A CC/PP profile is a description of device capabilities and user preferences which can be used to
guide the adaptation of content presented to that device
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and retrieval mechanisms for efficient manipulation of the spatial context. In a logic

based context model, the context is defined as facts, expressions and rules. It is added

to, updated in, and deleted from a logic based system in terms of facts.

The experiences with the proposed context models and the challenges faced in prac-

tice have influenced the set of the requirements defined for context modeling and rea-

soning. In fact, these modeling approaches have been shown to be insufficient for (i)

representing a variety of context types, (ii) capturing relationships, dependencies, and

quality of context information, (iii) allowing consistency checking, or (iv) supporting

reasoning on context [7].

The pervasive computing community increasingly understands benefits of formal

context information modeling [7]. In fact, in order to facilitate interoperability, pow-

erful knowledge representation methods should be taken. Ad-hoc formalisms with in-

sufficient expressivity make this process difficult [19]. Another observation is that the

complexities of contextual interrelationships make any modeling effort error prone [22].

As the data is mainly originating from various sources, the chances to encounter incon-

sistencies are not negligible. In a formal setting, it is possible to verify the existing infor-

mation against inconsistencies. Formal representation of the context data also facilitates

automated reasoning based on the semantics of the data or additional information in the

form of rules. This can be helpful in improving the quality of the existing data, inferring

new knowledge (e.g. forward chaining) or answering queries (e.g. backward chaining);

which are not possible using traditional syntactic approaches.

In this dissertation I consider using ontologies for modeling context, either in purely

ontology based or hybrid models. In the next chapter we elaborate on the use of semantic

languages for modeling context.
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2.1 Using the Web Ontology Language

Ontology is a term originating from philosophy that refers to the science of describ-

ing the entities in the world and how they are related. Ontologies have been adopted in

several fields of computer science such as information integration, semantic web, natu-

ral language processing, and databases [9]. According to W3C, ontologies “define the

terms used to describe and present an area of knowledge.” They are used to define the

semantics of a group of entities and the relationships among them. They intend to pro-

vide a shared consistent understanding of a domain, in order to foster knowledge reuse,

sharing, and interoperability.

The Web Ontology Language (OWL) is the outcome of the efforts over the past

decade to standardize languages for formally representing the semantics of information

on the Web; this work has been driven by both the academic and industrial research

communities, as well as through initiatives within standardization organizations. OWL

expresses information in terms of the Resource Description Format (RDF) [24], which

is a standard model for interchangeable data on the Web. Furthermore, OWL is based

on Description Logics (DL) [9] - which is widely accepted to provide a solid foundation

for ontology representation and reasoning. In fact, the expression of ontologies using

a logical language will enable detailed, accurate, consistent, sound, and meaningful

distinction of the classes, properties, and relations [25].

Description Logics are expressive decidable fragments of First Order Logics. The

basic elements of DL (and thus OWL) are so-called classes which group objects into

categories, and properties which relate pairs of objects with each other. An arbitrary

class and property Description can be constructed from two disjoint sets of symbols,

Class Names and Property Names (also called Atomic Classes and Atomic Properties)

using a variety of class- and property-forming constructors, the range of which is spe-

cific for the particular description logic (please refer to [9] for the detailed specification.)
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[16].

For instance, we can describe the people all of whose subscriptions are with SingTel

as:

User ⊓∀ hasSubscription.SingTel

A DL (and thus OWL) knowledge base usually consists of a set of axioms, which can

be distinguished into terminological axioms (building the so-called TBox T ) and asser-

tional axioms or assertions (constituting the ABox A). In analogy to the database sys-

tems, TBox corresponds to the database schema while the ABox represents the database

instance. The following is a brief description of the parts; for an in-depth review of

description logics and its formal specification, please refer to [9].

TBox A TBox is constituted by a finite set of terminological axioms which define

subsumption and equivalence relations on classes and properties. An equivalence axiom

whose left-hand side is an atomic class (property) is called a class (property) definition.

The respective class on the left-hand side of the equivalence axiom is called defined

Class. Axioms of the form C ⊑ D for complex class descriptions C and D are called

(general) inclusion axioms. C is called a primitive class, if it is atomic and occurs on the

left-hand side of an inclusion axiom. Moreover, the set of axioms of the form R ⊆ S

where both R and S are atomic classes (properties) is called a class (property) hierarchy.

We say that a class A directly uses a class B in T if B appears on the right-hand side of

the definition of A.

ABox Assertional axioms or Assertions introduce Individuals, i.e. instances of a

class, into the knowledge base and relate individuals with each other and the introduced

terminology. We can distinguish two kinds of assertions. Class Assertions express that

an individual is member of a class. Property assertions express, that two individuals are

related with each other via a given property. For instance, the expression John:Person

means that John is an individual which belongs to the class Person.
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2.1.1 Reasoning

The expression of context data using OWL allows various Description Logics rea-

soning tasks to be considered. They enable us to draw new conclusions about the knowl-

edge base, check its consistency, or answer queries. For each part of the knowledge base,

TBox or ABox, different set of reasoning methods are available.

The TBox reasoning services are with regards to the knowledge structure. They are

used in the knowledge engineering phase to assist the domain experts in devising a con-

sistent knowledge structure. In addition, they are used to speed up computations with

regard to individuals (instances) in the A. Please refer to [9] for the detailed specifica-

tion.

ABox reasoning is about the actual individuals (instances), and how they can be

associated to the classes. As the ABox contains class assertions C(i) and property asser-

tions R(a, b), the most notable problem is retrieval. Given an ABoxA and a class C, the

purpose is to find all named classes C for an individual a for which A |= C(a). In con-

text aware systems, this can be used to determine the most specific situation based on a

set of observations. For example, [19][26] and [27] leverage on this form of reasoning,

where contextual situations are defined as classes in DL, and the set of sensor inputs are

considered to be individuals (instances) in the knowledge base. Determining the current

context is then formulated as finding the most specific class in the knowledge base to

which the individuals representing the current context belong to.

The retrieval problem can be dually defined as finding all individuals a such that

A |= C(a) [16]. Please note that this task is conceptually different from query answer-

ing in Relational Databases. That is, the fact C(a) may not be readily available in the

knowledge base, but can be inferred from the existing set of information.

The ABox retrieval tasks also consider properties. Given a property R and an in-

dividual i , the tasks is to retrieve all individuals x which are related with i via R; i.e.
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x|(T,A) |= R(i, x). Similarly we can retrieve the set of all named properties R between

two individuals i and j, ask whether the pair (i, j) is a filler of P or ask for all pairs (i, j)

that are a filler of P [16].

Most of the existing DL based reasoners (e.g. Pellet [28] and Racer [29]) are based

on the tableau process for detecting inconsistencies. A tableau is a graph corresponding

to the underlying model of the knowledge base, with nodes representing individuals

and edges representing the relationship between individuals. The algorithm starts with a

single individual that satisfies the model and tries to construct a tableau or some structure

from which a tableau can be created. Inference proceeds by applying several expansion

rules and terminates either when no more rules can be applied, or when contradictions

are detected.

The tableau decision procedure theoretically determines the consistency of a set of

axioms. Both TBox and ABox reasoning tasks mentioned above can be reduced to the

consistency checking problem; therefore, existing DL reasoners mainly use the tableau

algorithm for performing the reasoning and query answering tasks [9].

[9] presents the detailed list of reasoning services for TBox and ABox, along with a

more in-depth description of the tableau algorithm.

Over the last decade there has been a broad consensus over the need for rules as

well as ontologies. The reason is that ontologies are not strong with regards to the

instance level manipulation and reasoning. Logic Programs (LP) 2, on the other hand

are strong in reasoning about instances. Moreover, the semantics of the LP is the basis

of the important rule systems, such as SQL relational databases, Prolog, and Event-

Condition-Action rules. Full logic programs have features that are not expressible in

FOL, and thus not in DL [1]. For example consider the procedural attachments, i.e. the

association of action-performing procedural invocations with the drawing of conclusions

2In this dissertation, I use rule-based reasoning and evaluation of logic programs (LP) interchangeably.



14

about particular predicates.

In a more detailed discussion, the limitations of DL with respect to LP can be listed

as follows [15] [1]:

• A well known problem with the expressivity of DL based representations is the

lack of composition operator for roles. For instance, one cannot describe the

UncleOf property in terms of the BrotherOf and FatherOf properties.

• DLs lack the support for procedural attachment. Many domain specific reasoners

require the use of custom reasoners for IO functions, database calls, etc. this

functionality can be easily implemented in logic programs.

• DL cannot represent more than one free variable, while a rule in LP has no such

restriction. For instance, consider the rule

Friend(x,y)← Person(x), Person(y).

• DLs do not support n-ary predicates by default, in contrary to LP.

• DLs can not represent classes whose instances are related to an anonymous indi-

vidual via different properties. For instance, consider the rule

HomeWorker(?X)←Work(?X, ?Y), Live(?X, ?Z), Loc(?Y,?W),Loc(?Z,?W).

• Reasoning in DL considers all logically permissible combination of the facts in

the knowledge base and is of high worst case complexity. Rather, through rule

based reasoning, one can guide the reasoning engine based on the properties of

the domain and deal with the intractability of the reasoning task [30].

In general, it is believed that the benefits of DL can outweigh its shortcomings and

extensive efforts have been made in extending knowledge representation power of the

DL using rules. In fact, many of the proposals for context aware systems use rules in
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conjunction with the semantic context modeling and reasoning. The related work in this

regard is presented in the next section.

2.2 Related Work

The Web Ontology Language (OWL) is the main formal approach for modeling

context [7] [18] [20]. Many projects consider using ontologies for building context

aware systems. Ontologies can be used to model the application domain as well as the

definition and properties of context. A number of user friendly tools such as Protégé

[31] ease the ontology creation and deployment lifecycle. In this section, I will present

some of the seminal work in the literature which use ontologies for modeling contextual

information. For detailed survey of such systems, please refer to [20][7][18][23][32].

The Context Broker Architecture (CoBrA) is a broker-centric, agent-based archi-

tecture for intelligent spaces. CoBrA acquires, maintains and reasons about context,

enables knowledge sharing, and detects and resolves inconsistencies in the knowledge

[23]. The context knowledge base, specifically, maintains a shared context model for

the agents and devices in a smart space. The context data is modelled by a Standard

Ontology for Ubiquitous and Pervasive Applications (Soupa) [33]. The design of the

Soupa is derived by a number of use cases and consists of two sets of ontology docu-

ments, Soupa Core and Soupa Extension. Soupa core describes common concepts such

as person, agent, belief-desire-intention (BDI), action, policy, time, space, and event.

The Soupa extension defines an extended set of vocabularies for supporting specific

pervasive application domains.

Socam [34] uses OWL to describe a hierarchical CONtext ONtology (Conon) [35]

which is composed of a high-level part and a domain-specific part. The high level part is

an upper ontology for describing generic concepts such as person, location, and activity.
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The domain-specific part, on the other hand, describes concepts pertaining to specific

domains, e.g. houses, shops, and offices. Such separation of the domains will help in

reducing the size of the ontology dealt with, the ease of maintenance, and conceptual

comprehension.

The current context in Socam is represented in first-order predicate calculus. For in-

stance, Location(John, school) means that John is currently at school (John and School

are already defined to be instances of Person, and Location concepts respectively). This

information can be represented in OWL format. Other examples are Temperature (liv-

ingRoom, 32) and Activity (Mary, watchTV).

SOCAM allows users to define rules for specific application domains to derive high

level context information and consistency checking. The system supports forward chain-

ing, backward chaining, and hybrid execution mode (thanks to the use of Jena rule en-

gine). For instance, consider the following rule:

(?u situation SLEEPING)← (?u locatedIn Bedroom) AND (Bedroom lightLevel

LOW)

, which decides if a user u is sleeping based on his current location and the lighting level.

Furthermore, applications can specify their context aware behaviour through rules such

as:

If (John’s blood pressure exceeds the threshold) ∨

(John’s heartbeat is abnormal) ∨

(socam:temperature(John, greaterThan(101F)

Then alert hospital emergency department

, which describes a reaction to an emergency situation.

Semantic Space [35] is a similar effort to incorporate semantic web technologies

into smart spaces. The authors use separate ontologies for general and domain specific
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usages. The context is represented as instances of the ontology (markups). Users can

query the desired context from a persistent knowledge store using the RDF Data Query

Language (RDQL) 3. In Semantic Spaces project [35], users can submit the domain

specific rules to the system to perform the forward chaining reasoning using the Jena

rule engine. This is the only form of reasoning supported and the results of the reasoning

are not stored.

Gaia [36] is an infrastructure for intelligent spaces, aiming for integration of physi-

cal and virtual entities. It uses concepts from operating systems such as events, signals,

and file system, and extends them with context, computing devices, and actuators . On-

tologies are used in Gaia to describe various entities involved such as devices, services,

and data sources. These ontologies are supposed to be helpful in semantic discovery,

matchmaking, interoperability between entities, and human computer interaction [23].

Similar to Socam, Gaia uses first order predicates to represent the contextual axioms.

Gaia takes a similar approach to Socam and Smart Spaces, and further employs a prior-

ity based mechanism for activating rules, which allows only one rule to fire at a time.

2.3 Discussion

In this chapter I discussed some of the challenging properties of context and drew the

conclusion that the formality of the context model has several advantages when consid-

ering the properties. Using logic based ontologies bring about a number of advantages

when it comes to context modeling. These include facilitation of interoperability, detec-

tion of inconsistencies, and a number of reasoning mechanisms which can be used for

deriving implicit/abstract information or answering the queries.

Using semantic models has several advantages when it comes to query answering.

We can rely on the semantics of the data to not only evaluate the query based on the ex-
3www.w3.org/Submission/RDQL/
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isting facts, but also by what the existing facts entail. In keyword based search, only re-

sources with syntactical similarity will be returned, ignoring the semantic relationships.

For example, consider a user querying for video service to a system which provides

streaming service. A purely keyword based query answering mechanism will miss the

semantic relationship between the query and the available services [37]. This feature

is especially important in pervasive computing environments where the users may not

issue the right queries due to lack of knowledge, computer skills, or not being focused

on the current task.

Despite the mentioned benefits for semantic models, I should note that completely

relying on a semantic context model may not be feasible option in practice. In fact, when

dealing with low-level raw data, adopting specific non-semantic parsing, filtering, and

inference can be more efficient. For instance, consider detecting the activity of the users

through several body sensors where ad-hoc methods [2] perform faster and better than

first encoding the data into a semantic representation and then relying on the available

inference methods.

A new trend in the context-aware community is to use hybrid solutions where on-

tology based models are used in conjunction with other modeling approaches such as

key-value pairs, markup based, or spatial models. The rationale is to reduce the size

and the complexity of the ontological knowledge base by employing other models. A

representative work is the markup-ontological hybrid model presented in the CARE

framework [38]. The authors classify the context data into two types: shallow data and

ontology-based. While the former refers to data which is quite static and can be sim-

ply represented by key/value pairs. The latter deals with more complicated data such

as user activity, and the user environment which may require reasoning to infer more

abstract information. The model is based on CC/PP mark-ups which contain references

to OWL-DL classes and relations.
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In this dissertation, I assume that the semantic representation is used at some stage

for context modeling. So the focus is not as much on where we apply the technique

or how to blend it with other modeling techniques, but rather on what problems can

arise when we rely on it. In the next chapter, we focus on the inefficiency of the query

answering with these models when facing changes in the facts.



CHAPTER 3

INCREMENTAL QUERY

ANSWERING

As discussed in the previous chapter, a semantic representation brings a number of

advantages when modeling context. Thanks to their underlying formalism, it is possible

to describe complex context data; share, integrate, and reuse context between sources,

and use available reasoning mechanisms for consistency checking or logical inference

[7].

Query answering is one of the most important functionalities that empowers the de-

velopment of context aware systems, applications, and services. In the previous chapter,

the ABox instance retrieval query was presented as one of the major reasoning tasks

with regards to an OWL knowledge base. If the contextual situations are pre-defined

in the ontology, an application would determine if a situation holds by retrieving the

instances of the class corresponding to the situation. That is, the precise definition of

the domain knowledge allows applications to issue queries which determine if a certain

20
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context can be entailed in terms of existing definitions. We argue that this type of query

is powerful enough for many of the perceivable ubiquitous computing applications.

Here a formal definition of a conjunctive instance retrieval query is presented:

Definition 1. A conjunctive instance retrieval query is of the form

(answer variables)← P1(xp1, yp1) ∧ · · · ∧ Pm(xpm, ypm) ∧ C1(xc1) ∧ · · · ∧ Cn(xcn)

where Pis and Cis are properties and classes defined in the ontology, respectively.

Also, xs and ys are either named individuals or are existentially quantified. In the latter

case, they can be one of the answer variables.

We note that for many of the application scenarios, the query results need to be

monitored for an extended period of time. This can be due to the nature of the query

which can serve a monitoring application. Alternatively, this may be to improve the

quality of the results or to decide on their reliability. In fact, as the contextual states are

defined in terms of real-world observations, changes are inevitable. In this thesis, we

consider this type of queries and refer to them as subscription or long-running queries.

One issue with OWL based query answering, is the overhead of reasoning under

changing instance data. Unfortunately, if standard DL reasoning algorithms and off-

the-shelf reasoners are used, scalability issues with respect to query answering are

immediately encountered. The current query answering response times using today’s

tableau-based reasoners are in the order of (tens) of seconds (without considering the

consistency checking or query preparation time). This is due to the fact that when a new

update is received, the query is re-evaluated over the updated KB [11].

Despite the existence of this problem, proposed context aware systems which lever-

age on a semantic model barely consider this issue and readily apply the existing tools;

while the tools are not optimized for the task at hand. To alleviate the problem, we pro-

pose a method which reuses the previous computations and thus alleviates the cost of
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reasoning from scratch. This approach is motivated by two observations in ubiquitous

computing environments [14]. Firstly, two subsequent contextual states usually do not

differ completely, allowing the reuse of the common required computations. Secondly,

a considerable portion of envisioned queries are long running subscriptions, making the

reuse sensible as long as the queries are valid.

In our method we rely on the Rete [13] algorithm which is used for the evaluation

of the production rules in the expert systems. We observe that the algorithm provides

a natural support for incremental reasoning, because it saves computation states and

incrementally incorporates updates to the knowledge base. Furthermore, the algorithm

was introduced long ago and there exist a number of highly matured tools such as Jess

[39], Jena [40], and Drools [41]. These tools not only implement the original algorithm,

but also come with a number of well-known extensions and optimizations which make

them suitable in practice.

The method I propose in this dissertation thus aims to leverage on the benefits of

the Rete algorithm. To use the algorithm for OWL reasoning and query answering, we

need to transform the reasoning tasks in terms of rules. For example, the subsumption

expression C ⊑ D would imply that any instance of the class C is an instance of class

D; hence, we can express the semantics as C(x) → D(x) for any individual x.

Description Logic Program [1] is an expressive subset of the OWL whose semantics

is completely representable in terms of Logic Programming rules. In our method, we

target this subset of the OWL and assume its usage for modeling context. This allows

the translation of the context ontology as well as instance retrieval queries in terms

of rules. In this way, reasoning can be performed using the Rete algorithm, allowing

incrementally updating query results as changes occur in the observed data.

The rest of this chapter is organized as follows. In section 3.1, I provide more details

on Description Logic Programs, its correspondence with OWL. Section 3.2 presents the
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Rete algorithm and how we leverage on it for incremental query answering. I further in-

troduce an optimization algorithm in section 3.3. System architecture and experimental

studies come in sections 3.4 and 3.5.

3.1 Description Horn Logic Ontologies

A translation between Description Logic (DL) and Logic Programming (LP) estab-

lishes a correspondence between two fields of knowledge representation that are largely

disparate. This correspondence will allow to transfer results, e.g. reasoning techniques,

from one field into the other and nourish the advance of both fields. The Description

Logic Programs [1] has been introduced for this purpose. By leveraging DLP, the OWL

language family can be supported by a large number of available logic databases and

thereby immediately increases the number of systems, which can be utilized for the

purposes of Semantic Web applications. In fact, it would be possible to scale beyond

toy examples with respect to ABox reasoning problems - a challenging area for OWL

reasoning.

The asymmetry of the DLP language primitives, i.e. the fact that most DL class

constructors can only be used on the right-hand side of inclusion axioms, makes DLP

formally a less expressive ontology language than OWL Lite, which corresponds to

SHIF(D) and theoretically (but not syntactically) allows to use all DLP language con-

structors on both sides of inclusion axioms and in class equivalence axioms. The authors

show [16], however, that most OWL ontologies only use the language primitives pro-

vided by DLP. This is mainly due to the fact that most OWL classes are primitive classes

and defined through inclusion axioms, i.e. the expressiveness of the right-hand side of

inclusion axioms is central in practical usage, while atomic class names are the most

frequently used class constructor on the left-hand side of inclusion axioms. Such study
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on the expressivity, shows that DLP is useful in practice and should be sufficient for

many context aware systems.

Every DLP knowledge base is a syntactically valid OWL knowledge base and is

semantically equivalent to a set of definite Horn clauses under first-order predicate logic

semantics. A clause is said to be definite Horn when it is of form L1 ∨ · · · ∨ Lk, where

Li is a literal and exactly one of the literals is positive. A definite Horn clause can be

written as a Horn rule of the form H ← B1,∧ . . .∧, Bm ; where H and Bi are atoms

and m ≥ 0. A set of definite Horn rules correspond to a definite Logic Program (LP).

Any OWL knowledge base which can be represented in DLP - i.e. a Description

Horn Logic (DHL) ontology - can be converted syntactically into an LP. The work in

[16] establishes a meaning-preserving translation between DL and LP, along with de-

tailed explanation on how the typical reasoning and inferences available for DLs can be

effected in LP. This has been done by relying on the correspondence between DL and

First Order Logics (FOL) and the correspondence between FOL and LP.

As the final result, OWL classes are represented as unary predicates and OWL prop-

erties as binary predicates. Table 3.1 depicts the recursive mapping of a DHL ontol-

ogy into its equivalent LP1. In this table, A represents an atomic class, while C and D

are generic classes. The ObjectIntersectionOf and ObjectAllValuesFrom constructors

are mapped to the heads of rules when they appear on the right hand side of an in-

clusion axiom. The ObjectUnionOf, ObjectSomeValuesFrom, and ObjectIntersectionOf

are mapped to the body of the rules when they appear on the left hand side of inclusion

axioms.

Example 1. Consider the following statement from a context ontology schema which

defines a Business as an Activity whose all Actors are Employees.

SubClassOf (BusinessMeeting ObjectIntersectionOf(Activity
1This table also lists which OWL language constructs are covered in the DHL
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Table 3.1: The recursive translation of OWL to LP [1].

OWL Functional Syntax [42] LP Equivalent
SubClassOf( C D ) µ(D,X)← ν(C,X)
EquivalentClasses( C D ) µ(D,X)← ν(C,X)

µ(C,X)← ν(D,X)
SubObjectPropertyOf ( P Q ) Q(X,Y ) ← P (X,Y )
EquivalentObjectProperties ( P Q ) P (X,Y ) ← Q(X,Y )

Q(X,Y ) ← P (X,Y )
InverseObjectProperties ( P Q ) P (Y,X) ← Q(X,Y )

Q(Y,X) ← P (X,Y )
TransitiveObjectProperty ( P ) P (X,Z)← P (X, Y ),

P (Y, Z)
SymmetricObjectProperty ( P ) P (Y,X) ← P (X,Y )
ObjectPropertyDomain ( P C ) µ(C,X) ← P (X,Y )
ObjectPropertyRange ( P C ) µ(C, Y ) ← P (X,Y )
ClassAssertion ( C X ) µ(C,X)
ObjectPropertyAssertion (P X Y) P (X,Y )

Translation Function Evaluation
µ (A,X) A(X)
µ ((ObjectAllValuesFrom (P C)),X) µ(C, Y )← R(X, Y )
µ ((ObjectIntersectionOf (C D)),X) µ(C,X) , µ(D,X)
ν (A,X) A(X)
ν ((ObjectSomeValuesFrom (P C),X) R(X, Y ), ν(C, Y )
ν ((ObjectIntersectionOf (C D)),X) ν(C,X) , ν(D,X)
ν ((ObjectUnionOf (C D)),X) ν(C,X) or ν(D,X)
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ObjectAllValuesFrom(hasActor Employee))

which is compiled to the following rules:

• (Rule 1) Activity(X)← BusinessMeeting(X)

• (Rule 2) Employee(Y)← BusinessMeeting(X) , hasActor(X,Y)

When translating DL to LP there is the need to transform queries in one domain to

the other too. In [16], a complete and formal process for such translation is presented.

As for the conjunctive instance retrieval which we consider in this dissertation, the trans-

formation of the queries into their equivalent rules follows a simple translation; where,

a new predicate is defined and is placed at the head of the rule. The arity of the new

predicate is determined by the number of the variables selected by the query.

SPARQL [43] is one of the established query languages for OWL. For illustration

purpose, please consider the following conjunctive instance retrieval query expressed in

SPARQL, and how it is mapped to a Definite Horn Rule.

Example 2. Consider the following query which asks for all business meetings starting

at a given time:

PREFIX s: <SomeReferenceDomain.com/Context.owl>

SELECT ?X

WHERE{

?X a $c:BusinessMeeting$ .

?X $c:startsAt$ ’07/11/2011 09:00 AM’ .

}

, which is translated to the rule:

Query1(X)←

BusinessMeeting(X), startsAt(X, ’07/11/2011 09:00 AM’)
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The translation of DHL ontologies immediately allows users to use the target rule

language to extend the ontology with further rules. For instance, the resulting rule base

can be reinforced with rules which have procedural attachment; i.e. they can perform

IO or network operations in the body or head of the rules (supported by Jess [39]).

This not only compensates for the lack of the expressivity resulted by the choice of the

DHL sublangage, but also enables the applications with powerful reasoning mechanisms

which are not provided even by unrestricted use of OWL. This form of reasoning is also

known as hybrid and as was mentioned in section 2.2 has been considered in many of

the proposals for context aware systems.

We have identified the Rete algorithm [13] to be a suitable choice for answering

long-running queries when changes happen in the assertional level. Using the transla-

tion provided here, it is possible to build a network of computational nodes in the Rete

network which allow incrementally maintaining query results as changes occur in the

knowledge base. This process will be detailed in the next section.

3.2 Using the Rete Algorithm

Rete [13] is an efficient pattern matching algorithm for implementing production

rule systems. The algorithm builds and maintains a network of nodes where each node

corresponds to a pattern occurring in the body of a rule. Facts that are added to or

removed from the knowledge base are processed by these nodes. If a fact is successfully

matched against the conditions represented by one node, it is passed to the nodes directly

connected to it.

At the top of the network, the type nodes separate individual fact based on their type.

Inside the network, we have the join or 2-input nodes which perform finer discrimina-

tions and associations between facts. These nodes remember all the facts that arrive in
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alpha and beta memories, corresponding to their left and right inputs. They produce

one output for each ordered pairing of an alpha element and a beta element that passes

the tests in that node. When a fact or combination of facts causes all of the patterns for a

given rule to be satisfied, a leaf node is reached and the corresponding rule is triggered

[44]. In other words, the path from the root to a leaf node defines a complete rule body.

To demonstrate the application of the Rete algorithm, consider figure 3.1, which

represents a logical view of the Rete network corresponding to examples 1 and 2 (pages

24 and 26, respectively). The rules corresponding to the ontology schema and the query

are used to build the Rete network. In the resulting network, there is a separate type node

for each Class and Property used in a rule condition. When an OWL Class or Property

assertion (instance data) is received, it is checked by all the type nodes. In this example,

all assertions which are not about BusinessMeeting, startsAt, and hasActor are ignored.

Deeper in the network, there exists a join node for each comparison which involves a

common variable. The top join node, corresponds to Rule 2, and outputs all instances

for which a BusinessMeeting(X) as well as hasActor(X,Y) exists. The bottom join node

represents the rule corresponding to the query and matches all the BusinessMeeting

which start at ’07/11/2011 09:00 AM’.

One primary goal of the Rete net is to provide incremental pattern matching. To

achieve this, nodes receive notifications about changes. Whenever a new fact is created

or deleted, the input node of the appropriate type will release an update token on each

of its outgoing edges. Such an update token represents changes in the partial matchings

stored by the node. Positive update tokens represent newly added facts and negative

updates refer to facts being removed from the set. Each node is prepared to receive

updates on incoming edges, assess the new situation, determine whether and how the

set of stored facts will change, and releases update tokens of its own to signal these

changes to its child nodes. This way, the effects of an update will propagate through the
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Root Node

Facts BusinessMeeting(X)

hasActor(X,Y)

Type Nodes

Rule 1 Rule 2

Join Nodes

Activity(X)

Employee(Y)

Query1

startsAt(X,Y)

Query1(X)

Figure 3.1: The Rete network corresponding to examples 1 and 2

network, eventually influencing the result sets stored in production nodes.

For instance, assume that the initial facts consist of BusinessMeeting(meeting1), and

later we assert an additional fact hasActor( meeting1, John Doe). The top join node al-

ready contains all the Property assertions about the BusinessMeeting, so detecting the

match between the two facts can be done without repeating the pattern matching com-

putation done in the initial phase. In this way, the Rete avoids repeating computations

over time.
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3.3 Adaptive Rule Selection

In this section we provide an optimization for improving the performance of the

incremental query answering. The rationale is to prune the rules which are irrelevant to

the given query, i.e. their evaluation will not affect the results of the query. As each rule

corresponds to a unique path in the Rete network, this will potentially lead to a reduction

of execution time.

The decision on whether a rule affects the query results is based on the observation

that whether the rule can affect the left-hand-side (LHS) of the rule corresponding to the

query. We formally define this property as follows:

Definition 2. Let the rule corresponding to the query Q be of the form Q← Bq1,∧ . . .∧, Bqm.

Further assume a rule R in the form Hr ← Br1,∧ . . .∧, Brm. We say that R affects Q if

and only if:

Hr ∈ {Bq1, . . . , Bqm} or

∃R′ . Hr′ ← Br′1,∧ . . .∧, Br′m such that

Hr ∈ {Br′1, . . . , Br′m} and R′ affects Q.

Algorithm 1 selects all the rules which satisfy this property. The schemaRules corre-

sponds to the rules of the OWL schema. After executing the algorithm, the selectedRules

will hold the shortlisted rules for maintenance. Given a Query in the form of a rule, the

algorithm first retrieves all the conditional clauses appearing in its body. For each clause,

if it is not checked previously, the algorithm will identify those rules from schemaRules

which have the clause as one of the consequences in their head. If a rule satisfies this

criteria it is recursively checked for other rules which can affect its conditional clauses.

As an example, consider the Rete network presented in Figure 3.1. Starting from

the Query1, we find that the rule depends on BusinessMeeting and startsAt predicates.

Nevertheless, these two clauses do not appear in the head of any of the existing rules.
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Algorithm 1 Adaptive Rule Selection (ARS)
input: (Query:Rule, schemaRules:List, selectedRules:List,
checkedClauses:List)
for each bodyElement ∈ Query.body() do

if bodyElement ∈ checkedClauses then
continue;

for each rule ∈ schemaRules do
if rule ∈ selectedRules then

continue;
for each headElement ∈ rule.head() do

if bodyElement ≡ headElement then
checkedClauses.add(headElement);
selectedRules.add(rule);
call ARS (rule, schemaRules, selectedRules, checkedClauses);

As a result, both rules 1 and 2 will be pruned.

The complexity of the algorithm is O(k · n2), where n is the number of rules and

k is the maximum number of elements appearing on the LHS of the rules. n is in the

same order of magnitude as the size of the ontology schema (TBox), and k is bound

to 2 for the pure usage of rules which are resulted from the schema mapping (i.e. not

considering application specific rules). This will render the complexity to be O(n2).

We note that as the rules correspond to mostly static knowledge schema or application

specific rules, detecting the dependencies between rules can be performed offline and

the dependencies persisted. In this way, the complexity of the algorithm will be linear

with respect to the size of the rule base, as each rule is checked only once.

3.4 System Architecture

The required components for the proposed incremental query answering method

have been shown in Figure 3.2. At the initialization step the necessary OWL schema

(TBox) documents are loaded, where they are translated into their equivalent inten-

sional predicates in the target logic program. After this step, the translation of OWL

statements about individuals consists of a simple parsing of the OWL expressions into
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Figure 3.2: Components for Incremental Query Answering

their equivalent extensional predicates of the target LP.

When a query is received, it is first translated into its equivalent rule by the Query

Parser. It is then fed into the Adaptive Rule Selector to prune irrelevant rules depending

on their effect on query results. The resulting rules as well as the query are used by

the Rete Based Rule Engine. The reasoner will fetch necessary information from the

extensional knowledge base, does the initial inference and outputs the initial response,

along with materialization of the results back into the extensional knowledge base. The

results of the query are delivered after a translation by the OWL Translation module. As

changes occur in the underlying OWL instance base, and thus the extensional predicates,

the reasoner will incrementally update the results.

The extensional predicates, by default, contains those rules which correspond to the

ontology schema. This rule base can be further augmented with the powerful appli-

cation specific rules (discussed in section 3.1) to compensate for the lack of relative

language expressivity. They can further provide features which are not possible when

solely relying on OWL based reasoning. Therefore, our method allows hybrid ontology

and rule-based reasoning for context aware applications.

As can be observed, for our proposal to work, we just need an integration of ex-

isting tools and methods and no sophisticated changes in the existing implementations
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are required. More precisely, we leverage on the existing implementation of the Rete

engines for the execution of the rules. This has been made possible by identifying the

relevant fragment of OWL, algorithms, and tools which can work together for delivering

the expected results. We highlight this as one of the contributions of this dissertation.

3.5 Experimental Results

In this section I evaluate the performance of the method using the well known Lehigh

University Benchmark (LUBM) [45] which is widely used for evaluating the query

answering performance of OWL reasoners. To be able to transform the ontology to

its equivalent LP representation, we needed to remove the fragments of the ontology

schema which make it outside of the DHL fragment. For the transformation of the

OWL schema into its equivalent rules we used the OwlTools [46] and its DLPConvert

API. The rules corresponding to the ontology are exactly similar to those available at

[47].

The 14 queries of the benchmark vary by their input size, their selectivity, their

complexity, the hierarchy of data used, and the inference applied. As the queries are

quite overlapping, we only select queries 1, 2, and 9 for our experiments. We refer

to these three queries as A, B, and C. In fact, in the OpenRuleBench benchmark [47]

these three queries have also been selected and applied for the analysis of various logic

programming environments.

Query A asks for all GraduateStudents who take a specific course. The query con-

siders just one class and one property and does not assume any hierarchy information or

inference. It bears large input and high selectivity. Query B asks for GraduateStudents

who are employed with the same university they took their undergraduate degree from.

It increases in complexity: 3 classes and 3 properties are involved. Additionally, there
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Table 3.2: The run time of the rule selection optimization

Query Selected Rules Run Time (ms)
A 0 / 98 16
B 13 / 98 20
C 21 / 98 26

exists a triangular pattern of relationships between the objects. Query C asks for all the

students whose advisors are the lectures of the courses they are taking. It considers the

wide hierarchy of class Faculty and is characterized by the most classes and properties

in the query set.

The target of our experiments is to emphasize the effect of a conceptually different

incremental query answering method. From a practical point of view, we were interested

in two cases: (i) the responsiveness of the method when introducing various amounts of

insertions/deletions into the KB and (ii) the effectiveness of the adaptive rule selection

optimization.

The LUBM ontology (ABox) consist of a synthetic data set generated by a program

and is available from [45]. The experiments measure the performance of our method on

two different knowledge bases of 100k and 200k triples (ABox size). For each knowl-

edge base, various amounts of change are introduced in terms of insertions and deletions

of facts, and how well the method can keep up with these changes is measured.

For evaluation of the resulting rules we used the Java Expert System Shell (Jess)

[39]. The experiments were carried out on a machine with a 32-bit Intel Core2 Duo

@2.3GHz processor, 3.2GB of RAM, and Suse Linux 11.3 as OS.

Table 3.2 shows the run time and effectiveness of the algorithm 1 for the three

queries. The more rules are excluded from the original ontology rule set, the better is

the performance of the query answering in initialization as well as in handling changes.

Please note that for the first query, there is no inference involved. In other words, there

is no rule which asserts an instance of GraduateStudent or takesCourse in their head.
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As a result, no rules are needed for answering the query, which will greatly alleviate the

reasoning cost.

Figures 3.3a and 3.3b, show the initialization time for the three queries over the

two knowledge bases.This is the time necessary for performing the initial reasoning and

finding the initial query results. As can be observed from the black bars, the application

of the Adaptive Rule Selection (presented in 3.3) can highly affect the run time.

Figures 3.3c, 3.3e, and 3.3g show the query processing time while asserting new

facts. Each query is registered with the two knowledge bases and for various amounts

of change (10%-50% of the KB size) the runtime is measured. For all the three queries

the runtime remains acceptably below one second. It is further reduced by applying

the adaptive rule selection optimization. Specifically, for the query A, which is a mere

retrieval query, the runtime is zero, as there are no rules involved and the results are

materialized in the initialization phase.

Figure 3.3d, 3.3f, and 3.3h show the incremental query processing time while retract-

ing facts from the knowledge bases. As can be observed from the results, the application

of the adaptive rule selection optimization greatly improves the performance.

The larger runtime for smaller change rates can be explained by the truth main-

tenance operations involved. In fact, retracting a fact takes only a little longer than

asserting one, on average. But as we have considered the liberal use of logical retraction

(for focusing on the worst case scenario), retracting a single fact could result in a kind

of cascade effect; whereby retracting a single fact would result in many other facts to be

removed due to dependencies2.

There are several considerations when interpreting the applicability of the method

with regards to the real-world situations. Firstly, the updates in the form of new facts

can dominate those corresponding to a removal of a previous assertion. For example,

2Please refer to our discussions with Jess engineers, available at http://goo.gl/dyDlV
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Figure 3.3: The query answering time when adding or retracting facts. The ’Selective’
case signals the use of the adaptive rule selection optimization.
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consider the social networking websites such as Twitter3 where the stream of updates is

mostly about new information4.

Secondly, the update rates considered in our study do not necessarily reflect the

actual low-level events of the real world, such as a change in a sensor reading. In

fact, an effective solution considers ontology based context modeling and reasoning

in conjunction with other modeling and processing approaches, as discussed in section

2.3. If we assume that prior to representing contextual information through well-defined

semantics, effective data manipulation and filtering mechanisms are used, we can expect

that the update rate in the knowledge base to be much less than the actual changes in

real world. This idea is in fact the basis of the work in [48] for combining data stream

management systems and semantic reasoners, which will be discussed in the following

chapter.

Lastly, to alleviate the issue, we consider a distributed reasoning approach, as will be

sketched in chapter 5. The argument is that if the reasoning is performed in a distributed

way (e.g. hierarchical), the allegedly high number of delete/update assertions could be

potentially reduced within a range which can be handled by our proposed method.

3http://www.twitter.com
4Twitter itself can be considered as a virtual source of context information.



CHAPTER 4

RELATED WORK

Query answering in ontology based knowledge bases is tightly related to the in-

ference mechanism used. With regards to the dynamic data, the focus has been more

on the management and data processing. In fact, research on reasoning over dynamic

knowledge is quite limited [49][50][48][11]. In this section we review the work on

OWL reasoning/query answering which take the dynamism of the knowledge base into

consideration.

The issue of dealing with updates in a knowledge base has been studied in the AI

community under belief revision. The main problem is what action should be taken

when the update is in contradiction with the existing knowledge base. If the knowledge

base is inconsistent, any conclusion can be made from it, which is an undesired state.

The simple reaction is to reject the change; in fact, due to lack of a principled approach,

this is the choice in the existing ontology management tools [12].

On the other hand, if the inconsistent update is going to be applied, existing beliefs

need to be modified. The most influential work in this regard is the widely accepted
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AGM model. The work proposes postulates for rational revision and expansion. That is,

they specify properties that a contraction or revision operator must have in order to be

rational. The main motivation of the AGM is to retain as much information as possible,

to have the minimal change [51]. Despite the interest in applying AGM postulates to

DL knowledge bases, it has been shown that description logics SHIF and SHOIN

(corresponding to OWL Lite and OWL DL) do not fall in the AGM-compliant class

of logics [11] because the postulates for contraction cannot be satisfied. Moreover,

the AGM-based solutions are considered to be complex in practice and not suitable for

practical situations [52][53].

In [54], the authors provide a formal analysis of the most basic ABox updates of the

form: [¬]a:A and r(a,b). They show that in order to incorporate the new information

resulting from an update, the language should support nominals; and further, the @ con-

structor from hybrid logic or Boolean ABoxes. As a result, both SHIF and SHOIN

(corresponding to OWL Lite and OWL DL) can not represent the updates without the

@ operator. They also highlight that an important issue is the size of the updated ABox,

which can be unavoidably exponential both in the size of the original ABox and the

new information. Furthermore, the preliminary algorithms provided do not come with

neither implementation nor evaluation, and hence we will not discuss them further here.

The work in [11], is motivated by the existence of various dynamic sources of data

in the semantic web, including web portals, syndication frameworks (e.g. RSS feeds),

and semantic service frameworks (e.g. OWL-S). They provide a syndication framework

which matches conjunctive queries submitted by users against a set of dynamic publica-

tions which contain rich semantic content. Each publication is essentially a set of ABox

assertions which is incorporated in the central knowledge base of the broker.

The main argument is that the central knowledge base should be kept consistent,

because otherwise, any information can be derived from it, which is undesirable. For
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this purpose they develop an incremental consistency checking algorithm. This is to

address the main performance issue in traditional tableau-based OWL reasoners which

re-build the entire tableau graph from scratch in the event of an update to the KB. The

overall goal is to incrementally update a graph from a previous consistency check.

Having secured the consistency of the central knowledge base of the broker, they

consider incrementally resolving registered subscriptions in the syndication framework

which are represented as DL conjunctive instance retrieval queries. Rather than consid-

ering the entire knowledge base after an update, they develop techniques which aim to

reduce the portion of the KB that must be considered as candidate answers. That is to

say, the query only needs to be re-evaluated over a subset of the KB over the updated

broker’s KB.

This work has made some very good steps in addressing the problem of incremental

reasoning over DL knowledge bases. In fact, the performance of the proposed incre-

mental reasoning and query answering methods is fairly acceptable, even when facing

high change rates. Furthermore, they target a comparatively more expressive fragment

of OWL, than the one considered in this dissertation. Nevertheless, this work is lim-

ited to pure DL reasoning and the application of rules is not considered. In fact, when

solely relying on DL, only those rules can be considered which can be represented back

in DL, through a reverse translation method presented in [1]. As we mentioned earlier

in section 2.1.1, DLs have certain shortcomings when it comes to reasoning and query

answering; while, rules can cover up for the limitation of pure DL based reasoning.

On the other hand, the method presented in this dissertation allows hybrid ontology

and rule based reasoning. After translation of the ontology schema to the rules, we

have ontology rules, the evaluation of which corresponds to ontology-based reasoning.

Now assume that we have additional rules decided by the application logic, which are
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not representable in the ontology1 (i.e. they can be other than Definite Horn rules);

we call them application-specific rules. For instance, consider the action performing

rules (procedural attachment) which allows execution of IO or network operations as

the result of rule execution (supported by Jess [39]). In our method, it is possible to

add these application specific rules to the ontology rules, enabling ontology as well as

rule-based reasoning. In fact, this flexibility in use of rules can compensate for the

relative lack of the expressivity, resulted by targeting the DHL fragment of OWL. It

should be noted, however, that the arbitrary use of rules may result in the undecidability

of the reasoning (and thus query answering), and it would be the responsibility of the

knowledge engineers to ensure this property.

In another issue, the method presented in [11], requires fundamental changes in

the way DL reasoners are implemented. While the incremental consistency checking

method presented is now a part of Pellet [28], the proposed incremental query answering

functionality is not available at any of existing publicly-available distributions, at the

time of this writing. On the other hand, the method proposed in this dissertation requires

no change in existing DL and rule based reasoners and any Rete based rule engine can

be utilized.

Therefore, in comparison to [11], our method provides ease of implementation and

full support for rules, while targeting a relatively less expressive language.

Another line of research is towards incremental maintenance of materializations of

ontological entailments. The classic reasoning tasks are usually triggered when the user

queries the system, which is responded by deriving entailed information from asserted

information. Under this setting, when the queries are frequent, or the reasoning process

is time consuming or complex, the performance may not be acceptable. Materializa-

tion amounts to precomputing and storing a set of implicit entailments, so that frequent

1The logic programs (LP) and ontology languages have disjoint parts; i.e. LP XOR OWL ̸= ϕ.
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and/or crucial queries to the ontology can be answered efficiently [16]. It basically saves

the reasoner from recomputing the entailed information for every single query.

In [16], one such approach for incremental maintenance of materialized ontological

entailments is presented. It targets the DHL ontologies and follows the same trans-

lation method mentioned in section 3.1. After the mapping, the authors leverage on a

declarative variant of the Delete and RE-Derive algorithm (DReD) [55] to incrementally

maintain the materialization.

The DRed algorithm consists of three steps:

1. Overestimate a deletion: compute all the direct consequences of a deletion

2. Re-derive: neglect those estimated deletions which could be still derived by other

facts

3. Insert: insert the new derivations that are consequences of the added facts.

Given an original program, for each predicate P, a maintenance program is derived

which consists of seven predicates corresponding to the three steps. The underlying idea

is to maintain the materialization of P using the maintenance predicates. The mainte-

nance process starts with a setup, where the maintenance program is created for a given

source program and the initial materialization of the intentional predicates is computed.

Afterwards, upon a change in the extensional knowledge (ABox), the actual mainte-

nance is triggered.

This approach is fundamentally similar to our approach as it relies the same fragment

of OWL and follows the translation of the knowledge base into its equivalent logic

program (rules). The difference is on how on what application scenarios are targeted

and consequently, how the maintenance is carried out.

The work in [16] mainly aims to speed the response time for similar queries; that

is, if we process a query and later we receive the same query, there would be minimal
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response time. In fact, the method works best for scenarios when consecutive similar

queries are issued to the knowledge base. While our approach is also based on mate-

rialization and provides the same benefit, we are mainly interested in the long-running

queries, where we aim to efficiently incorporate changes and update the responses to

the registered queries2.

The method in [16] further leverages on prolog engines for evaluating the queries.

The rationale is that we can utilize a wealth of optimizations available in the current

logic programming and deductive database systems such as XSB [56]. Nevertheless, we

should note the scope of the efficiency of such logic programming systems. They are

mainly designed and optimized for answering one-time queries; i.e. queries which are

not present over an extended time period. Furthermore, the algorithms are completely

agnostic about the nature of the data and whether they change. In fact, the maintenance

programs introduced in [16] are to patch such tools to enable them to keep track of

changes.

Considering the experimental results in [16], we observe that after materialization

the cost of accessing the materialized predicates is minimal. Nevertheless, all main-

tenance operations (including those necessary when adding and removing of facts) are

more expensive than the cost of evaluating a single query on the original program [16].

As a result, the method is suitable for scenarios where the number of read operations

is much higher than the changes in the data. This is one of the arguments made by the

authors.

On the other hand, the Rete algorithm is designed to save state by keeping track of all

the facts which satisfy nodes within the network. This allows the algorithm to efficiently

cater for changes in an incremental fashion when changes occur. While the algorithm is

2Long-running or subscribed queries are those which are interested in a continuous assessment of
query outcomes. Security, weather and stock monitoring, and social media applications are such exam-
ples.
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not the best solution for answering one-time queries, we argue that it performs optimally

for subscription queries over changing instance data.

LarkC [48] is a distributed framework which tries to address the stream reasoning

problem defined as [50]: Given a stream of TBox assertions T1, . . . , Tn, and/or ABox

assertions A1, . . . , An, determine if they entail a certain set of conclusions C1, . . . , Cn,

where each Ci is dependent on the assertions which precede it temporally.

The principal idea is to couple traditional DL reasoners with powerful, reactive, and

throughput-efficient Data Stream Management Systems (DSMS). Identifiable periodical

changes can be modeled using rules, but the reasoners fall short in handling event driven

changes (critical for context aware applications) whose mean time between changes is

small. Furthermore, traditional reasoners are good in one-time queries issued explicitly

by the user, while in many application scenarios; long-running continuous queries are

also required. DSMSs can process transient streams and execute continuous queries;

also, they support efficient stream processing, parallel continuous query answering, and

adaptive behaviour-which is to decrease the accuracy by introducing higher approxima-

tions [48]. The main advantage of this approach is that it uses available techniques for

stream processing and DL reasoning.

LarkC consists of five steps which are to be repeated continually until a good enough

answer has been calculated. Data is first retrieved, and then abstracted by transforming

to logics (e.g. using statistical methods). Relevant data is selected and reasoned about,

and the cycle ends by deciding if the answer is appropriate enough. If that is not the

case, a new cycle needs to be repeated.

In particular, the abstraction process will use a transcoder which will generate a

stream element (α, τ), where α is an RDF statement and the timestamp τ corresponds

to the last moment it will be in the observation window. As a result, the system will deal

with an RDF stream of the following form:
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. . . ((subji, predi, obji), τi), ((subji+1, predi+1, obji+1), τi+1) . . . (4.1)

The RDF stream is then fed into pre-reasoners which incrementally maintain mate-

rialized RDF views (snapshots describing the current state of the system). The views are

then given to the reasoners which in turn will calculate a set of answers that remain valid

until the pre-reasoner comes up with a new view. The first works on the prereasoner are

presented in [52] which is in fact the extension of the incremental view maintenance

method mentioned earlier ([16]).

Perhaps the most important contribution of this work is the first steps towards dis-

tributed reasoning and coupling of DSMS and logical reasoners. We consider a similar

method in our future work which I elaborate more in chapter 5. On the other hand, the

proposed incremental reasoning approach is based on [16], which as discussed earlier,

is susceptible to the same design unsuitability.

At the end, we mention that there are specific formalisms which incorporate the

notion of time, and consider reasoning to be an ongoing process. Representatives are

temporal logic, dynamic logic, and active logics. Nevertheless, they have barely been

applied in context aware systems and their practicality is not verified. Therefore, we

will not include them in this study.



CHAPTER 5

FUTURE WORK

The work presented in this dissertation aimed to provide an easy to use and efficient

incremental query answering method for semantic contextual information. The context,

as mentioned in chapter 2, has a number of properties which make it challenging for

both context modeling and reasoning. We considered one main property of context,

the dynamism. In fact, the changes we considered were only in the instance level.

Addressing the changes in the knowledge structure (TBox) could be addressed as a

future work.

An assumption we made in our work is that all the data necessary for the query an-

swering should be gathered in a central processing node. While being common, this

assumption will result in a single processing bottleneck, single point of failure, and

suboptimal utilization of network resources (for transferring the data from the context

sources). Considerable progress has been made recently in distributed processing, as

a means for scaling up logical reasoning on semantic data. The available approaches

mostly rely on peer-to-peer architectures [57], Distributed Hash Tables [58], or MapRe-
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duce framework [59].

While these efforts establish a good basis for scalable reasoning, they do not consider

the distributed computational nodes as sources of information; rather they are nodes

to which the original data needs to be transferred and processed locally. This incurs

considerable network overhead; and in fact, these approaches are mainly suitable for

offline processing of static data, because the calculation times can be very large (even

hours).

Here, a distributed reasoning solution with respect to the Coalition is sketched.

Coalition [2] is the distributed context aware middleware developed in our group and

a schematic representation is depicted in figure 5.1 (end of chapter). It aims to facil-

itate the development of the context aware applications and services. Coalition has a

hierarchical architecture.

Coalition assumes that diverse context data from autonomous physical spaces are

categorized and organized into different context domains.

In the bottom, the physical space layer includes all physical entities such as sen-

sors, actuators and computing devices that provide the actual context data. The context

data from sources of each physical space are funneled through a logical (virtual) device

known as Physical Space Gateway (PSG) to the exterior of the physical space. The in-

formation coming from PSGs are organized in various context spaces such as offices,

houses, and clinics, depending on the origin of the context data1. Such categorization in

the context data management layer aims to provide effective and efficient context data

organization, lookup and storage. This layer also provides a query interface to acquire

data from the lower layer. The service management layer at the top facilitates the de-

ployment, orchestration, and discovery of the context aware application services which

rely on the retrievable contextual information.

1The data belonging to the personal handheld devices are categorized in the Person context space.
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Now assume that we receive a query whose evaluation depends on a number of

distributed context sources, or PSGs in Coalition terminology. To evaluate the query we

need to find the information sources which contribute to the information required by the

query. In the current implementation of coalition, this task is performed centrally rather

being distributed among PSGs; that is, all the required information are retrieved from

relevant sources through the respective PSG, are gathered in a central repository, and

are checked if they entail the query. Nevertheless, as mentioned earlier, this will result

in a suboptimal usage of network resources, and scalability issues.

A better option to evaluate the query is through distribution of query execution,

where the necessary information are processed at some intermediary nodes (such as in

PSGs), for efficient utilization of network and processing resources as well as reduction

in query response time. One promising approach is based on the distributed reasoning

method proposed in [60] and [52] where the reasoning process is split up into a net-

work of reasoning correlators that are distributed with respect to an optimization goal

like minimal network usage or minimal delay. I note that at the time of writing, such

extension to Coalition is an on-going process. If we assume that coalition has been rein-

forced with such distributed query answering mechanism, the method proposed in this

dissertation can be used by each of the processing nodes. In this way, each of the nodes

will have the ability to incorporate incoming changes incrementally and notify the nodes

which rely on its computation results.

We note that, however, distribution the reasoning process can be very challenging in

terms of correctness of results and consistency. As a case, each of context sources may

have different update rates which can lead to erroneous behavior; for instance, it can

lead to concurrent firing of the rules and race conditions [61].

In addition, we did not consider the quality of context in our study. In fact, one

major property that distinguishes context information from other type of knowledge in
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other domains (e.g. semantic web) is the quality of context. As mentioned in section 2

it is quite important to include freshness, expiry time, validity, and trust into the model.

This is to allow uncertain and fuzzy reasoning over the available information.

To represent the quality of context, the axioms in ontology based models can be asso-

ciated with the relevant metrics, such as confidence or freshness. In fact, there has been

considerable effort in incorporating uncertain knowledge into OWL/DL. For instance,

Fuzzy Description Logics and Probabilistic Description Logics assign numerical values

to the concept/role inclusion axioms or instance/role assertions. For a detailed discus-

sion of the techniques please refer to [15]. Such extensions to OWL and DL enable

probabilistic or fuzzy reasoning about contextual data.

Besides considering the distribution and quality of context, there are certain im-

provements that can be made with respect to the inference method itself, for the sake

of robustness. A fundamental assumption in existing reasoning algorithms is that the

knowledge base should be consistent, because otherwise any conclusions can be made

from it (which is essentially useless). Nevertheless, this is quite restricting in practice

where the distribution and heterogeneity of context sources may result in frequent in-

consistencies and make it necessary to employ appropriate methods to work around it

(rejection or belief revision). The existing work does not consider concurrent access

and basically locks the whole knowledge base when handling inconsistencies. This is

certainly not a good option in practice where a contextual knowledge base is updated

frequently and accessed concurrently. One way to alleviate this deficiency is to consider

an inconsistency tolerant reasoning mechanism which continues despite some detected

inconsistencies within the knowledge base. One approach can be based on justification-

based partitioning which enables concurrent belief revision and query answering. This

is potentially more robust in handling inconsistency: while certain parts of the KB may

be inconsistent and need treatment, others are still accessible.
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Additionally, while the adaptive rule selection algorithm presented in section 3.3

provides flexibility to some extent, there are other factors which can be considered to

optimize the reasoning process. In fact, the existing reasoners lack the flexibility and

adaptability by not considering the context. That is, the reasoning is not considered in

conjunction with other factors involved such as user, his current task and its importance,

quality of service, Service Level Agreement, and the nature of the data dealt with. This

information can be used in identifying the usage-driven identification of unnecessary

updates, so as to improve the response time of the reasoner.
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Figure 5.1: The schematic representation of the Coalition context aware middleware [2].



CHAPTER 6

CONCLUSION

Realizing the vision of Ubiquitous computing requires seamless integration of soft-

ware systems with our daily lives. In other words, they need to be context aware. In

a real-world setting, contextual information can be retrieved from distributed hetero-

geneous sources. This can make application development a challenging task, due to

a number of issues including interoperability, scalability, and quality of service. The

Ubiquitous computing community increasingly advocates taking a formal approach at

some stage in context modeling, so as to alleviate the interoperability issue. The Web

Ontology Language (OWL) is the result of a joint effort between academia and indus-

try, making it the standard notion for representing semantic information in the Web.

The well studied syntax and semantics of the language has motivated many research

projects to take advantage of it for modeling context information. Using OWL specif-

ically enables a number of automated reasoning services which can be used for query

answering and deducing new information. Nevertheless, most efforts have readily used

the language without tailoring it for the specific needs of context aware systems.
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In fact, my research process started with the study of ubiquitous and pervasive com-

puting, context aware systems, and the huge body of research on context modeling and

reasoning. I then observed that a common consensus in the community is leveraging

a formal model, mostly based on a shared understanding of the domain: an ontology.

Having this assumption, I asked the question of “what problems can arise in practice, if

we use a formal semantic representation of context.”

One of the major issues with the use of OWL is due to the static nature of the ex-

isting reasoners. In practice, context information is retrieved from sources which may

produce data quite frequently. Traditionally, most of the well-established reasoning (and

thus query answering) methods are designed with static or slowly-changing facts in the

knowledge base. In this way, upon a change in the observed facts, the query needs to be

re-evaluated from the beginning to reflect the new changes. In this dissertation I focused

on this problem and proposed an incremental query answering solution which aims to

alleviate the cost of reasoning from scratch.

To take advantage of the proposed technique, a well-known translation from an OWL

ontology schema to its equivalent Horn rules is required. After the mapping, any Rete

based rule reasoner can be used; giving the flexibility in reusing existing tools. The

technique can be applied to the fragments of the OWL which can be expressed in terms

of rules, namely Description Horn Logics (DHL). In fact, many of the existing ontolo-

gies barely use the OWL language constructs which are outside the fragment [16]. The

translation of DHL ontologies immediately allows users to extend the ontology with

further application specific rules. Such augmentation provides an immediate remedy for

the reduction in the expressiveness; if the added rules do not contain intractable lan-

guage features. Besides, we provided a selection optimization which has linear time

complexity in the size of the resulting rule base and can improve the query answering

performance significantly. Through the experiments with a well-known benchmark we
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showed our method produces acceptable results and thus we argue that our method has

addressed the problem defined earlier.

We believe that the method proposed in this dissertation has a great potential for

the development of context aware systems; in that, it requires minimum changes and

the researches and practitioners can focus on other problems arising in practice. While

we did not consider the distribution and quality of context into our study, we argue that

these two aspects have a subjective nature, where the suitability of the solution highly

depends on the used infrastructure and specific considerations of application domain.

Taking distribution as an example, the optimal distributed reasoning method for Coali-

tion [2] would be different from that for Solar [62] which takes a different model for

intermediary data aggregation. The same argument applies for the quality of context,

e.g. whether we want to have a probabilistic or fuzzy reasoning and whether we want to

include the freshness and trust aspects of the context data in the reasoning process. The

dynamism of the context data, however, has an objective nature, which can be consis-

tently assumed similar for application domains, albeit with different change rates.

As for the next step of this research, it will be thus very interesting - and necessary -

to consider all the context properties for semantic query answering in a concrete domain,

e.g. in the context of the Coalition middleware [2].
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