271 research outputs found

    Adaptive Input Reconstruction with Application to Model Refinement, State Estimation, and Adaptive Control.

    Full text link
    Input reconstruction is the process of using the output of a system to estimate its input. In some cases, input reconstruction can be accomplished by determining the output of the inverse of a model of the system whose input is the output of the original system. Inversion, however, requires an exact and fully known analytical model, and is limited by instabilities arising from nonminimum-phase zeros. The main contribution of this work is a novel technique for input reconstruction that does not require model inversion. This technique is based on a retrospective cost, which requires a limited number of Markov parameters. Retrospective cost input reconstruction (RCIR) does not require knowledge of nonminimum-phase zero locations or an analytical model of the system. RCIR provides a technique that can be used for model refinement, state estimation, and adaptive control. In the model refinement application, data are used to refine or improve a model of a system. It is assumed that the difference between the model output and the data is due to an unmodeled subsystem whose interconnection with the modeled system is inaccessible, that is, the interconnection signals cannot be measured and thus standard system identification techniques cannot be used. Using input reconstruction, these inaccessible signals can be estimated, and the inaccessible subsystem can be fitted. We demonstrate input reconstruction in a model refinement framework by identifying unknown physics in a space weather model and by estimating an unknown film growth in a lithium ion battery. The same technique can be used to obtain estimates of states that cannot be directly measured. Adaptive control can be formulated as a model-refinement problem, where the unknown subsystem is the idealized controller that minimizes a measured performance variable. Minimal modeling input reconstruction for adaptive control is useful for applications where modeling information may be difficult to obtain. We demonstrate adaptive control of a seeker-guided missile with unknown aerodynamics.Ph.D.Aerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91520/1/amdamato_1.pd

    Retrospective-Cost Subsystem Identification for the Global Ionosphere-Thermosphere Model

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97111/1/AIAA2012-4602.pd

    Modeling Human Control Behavior in Command-following Tasks

    Get PDF
    Humans interact with a variety of complex dynamic systems on a daily basis. However, they are often the lesser understood component of human-in-the-loop (HITL) systems. In this dissertation, we present the results of two HITL experiments to investigate the control strategies that humans use when performing command-following tasks. The first experiment is designed to investigate the control strategies that humans use to interact with nonlinear dynamic systems. Two groups of human subjects interact with a dynamic system and perform a command-following task. One group interacts with a linear time-invariant (LTI) dynamic system and the other group interacts with a Wiener system, which consists of the same LTI dynamics cascaded with a static output nonlinearity. In the second experiment, we examine the impacts of a relaxed command-following control objective on the control strategies used by humans. Two groups of human subjects interact with the same dynamic system and perform a command-following task; however, the groups have different control objectives. One group\u27s control objective is to follow the reference command as closely as possible at all times, while the other group\u27s control objective is to follow the reference command with some allowable error. We develop and utilize a new subsystem identification (SSID) algorithm to model control behavior of the human subjects participating in these HITL experiments. This SSID algorithm can identify the feedback and feedforward controllers used by human subjects, and is applicable to both linear and nonlinear dynamic systems. The SSID results of the first experiment indicate that adaptive feedforward inversion is the main control strategy used by human subjects for both linear and nonlinear plants. The results of the second experiment suggest that not all the human subjects who are instructed to perform a relaxed command-following task adopt adaptive feedforward inversion as their primary control strategy. The control behavior of those human subjects contains significant nonlinearities, which cannot be captured by a LTI control model. We present a nonlinear feedforward control architecture that can model several aspects of their control behavior

    Battery State of Health Monitoring via Estimation of Health-Relevant Electrochemical Variables

    Full text link
    This dissertation explores and compares the effectiveness of estimating two health-relevant electrochemical variables, the side reaction current density and the number of cyclable Li-ions, as indicators of battery state of health (SOH) in battery management systems of electric vehicles (EV) and hybrid electric vehicles (HEV). The choice of these two electrochemical variables is based on the assumption that battery degradation is mainly caused by consumption of cyclable Li-ions. This assumption is valid for the two widely-used types of EV/HEV batteries considered herein, namely LiFePO4 and LMO-based mixture batteries. This dissertation provides formulations to estimate these two electrochemical variables from measurements of battery terminal voltage and current. Estimation is necessary here because the electrochemical variables cannot be measured on-board. Estimation of the side reaction current density is formulated as a subsystem identification problem and is solved using retrospective-cost subsystem identification. A new subsystem identification algorithm, the two-step filter, is also developed to improve the estimation accuracy of the side reaction current density under the presence of state of charge (SOC) estimation errors. On the contrary, the number of cyclable Li-ions is estimated as an unknown battery parameter using the extended Kalman filter. This dissertation also analyzes the robustness of estimation of the two electrochemical variables by providing a framework to obtain the lower bound of relative estimation errors of each of the two variables under non-ideal conditions for algorithms that estimate the variable by minimizing the error between measured voltage and estimated voltage. This framework determines that the lower bound of the relative estimation error of a variable is proportional to the error in either measurement or estimate of battery terminal voltage caused by non-ideal conditions, and inversely proportional to the sensitivity of the voltage to the variable and the magnitude of the variable itself. This framework also yields the same lower bound for the covariance of unbiased estimates as given by the Fisher information. The effectiveness of estimating the side reaction current density and the number of cyclable Li-ions as SOH indicators is also discussed through comparison. Compared to the number of cyclable Li-ions or other SOH indicators such as capacity and internal resistance, the side reaction current density is a more ideal SOH indicator when it can be estimated accurately, because it can instantaneously indicate battery degradation rate. However, estimation of the side reaction current density under practical non-ideal conditions is fundamentally difficult due to the fact that the sensitivity of the voltage to the side reaction current density and the magnitude of the side reaction current density are both low. On the other hand, the number of cyclable Li-ions is a promising SOH indicator for battery management systems in practice because it provides an indication of the remaining capacity from the first principles, can be estimated using a standard algorithm and simple models, and demonstrates high robustness to non-ideal conditions. Future extensions of this work include i) studying the impact of temperature on estimation of health-relevant electrochemical variables by including thermal dynamics in the model, ii) validating experimentally estimation of the number of cyclable Li-ions, and iii) extending estimation of the side reaction current density to other side-reaction-based battery degradation and safety problems such as Lithium plating and dendrite formation.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137087/1/zhouxin_1.pd

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    A SUBSYSTEM IDENTIFICATION APPROACH TO MODELING HUMAN CONTROL BEHAVIOR AND STUDYING HUMAN LEARNING

    Get PDF
    Humans learn to interact with many complex dynamic systems such as helicopters, bicycles, and automobiles. This dissertation develops a subsystem identification method to model the control strategies that human subjects use in experiments where they interact with dynamic systems. This work provides new results on the control strategies that humans learn. We present a novel subsystem identification algorithm, which can identify unknown linear time-invariant feedback and feedforward subsystems interconnected with a known linear time-invariant subsystem. These subsystem identification algorithms are analyzed in the cases of noiseless and noisy data. We present results from human-in-the-loop experiments, where human subjects in- teract with a dynamic system multiple times over several days. Each subject’s control behavior is assumed to have feedforward (or anticipatory) and feedback (or reactive) components, and is modeled using experimental data and the new subsystem identifi- cation algorithms. The best-fit models of the subjects’ behavior suggest that humans learn to control dynamic systems by approximating the inverse of the dynamic system in feedforward. This observation supports the internal model hypothesis in neuro- science. We also examine the impact of system zeros on a human’s ability to control a dynamic system, and on the control strategies that humans employ

    Validation Methods for Fault-Tolerant avionics and control systems, working group meeting 1

    Get PDF
    The proceedings of the first working group meeting on validation methods for fault tolerant computer design are presented. The state of the art in fault tolerant computer validation was examined in order to provide a framework for future discussions concerning research issues for the validation of fault tolerant avionics and flight control systems. The development of positions concerning critical aspects of the validation process are given

    Reducing a complex instruction set computer.

    Get PDF
    Tse Tin-wah.Thesis (M.Ph.)--Chinese University of Hong Kong, 1988.Bibliography: leaves [73]-[78
    corecore