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ABSTRACT OF DISSERTATION

MODELING HUMAN CONTROL BEHAVIOR IN
COMMAND-FOLLOWING TASKS

Humans interact with a variety of complex dynamic systems on a daily basis. How-
ever, they are often the lesser understood component of human-in-the-loop (HITL)
systems. In this dissertation, we present the results of two HITL experiments to in-
vestigate the control strategies that humans use when performing command-following
tasks. The first experiment is designed to investigate the control strategies that hu-
mans use to interact with nonlinear dynamic systems. Two groups of human subjects
interact with a dynamic system and perform a command-following task. One group
interacts with a linear time-invariant (LTI) dynamic system and the other group in-
teracts with a Wiener system, which consists of the same LTI dynamics cascaded
with a static output nonlinearity. In the second experiment, we examine the impacts
of a relaxed command-following control objective on the control strategies used by
humans. Two groups of human subjects interact with the same dynamic system and
perform a command-following task; however, the groups have different control objec-
tives. One group’s control objective is to follow the reference command as closely as
possible at all times, while the other group’s control objective is to follow the reference
command with some allowable error.

We develop and utilize a new subsystem identification (SSID) algorithm to model
control behavior of the human subjects participating in these HITL experiments. This
SSID algorithm can identify the feedback and feedforward controllers used by human
subjects, and is applicable to both linear and nonlinear dynamic systems. The SSID
results of the first experiment indicate that adaptive feedforward inversion is the main
control strategy used by human subjects for both linear and nonlinear plants. The
results of the second experiment suggest that not all the human subjects who are
instructed to perform a relaxed command-following task adopt adaptive feedforward
inversion as their primary control strategy. The control behavior of those human
subjects contains significant nonlinearities, which cannot be captured by a LTI con-
trol model. We present a nonlinear feedforward control architecture that can model
several aspects of their control behavior.

KEYWORDS: Subsystem Identification, Human Control Behavior, Feedforward In-
version, Human-in-the-Loop Systems, Command-following Task

Sajad Koushkbaghi
April 24, 2022
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Chapter 1 Introduction

1.1 Motivation

Humans learn to control a variety of complex dynamic systems, such as aircraft,

bicycles, and automobiles. Humans often act as an operator for these systems to

accomplish the required task. They also have the ability to adapt to changes in those

dynamics systems as well as external disturbances.

Understanding the learning process and mathematically modeling the control strate-

gies used by humans can potentially lead to methods that speed up the learning pro-

cess. For example, a lot of training is required for humans to learn how to control

complex dynamic systems such as cranes, aircraft, and automobiles. By studying

the human learning process we may better understand which characteristics of those

systems make learning more difficult. Using this knowledge, it may be possible to de-

velop equipment and training methods to make the learning process faster and easier.

Another example is patients with amputated limbs who use prosthetic limbs. Their

brain must learn how to use this new “actuator”. A better understanding of how the

brain treats and controls other natural actuators could lead to improved prosthetic

devices and training.

Modeling the control strategies used by humans can also make it easier to mimic

human behavior which is of interest in a wide range of applications. Humans possess

multiple advantages over current robotic systems. For example, humans are capable

of adapting their control strategies based on characteristics of the dynamic system

they are trying to control. Moreover, the human brain can form control structures
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Figure 1.1: An HITL system where a human driver interacts with vehicle dynamics
and manipulates the state of the vehicle on the road.

that are adaptive to uncertainties of the system without any prior knowledge of

those uncertainties. The human brain is also able to learn from previous experiences

and improve its performance. Since nowadays supercomputers that possess high

computational power are more accessible, if we successfully mimic the functions used

by the human brain then with the help of these supercomputers, we would be able to

solve problems that seem to be unsolvable today.

1.2 Human-in-the-Loop Systems

Human-in-the-loop (HITL) systems are defined as systems where human interac-

tions affect the output of the system. For example, an automobile driven by a human

driver is a HITL system. As shown by the block diagram of the system in Fig. 1.1,

the steer command implemented by the human driver passes through the dynamics

of the vehicle and affects the state of the vehicle on the road. This steer command

depends on many factors such as the general human driver skills and characteristics,

the vehicle dynamics, the desired path, the current state of the vehicle, etc. Other

examples of HITL systems include a human pilot flying an airplane, a human operator

controlling a crane, or a gamer playing videos games.

Humans are often the least-understood component of a HITL system. There are

many engineering principles and analysis techniques that can be used to predict and

design the behavior of dynamic systems, such as aircraft, construction machinery,

haptic devices, and telerobotic systems. Predicting how humans will interact with
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those systems is more challenging. An improved understanding of human control

strategies is likely to yield significant advancements in HITL technologies.

It has been suggested that when interacting with dynamic systems, the central

nervous system constructs adaptive internal models of the system that it is trying

to control [1–6]. This hypothesis, which is usually referred to as the Internal Model

Hypothesis (IMH), has been extensively investigated using reaching experiments [7–

11] and grip-force experiments [12,13]. For example, subjects in [8] are asked to grasp

and move a robotic manipulator between 2 points in a horizontal plane; however, the

robotic manipulator is actuated by velocity-dependent forces. These forces initially

cause subjects’ hand motions to deviate from a straight line. After practice, subjects

adjust to the forces and are able to move the manipulator in a straight line. However,

when the force is subsequently removed, the subjects deviate from the straight line in

a manner that mirrors the initial deviations. These experiments are often interpreted

with internal models; however, these results do not confirm the IMH [14].

The IMH has also been explored by comparing the results of human-in-the-loop

experiments with mathematical models built on the IMH [15–26]. The internal mod-

els used by humans can be employed as part of the feedback or feedforward con-

trol [8, 22, 27–30]. Early work on modeling human control behavior was directed at

modeling human pilot behaviour and designing aircraft control systems. [31] proposed

the earliest model of human pilot behaviour, which was called the tustin model. This

model, which was established using the servomechanism theory, was later shown to

lack accuracy.

In [32–39], system identification methods and experimental data were used to obtain

models of human control behavior. For example, [33] proposed the cross-over model,

which was used to describe the open-loop behavior of a human pilot in compensatory

tracking tasks. A series of experiments were conducted to validate the model under

different flight conditions. This model demonstrated that humans adapt their control
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strategy based on the dynamics of the controlled system. Using the cross-over model,

[40] proposed the precision model which is the most-used describing function for

human control dynamics in compensatory tasks. An extension of [33] is given in [38],

which uses a model of human pilot control behavior that consists of feedback and

feedforward controllers. Although [32–40] provide approximations of feedback and

feedforward controllers, they are not capable of identifying the best-fit feedback and

feedforward controllers. These models reproduce certain qualitative features observed

in the experiments. However, different control strategies can yield similar dynamic

behavior.

Command-following tasks are the focus of more recent studies [41–46]. The ex-

perimental results showed that human’s control strategy considerably changes in a

command-following task compared to the compensatory experiments. It has been

proposed that in command-following tasks humans apply a feedforward control on

the target signal and a feedback control on the error. In [47–50], frequency-domain

Subsystem Identification (SSID) techniques are used in order to model the feedback

and feedforward controllers humans use when interacting with linear dynamic sys-

tems. The identified controllers support the idea that the central nervous system

constructs an approximate inverse model of the dynamic system in feedforward for

many linear systems.

Multiple studies have investigated whether or not the central nervous system is able

to form internal models of nonlinear systems. In [51–56], human subjects are asked

to perform a tracking task where the joystick they control and the output they see on

the screen have a static nonlinear relationship. In these experiments eliminating the

visual feedback is used as a tool to find the relative extent of contribution for feed-

back and feedforward control. Based on the measured control signals applied by the

subjects, it has been concluded that similar to the linear systems, humans are capable

of constructing internal models of the systems with static nonlinearities. [57] provides
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the results of an experiment in which participants control the position of a cursor on

a computer display screen using a joystick and are instructed to follow target signals

with Gaussian probability density functions. The participants perform linear and

nonlinear tasks. For the linear task there is a proportional and one-to-one relation-

ship between the position of the joystick and the position of the response cursor. For

the nonlinear task this relationship follows a static nonlinear or non-proportional pat-

tern. The results imply that participants form an internal representation of the static

nonlinearity. These studies, however, do not explicitly identify the controllers used by

the human subjects. Moreover, the nonlinear systems used in [51–57] are only static,

and thus human control strategies for nonlinear systems having dynamics remains

unclear. In this dissertation, we are interested to have an improved understanding of

the command-following control strategies that humans use to interact with nonlinear

systems. More specifically, we want to be able to explicitly identify the controllers

humans learn to use when interacting with nonlinear systems that have dynamics.

Moreover, some studies have investigated the impact of changes in the reference

command on the control strategies adopted by humans in a command-following task.

The results in [58,59] suggest that certain reference commands are more difficult for

humans to follow than others. Moreover, these results suggest that as long as the

reference command is predictable, adaptive feedforward inversion remains as their

primary control strategy, even after the reference command has changed. However,

to the best of our knowledge, so far no study has been conducted to investigate the

possible impacts of relaxing the command-following control objectives on human con-

trol behavior in a pursuit tracking task. Many real-world human-machine interactions

do not require a human operator to strictly follow a reference command, but rather a

relaxed command-following is required. For example, the control objective of a human

driver usually is not to keep the vehicle on an exact path trajectory along the road

at all time, but rather to maintain the vehicle within the boundaries of a certain lane
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on the road. Therefore, achieving a better understanding of human control behavior

when performing a relaxed command-following task could have application to many

real-world HITL technologies. In this dissertation, we want to know whether relaxing

the control task objectives changes the control strategies utilized by humans.

1.3 Experimental Approach to Studying Human Learning

Multiple HITL experiments were conducted during this study to investigate impacts

of output nonlinearities and relaxed control objectives on strategies used by humans

in command-following tasks. Subjects use a rotational joystick to control the motion

of an object that is displayed on a computer screen. The experimental setup is shown

in Fig. 1.2. The computer monitor displays two rectangular markers, one above the

other. The top rectangular marker is called the reference object and its horizontal

position is denoted r. The bottom rectangular marker is called the control object and

its horizontal position is denoted y. The reference object follows a predetermined

path, which is the same for all subjects and all trials. Alternatively, the control

object’s position is dependent on the joystick’s angular position, which is denoted by

u. The control object’s position y is related to the joystick input by a time-invariant

differential equation, which is being numerically simulated by the computer shown in

Fig. 1.2(a). The subjects are provided no information about how the joystick affects

the motion of the control object. Subjects are instructed to use the joystick to make

the control object mimic the motion of the reference object. The time signals r, y,

and u are recorded for all subjects and all trials.

Figure 1.3 shows the closed-loop HITL system which consists of the human sub-

ject and the computer-simulated dynamic system. During the experiments the time

signals r, y, and u are recorded. These signals provide an insight into the control be-

havior of human subjects. We model the feedback and feedforward control strategies
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Figure 1.2: Subjects use a joystick to affect the motion of an object on a computer
screen. The object’s position y represents output of a dynamic system, which is
simulated by a computer as shown in (a), and the joystick position u represents the
input to the dynamic system. Figure (b) shows a subject performing the experiment.

Human

Feedforward

Feedback
u

Plant
y

r

Figure 1.3: Human interacts with a dynamic system, receives external information r
and feedback y from the dynamic system, and generates control u.

human subjects learn to use during the experiments using subsystem identification

techniques. These subsystem identification techniques determine models that are

best-fit to the experimental data.

1.4 Modeling Human Control Strategies Using Subsystem Identification

Subsystem identification (SSID) is a methodology that builds mathematical models

of unknown subsystems from measured data. The closed-loop HITL system demon-

strated in Fig. 1.3 depicts a scenario in which a human interacts with a dynamic
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system by using feedback y and a command r to generate a control u that achieves a

desired behavior. In this case, the human is the unknown subsystem. The human’s

control strategy can be modeled by a combination of feedback and feedforward con-

trollers. Modeling the human’s control strategy can be viewed as a SSID problem,

where the signals r, u, and y are measured, the plant is known, and the feedback and

feedforward controllers are the subsystems to be identified.

Methods for SSID are given in [60–70]. Specifically, [60–62] focus on open-loop

SSID, while [63–65] present methods for closed-loop static SSID. Techniques for

closed-loop dynamic SSID are given in [66–70]. In [50, 71], a SSID technique is pre-

sented that identifies the best-fit feedback and feedforward controller of each subject.

This technique, however, model both the plant and the controller as linear systems.

This dissertation presents a new nonlinear time-domain and a linear frequency-

domain SSID technique. These new nonlinear time-domain identification technique

uses concepts from [71] and [72] and can accommodate nonlinearities in the plant

and controller. Both identification techniques use a convexification approach that

involves using a candidate pool to find the best-fit subsystem models. It can be

shown that if the data noise is sufficiently small and the feedback candidate pool is

sufficiently dense, then the identified control parameters are arbitrarily close to the

true parameters.

1.5 Overview of Dissertation

Chapter 2. This chapter presents a frequency-domain and a new time-domain

SSID algorithm to identify best-fit feedback and feedforward controllers of a closed-

loop system where these controllers are connected to a known plant. These SSID

algorithms use a candidate pool to search among all the candidate feedback con-

trollers. Then, a convex optimization problem is solved to determine the best-fit

feedforward controller. The frequency-domain algorithm is applicable to a closed-loop
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system where the plant is linear while the time-domain algorithm is also applicable

to a closed-loop system where the plant and/or the feedforward controller contain

nonlinear components.

Chapter 3. This chapter presents results of an experiment where 22 human sub-

jects each interact with a dynamic system 40 times over a one-week period. The

subjects are divided into 2 groups of 11 subjects. The first group interacts with a

LTI system, and the second group interacts with a Wiener system, which consists

of the same LTI dynamics cascaded with a static output nonlinearity. Each sub-

ject’s command-following behavior is modeled by a discrete-time control architecture

consisting of a feedback time delay, a linear feedback controller, and a nonlinear feed-

forward controller. We compare the time-domain performance and control behavior

of these two groups. By comparing the time-domain performance and control behav-

ior of these two groups, we investigate the effects of output nonlinearity on control

strategies used by human subjects. We also use a time-domain subsystem identifica-

tion algorithm to model the control strategies (feedforward, feedback, and feedback

time delay) that each subject uses on each trial. We use the identification results

of this chapter’s experiment to improve our understanding of the effects that system

nonlinearities have on control strategies used by humans.

Chapter 4. This chapter presents results of an experiment where 22 human sub-

jects each interact with a dynamic system 40 times over a one-week period. The

subjects are divided into 2 groups of 11 subjects. Each group interacts with the same

dynamic system and performs a command-following task; however, the groups have

different control objectives. One group’s control objective is to follow the reference

command as closely as possible at all time. In contrast, the other group’s control

objective is to follow the reference command with some allowable error. We use the

experimental results to examine the effects of a relaxed command-following control ob-

jective. We also use a frequency-domain subsystem identification algorithm to model
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the control strategies (feedforward, feedback, and feedback time delay) that each sub-

ject uses on each trial. We use the identification results of this chapter’s experiment

to improve our understanding of the effects that changes in control objectives has on

control strategies used by humans.
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Chapter 2 Subsystem Identification Techniques

In this chapter, we present subsystem identification algorithms used for identifying

each human subject’s control strategy. These subsystem identification algorithms,

performed in time domain and frequency domain, identify estimates of the feedback

and feedforward controllers using the knowledge of dynamic system and recorded

input and output data. They do not require knowledge of any internal signals and are

applicable to a wide range of systems including LTI systems, LTI systems with static

nonlinearities in the plant and controller, and systems with pre-filter in controller.

2.1 Introduction

Subsystem identification (SSID) refers to a process where the observed input and

output data of a system are used to find best-fit models of unknown subsystems

assuming they are interconnected with some known subsystems. As an example,

consider the HITL system shown in Fig. 2.1, where a human interacts with a dynamic

system and uses the input signal r (e.g., the reference command), and the feedback

from the output signal y to manipulate the control signal u in a manner that the

output signal y mimics the input signal r. In this example, the SSID process involves

utilizing the measured input signal r and the measured output signal y to identify the

unknown subsystems in the human control structure (e.g., feedback and feedforward

controllers) assuming the dynamic system the human is interacting with is known but

all the internal signals (e.g., the internal signals that construct the control signal u)

are inaccessible.
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Figure 2.1: A HITL system where a human interacts with a dynamic system and uses
the input signal r (e.g., the reference command) and the feedback from the output
signal y to manipulate the control signal u in a manner that the output signal y
mimics the input signal r.

Methods for SSID are given in [60–70]. Specifically, [60–62] focus on open-loop

SSID, while [63–65] present methods for closed-loop static SSID. Techniques for

closed-loop dynamic SSID are given in [66–70]. In [47–50, 71], a SSID technique

is presented that identifies the best-fit feedback and feedforward controller of each

subject. This technique, however, model both the plant and the controller as linear

systems.

This chapter first presents a review of the frequency-domain SSID technique de-

veloped in [71]. Then, a new time-domain SSID technique is developed that uses

concepts from [71] and [72] and can accommodate nonlinearities in the plant and

controller. This SSID technique uses a convexification approach that involves using

a candidate-pool to find the best-fit subsystem models. It can be shown that if the

data noise is sufficiently small and the feedback candidate pool is sufficiently dense,

then the identified control parameters are arbitrarily close to the true parameters.

2.2 Problem Statement

Consider the time-invariant system shown in Fig. 2.2, where G : C → C is a

real rational transfer function, h : R → R is a continuous and one-to-one function,

rk ∈ R is the input, uk ∈ R is the control, vk ∈ R is the output of the linear

dynamics, and yk ∈ R is the output. Note that k ∈ {1, 2, · · · , Ns} where Ns is the

number of time response data. The controller consists of a feedback transfer function
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Figure 2.2: A time-invariant system, where the input rk, the output yk, and the
signals vk and uk are accessible, but all internal signals are inaccessible.

Gfb : C → C; a feedback delay d, which is a nonnegative integer (the feedback time

delay in seconds is dTs, where Ts is the sampling time); feedforward transfer functions

Gff,1, ..., Gff,p : C → C; and basis functions f1, ..., fp : R → R. The basis functions

f1, ..., fp allow for static-input nonlinearities in the feedforward controller.

The SSID problem is to estimate the feedback pair (d,Gfb) and feedforward transfer

functions (Gff,1, ..., Gff,p) from knowledge of G and h, basis functions f1, ..., fp, and

discrete-time signals rk and vk.

2.3 Notation

The following assumptions and notation are used for the rest of this section. Unless

otherwise specified, all references to the subscript j are for all j ∈ {1, 2, . . . , p}. Let

Z+ denote the set of positive integers. Let ‖ · ‖2 denote the two-norm on Fn and A∗

denote the complex conjugate transpose of A ∈ Fn×m, where F is either R or C. Let

N and D be the coprime polynomials of degree ny and dy satisfying G = ND−1. The
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feedback transfer function Gfb has the factorization Gfb = NfbD
−1
fb , where Nfb and

Dfb are polynomials of degree nfb and dfb, where dfb ≥ nfb. The feedforward transfer

function Gff,j is order nff finite impulse response (FIR), which implies that it can be

expressed as Gff,j = Nff,jz
−nff , where Nff,j is a polynomial of degree nff . The FIR

assumption does not significantly restrict the range of feedforward behavior relative

to an infinite impulse response (IIR) transfer function, since a sufficiently large order

FIR transfer function can be used to approximate an IIR transfer function to arbitrary

accuracy. Next, the discrete signals rk, uk, vk, and yk have Ns samples and sampling

time Ts. Finally, the operator q denotes the forward shift operator (i.e., if xk is a

sequence, then qxk = xk+1).

2.4 Frequency-domain Subsystem Identification

In this section, we present a SSID algorithm which is performed in the frequency

domain and is applicable to linear time-invariant systems. The time-invariant system

shown in Fig. 2.2 is linear if we assume h and f1 are identity functions and fj = 0

for j = 2, 3, · · · , p. This implies that yk = vk, s1,k = rk, and for all j ∈ {2, 3, . . . , p},

sj,k = 0 for all k ∈ {1, 2, · · · , Ns}.

Let ŷ(z) and û(z) denote the z-transforms of output yk and control uk, and it

follows that

ŷ(z) = G(z)û(z). (2.1)

The control based on the architecture of Fig. 2.2 is

û(z) = Gfb(z)z−dê(z) +Gff,1(z)r̂(z), (2.2)

where ê(z) is the z-transform of ek = rk − yk, and r̂(z) is the z-transforms of rk.
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Combining (2.1) and (2.2) yields

ŷ(z) = G(z)Gfb(z)z−dê(z) +G(z)Gff,1(z)r̂(z). (2.3)

Thus, the closed-loop transfer function from rk to yk can be defined as

G̃yr(z) , G(z)[Gff,1(z) +Gfb(z)z−d]

1 +G(z)Gfb(z)z−d

=
N(z)Dfb(z)Nff,1(z)z−nff +N(z)Nfb(z)z−d

D(z)Dfb(z) +N(z)Nfb(z)z−d
. (2.4)

Let rdft(ωk) and ydft(ωk) denote the discrete Fourier transforms of the sequences

{rk}Ns
k=1 and {yk}Ns

k=1 at frequencies ωk ∈ (0,∞), where k ∈ {1, 2 . . . , Nf} and ω1 <

ω2 < · · · < ωNf
. Let σk , eωkTs and define the closed-loop frequency response data

H(ωk) , ydft(ωk)/rdft(ωk). We seek to find Gff,1, Gfb, and d such that {G̃yr(σk)}Nf
k=1,

which is the closed-loop frequency response of the modeled control structure shown

in Fig. 2.2, approximates {H(ωk)}Nf
k=1, which is the closed-loop frequency response

obtained from the input and output data. In other words, the SSID algorithm deter-

mines Gff,1, Gfb, and d that minimize the cost function

J(d,Gfb, Gff,1) , 1

2

Nf∑
k=1

∣∣∣G̃yr(σk)−H(ωk)
∣∣∣2

=
1

2

Nf∑
k=1

∣∣∣∣∣G(σk)
[
Gff,1(σk) +Gfb(σk)σ

−d
k

]
1 +G(σk)Gfb(σk)σ

−d
k

−H(ωk)

∣∣∣∣∣
2

,

given the constraint that G̃yr is asymptotically stable. To identify Gff,1, Gfb, and d, we

first generate a candidate pool that contains Nc possible models of the feedback pair

(d,Gfb). The cost J is convex in the numerator coefficients of Gff,1. For each feedback

pair (d,Gfb) in the candidate pool, a convex optimization is solved to determine

the best-fit Gff,1 that minimizes J(Gff,1). This computation generates Nc models of

(d,Gfb, Gff,1), from which we select the element that minimizes J(d,Gfb, Gff,1).
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Subsection 2.4.1 provides a more detailed description of this SSID algorithm. Prop-

erties of this SSID algorithm are given in [71], which shows that if the data noise is

sufficiently small and the feedback candidate pool is sufficiently dense, then the iden-

tified control parameters are arbitrarily close to the true parameters. Some numerical

examples that demonstrate the application and effectiveness of this SSID method are

given in Subsection 2.4.2.

2.4.1 SSID Algorithm

To formulate the SSID algorithm in terms of coefficients of the feedback and feed-

forward controllers, define the candidate polynomials

Nfb(z, θ) , [znfb znfb−1 · · · 1 01×dfb
]θ,

Dfb(z, θ) , zdfb + [01×(nfb+1) zdfb−1 · · · 1]θ,

Nff,1(z, φ1) , [znff znff−1 · · · 1]φ1,

where θ ∈ Rnfb+dfb+1 contains the numerator and denominator coefficients of the

candidate feedback transfer function Gfb(z, θ), and φ1 ∈ Rnff+1 contains the numer-

ator coefficients of the candidate feedforward transfer function Gff,1(z, φ1). Hence,

Gfb(z, θ) , Nfb(z, θ)D−1
fb (z, θ) and Gff,1(z, φ1) , Nff,1(z, φ1)z−nff . Also, let the positive

integer δ denote the candidate feedback delay.

Let θ∗ ∈ Rnfb+dfb+1, φ1,∗ ∈ Rnff+1, and δ∗ ∈ Z+ be such that, Nfb(z) ≡ Nfb(z, θ∗),

Dfb(z) ≡ Dfb(z, θ∗), Nff,1(z) ≡ Nff,1(z, φ1,∗), and d ≡ δ∗. Thus, Gfb(z) ≡ Gfb(z, θ∗)

and Gff,1(z) ≡ Gff,1(z, φ1,∗).

Next, let G̃yr(z, δ, θ, φ1) be the closed-loop transfer function obtained using δ, θ,

and φ1. It follows from (2.4) that

G̃yr(z, δ, θ, φ1) =
G(z)

[
Gff,1(z, φ1) + Gfb(z, θ)z−δ

]
1 +G(z)Gfb(z, θ)z−δ
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=
N(z)Dfb(z, θ)Nff,1(z, φ1)z−nff +N(z)Nfb(z, θ)z−δ

D(z)Dfb(z, θ) +N(z)Nfb(z, θ)z−δ
.

Note that G̃yr(z) ≡ G̃yr(z, δ∗, θ∗, φ1,∗). Our objective is to determine δ, θ, and φ1 such

that δ approximates d, and Gfb and Gff,1 approximate Gfb and Gff,1, respectively. In

order to achieve this, consider the cost function

J(δ, θ, φ1) , J(δ,Gfb(σk, θ),Gff,1(σk, φ1))

=
1

2

Nf∑
k=1

∣∣∣G̃yr(σk, δ, θ, φ1)−H(ωk)
∣∣∣2 , (2.5)

and define

Ñ1(z, θ) , N(z)Dfb(z, θ)[1 z−1 · · · z−nff ], (2.6)

Ñ2(z, δ, θ) , N(z)Nfb(z, θ)z−δ, (2.7)

D̃(z, δ, θ) , D(z)Dfb(z, θ) +N(z)Nfb(z, θ)z−δ, (2.8)

ak(δ, θ) ,
Ñ1(σk, θ)

D̃(σk, δ, θ)
, (2.9)

bk(δ, θ) , H(ωk)−
Ñ2(σk, δ, θ)

D̃(σk, δ, θ)
. (2.10)

It follows from (2.5)-(2.10) that

J(δ, θ, φ1) =
1

2

Nf∑
k=1

|ak(δ, θ)φ1 − bk(δ, θ)|2 .

Next, let Ic , {1, ..., Nc}, where Nc is a positive integer. For all i ∈ Ic, define

distinct candidate feedback pairs (δi, θi). Let Γ ⊂ S be a set with Nc elements where

γi , [δi θT
i

]T ∈ Rnfb+dfb+2 are its elements and S , {[δ θT]T ∈ Z+ × Rnfb+dfb+1 |

if λ ∈ C and D̃(z, δ, θ) = 0, then |λ| < 1} which is the set of (δ, θ) such that D̃(z, δ, θ)

is asymptotically stable. We call Γ the candidate pool. For each γi ∈ Γ, define the
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quadratic cost function

Ji(φ1) , 1

2
‖Aiφ1 − bi‖2

2 , (2.11)

where

Ai , [aT
1 (δi, θi) aT

2 (δi, θi) · · · aT
Nf

(δi, θi)]
T,

bi , [b1(δi, θi) b2(δi, θi) · · · bNf
(δi, θi)]

T.

For all i ∈ Ic, Ji is quadratic with respect to the unknown feedforward parameters

φ1. If Nf is sufficiently large, then it can be shown that A∗iAi is positive definite. For

each i ∈ Ic, define

φ1,i , (< (A∗iAi))
−1< (A∗i bi) ,

which is the unique global minimizer of Ji.

Let κ ∈ Ic be the smallest integer such that Jκ = mini∈Ic Ji. The identified feed-

back time delay is d+ , δκ; the numerator and denominator polynomials of the

identified feedback transfer function are N+
fb(z) , Nfb(z, θκ) and D+

fb(z) , Dfb(z, θκ);

the numerator polynomial of the identified feedforward transfer function is N+
ff,1(z) ,

Nff,1(z, φ1,κ); and the identified feedback and feedforward transfer functions areG+
fb(z) ,

Gfb(z, θκ) and G+
ff,1(z) , Gff,1(z, φ1,κ).

This SSID algorithm is summarized by the following steps:

Step 1) Generate the candidate pool Γ ⊂ S and the sequence {γi}Nc
i=1.

Step 2) For each i ∈ Ic, calculate φ1,i , (< (A∗iAi))
−1< (A∗i bi) which is the unique

global minimizer of Ji.

Step 3) Find the smallest integer κ ∈ Ic such that Jκ = mini∈Ic Ji.

18



Step 4) The identification results are d+ , δκ, G
+
fb(z) , Gfb(z, θκ), and G+

ff,1(z) ,

Gff,1(z, φ1,κ).

2.4.2 Numerical Examples

We present two numerical examples using the SSID technique described in this

chapter. For both examples, the plant components are G(z) = 1/(z + 0.2) and h

and f1 are identity functions and fj = 0 for j = 2, 3, · · · , p. We numerically simulate

the closed-loop system shown in Fig. 2.2 for a given feedback system (d,Gfb) and

feedforward transfer function Gff where all initial conditions are zero. The numerical

simulations yield data signals rk and yk, which are used to compute best-fit models

(d+, G+
fb) and G+

ff .

Example 1. Consider d = 8, Gfb(z) = 0.43/(z − 0.31), and Gff(z) = (3z − 6)/z. Let

nff = 1 and define the candidate pools

Γ1
4
= {γ ∈ R3 : e1γ, e2γ ∈ {−1 + 0.25τ}8

τ=0,

e3γ ∈ {4 + τ}21
τ=0},

Γ2
4
= {γ ∈ R3 : e1γ, e2γ ∈ {−1 + 0.125τ}16

τ=0,

e3γ ∈ {4 + τ}21
τ=0},

Γ3
4
= {γ ∈ R3 : e1γ, e2γ ∈ {−1 + 0.0625τ}32

τ=0,

e3γ ∈ {4 + τ}21
τ=0}.

where e1 , [1 0 0], e2 , [0 1 0], and e3 , [0 0 1]. The candidate pools define

candidate pairs (d,Gfb). All 3 candidate pools have the same boundaries, but Γ3 has

more elements than Γ2, and Γ2 has more elements than Γ1. Note that Gfb is not a

member of the candidate pools, and thus the identification cannot yield the exact

controller components. This example demonstrates how increasing the density of the

candidate pool yields more accurate identifications.
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For each of the 3 candidate pools, the SSID algorithm in Subsection 2.4.1 is used

to obtain d+, G+
fb, and G+

ff .

For Γ1, the SSID yields d+ = 8, G+
fb = 0.5/(z − 0.25), and G+

ff = (3.53z − 6.63)/z.

For Γ2, the SSID yields d+ = 8, G+
fb = 0.375/(z−0.375), and G+

ff = (2.82z−5.79)/z.

For Γ3, the SSID yields d+ = 8, G+
fb = 0.4375/(z − 0.3125), and G+

ff = (3.08z −

6.14)/z.

Example 2. Consider the same parameters of the previous example, except Gff(z) =

2/(5z + 2) and nff = 2. Thus, Gff is IIR, and we approximate it by a second-order

FIR.

For Γ1, the SSID yields d+ = 8, G+
fb = 0.5/(z − 0.25), and G+

ff = (0.35z2 − 0.11z +

0.21)/z2.

For Γ2, the SSID yields d+ = 8, G+
fb = 0.375/(z − 0.375), and G+

ff = (−0.21z2 +

0.72z − 0.24)/z2.

For Γ3, the SSID yields d+ = 8, G+
fb = 0.4375/(z − 0.3125), and G+

ff = (0.02z2 +

0.24z − 0.12)/z2.

Figure 2.3 shows the Bode plots of the identified transfer functions for each of the

3 candidate pools. The Bode plots of G+
fb and G+

ff are closest to Gfb and Gff for the

candidate pool Γ3, which is denser than Γ1 and Γ2.

2.5 Time-domain Subsystem Identification

The frequency-domain SSID algorithm described in Section 2.4 is not applicable

to the feedback structure of Fig. 2.2 if plant and/or controller nonlinearities are

present. To address the nonlinear aspects of this SSID problem, we introduce a new

approach that is performed in time domain and uses concepts from [71] and [72].

Specifically, [72] uses a feedforward architecture similar to Fig. 2.2 for Hammerstein-

model identification, and [71] introduces a convexification approach that involves

gridding on the parameters of the feedback pair (d,Gfb).
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Figure 2.3: The Bode plots of the identified transfer functions G+
fb and G+

ff for the
densest candidate pool Γ3 results in the best estimates of Gfb and Gff .

Let v̂(z) and û(z) denote the z-transforms of vk and uk, and it follows that

v̂(z) = G(z)û(z). (2.12)

The control based on the architecture of Fig. 2.2 is

û(z) = Gfb(z)z−dê(z) +

p∑
j=1

Gff,j(z)ŝj(z), (2.13)

where ê(z) is the z-transform of ek = rk − h(vk), and ŝj(z) is the z-transforms of

fj(rk). Combining (2.12) and (2.13) yields

v̂(z) = G(z)Gfb(z)z−dê(z) +G(z)

p∑
j=1

Gff,j(z)ŝj(z). (2.14)

Substituting the polynomials N , D, Nfb, Dfb, and Nff,j into (2.14) and multiplying
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through by DDfbz
d+nff yields

D(z)Dfb(z)zd+nff v̂(z) = N(z)Nfb(z)znff ê(z) +N(z)Dfb(z)zd
p∑
j=1

Nff,j(z)ŝj(z). (2.15)

We seek feedback and feedforward parameters that make the left and right side of

(2.15) approximately equal. Specifically, we seek Nff,1, ..., Nff,p, Nfb, Dfb, and d that

minimize the cost function

J(d,Nfb, Dfb, Nff,1, ..., Nff,p) ,
1

2

Ns−`d∑
k=1−`d

∣∣N(q)Dfb(q)qd
p∑
j=1

Nff,j(q)fj(rk)+

N(q)Nfb(q)qnffek −D(q)Dfb(q)qd+nffvk
∣∣2,

where `d , d + nff + dy + dfb. To identify Nff,j, Nfb, Dfb, and d, we first generate a

candidate pool that contains Nc possible models of the feedback pair (d,Gfb). The cost

J is convex in the coefficients of Nff,j. For each feedback pair (d,Gfb) in the candidate

pool, a convex optimization is solved to determine the best-fit Nff,j that minimizes

J(Nff,j). This computation generates Nc models of (d,Nfb, Dfb, Nff,j), from which

we select the element that minimizes J(d,Nfb, Dfb, Nff,j). A detailed description of

this SSID algorithm is given in Subsection 2.5.1. Properties of this SSID algorithm

can be derived using analyses similar to those given in [71], which shows that if the

data noise is sufficiently small and the feedback candidate pool is sufficiently dense,

then the identified control parameters are arbitrarily close to the true parameters.

Subsection 2.5.2 provides numerical examples that demonstrate the application and

effectiveness of this SSID method.
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2.5.1 SSID Algorithm

To formulate the SSID algorithm in terms of coefficients of the feedback and feed-

forward controllers, define the candidate polynomials

Nfb(q, θ) , [qnfb qnfb−1 · · · 1 01×dfb
]θ,

Dfb(q, θ) , qdfb + [01×(nfb+1) qdfb−1 · · · 1]θ,

Nff,j(q, φj) , [qnff qnff−1 · · · 1]φj,

where θ ∈ Rnfb+dfb+1 contains the numerator and denominator coefficients of feed-

back transfer function, and φj ∈ Rnff+1 contains the numerator coefficients of the

feedforward transfer function. Next, consider the cost function

J(δ, θ, φ) , J(δ,Nfb(q, θ),Dfb(q, θ),Nff,j(q, φj)) =
1

2

Ns−`δ∑
k=1−`δ

|ak(δ, θ)φ− bk(δ, θ)|2 ,

where the positive integer δ is the feedback delay, `δ , δ + nff + dy + dfb, φ ,

[φT
1 · · · φT

p ]T ∈ Rp(nff+1), and for all k ∈ {1− `δ, ..., Ns − `δ},

ak(δ, θ) , N(q)Dfb(q, θ)qδ[qnff qnff−1 · · · 1]⊗ [f1(rk) · · · fp(rk)] ∈ R1×p(nff+1),

bk(δ, θ) , D(q)Dfb(q, θ)qδ+nffvk −N(q)Nfb(q, θ)qnffek ∈ R,

where ⊗ denotes the Kronecker product.

Next, let Ic , {1, ..., Nc}, where Nc is a positive integer. For all i ∈ Ic, define

distinct candidate feedback pairs (δi, θi). Let Γ be a set with Nc elements where

γi , [δi θT
i

]T ∈ Rnfb+dfb+2 are its elements. We call Γ the candidate pool. For each

γi ∈ Γ, define the quadratic cost function

Ji(φ) , 1

2
‖Aiφ− bi‖2

2 ,

23



where

Ai , [aT
1−`δi

(δi, θi) aT
2−`δi

(δi, θi) · · · aT
Ns−`δi

(δi, θi)]
T ∈ RNs×p(nff+1),

bi , [b1−`δi (δi, θi) b2−`δi (δi, θi) · · · bNs−`δi (δi, θi)]
T ∈ RNs .

For all i ∈ Ic, Ji is quadratic with respect to the unknown feedforward parameters φ.

If the number of samples Ns is sufficiently large, then it can be shown that AT
i Ai is

positive definite. For each i ∈ Ic, define

φi ,
(
AT
i Ai
)−1

AT
i bi,

which is the unique global minimizer of Ji.

Let κ ∈ Ic be the smallest integer such that Jκ = mini∈Ic Ji. The identified feedback

time delay is d+ , δκ; the numerator and denominator polynomials of the identified

feedback transfer function are N+
fb(z) , Nfb(z, θκ) and D+

fb(z) , Dfb(z, θκ); and the

identified feedforward transfer functions are G+
ff,j(z) , z−nffNff,j(z, φj,κ).

This SSID algorithm is summarized by the following steps:

Step 1) Generate the candidate pool Γ ⊂ S and the sequence {γi}Nc
i=1.

Step 2) For each i ∈ Ic, calculate φi ,
(
AT
i Ai
)−1

AT
i bi which is the unique global

minimizer of Ji.

Step 3) Find the smallest integer κ ∈ Ic such that Jκ = mini∈Ic Ji.

Step 4) The identification results are d+ , δκ, N
+
fb(z) , Nfb(z, θκ), D

+
fb(z) , Dfb(z, θκ),

and G+
ff,j(z) , z−nffNff,j(z, φj,κ).

2.5.2 Numerical Examples

We present two numerical examples using the SSID technique described in this

chapter. For both examples, the plant components are G(z) = 1/(z + 0.2) and

24



h−1(x) = x − 0.4x2 + 0.2x3. We numerically simulate the closed-loop system shown

in Fig. 2.2 for a given feedback system (d,Gfb) and feedforward system (f,Gff) where

all initial conditions are zero. The numerical simulations yield data signals rk and vk,

which are used to compute best-fit models (d+, G+
fb) and (f+, G+

ff ).

Example 3. Consider d = 8, Gfb(z) = 0.43/(z − 0.31), Gff(z) = (3z − 6)/z, and

assume that f(x) = −0.5x3 +0.1x2. Let α ∈ R4 be a vector such that its elements are

the coefficients of the polynomial function f . In this case, we have α = [−0.5 .1 0 0]T.

Let nff = 1 and define the candidate pools

Γ1
4
= {γ ∈ R3 : e1γ, e2γ ∈ {−1 + 0.25τ}8

τ=0,

e3γ ∈ {4 + τ}21
τ=0},

Γ2
4
= {γ ∈ R3 : e1γ, e2γ ∈ {−1 + 0.125τ}16

τ=0,

e3γ ∈ {4 + τ}21
τ=0},

Γ3
4
= {γ ∈ R3 : e1γ, e2γ ∈ {−1 + 0.0625τ}32

τ=0,

e3γ ∈ {4 + τ}21
τ=0}.

where e1 , [1 0 0], e2 , [0 1 0], and e3 , [0 0 1]. The candidate pools define

candidate pairs (d,Gfb). All 3 candidate pools have the same boundaries, but Γ3 has

more elements than Γ2, and Γ2 has more elements than Γ1. Note that Gfb is not a

member of the candidate pools, and thus the identification cannot yield the exact

controller components. This example demonstrates how increasing the density of the

candidate pool yields more accurate identifications.

For each of the 3 candidate pools, the SSID algorithm in Subsection 2.5.1 is used

to obtain d+, G+
fb, G+

ff , and α+.

For Γ1, the SSID yields d+ = 8, G+
fb = 0.5/(z − 0.25), G+

ff = (3.62z − 6.73)/z, and

α+ = [−0.49527 0.09407 0.00195 0.00016]T.

For Γ2, the SSID yields d+ = 8, G+
fb = 0.375/(z − 0.375), G+

ff = (2.78z − 5.71)/z,
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and α+ = [−0.50342 0.10411 − 0.00102 − 0.00023]T.

For Γ3, the SSID yields d+ = 8, G+
fb = 0.4375/(z− 0.3125), G+

ff = (3.25z− 6.28)/z,

and α+ = [−0.49891 0.09855 0.00065 − 0.00002]T.

Example 4. Consider the same parameters of the previous example, except Gff(z) =

2/(5z + 2) and nff = 2. Thus, Gff is IIR, and we approximate it by a second-order

FIR.

For Γ1, the SSID yields d+ = 8, G+
fb = 0.5/(z − 0.25), G+

ff = (0.30z2 − 0.20z +

0.16)/z2, and α+ = [−0.54127, 0.10708,−0.00066, 0.00026]T.

For Γ2, the SSID yields d+ = 8, G+
fb = 0.375/(z− 0.375), G+

ff = (−0.26z2 + 0.89z−

0.33)/z2, and α+ = [−0.48117, 0.09672, 0.00056,−0.00016]T.

For Γ3, the SSID yields d+ = 8, G+
fb = 0.4375/(z− 0.3125), G+

ff = (0.04z2 + 0.31z−

0.07)/z2, and α+ = [−0.51228, 0.10208,−0.00003, 0.00005]T.

Figure 2.4 shows the Bode plots of the identified transfer functions for each of the

3 candidate pools. The Bode plots of G+
fb and G+

ff are closest to Gfb and Gff for the

candidate pool Γ3, which is denser than Γ1 and Γ2.
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Figure 2.4: The Bode plots of the identified transfer functions G+
fb and G+

ff for the
densest candidate pool Γ3 results in the best estimates of Gfb and Gff .
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Chapter 3 The Impact of Output Nonlinearities on Human Control Strate-

gies

In this chapter, we present the results of a human-in-the-loop experiment which

is designed to investigate the control strategies that humans use to interact with

nonlinear dynamic systems. Two groups of human subjects interact with a dynamic

system and perform a command-following task. One group interacts with a linear

time-invariant (LTI) dynamic system, while the other group interacts with a Wiener

system, which consists of the same LTI dynamics cascaded with a static output non-

linearity. The time-domain subsystem identification algorithm presented in Chapter

2 is used to identify the feedback and feedforward control strategies that subjects in

each group employ. Prior studies suggest that adaptive feedforward inversion is the

primary control strategy used by humans for command-following tasks when inter-

acting with linear dynamic systems. Using the identification results of this chapter’s

experiment, we address the open question of whether a similar control strategy is

used for nonlinear systems.

3.1 Introduction

Humans are often the least-understood component of a human-in-the-loop (HITL)

system. There are many engineering principles and analysis techniques that can be

used to predict and design the behavior of dynamic systems, such as aircraft, con-

struction machinery, haptic devices, and telerobotic systems. Predicting how humans

will interact with those systems is more challenging. An improved understanding of
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Figure 3.1: A control architecture for HITL systems.

human control strategies is likely to yield significant advancements in HITL technolo-

gies.

Many HITL systems can be modeled using the control architecture shown in Fig.

3.1. The human interacts with a dynamic system through the control input u, which

is generated based on available feedback y and a command signal r. The human’s

goal is to interact with the dynamic system in a manner that makes the magnitude

of the command-following error e = r − y small.

A human’s control response is complex and depends on the properties of the dy-

namic system and command, as well as many other factors, such as experience, effort,

and ability. Although no model captures all aspects of human-control behavior, it

is often possible to identify control strategies that approximate typical human be-

havior over a limited period of time [37, 73, 74]. Such models can be used to predict

closed-loop behavior of HITL systems.

The review paper [75] provides an account of research on modeling human-control

behavior. Much of the early human-control literature is based on studies of compen-

satory behavior, where the human only has access to the error e for feedback instead

of both r and y [32, 33, 76]. The well-known crossover model and precision model

provide fundamental principles that can be used to predict human compensatory be-

havior [40, 77, 78]. Alternatively, as discussed in [75], there is significantly less work
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on HITL models for command-following.

It has long been suggested that humans may rely on models for control. The

internal model hypothesis of neuroscience suggests that the brain constructs models

(i.e., internal models) of the dynamic systems with which it interacts, and uses those

models to generate control signals [2–6, 42, 79]. Forward and inverse internal models

have been proposed [1, 8, 27–30, 43, 80–83]. Support for the internal model includes

evidence of predictive behavior and qualitative comparisons with models [9,12,22,84–

92].

More direct evidence of model-based control strategies by humans is provided

in [49], which analyzes command-following interactions with linear time invariant

(LTI) dynamic systems. In those studies, the human control response is modeled

by the feedback-feedforward control architecture shown in Fig. 3.1. The feedback

control is based on e and models the human’s reactive control response; the feed-

forward control is based only on r and models the human’s anticipatory control re-

sponse. Subsystem identification (SSID) techniques are used to determine best-fit

linear models of the feedback and feedforward models. The results in [49] suggest

that a primary command-following strategy used by humans is adaptive feedforward

inversion. Specifically, if the LTI system is represented by the transfer function G,

then over repeated interactions the human updates its feedforward controller until it

approximates G−1. SSID results suggest that feedforward inversion is used for many

LTI systems, provided that the command is predictable or a preview of the command

is available [93,94].

The extent to which humans use adaptive feedforward inversion for control is un-

known. Recent results suggest that for some nonminimum-phase LTI systems, the

human’s feedforward controller does not converge to an approximation of the dy-

namic system’s inverse, but rather a different type of model-based control strategy

is used [48]. Thus, it is unclear whether feedforward plant inversion is a primary
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human-control strategy, even for LTI systems. Human interactions with nonlinear

dynamic systems is also an open question. Some studies have investigated HITL in-

teractions with static nonlinear systems and provide some evidence for feedforward

inversion [51–57]. However, they do not explicitly identify the controllers used by

the human subjects. Moreover, the nonlinear systems used in [51–57] are only static,

and thus human control strategies for nonlinear systems having dynamics remains

unclear. For example, [57] provides the results of an experiment in which partici-

pants control the position of a cursor on a computer display screen using a joystick

and are instructed to follow target signals with Gaussian probability density func-

tions. The participants perform linear and nonlinear tasks. For the linear task there

is a proportional and one-to-one relationship between the position of the joystick and

the position of the response cursor. For the nonlinear task this relationship follows

a static nonlinear or non-proportional pattern. The results imply that participants

form an internal representation of the static nonlinearity. This conclusion, however,

is not based on identification of controllers used by the human subjects and is only

based on the movements of the joystick. Furthermore, the nonlinear system used in

this experiment has no dynamic component and is purely static.

The main motivation of this chapter is to investigate the command-following con-

trol strategies that humans use to interact with nonlinear systems. We present re-

sults and analysis of an experiment in which two groups of human subjects interact

with two different dynamic systems to perform a command-following task. The first

group interacts with a LTI system, and the second group interacts with a Wiener

system, which consists of the same LTI dynamics cascaded with a static output non-

linearity. Each subject’s command-following behavior is modeled by a discrete-time

control architecture consisting of a feedback time delay, a linear feedback controller,

and a nonlinear feedforward controller. We compare the time-domain performance,

frequency-domain performance, and control behavior of these two groups. By com-
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paring the time-domain performance, frequency-domain performance, and control

behavior of these two groups, we investigate the effects of output nonlinearity on

control strategies used by human subjects.

3.2 Experimental Methods

Twenty-two people voluntarily participated in this study, which was approved by

the University of Kentucky’s Institutional Review Board under IRB protocol 44649.

The subjects were 18 to 35 years old and had no known neurological disorders. Sub-

jects use a rotational joystick (Teledyne Gurley model 8225-6000-DQSD) to control

the motion of an object that is displayed on a computer screen. A trial is a 60-s

time period during which a subject operates the joystick, and a session consists of

10 consecutive trials completed within a period of 20 minutes. Subjects completed 4

sessions over a 7-day period, but no more than one session in a 12-hour period.

The experimental setup is shown in Fig. 3.2. The computer monitor displays

two thin rectangular markers, one above the other. The top rectangular marker

is called the reference object and its horizontal position is denoted r. The bottom

rectangular marker is called the control object and its horizontal position is denoted

y. The reference object follows a predetermined path, which is the same for all

subjects and all trials. Alternatively, the control object’s position is dependent on

the joystick’s angular position, which is denoted by u. The subjects are provided no

information about how the joystick affects the motion of the control object. Subjects

are instructed to use the joystick to make the control object mimic the motion of

the reference object. More specifically, their objective is to generate a control u that

makes the magnitude of the command-following error e , r − y as small as possible.

The reference object’s position for all t ∈ [0, 60] is

r(t) , 2 sin
πt2

120
, (3.1)
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Figure 3.2: Subjects use a rotational joystick to control the position y of the bottom
marker displayed on the computer screen. The subjects’ objective is to make y follow
the command r, whose position is displayed on the computer screen by the top marker.
The joystick’s angular position u is the control input of an unknown dynamic system,
which is simulated by a computer, and the dynamic system’s output is y.

which is a 60-second chirp signal with frequency content between 0 and 0.5 Hz. For

all t ∈ [0, 60], the relationship between the subject’s control u and the controlled

object’s position y satisfies the differential equation

ẋ(t) = Ax(t) +Bu(t), (3.2)

v(t) = Cx(t), (3.3)

y(t) = h(v(t)), (3.4)

where x(t) ∈ Rn is the state, x(0) = 0 is the initial condition, v(t) ∈ R is the output of

the linear dynamics (which is not accessible to the subjects), y(t) ∈ R is the output,

A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, and h : R → R is a continuous and one-to-one

function. It follows from (3.2) and (3.3) that the transfer function from u to v is

G(s) , C(sI −A)−1B. The units of r and y are hash marks (hm), which are equally-

spaced vertical lines displayed on the computer screen. The distance between hash

marks is 2.5 cm, and the range of motion displayed on the computer screen is ±8 hm.

The 22 subjects were randomly divided into two groups of 11 subjects. Both groups
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interacted with the dynamic system (3.2)–(3.4), where A, B, and C are the same for

both groups. However, h is different for the two groups. The function h is used

to explore the effects of nonlinearity on performance and control strategy. For both

groups, the transfer function from u to v is

G(s) =
2s+ 4.4

s2 + 3.6s+ 4
,

which has a zero at −2.2 and a pair of complex-conjugate poles at −1.8± 0.872. For

the first group, h(v) is the identity function (i.e., h(v) = v), in which case the system

(3.2)–(3.4) is LTI. We refer to the first group as the linear group. For the second

group, h(v) is the unique real root of the polynomial 0.1s3 − 0.2s2 + 0.5s − v. Note

that since y = h(v), it follows that

h−1(y) = 0.5y − 0.2y2 + 0.1y3,

which is a cubic nonlinearity. We refer to the second group as the nonlinear group.

3.3 Performance Analysis

For all trials, the experimental time signals r, y, and u are recorded with sample

time Ts = 0.02 s and Ns = 3001 samples. The sampled data yield the discrete signals

{rk}Ns
k=1, {yk}Ns

k=1, and {uk}Ns
k=1. A divergent trial is a trial in which the magnitude of

yk exceeds 8 hm, that is, the controlled object’s position exceeds the range of motion

displayed on the computer screen. Table 3.1 shows the number of divergent trials for

each group. There was only one divergent trial in this study, and it is omitted from

the results.
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Table 3.1: Number of divergent trials for each group

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Total

Linear Group 1 0 0 0 1
Nonlinear Group 0 0 0 0 0

3.3.1 Time-Domain Analysis

The sampled command-following error is ek , rk − yk, and the time-averaged error

is

‖e‖ , 1

Ns

Ns∑
k=1

|ek|.

Figures 3.3 and 3.4 show rk, yk, and ek on the first and last trial for the median

performer in the linear and nonlinear groups. The median performer of each group

is the subject whose ||e|| on the last trial is the median (i.e., 6th best) of all subjects

in their group. The median subject for both groups performs better on the last trial

than the first trial. All subjects in both groups exhibit improved performance from

their first to last trial. Similar results are observed for all other subjects.

Figure 3.5 shows the mean and standard deviation of ||e|| on each trial. For both

the linear and nonlinear group, the mean and standard deviation tend to decrease

over the trials. The same results can be seen in Table 3.2, which shows the mean ‖e‖

on 4 different sets of trials for both groups and its percentage change from the first

10 trials to the last 10 trials. The average ||e|| of the linear group is smaller than

the average ||e|| of the nonlinear group on 77.5 % of the trials. This suggests that

the nonlinear system is more difficult to control than the linear system. However, the

linear group exhibits a larger variance in performance on all trials. We note that the

variance of the nonlinear group is small compared with the results of several similar

experiments [48, 49, 58]. The reason for this small variance is unclear, but it may be

a small-sample effect or possibly caused by some feature of the nonlinearity.
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Figure 3.3: The reference rk, output yk, and error ek for the linear group’s median
subject’s 1st and 40th trial.
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Figure 3.4: The reference rk, output yk, and error ek for the nonlinear group’s median
subject’s 1st and 40th trial.
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Figure 3.5: The performance of both linear and nonlinear groups improves over 40
trials. The symbols ◦ and × indicate the mean of the 11 subjects for linear and
nonlinear group respectively and the vertical lines show one standard deviation above
and below the mean.

Table 3.2: Mean ‖e‖ and its percentage change from the first 10 trials to the last 10
trials.

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Change
(%)

Linear Group 0.395 0.254 0.208 0.182 -53.9
Nonlinear Group 0.381 0.308 0.281 0.247 -35.2
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3.3.2 Frequency-Domain Analysis

For all i = 1, ..., Nf , let ωi , (i − 1)π/30 rad/s, which are Nf = 31 evenly-spaced

frequencies over the 0-0.5 Hz range. For each trial, let rdft(ωi) and ydft(ωi) denote

the discrete Fourier transforms (DFT) of the sequences {rk}Ns
k=1 and {yk}Ns

k=1 at ωi,

respectively.

For each trial, we define the frequency-averaged magnitude error as

Em , 1

Nf

Nf∑
i=1

∣∣∣|ydft(ωi)|e∠rdft(ωi) − |rdft(ωi)|e∠rdft(ωi)
∣∣∣

=
1

Nf

Nf∑
i=1

∣∣∣|ydft(ωi)− |rdft(ωi)|
∣∣∣,

which is the frequency-averaged magnitude of the difference between ydft and rdft,

assuming the phase of ydft is the same as the phase of rdft. Similarly, for each trial,

we define the frequency-averaged phase error as

Ep , 1

Nf

Nf∑
i=1

∣∣∣|rdft(ωi)|e∠ydft(ωi) − |rdft(ωi)|e∠rdft(ωi)
∣∣∣

=
1

Nf

Nf∑
i=1

|rdft(ωi)|
∣∣∣e∠ydft(ωi) − e∠rdft(ωi)

∣∣∣,
which is the frequency-averaged magnitude of the difference between ydft and rdft,

assuming the magnitude of ydft is the same as the magnitude of rdft.

Figure 3.6 shows the mean and standard deviation of Em and Ep for subjects in

the linear and nonlinear group on each trial. These results are similar to what we

had previously seen in our time-domain analysis. For subjects in both groups, the

mean and standard deviation of frequency-averaged magnitude error and frequency-

averaged phase error tend to decrease over trials. Moreover, the nonlinear group has

a larger mean Em and mean Ep than the linear group over the later trials.

Tables 3.3 and 3.4 show the mean Em and Ep on 4 different sets of trials for the
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Figure 3.6: The mean Em and the mean Ep for both linear and nonlinear group
decrease over 40 trials. The symbols ◦ and × indicate the mean of the 11 subjects
for linear and nonlinear group respectively and the vertical lines show one standard
deviation above and below the mean.
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Table 3.3: Mean Em and its percentage change from the first 10 trials to the last 10
trials.

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Change
(%)

Linear Group 0.035 0.026 0.022 0.018 -47.5
Nonlinear Group 0.027 0.025 0.023 0.024 -10.3

Table 3.4: Mean Ep and its percentage change from the first 10 trials to the last 10
trials.

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Change
(%)

Linear Group 0.058 0.034 0.027 0.024 -58.9
Nonlinear Group 0.033 0.029 0.026 0.030 -10.5

linear group and the nonlinear group. For both groups, the mean Em and mean Ep

decrease over the trials. This decrease, however, is more evident for subjects in the

linear group. These results also suggest that the improvement we had previously

seen in the command-following performance of linear group is more a result of their

improvement in matching the phase of reference command than their improvement in

matching the magnitude. For the nonlinear group, on the other hand, the distribution

is relatively even.

3.4 Potential Human Control Strategies

In this section, we consider control strategies that are possible solutions of the SSID

algorithm of Chapter 2. We first consider possible control strategies for the linear

group. The dynamic system consists of the pair (G, h), where G(z) is the discrete-

time transfer function that is obtained by discretizing G(s) using a zero-order hold

on the input with sample time Ts and h is the identify function. Let p = 1 and

f1(rk) = rk, then the control (2.2) is

û(z) = z−dGfb(z)ê(z) +Gff,1(z)r̂(z),
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and it follows that the closed-loop error satisfies

ê(z) = G̃er(z)r̂(z), (3.5)

where

G̃er(z) =
1−Gff,1(z)G(z)

1 + z−dGfb(z)G(z)
(3.6)

is the closed-loop transfer function from rk to ek. The frequency response of G̃er is

G̃er(e
ωTs), where ω is the frequency in radians per second. Good command-following

performance is achieved if Gfb, Gff,1, and d are such that G̃er is asymptotically stable

and |G̃er(e
ωTs)| is small at those frequencies coinciding with the frequency content of

rk.

One strategy that can be used to make |G̃er(e
ωTs)| small is to make |Gfb(eωTs)|

large. It follows from (3.6) that if |Gfb(eωTs)| is large at the frequencies of rk, then

|G̃er(e
ωTs)| is small at those frequencies, in which case (3.5) implies that ek is small,

provided that G̃er is asymptotically stable. However, there are some practical limi-

tations for using high-gain feedback for manual command-following tasks. Humans

cannot use arbitrarily high gain due to physical limitations in speed and range of

motion. Moreover, a human’s ability to use high gain in feedback is limited by their

feedback time delay, which can cause closed-loop instability if the gain in feedback is

too large.

Consider the high-gain controller Gfb = kp, where kp > 0 is a proportional gain.

Assume that the feedback time delay is 100 ms (i.e., d = 5) and that there is no

feedforward control (i.e., Gff = 0). For this case, the largest stabilizing feedback gain

is approximately 8.5. Figure 3.7 shows the closed-loop output yk and error ek for

the case that kp = 8.4. We note that this proportional feedback controller yields a

better performance than the median-performer’s 40th-trial results shown in Fig. 3.3.

41



-2

0

2

0 15 30 45 60

-1

0

1

Figure 3.7: A feedback control strategy that makes the magnitude of the error small
for the linear plant is high gain in feedback: The feedback controller is a proportional
controller where Gfb = 8.4, the feedback time delay is 100 ms (i.e., d = 5), and there
is no feedforward controller (i.e., Gff = 0). (b) Approximate inverse dynamics in
feedforward: p = 1, the feedforward controller is a fifth-order FIR approximation of
G−1 across the 0-to-0.5 Hz range, f1 is the identity function, and there is no feedback
controller (i.e., Gfb = 0).

Moreover, the time-averaged error corresponding to Fig. 3.7 is approximately 0.16,

which is smaller than the mean-averaged error for all trials of the linear group (cf.

Fig. 3.5).

Another possible control strategy for the linear plant is approximate feedforward

plant inversion. Specifically, if the feedforward controller Gff approximates G−1, then

it follows from (3.6) that G̃er is approximately 0. If in addition Gfb and d are such

that G̃er is asymptotically stable, then it follows from (3.5) that the magnitude of ek is

small. As with high-gain feedback control, there may also be practical limitations with

feedforward plant inversion. In particular, a human’s ability to approximate the plant

inverse may be limited by the plant’s complexity. Features that contribute to plant

complexity include high order, high relative degree, time delays, and nonminimum-

phase zeros [58].
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Figure 3.8: A feedforward control strategy that makes the magnitude of the error
small for the linear plant is approximate inverse dynamics in feedforward: p = 1, the
feedforward controller is a fifth-order FIR approximation of G−1 across the 0-to-0.5
Hz range, f1 is the identity function, and there is no feedback controller (i.e., Gfb = 0).

Consider the case that Gff,1 is the best-fit 5th-order FIR approximation of G−1

over the 0-to-0.5 Hz frequency range. Specifically, consider Gff(z) = 3467.6z5 −

9280.2z4 + 2157.3z3 + 14708.8z2 − 16081.4z + 5028.7, which is the best-fit 5th-order

FIR approximation of G−1(z) over the 0-to-0.5 Hz frequency range. Figure 3.8 shows

the resulting closed-loop output yk and error ek for the case Gfb = 0. Note that the

approximate feedforward plant inversion controller yields a better performance than

the median-performer’s 40th-trial results shown in Fig. 3.3. Moreover, the time-

averaged error corresponding to Fig. 3.8 is approximately 0.01, which is smaller than

the mean-averaged error for all trials of linear group (cf. Fig. 3.5).

There are many other control strategies of the form (2.2) that yield good command-

following performance for the linear plant. Another possible strategy is a combination

of high gain in feedback and feedforward inversion. For example, humans may use

high-gain feedback at lower frequencies, where they have more control authority and
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the effects of feedback time delay are less pronounced; and then at higher frequencies,

humans may utilize their predictive capabilities to implement feedforward inversion

to mitigate the effects of reduced control authority and increased phase lag due to

time delay.

Next, we consider control strategies for the nonlinear group. The dynamic system

consists of the pair (G, h), where G(z) is the discrete-time transfer function that is

obtained by discretizing G(s) using a zero-order hold on the input with sample time

Ts and h is the unique real root of a 3rd-order polynomial. First, consider a pure

feedback control strategy. For all j ∈ {1, ..., p}, let Gff,j = 0. In this case, the control

architecture of Fig. 2.2 reduces to a Lur’e system. One possible control strategy

is high gain in feedback, which makes the Bode magnitude large at frequencies of

the command rk. High-gain in feedback yields good command-following performance

for LTI systems, provided that the closed-loop is asymptotically stable. Closed-loop

stability and performance for the nonlinear system (G, h) is more difficult to evaluate.

Since the slope of the magnitude of h is bounded, there are several classical nonlinear

stability results that apply [95]. For example, the circle criterion implies that the

closed-loop system is absolutely stable if GfbG is asymptotically stable and its H∞

norm is sufficiently small [95, Theorem 5.2]. Consider the feedback transfer function

Gfb = 6.67z/(z2 − 0.07z + 0.8). Let the feedback delay be d = 5, which corresponds

to a feedback time delay of 100 ms. Figure 3.9 shows the resulting closed-loop output

yk and error ek. The time-averaged error corresponding to Fig. 3.9 is 0.24, which is

smaller than time-averaged error for all 40th trial experiments of the nonlinear group

(cf. Fig. 3.5).

There are some practical limitations for using high-gain in feedback for manual

command-following tasks. Humans cannot use arbitrarily high gain due to physical

limitations in speed and range of motion. Moreover, a human’s ability to use high

gain in feedback is limited by their feedback time delay, which can cause closed-loop

44



-2

0

2

0 15 30 45 60

-1

0

1

Figure 3.9: A feedback control strategy that makes the magnitude of the error small
for the nonlinear plant is high gain in feedback.

instability if the gain in feedback is too large.

Another possible control strategy is feedforward inversion. Let p = 3, f1(rk) =

0.5rk, f2(rk) = −0.2r2
k, f3(rk) = 0.1r3

k, and Gff,j = G−1 for all j ∈ {1, 2, 3}. If in

addition Gfb = 0, then the closed-loop response is ê = [1−G−1G]r̂ = 0, which implies

that the command-following error is zero. Similar performance results can also be

obtained by approximate feedforward inversion, where the feedforward controllers are

approximations of G−1. Figure 3.7 shows the resulting closed-loop output yk and error

ek for the case that for all j ∈ {1, 2, 3}, Gff,j is the matched z-transform mapping

of 22G−1(s)/(s + 22), which is a proper approximation of G−1. We note that the

approximate feedforward inversion controller yields a better performance than the

median-performer’s 40th-trial results shown in Fig. 3.3. The time-averaged error

corresponding to Fig. 3.7 is 0.09, which is smaller than time-averaged error for all

40th trial experiments of the nonlinear group (cf. Fig. 3.5).

As with high gain in feedback, there may also be practical limitations with feedfor-
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Figure 3.10: A feedforward control strategy that makes the magnitude of the error
small for the nonlinear plant is approximate inverse dynamics in feedforward.

ward inversion. In particular, a human’s ability to approximate the dynamic-system

inverse may be limited by various features, such as relative degree, time delays, and

nonminimum-phase zeros [58]. Nonlinearities may also inhibit accurate approxima-

tion of the dynamic-system inverse.

There are many other control strategies of the form (2.2) that yield good command-

following performance for the nonlinear plant. As with the linear plant, another

possible strategy is a combination of high gain in feedback and feedforward inversion.

For example, similar to the linear plant, humans may use high-gain feedback at lower

frequencies, where they have more control authority and the effects of feedback time

delay are less pronounced; and then at higher frequencies, humans may utilize their

predictive capabilities to implement feedforward inversion to mitigate the effects of

reduced control authority and increased phase lag due to time delay.
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3.5 Subsystem Identification Results and Discussion

The time-domain SSID method described in Chapter 2 is applied to the experi-

mental data of the linear and nonlinear groups. For each subject and each trial, we

identify a feedback transfer function Gfb, feedback delay d, and feedforward trans-

fer functions Gff,1, ..., Gff,p. The candidate pool Γ contains approximately 50 million

candidate pairs (d,Gfb) and captures a wide range control behavior over the 0-to-0.5

Hz frequency range of the command (3.1). Since sensory feedback time delay for

humans is in the range 80 ms to 500 ms [33, 41, 96, 97], and the sampling rate for

the experiments is 20 ms, the candidate pool includes all δ ∈ {4, 5, · · · , 25}. The

candidate feedback transfer functions Gfb are second order relative degree one with

monic denominator (i.e., nfb = 1, and dfb = 2). The parameters of candidate feed-

back controller are designed such that the zero and poles of the candidate feedback

transfer functions Gfb lie inside the unit circle. More specific details on the candidate

pool are provided in Appendix A. The feedforward transfer functions Gff,1, ..., Gff,p

are each 5th-order FIR, and for i ∈ {1, ..., 5}, fi(rk) = rik. These orders allow the

identified feedforward system to approximate the plant pair (h−1, G−1) with approx-

imately 0.1% error over the 0-to-0.5 Hz frequency range of the command (3.1). The

SSID algorithm is implemented using parallel computation on a supercomputer. A

validation analysis of the identification results is presented in Appendix B.1.

We first present identification results of the feedback pair (d,Gfb). For each iden-

tified feedback transfer function, we define

‖Gfb‖ , max
ω∈[0,π]

∣∣Gfb(eωTs)
∣∣ ,

which is the peak magnitude of the feedback transfer function over the 0-to-0.5 Hz

range of the command r. For each trial, we compute the average ‖Gfb‖ and average

time delay d of all 11 subjects in each group. Figures 3.11 and 3.12 show the trial-by-
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Figure 3.11: The feedback controller’s peak magnitude for the nonlinear group is
smaller than that of the linear group over all 40 trials. The symbols ◦ and × indicate
the mean of the 11 subjects for linear and nonlinear group respectively and the vertical
lines show one standard deviation above and below the mean.

trial averages for the linear and nonlinear groups. The subjects in the nonlinear group

consistently use a lower feedback gain and a larger time delay than the subjects in the

linear group. The larger time delay suggests that the nonlinear-group subjects are

more hesitant to react to command-following errors than the linear-group subjects.

The larger time delay for the nonlinear subjects limits the amount of gain they can use

in feedback to maintain a stable closed-loop response. In contrast, the linear-group

subjects have a smaller time delay and are thus able to use larger feedback gain.

Next, identification results are presented for the feedforward controllers. For all k ∈

{1, ..., Ns}, define the identified feedforward control signal u+
ff,k ,

∑p
j=1Nff,j(q)fj(rk).

We compare u+
ff,k with the feedforward-inversion control signal u∗ff,k, which is the zero-

initial-condition solution of u∗ff,k , G−1(q)h−1(rk). Note that u+
ff,k is the feedforward

control signal using the identified feedforward controller G+
ff and the identified feed-

forward nonlinear function f+, and u∗ff,k is the feedforward control signal assuming
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Figure 3.12: Subjects in the nonlinear group have more feedback delay over the 40
trials compared to subjects in the linear group. The symbols ◦ and × indicate the
mean of the 11 subjects for linear and nonlinear group respectively and the vertical
lines show one standard deviation above and below the mean.

there is plant inversion in feedforward. For each identified feedback controller, the

average difference between u+
ff,k and u∗ff,k is defined as

∥∥u+
ff − u∗ff

∥∥ , 1

Ns

Ns∑
k=1

∣∣u+
ff,k − u∗ff,k

∣∣ .
A smaller

∥∥u+
ff − u∗ff

∥∥ indicates that the feedforward controller more closely approx-

imates feedforward inversion. Figure 3.13 shows the average
∥∥u+

ff − u∗ff
∥∥ of the 11

subjects in the linear and nonlinear groups for each trial. For both groups, the aver-

age of
∥∥u+

ff − u∗ff
∥∥ decreases over the 40 trials. The linear group’s feedforward control is

on average a better approximation of feedforward inversion than the nonlinear group.

This difference may account for some of the difference in performance between the

two groups (see Fig. 3.5). Specifically, the dynamic system’s static output nonlinear-

ity may make it more difficult for the subjects to accurately invert the dynamics in
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Figure 3.13: The time-averaged difference between uff,k and u∗ff,k for the linear and
nonlinear group decreases over 40 trials. The symbols ◦ and × indicate the mean of
the 11 subjects for linear and nonlinear group respectively and the vertical lines show
one standard deviation above and below the mean.

feedforward, thus yielding decreased performance.

The results in Fig. 3.13 suggest that both groups of subjects learn to approximate

the dynamic system’s inverse in feedforward. To distinguish between the learning of

G−1 and h−1 for the nonlinear group, we use each subject’s identified controller to de-

rive a Hammerstein-model approximation of their feedforward controller. Specifically,

we compute a pair (f,Gff) where f : R → R is an input nonlinearity, Gff is a FIR

transfer function, and Gff(q)f(rk) is the Hammerstein-model approximation. Note

that the identified feedforward control
∑p

j=1 Gff,j(q)fj(rk) is a Hammerstein model if

for all j ∈ {1, ..., p}, there exists scalar cj such that Gff,j = cjGff . The Hammerstein

model structure is more restrictive feedforward control model than that of Fig. 2.2.

However, when the feedforward controller approximates feedforward inversion, then a

Hammerstein model pair (f,Gff) can approximate this behavior and provide a direct

comparison with the components of the exact feedfoward inversion pair (h−1, G−1).
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Replacing the feedforward controller in (2.13) with the Hammerstein model (f,Gff)

yields

D(z)Dfb(z)zd+nff v̂(z) = N(z)Nfb(z)znff ê(z) +N(z)Dfb(z)zdGff(z)ŝ(z), (3.7)

where ŝ(z) is the z-transform of f(rk). Let f be defined by f(rk) ,
∑p

j=1 αjfj(rk),

where α1, ..., αp ∈ R are unknown coefficients. We assume that the linear behavior

of the identified feedforward controller is primarily captured by its linear compo-

nent Gff,1(q)f1(rk), and we let Gff = 1
α1
Gff,1. Thus, the Hammerstein model can be

expressed as Gff(q)f(rk) = Gff,1(q)f̄(rk), where

f̄(rk) , f1(rk) + [f2(rk) · · · fp(rk)]ᾱ,

and ᾱ , [α2

α1
· · · αp

α1
]T. We use (3.7) along with the identified control components d,

Gfb, and Gff,1 to find a best-fit ᾱ. For all k ∈ {1− `d, ..., Ns − `d}, define

mk , N(q)Dfb(q)Nff,1(q)qd[f2(rk) · · · fp(rk)],

nk , D(q)Dfb(q)qd+nffvk −N(q)Nfb(q)qnffek −N(q)Dfb(q)Nff,1(q)qdf1(rk),

where d, Nfb, Dfb, and Nff,1 are identified parameters. For all k = 1, ..., Nf , let

ωk , (k − 1)π/30 rad/s, which are Nf = 31 evenly-spaced frequencies over the 0-0.5

Hz range. Let mdft(ωk) and ndft(ωk) denote the discrete Fourier transforms of the

sequences {mk−`d}Ns
k=1 and {nk−`d}Ns

k=1. We seek ᾱ that minimizes the cost function

JH(ᾱ) ,
∑

ωk∈[ω1,ωNf
]

|mdft(ωk)ᾱ− ndft(ωk)|2 .

The cost JH is convex in the elements of ᾱ. The method of least squares is used to

determine the best-fit ᾱ that minimizes JH.
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The Hammerstein-model pair is (α1f̄ , Gff,1/α1), where α1 is unknown. Note that

for any nonzero α1, 1
α1
Gff,1(q)α1f̄(rk) = Gff,1(q)f̄(rk). Thus, α1 is an arbitrary with

regards to the input-output response. To compare (f,Gff) with (h−1, G−1), we let

α1 ,

√∑Ns

k=1 |h−1(rk)|2√∑Ns

k=1

∣∣f̄(rk)
∣∣2 , (3.8)

which enforces the condition that {f(rk)}Ns
k=1 and {h−1(rk)}Ns

k=1 have the same `2 norm.

For each subject and each trial, we identify a best-fit Hammerstein model pair

(f,Gff). The following discussion compares the subjects’ identified feedforward com-

ponents f and Gff with the ideal feedforward inversion components h−1 and G−1.

First, we compare f with h−1. Figures 3.14 and 3.15 show the average f for all

subjects on the first and last trials of the linear and nonlinear groups. For both

groups, the average f is a better approximation of h−1 on the last trial than on the

first trial. The nonlinear group has a more significant change in f from the first to

the last trial.

To further compare f with h−1, define

∥∥f − h−1
∥∥ , 1

2

Ns∑
k=1

|f(rk)− h−1(rk)|
|h−1(rk)|

,

which is a measure of the difference between f and h−1. Figure 3.16 shows the mean

and standard deviation of ‖f − h−1‖ on each trial of the linear and nonlinear group.

The average of ‖f − h−1‖ is smaller for the linear group than the nonlinear group

on all trials. For both groups, the average of ‖f − h−1‖ is smaller on the last trial

compared to the first trial. However, the nonlinear group exhibits a more significant

decreasing trend over the 40 trials. These results suggest that the nonlinear subjects

learn to approximate h−1 in feedforward, whereas there is less learning for the linear

group. We also note that the average of ‖f − h−1‖ for the nonlinear group continues to
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Figure 3.14: The average basis function f is a better approximation of h−1 on the last
trial than the first trial of the linear group. The shaded region shows one standard
deviation above and below the mean.
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Figure 3.15: The average basis function f is a better approximation of h−1 on the
last trial than the first trial of the nonlinear group. The shaded region shows one
standard deviation above and below the mean.
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Figure 3.16: Mean and standard deviation of ‖f − h−1‖ on each trial. The difference
between f and h−1 for the nonlinear group has a more significant decreases over the
40 trials. The symbols ◦ and × indicate the mean of 11 subjects for the linear and
nonlinear group respectively and the vertical lines show one standard deviation above
and below the mean.

decrease over the last 10 trials, suggesting that the subjects may continue to improve

their approximation of h−1 if given more trials.

Next, we compare Gff with G−1. Figures 3.17 and 3.18 show the average Bode

plot over the frequency range of 0-to-0.5 Hz of the identified Gff for all 11 subjects

on the first and last trials of the linear and nonlinear group. For both groups, the

average feedforward transfer function more closely approximates G−1 on the last trial

compared to the first trial. To further compare Gff with G−1, define

‖GffG− 1‖ , 1

π

∫ π

0

∣∣Gff(eωTs)G(eωTs)− 1
∣∣ dω,

which is a frequency-domain measure of the difference between Gff and G−1. Fig-

ure 3.19 shows the mean and standard deviation of ‖GffG− 1‖ for each trial of the
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Figure 3.17: The average feedforward transfer function Gff approximates G−1 after
40 trials of linear group. The shaded region shows one standard deviation above and
below the average identified feedforward transfer function.

linear and nonlinear group. We note that the trends for the linear group are compa-

rable to those in [48], which applies a frequency-domain SSID method to the same

experimental data.

The average of ‖GffG− 1‖ for the two groups have a similar trend over the 40 trials.

Over the first 10 trials, there is a decreasing trend for both groups; and over the last

10 trials, the trend is relatively flat for both groups. The linear group achieves a

better approximation of G−1 than the nonlinear group. These results suggest that

the subjects of both groups learn to approximate the inverse of G in feedforward over

the 40 trials.

3.6 Summary and Conclusions

We now discuss the impact of system nonlinearities on the contol strategies used

by humans. In this chapter, we presented the results of a HITL experiment, which

was designed to investigate the control strategies that humans use to interact with
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Figure 3.18: The average feedforward transfer function Gff approximates G−1 after
40 trials of nonlinear group. The shaded region shows one standard deviation above
and below the average identified feedforward transfer function.
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Figure 3.19: Mean and standard deviation of ‖GffG− 1‖ on each trial. For both
groups, the difference between Gff and G−1 decreases over the 40 trials. The symbols ◦
and × indicate the mean of the 11 subjects for linear and nonlinear group respectively
and the vertical lines show one standard deviation above and below the mean.
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nonlinear dynamic systems. In this experiment, 22 human subjects interacted with

a dynamic system and performed a command-following task. One group interacted

with an LTI dynamic system, while the other group interacted with a Wiener system,

which consisted of the same LTI dynamics cascaded with a static output nonlinearity.

This chapter presented new results on the impact of nonlinearities on HITL con-

trol behavior. The experimental results indicate that static output nonlinearities can

make a dynamic system more difficult for humans to control. The average command-

following performance of the linear group is better on 77.5% of trials than the non-

linear group (see Fig. 3.5). To investigate the control strategies of both groups, a

nonlinear SSID algorithm is used to identify best-fit feedback and feedforward con-

trollers for each subject and on each trial. The SSID results reveal several differences

between the linear and nonlinear groups. The linear group tends to use more feedback-

control authority. Specifically, the linear group has a smaller feedback time delay and

uses a larger feedback gain than the nonlinear group (see Figs. 3.11 and 3.12).

The main finding of this chapter addresses feedforward behavior. Prior HITL stud-

ies suggest that adaptive feedforward inversion is a primary command-following con-

trol strategy for many linear systems. The results in this chapter provide supporting

evidence that humans also adopt this control strategy for some nonlinear systems. For

both the linear and nonlinear groups, the identified feedforward controllers approxi-

mate the dynamic system’s inverse better on the last trial than on the first trial (see

Figs. 3.14, 3.15, 3.17, and 3.18). However, the linear group achieves better approxi-

mation of the dynamic system’s inverse (see Figs. 3.16 and 3.19). This difference in

approximating the inverse is a possible explanation for the difference in performance

between the two groups. Finally, the SSID results suggest that the nonlinear sub-

jects learn the linear part of the dynamic system more quickly than they learn the

static output nonlinearity. Over the latter half of the trials, the nonlinear subjects’

feedforward transfer function does not change significantly (see Fig. 3.19), whereas
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they continue to learn the output nonlinearity (see Fig. 3.16). Given more trials,

the nonlinear subjects may continue to learn a better approximation of the dynamic

system’s inverse and perform as well as the linear subjects.
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Chapter 4 The Impact of Relaxed Command-Following Objectives on Hu-

man Control Strategies

In this chapter, we present the results of a human-in-the-loop experiment which

is designed to investigate the effects of relaxing the control objectives on the control

strategies used by humans in command-following tasks. In this experiment, 22 human

subjects each interact with a dynamic system 40 times over a one-week period. The

subjects are divided into 2 groups of 11 subjects. Each group interacts with the same

dynamic system and performs a command-following task; however, the groups have

different control objectives. One group’s control objective is to follow the reference

command as closely as possible at all instants in time. In contrast, the other group’s

control objective is to follow the reference command with some allowable error. A

preliminary analysis of the experimental results appears in [98]. We expand on that

analysis to examine the effects of a relaxed command-following control objective. We

also use the frequency-domain subsystem identification (SSID) algorithm presented

in Chapter 2 to model the control strategies (feedforward, feedback, and feedback

time delay) that each subject uses on each trial. We use the identification results of

this chapter’s experiment to improve our understanding of the effects that relaxing

the control objectives has on control strategies used by humans.

4.1 Introduction

In human-in-the-loop (HITL) manual tasks, humans manipulate a system, which

could be unknown to them, in order to accomplish a certain task that has been given
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to them. For instance, a human driver utilizes steering and braking to drive a vehicle

along a road path. The control strategies used by humans to accomplish these tasks

depend on many factors. One of the most significant factors influencing the human

control strategy is the nature of the task that is being accomplished. In the human

driver example, the control strategy adopted by the driver depends on the control

task in hand; a control strategy employed for a path-following task cannot succeed in

an obstacle-avoidance task and vice versa.

There have been many studies investigating a variety of manual tasks, including

reaching tasks [7–11,99,100] and grasping tasks [12,13,101–107]. These studies suggest

that humans form internal models of the body and the physical world as they learn to

accomplish the instructed tasks. Similar results have been suggested by studies that

investigate command-following tasks, including compensatory tracking tasks [32, 33,

37, 40, 77, 108–110], pursuit tracking tasks [38, 41, 111–116], and tracking tasks with

preview [117–121].

In multiple studies, data from HITL experiments are used to model human con-

trol behavior in command-following tasks using SSID techniques [47–49, 71]. The

SSID results of those studies suggest that a primary command-following strategy

used by humans is adaptive feedforward inversion. Specifically, if the LTI system is

represented by the transfer function G, then over repeated interactions the human

updates its feedforward controller until it approximates G−1. SSID results suggest

that feedforward inversion is used for many LTI systems, provided that the command

is predictable or a preview of the command is available [93, 94].

Some studies have investigated the impact of changes in the reference command on

the control strategies adopted by humans in a command-following task. The results in

[58,59] suggest that certain reference commands are more difficult for humans to follow

than others. Moreover, these results suggest that as long as the reference command is

predictable, adaptive feedforward inversion remains as their primary control strategy,
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even after the reference command has changed. However, to the best of our knowledge,

so far no study has been conducted to investigate the possible impacts of relaxing

the command-following control objectives on human control behavior in a pursuit

tracking task. Many real-world human-machine interactions do not require a human

operator to strictly follow a reference command, but rather a relaxed command-

following is required. For example, the control objective of a human driver usually

is not to keep the vehicle on an exact path trajectory along the road at all time,

but rather to maintain the vehicle within the boundaries of a certain lane on the

road. Therefore, achieving a better understanding of human control behavior when

performing a relaxed command-following task could have applications in many real-

world HITL technologies.

The main motivation of this chapter is to investigate the effects that relaxing the

command-following control objectives potentially has on the control strategies that

humans learn to use when interacting with a dynamic system. We present the results

of an experiment with 2 groups of 11 subjects, where all subjects interact with the

same dynamic system and have the same reference command, but each group has

a different control objective. For one group, the control objective is to follow the

reference command perfectly, that is, to make a controlled object follow a reference

object as closely as possible at all instants in time. For the other group, the control

objective is to follow the reference command with some allowable error. Each sub-

ject’s command-following behavior is modeled by a discrete-time control architecture

consisting of a feedback time delay, a linear feedback controller, and a linear feed-

forward controller. We compare the time-domain performance, frequency-domain

performance, and control behavior of these two groups. By comparing the time-

domain performance, frequency-domain performance, and control behavior of these

two groups, we investigate the effects of relaxing the command-following control ob-

jective on control strategies used by human subjects.
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4.2 Experimental Methods

Twenty-two volunteers participated in this study. The subjects were 18 to 35 years

old and had no known neurological disorder. This study satisfies the U.S. Department

of Health and Human Services Code of Federal Regulation for human subject research

(45 CFR 46) and was approved by the University of Kentucky Institutional Review

Board (IRB number 14-0526-P4K).

The experimental setup is shown in Fig. 4.1. The subjects used a rotational joystick

(Teledyne Gurley model 8225-6000-DQSD) to control the motion of an object that

is displayed on a computer screen. The computer monitor displays two rectangular

markers, one above the other. The top rectangular marker is called the reference

object, and its horizontal position is denoted r. The bottom rectangular marker is

called the control object, and its horizontal position is denoted y. The reference object

follows a predetermined path, which is the same for all subjects and all trials. The

control object’s position y is controlled by the joystick’s angular position u. The

relationship between u and y is governed by a dynamic system, which is numerically

simulated by a computer. Prior to performing the experiment, the subjects have no

knowledge of the reference object’s motion r or the dynamic system relating u and

y. The subject’s objective is to manipulate the joystick in a manner that makes the

control object follow the reference object.

Each subject performes 40 trials of the experiment. A trial is a 60-s time period

during which a subject operates the joystick, and a session consists of 10 consecutive

trials completed within a period of 20 minutes. Subjects completed 4 sessions over a

7-day period, but no more than one session in a 12-hour period. For each session, a

subjects is placed in an isolated area free from distraction. The subject sits in a chair

facing a computer screen, which is located approximately 60 cm from the subject’s

eyes and measures 47.6 cm high by 26.8 cm wide. The subject’s dominant hand is
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Figure 4.1: Subjects use a rotational joystick to control the position y of the bottom
marker displayed on the computer screen. The joystick’s angular position u is the
control input of an unknown dynamic system, which is simulated by a computer, and
the the dynamic system’s output is y.

used to manipulate the rotational joystick.

The reference object’s position r is a 60-second chirp signal with frequency content

between 0 and 0.5 Hz. Specifically, for all t ∈ [0, 60],

r(t) , 2 sin
( π

120
t2
)
.

The control object’s position y satisfies the differential equation

...
y (t) + a2ÿ(t) + a1ẏ(t) + a0y(t) = b1u̇(t) + b0u(t),

where a0 = 6.4, a1 = 9.76, a2 = 5.2, b0 = 7.04, and b1 = 3.2. Thus, the transfer

function from u to y is given by

G(s) , 3.2(s+ 2.2)

(s+ 1.6)(s2 + 3.6s+ 4)
,

which has poles at −1.6 and −1.8±j0.87, and a zero at −2.2. The units of r and y are

hash marks (hm), which are equally-spaced vertical lines displayed on the computer

screen. The distance between hash marks is 2.5 cm, and the range of motion displayed
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Figure 4.2: Subjects in group 1 have a reference object with width 0.07 hm, while
subjects in group 2 have a reference object with width 1.5 hm.

on the computer screen is ±8 hm.

The 22 subjects were randomly divided into two groups, where each group had 11

subjects. To examine the effects of relaxing the command-following control objective,

the reference object is different for the two groups. The width of the reference object

for group 1 is 0.07 hm (i.e., 0.17 cm), and the width of the reference object for group

2 is 1.5 hm (i.e., 3.75 cm). Figure 4.2 depicts the computer screen interface for both

groups.

Subjects in group 1 were instructed to manipulate the joystick such that the control

object and the reference object maintain the same position. Subjects in group 2 were

instructed to manipulate the joystick such that the control object remains between the

boundaries of the reference object. Thus, group 1 subjects have a command-following

control objective, whereas group 2 subjects have a relaxed command-following control

objective.
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Table 4.1: Number of divergent trials for each group

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Total

Group 1 0 1 0 0 1
Group 2 6 4 0 0 10

4.3 Performance Analysis

A divergent trial is defined as a trial in which the magnitude of yk exceeds 8 hm,

that is, the controlled object’s position exceeds the range of motion displayed on the

computer screen. Table 4.1 shows the number of divergent trials for each group. There

was only one divergent trial among 440 trials of group 1. In 440 trials of group 2,

there were 10 divergent trials. All divergent trials occurred before trial 20 and are

omitted from the results.

The time signals r, y, and u are sampled for all subjects and all trials with sample

time Ts = 0.02 s and number of samples Ns = 3001. The sampled data obtained from

r, u, and y yield the discrete signals {rk}Ns
k=1, {yk}Ns

k=1, and {uk}Ns
k=1.

4.3.1 Time-Domain Analysis

The command-following performance is for k = 1, . . . , Ns,

z1,k , rk − yk.

The objective of group 1 subjects is to make z1,k = 0. The relaxed command-following

performance is for k = 1, . . . , Ns,

z2,k ,


z1,k − 0.75, if z1,k ∈ (0.75,∞)

0, if z1,k ∈ [−0.75, 0.75]

z1,k + 0.75, if z1,k ∈ (−∞,−0.75)

,
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Table 4.2: Mean ‖z1‖ and its percentage change from the first 10 trials to the last 10
trials.

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Change
(%)

Group 1 0.646 0.454 0.406 0.346 -46.5
Group 2 0.857 0.667 0.600 0.545 -36.4

which is the value obtained by passing the error z1,k through a deadzone function

that has a deadzone on the interval [−0.75, 0.75]. This deadzone corresponds to the

width of the reference object for group 2. The objective of group 2 subjects is to

make z2,k = 0.

We define for each trial the time-averaged performance

‖z1‖ ,
1

Ns

Ns∑
k=1

|z1,k|,

which is the time average of the signal z1,k. Table 4.2 shows the mean ‖z1‖ on 4

different sets of trials for group 1 and group 2 and its percentage change from the

first 10 trials to the last 10 trials. For both groups the mean ‖z1‖ decreases over the

trials. This decrease, however, is more evident for subjects in group 1 than subjects

in group 2. Figure 4.3 shows group statistical properties of ||z1|| for all trials. For

both groups, the mean and median ‖z1‖ decrease over the 40 trials. The mean ‖z1‖

of group 1 is smaller than the mean ‖z1‖ of group 2 on every trial. Thus, as expected,

group 1 outperforms group 2 in the non-relaxed command-following objective.

We define for each trial the time-averaged relaxed performance

‖z2‖ ,
1

Ns

Ns∑
k=1

|z2,k|,

which is the time average of the signal z2,k. Table 4.3 shows the mean ‖z2‖ on 4

different sets of trials for group 1 and group 2 and its percentage change from the

first 10 trials to the last 10 trials. For both groups the mean ‖z2‖ decreases over the
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Figure 4.3: Mean, median, first quartile, and third quartile of ‖z1‖ on each trial. For
both groups, the mean and median ‖z1‖ improve over the 40 trials. The mean ‖z1‖
for group 1 is smaller than that of group 2 over all trials. • is the mean, and the
boxplot shows the median, first quartile, and third quartile.

Table 4.3: Mean ‖z2‖ and its percentage change from the first 10 trials to the last 10
trials.

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Change
(%)

Group 1 0.235 0.110 0.086 0.055 -76.8
Group 2 0.391 0.244 0.207 0.165 -57.8

trials. However, this decrease is more evident for subjects in group 1 than subjects

in group 2. Figure 4.4 shows group statistical properties of ||z2|| on each trial. The

mean and median ‖z2‖ decrease over the 40 trials for both groups. The mean ‖z2‖

of subjects in group 1 is smaller than that of subjects in group 2 on every trial. The

mean ‖z2‖ can be considered as a measure of group 2’s performance of keeping the

controlled object between the outer edges of the reference object. Thus, group 1 also

outperforms group 2 in the relaxed command-following objective.

Figure 4.5 shows rk, yk, and z1,k on the first and last trial for the median performer
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Figure 4.4: Mean, median, first quartile, and third quartile of ‖z2‖ on each trial. For
both groups, the mean and median ‖z2‖ improve over the 40 trials. The mean ‖z2‖
for group 1 is smaller than that of group 2 over all trials. • is the mean, and the
boxplot shows the median, first quartile, and third quartile.

in group 1. The median performer of group 1 is the subject whose ‖z1‖ on the last

trial is the median (i.e., 6th best) of all subjects in their group. Similarly, Fig. 4.6

shows rk, yk, and z2,k on the first and last trial for the median performer in group 2.

The median performer of group 2 is the subject whose ‖z2‖ on the last trial is the

median (i.e., 6th best) of all subjects in their group. The median subject for both

groups performs better on the last trial than the first trial. All subjects in both

groups exhibit improved performance from their first to last trial. Similar results are

observed for all other subjects.

Next, we define for each trial the control effort

‖u‖ , 1

Ns

Ns∑
k=1

|uk|,

which is the time average of the control signal uk. A subject’s steady-state control
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Figure 4.5: The reference rk, output yk, and command-following error z1,k for the
group 1’s median subject’s 1st and 40th trial.
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Figure 4.6: The reference rk, output yk, and relaxed command-following error z2,k for
group 2’s median subject’s 1st and 40th trial.
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Figure 4.7: Mean, median, first quartile, and third quartile of ‖u‖ for each subject
over the last 10 trials. The mean ‖u‖ over the last 10 trials for 5 subjects in group 2
fall below that of all subjects in group 1 and the rest of subjects in group 2. • is
the mean, the boxplot shows the median, first quartile and third quartile, and the
whiskers show the minimum and maximum.

effort ‖u‖ss is defined as their mean ‖u‖ over their last 10 trials. Note from Fig. 4.3 and

Fig. 4.4 that for both groups the mean ‖z1‖ and ‖z2‖ do not change significantly over

the last 10 trials, suggesting that the subjects reach near-steady-state performance.

Thus, ‖u‖ss is a measure of a subject’s control effort upon learning to control the

dynamic system.

Figure 4.7 shows statistical properties of ‖u‖ss for each subject in ascending order.

Of the 11 subjects within group 2, 5 have a significantly smaller steady-state control

effort compared to other subjects in group 2, as well as all 11 subjects in group 1. For

the rest of this chapter, we refer to those 5 subjects as group 2b, and the remaining

6 subjects in group 2 are referred to as group 2a.

Figure 4.8 shows group 1, group 2a, and group 2b statistical properties of ‖z1‖ on

each trial. For all three groups, the mean and median ‖z1‖ decrease over the 40 trials.
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Figure 4.8: Mean, median, first quartile, and third quartile of ‖z1‖ on each trial. For
all groups, the mean and median ‖z1‖ improve over the 40 trials. The mean ‖z1‖ for
groups 1 and 2a are smaller than that of group 2b. • is the mean, and the boxplot
shows the median, first quartile, and third quartile.

The mean ‖z1‖ for groups 1 and 2a are smaller than the mean ‖z1‖ of group 2b on

every trial. Moreover, the group 2a mean and interquartile range are more similar

to those of group 1 than group 2b. For groups 1 and 2a, the interquartile range

(i.e., the difference between third and first quartile) decreases from trial 1 to trial

40. In contrast, the interquartile range for group 2b is relatively constant over the

trials. This result suggests that, in contrast to group 2b subjects, group 2a subjects

attempt to follow the center of the reference object and thus adopt the same non-

relaxed command-following objective as group 1 subjects. Group 2b also shows a

larger variance in ‖z1‖ on 92.5 % of the trials compared to group 1 and on 97.5 % of

the trials compared to group 2a. The same results can be seen in Table 4.4, which

shows the mean ‖z1‖ on 4 different sets of trials for group 1, group 2a, and group 2b

and its percentage change from the first 10 trials to the last 10 trials.

A one-way ANOVA on mean ‖z1‖ over all trials for subjects in groups 1, 2a, and 2b

71



Table 4.4: Mean ‖z1‖ and its percentage change from the first 10 trials to the last 10
trials.

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Change
(%)

Group 1 0.646 0.454 0.406 0.346 -46.5
Group 2a 0.720 0.520 0.431 0.376 -47.7
Group 2b 1.030 0.847 0.799 0.747 -27.5

shows a significant difference at the p < 0.01 level (F2,19 = 9.17, p = 1.63×10−3). Post

hoc comparisons between group 2b and group 1 and between group 2b and group 2a

using the Tukey HSD test yield p = 1.42 × 10−3 and p = 9.87 × 10−3, respectively.

Thus, the mean time-averaged error over all trials for subjects in group 2b (M = 0.87,

SD = 0.32) is significantly different than that of subjects in group 1 (M = 0.46,

SD = 0.13) and group 2a (M = 0.51, SD = 0.09) at the p < 0.01 level. However,

the post hoc comparison between group 1 and group 2a yields p = 0.88, which shows

that there is no significant statistical difference between the two groups.

Figure 4.9 demonstrates the mean, median, first quartile, and third quartile of ‖z2‖

for subjects in group 1, group 2a, and group 2b on each trial. The mean and median

‖z2‖ improve over the 40 trials for all three groups. The average ‖z2‖ of subjects

in groups 1 and 2a are better than that of subjects in group 2b on every trial. For

groups 1 and 2a, the interquartile range decreases from trial 1 to trial 40. However,

the interquartile range for group 2b is relatively constant over the trials. The same

results can be seen in Table 4.5, which shows the mean ‖z2‖ on 4 different sets of

trials for group 1, group 2a, and group 2b and its percentage change from the first 10

trials to the last 10 trials. These results provide more evidence in support of the idea

that subjects in group 2a adopt the same non-relaxed command-following objective

as group 1 subjects.

A one-way ANOVA on mean ‖z2‖ over all trials for subjects in groups 1, 2a, and 2b

shows a significant difference at the p < 0.01 level (F2,19 = 7.16, p = 4.80×10−3). Post

hoc comparisons between group 2b and group 1 and between group 2b and group 2a
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Figure 4.9: Mean, median, first quartile, and third quartile of ‖z2‖ on each trial. For
all groups, the mean and median ‖z2‖ improve over the 40 trials. The mean ‖z2‖ for
groups 1 and 2a are smaller than that of group 2b. • is the mean, and the boxplot
shows the median, first quartile, and third quartile.

Table 4.5: Mean ‖z2‖ and its percentage change from the first 10 trials to the last 10
trials.

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Change
(%)

Group 1 0.235 0.110 0.086 0.055 -76.8
Group 2a 0.284 0.140 0.090 0.063 -77.8
Group 2b 0.525 0.372 0.348 0.287 -45.4
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Figure 4.10: Mean, median, first quartile, and third quartile of ‖u‖ on each trial. The
mean and median ‖u‖ for groups 1, 2a, and 2b suggest that subjects in group 2b learn
to use less control effort over the 40 trials compared to subjects in groups 1 and 2a.
• is the mean, and the boxplot shows the median, first quartile, and third quartile.

using the Tukey HSD test yield p = 4.56 × 10−3 and p = 1.87 × 10−2, respectively.

Thus, the mean time-averaged relaxed error over all trials for subjects in group 2b

(M = 0.40, SD = 0.27) is significantly different than that of subjects in group 1

(M = 0.12, SD = 0.08) and group 2a (M = 0.14, SD = 0.06) at the p < 0.02 level.

However, the post hoc comparison between group 1 and group 2a yields p = 0.95,

which shows that there is no significant statistical difference between the two groups.

The mean, median, first quartile, and third quartile of ‖u‖ for subjects in group 1,

group 2a, and group 2b on each trial are shown in Fig. 4.10. The mean and median

control effort used by subjects in groups 1 and 2a increase over the trials. The subjects

in group 2b consistently use a lower control effort than the subjects in the other two

groups. Moreover, their control effort decreases as they continue to learn to control

the dynamic system and reaches a steady state over the last 10 trials.

A one-way analysis of variance (ANOVA) was performed on mean ‖u‖ over all
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40 trials for subjects in groups 1, 2a, and 2b. This analysis indicates a significant

difference at the p < 0.01 level (F2,19 = 11.67, p = 4.94×10−4). Post hoc comparisons

between group 2b and group 1 and between group 2b and group 2a using the Tukey

HSD test yield p = 5.27 × 10−4 and p = 2.35 × 10−3, respectively. Thus, the mean

control effort over all trials for subjects in group 2b (M = 1.67, SD = 0.34) is

significantly different than the mean control effort over all trials for subjects in group 1

(M = 2.12, SD = 0.11) and group 2a (M = 2.10, SD = 0.10) at the p < 0.01 level.

In contrast, the post hoc comparison between group 1 and group 2a yields p = 0.98,

which indicates that there is no significant statistical difference between the two

groups.

4.3.2 Frequency-Domain Analysis

For all i = 1, ..., Nf , let ωi , (i − 1)π/30 rad/s, which are Nf = 31 evenly-spaced

frequencies over the 0-0.5 Hz range. For each trial, let rdft(ωi) and ydft(ωi) denote

the discrete Fourier transforms (DFT) of the sequences {rk}Ns
k=1 and {yk}Ns

k=1 at ωi,

respectively.

For each trial, we define the frequency-averaged magnitude error as

Em , 1

Nf

Nf∑
i=1

∣∣∣|ydft(ωi)|e∠rdft(ωi) − |rdft(ωi)|e∠rdft(ωi)
∣∣∣

=
1

Nf

Nf∑
i=1

∣∣∣|ydft(ωi)− |rdft(ωi)|
∣∣∣,

which is the frequency-averaged magnitude of the difference between ydft and rdft,

assuming the phase of ydft is the same as the phase of rdft. Similarly, for each trial,

we define the frequency-averaged phase error as

Ep , 1

Nf

Nf∑
i=1

∣∣∣|rdft(ωi)|e∠ydft(ωi) − |rdft(ωi)|e∠rdft(ωi)
∣∣∣
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=
1

Nf

Nf∑
i=1

|rdft(ωi)|
∣∣∣e∠ydft(ωi) − e∠rdft(ωi)

∣∣∣,
which is the frequency-averaged magnitude of the difference between ydft and rdft,

assuming the magnitude of ydft is the same as the magnitude of rdft.

Figure 4.11 shows the mean, median, first quartile, and third quartile of Em and

Ep for subjects in group 1, group 2a, and group 2b on each trial. These results

support what we had previously seen in our time-domain analysis. Subjects in group 1

and group 2a show similar trends in both frequency-averaged magnitude error and

frequency-averaged phase error. For both these groups, the mean Em and the mean

Ep decrease over 40 trials. While the same decreasing trend can be seen in group 2b,

their mean Em and mean Ep are much larger compared to the other groups. Moreover,

Ep for group 2b has a large interquartile range which does not get smaller over the

trials.

Tables 4.6 and 4.7 show the mean Em and Ep on 4 different sets of trials for group 1,

group 2a, and group 2b. For all three groups, the mean Em and mean Ep decrease over

the trials. This means that subjects in all three groups match the magnitude and the

phase of reference command better on the later trials compared to the earlier trials.

This decrease, however, is more evident for subjects in group 1 and group 2a. These

results also suggest that the improvement we had previously seen in the command-

following performance of the subjects in group 1 and group 2a is more a result of their

improvement in matching the phase of reference command than their improvement

in matching the magnitude. For group 2b, on the other hand, the distribution is

relatively even.

4.4 Subsystem Identification Results and Discussion

We apply the frequency-domain SSID algorithm described in Chapter 2 to the time-

domain data obtained from the subjects in all three groups. Each subject’s control
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Figure 4.11: Mean, median, first quartile, and third quartile of Em and Ep. • is the
mean, and the boxplot shows the median, first quartile, and third quartile.
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Table 4.6: Mean Em and its percentage change from the first 10 trials to the last 10
trials.

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Change
(%)

Group 1 0.056 0.041 0.038 0.032 -42.2
Group 2a 0.062 0.052 0.042 0.037 -40.7
Group 2b 0.091 0.080 0.070 0.068 -25.0

Table 4.7: Mean Ep and its percentage change from the first 10 trials to the last 10
trials.

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Change
(%)

Group 1 0.091 0.057 0.049 0.039 -57.3
Group 2a 0.098 0.062 0.047 0.041 -57.5
Group 2b 0.153 0.119 0.116 0.107 -29.8

z−d Gfb

uk
G

ykrk ek

Gff

Model of Subject’s Control Strategy

Figure 4.12: A time-invariant system, where the input rk, the output yk, and the
signals vk and uk are accessible, but all internal signals are inaccessible.

strategy is modeled by the linear time-invariant (LTI) control structure shown in Fig.

4.12, where G(z) is the discrete-time transfer function obtained by discretizing G(s)

using a zero-order hold on the input with sample time Ts = 0.02 s.

For each subject on each trial (880 trials in total) we identify the feedback time

delay Td, the feedback transfer function Gfb, and the feeforward transfer function Gff .

The candidate pool Γ contains approximately 50 million candidate pairs (d,Gfb) and

captures a wide range control behavior over the 0-to-0.5 Hz frequency range of the
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command (3.1). Since sensory feedback time delay for humans is in the range 80 ms to

500 ms [33,41,96,97], and the sampling rate for the experiments is 20 ms, the candidate

pool includes all δ ∈ {4, 5, · · · , 25}. The candidate feedback transfer functions Gfb are

second order relative degree one with monic denominator (i.e., nfb = 1, and dfb = 2).

The parameters of candidate feedback controller are designed such that the zero and

poles of the candidate feedback transfer functions Gfb lie inside the unit circle. More

specific details on the candidate pool are provided in Appendix A. The feedforward

transfer function Gff is a 2nd-order FIR. These orders are selected to allow for large

range of control behavior, including high gain in feedback and dynamic inversion

in feedforward. The SSID algorithm is implemented using parallel computation on

a supercomputer. A validation analysis of the identification results is presented in

Appendix B.2.

4.4.1 Discussion of Group 1 and Group 2a Results

For each identified feedback transfer function, we define

‖Gfb‖ ,
1

π

∫ π

0

∣∣Gfb(eωTs)
∣∣ dω,

which is the frequency-averaged magnitude of the feedback transfer function over

the 0-to-0.5 Hz range of the command r. Figure 4.13 shows the trial-by-trial mean,

median, first quartile, and third quartile of ‖Gfb‖ for subjects in group 1 and group 2a.

For both groups, the frequency-averaged feedback gain used by subjects tends to

increase over the first 10 trials. These results may indicate that over the first 10

trials, subjects in both groups learn to use a higher feedback gain without causing

closed-loop system instability.

Figure 4.14 shows mean, median, first quartile, and third quartile of the identified

feedback time delay Td on each trial for all subjects in group 1 and group 2a. The
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Figure 4.13: Mean, median, first quartile, and third quartile of ‖Gfb‖ on each trial of
subjects in group 1 and group 2a. The mean ‖Gfb‖ tends to increase over the first
10 trials. • is the mean, and the boxplot shows the median, first quartile, and third
quartile.

mean identified feedback time delay for both groups remains relatively constant. The

average identified feedback time delay Td over all 40 trials for subjects in groups 1

and 2a are 241 and 221 ms, respectively.

Next, for each identified feedforward transfer function, we define

‖GffG− 1‖ , 1

π

∫ π

0

∣∣Gff(eωTs)G(eωTs)− 1
∣∣ dω,

which the frequency-averaged magnitude of the difference between Gff and G−1 over

the 0-to-0.5 Hz frequency range. Figure 4.15 shows the trial-by-trial mean, median,

first quartile, and third quartile of ‖GffG− 1‖ of group 1 and group 2a. The average

of ‖GffG− 1‖ for both groups have a similar trend and decrease over the 40 trials.

Figures 4.16 and 4.17 demonstrate the average Bode plot over the 0-to-0.5 Hz

frequency range of the identified feedforward transfer function on the first and last
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Figure 4.14: Mean, median, first quartile, and third quartile of Td on each trial of
subjects in group 1 and group 2a. The mean identified feedback time delay remains
relatively constant for both groups. • is the mean, and the boxplot shows the median,
first quartile, and third quartile.

trial of groups 1 and 2a, respectively. For both groups, the identified feedforward

controllers better approximate the inverse of dynamic system on the last trial than

on the first trial. These results suggest that feedforward dynamic inversion is the

primary control strategy that subjects in groups 1 and 2a learn to use after 40 trials.

4.4.2 Discussion of Group 2b Results

As we saw in Figs. 4.7 and 4.10, the control behavior of subjects in group 2b is

different than the control behavior of subjects in the other two groups. This difference

is also evident in the feedforwad SSID results of the subjects in group 2b. Figure 4.18

demonstrates the average Bode plot over the 0-to-0.5 Hz frequency range of the iden-

tified feedforward transfer function Gff on the first and last trial of group 2b. Unlike

the other two groups, for subjects in group 2b, the average identified feedforward con-

troller on the last trial does not resemble the inverse of dynamic system. Figure 4.19
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Figure 4.15: Mean, median, first quartile, and third quartile of ‖GffG−1‖ on each trial
of subjects in group 1 and group 2a. The difference between Gff and G−1 decreases
over the 40 trials for both groups. • is the mean, and the boxplot shows the median,
first quartile, and third quartile.
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Figure 4.16: The average identified feedforward controller on trials 1 and 40 for
group 1. The shaded region shows one standard deviation.
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Figure 4.17: The average identified feedforward controller on trials 1 and 40 for
group 2a. The shaded region shows one standard deviation.

shows the trial-by-trial mean, median, first quartile, and third quartile of ‖GffG− 1‖

of group 2b. The difference between Gff and G−1 stays relatively constant over the 40

trials, which is different than what we saw from SSID results of subjects in group 1

and group 2a.

The validation of SSID results for group 2b (see Fig. B.2) implies that the LTI

control structure in 4.12 is not a good representation of the control behavior of the

subjects in this group. For group 1 and group 2a, on the other hand, validation of

the SSID results suggest that the LTI control structure in 4.12 provides a good repre-

sentation of the control behavior of the subjects, especially over the later trials. We

argue that the control strategy employed by subjects in group 2b contains nonlinear

components, which is impossible for the LTI control structure in 4.12 to capture.

In order to better understand the nonlinear components of their control behavior,
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Figure 4.18: The average identified feedforward controller on trials 1 and 40 for
group 2b. The shaded region shows one standard deviation.
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Figure 4.19: Mean, median, first quartile, and third quartile of ‖GffG − 1‖ on each
trial for group 2b. The difference between Gff and G−1 stays relatively constant over
the 40 trials. • is the mean, and the boxplot shows the median, first quartile, and
third quartile.
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we look at control object’s position for subjects in group 2b. For each trial we define

‖y‖ , 1

Ns

Ns∑
k=1

|yk|,

which is the time average of the control object’s position yk. Note that perfect

command-following performance (i.e., ‖z1‖ = 0) is achieved if and only if ‖y‖ = 1.224,

whereas perfect relaxed command-following performance (i.e., ‖z2‖ = 0) implies

0.584 ≤ ‖y‖ ≤ 1.974. Figure 4.20 shows group 1, group 2a, and group 2b statis-

tical properties of ‖y‖ on each trial. The mean ‖y‖ for group 1 and group 2a stay

relatively constant over the 40 trials. In contrast, the group 2b mean decreases from

trial 1 to trial 40. These results suggest that, in contrast to group 1 and group 2a,

subjects in group 2b learn to stay closer to the center of the screen as the experiment

goes on. Thus, group 2b learns to use a control that maintains the control object

closer to the origin.

Figure 4.21 shows the mean ‖y‖ over four different phases of each cycle of the

reference command r. These 4 phases are defined as following: phase 1 consists of

time steps in which the reference object is outbound to the right side of the screen

from the origin (i.e., r > 0 and ṙ > 0); phase 2 consists of time steps in which the

reference object is inbound from the right side of the screen to the origin (i.e., r > 0

and ṙ < 0); phase 3 consists of time steps in which the reference object is outbound

to the left side of the screen from the origin (i.e., r < 0 and ṙ < 0); and phase 4

consists of time steps in which the reference object is inbound from the left side of

the screen to the origin (i.e., r < 0 and ṙ > 0). Results in Fig. 4.21 show that over

the last 10 trials, subjects in group 2b learn to stay closer to the origin than subjects

in group 1 and group 2a. Specifically, as the reference object moves from 0 hm to

2 hm, subjects in group 2b tend to stay closer to the left side of the reference object

and as the reference object moves from 0 hm to −2 hm, subjects in group 2b tend to
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Figure 4.20: Mean, median, first quartile, and third quartile of ‖y‖ on each trial.
Subjects in group 2b learn to stay closer to the center of screen over the 40 trials
compared to subjects in groups 1 and 2a. • is the mean, and the boxplot shows the
median, first quartile, and third quartile.
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stay closer to the right side of the reference object.

Similar to the steady-state control effort, we define a subject’s steady-state output

‖y‖ss as their mean ‖y‖ over their last 10 trials. Note from Fig. 4.20, as well as

Figs. 4.3 and 4.4, that for both groups the mean ‖y‖, ‖z1‖, and ‖z2‖ do not change

significantly over the last 10 trials, suggesting that the subjects reach near-steady-

state performance. Thus, ‖y‖ss is a measure of a subject’s output signal once they

have learned to control the dynamic system. Figure 4.22 shows the discrete Fourier

transform (DFT) of average of ‖y‖ss divided by the reference object’s position rk for

subjects in group 1, group 2a, and group 2b. As expected, for subjects in group 1 and

group 2a, the magnitude stays relatively close to 1 and phase stays relatively close

to 0 over the 0-to-0.5 Hz frequency range of the command. This implies that similar

to subjects in group 1, subjects in group 2a try to keep the control object’s position

as close to the position of the reference object’s center as possible at all instants in

time.

Subjects in group 2b also show similar behavior over the lower frequencies (approx-

imately 0-to-0.2 Hz), both in terms of the magnitude and the phase. However, their

behavior changes over the higher frequencies and they attempt to stay closer to the

center of screen compared to the subjects in the other two groups. This could also

be seen in Fig. 4.23, which shows the average of ‖y‖ss versus the reference object’s

position rk for each group. Group 1 and group 2a show an almost linear behavior

throughout the 60 seconds of the trial which indicates they are possibly attempting

to follow the center of the reference object. Group 2b shows similar behavior for the

first part of the trial (approximately the first 20 seconds). However, the behavior

of subjects in group 2b changes over the later parts of the trial. This behavior over

the higher frequencies of the reference command resembles an approximate hysteresis

loop. Thus, the first significant difference between the control behavior of subjects in

group 2b and subjects in group 1 and group 2a is the fact that subjects in group 2b
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Figure 4.21: The mean ‖y‖ for groups 1, 2a, and 2b divided into 4 segments based
on the position and direction of the reference object. The ◦ indicates the mean of all
the subjects in each group and the vertical lines show one standard deviation.
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Figure 4.22: Magnitude and phase for the DFT of the average of ‖y‖ss divided by the
reference object’s position rk for each group over the 0-to-0.5 Hz frequency range of
the command.

keep the control object’s position closer to the center of the screen at higher frequen-

cies. More specifically, the subjects in group 2b stay as close as possible to the center

of the reference object while the reference command’s frequency is between 0-to-0.2

Hz. However, once the reference command’s frequency increases, they potentially

give up on following the center of the reference command, and instead attempt to

keep the control object’s position within the boundaries of the reference object, while

at the same time trying to stay close to the center of the screen. This means that

group 2b adopts a combination of nonrelaxed and relaxed command-following objec-

tives. Specifically, group 2b adopts the nonrelaxed command-following objective at

lower frequencies (approximately 0-0.2 Hz) and a more relaxed command-following

objective at higher frequencies (approximately 0.2-0.5 Hz).

Next, we examine properties of the control signal u for group 2b. Figure 4.24

shows control u on the first and last trial of the median performer of each group. The

median performer of group 1 is the subject whose ‖z1‖ on the last trial is the median
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Figure 4.23: Average of ‖y‖ss versus the reference object’s position rk for each group.

(i.e., 6th best) of all subjects in their group. The median performers of group 2a and

group 2b are the subjects whose ‖z2‖ on the last trial is the median of all subjects

in their group. Since there are 6 subjects in group 2a, the median subject of this

group is randomly selected from two subjects with the two middlemost value of ‖z2‖

on trial 40. As it can be seen in Fig. 4.24, the control signals of the group 1 and

2a median performers are smoother on trial 40 than trial 1; and by trial 40, their

control more closely resembles the smoothness of the chirp command r. In contrast,

the control signal of median performer of group 2b is less smooth on trial 40 and

contains step-like behavior. Figure 4.25 shows control u for all 5 subjects of group 2b

on the last trial. The step-like control behavior can be seen in most of the subjects

of group 2b.

To investigate this step-like control behavior, we define a metric that captures the
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Figure 4.24: Control u on the first and last trial of the median performer of each
group. The median performer of group 1 is the subject whose ‖z1‖ on the last trial
is the median (i.e., 6th best) of all subjects in their group. The median performers of
group 2a and group 2b are the subjects whose ‖z2‖ on the last trial is the median of
all subjects in their group. Since there are 6 subjects in group 2a, the median subject
of this group is randomly selected from two subjects with the two middlemost value
of ‖z2‖ on trial 40.
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Figure 4.25: Control u on the last trial for all subjects in group 2b.

number of times a step-like control occurs. c

|uk − uk−1| > δ, (4.1)

and

max
i∈{1,··· ,L}

|uk+i − uk+i−1| < δ, (4.2)

and

max
i∈{1,··· ,L}

|uk−i − uk−i−1| > 10δ, (4.3)

where δ = 0.005 and L = 5. In other words, a step-like behavior at time step kTs has

occurred if the following conditions hold:

A1) The slope of the control signal u is greater than δ/Ts = 0.25 per second at
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time step kTs.

A2) The slope of the control signal u is less than δ/Ts = 0.25 per second for

LTs = 0.1 seconds after time step kTs.

A3) The maximum slope of the control signal u is 10 times greater than δ/Ts for

LTs seconds before time step kTs.

The parameters δ and L were determined by a qualitative analysis of experimental

data. The results reported in this section on step-like behavior do not change quali-

tatively with parameter variations up to ±20%. Condition A1) indicates that at the

time-step where the step-like behavior occurs, the slope of the control is greater than

a certain threshold (δ/Ts). This threshold is determined by finding the maximum

no-input control u measured from the joystick. The maximum no-input control u

measured from the joystick is found by measuring the control signal coming out of

joystick for three minutes while someone holds but does not move the joystick. The

maximum measured value for our joystick is 0.004. Thus, we let δ = 0.005 which

means δ/Ts = 0.25 per second.

Condition A2) states that for a certain amount of time (LTs seconds) after the

step-like behavior has occurred, the slope of the control does not exceed a certain

threshold (δ/Ts). Condition A2) means that the control signal u should be relatively

flat for some amount of time after the step-like behavior has occurred. The value of

L is determined by examining the experimental data. By looking at Fig. 4.25, we let

L = 5 which means LTs = 0.1 seconds.

Finally, condition A3) implies that there should be a lower limit on the maximum

slope of u over a certain amount of time (LTs seconds) before the step-like behavior

occurs. Condition A3) prevents a step-like control behavior to be detected multiple

times.

Figure 4.26 shows control u on the last trial of the median performer of each group.

The median performer of group 1 is the subject whose ‖z1‖ on the last trial is the
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Figure 4.26: Control u on the last trial of the subject from each group who has
the median performance on trial 40. The vertical grey lines indicate when a step-
like control behavior is detected. The number of step-like controls for the median
performer in groups 1, 2a, and 2b is 6, 5, and 63, respectively.

median (i.e., 6th best) of all subjects in their group. The median performer of group 2a

and group 2b are the subjects whose ‖z2‖ on the last trial is the median of all subjects

in their group. Since there are 6 subjects in group 2a, the median subject of this group

is randomly selected from two subjects with the two middlemost value of ‖z2‖ on trial

40. The vertical gray lines in Fig. 4.26 indicate the time instances where a step-like

behavior has been detected. The number of step-like controls detected for the median

performer in group 1, group 2a, and group 2b is 6, 5, and 63, respectively.

For each trial, let Ns be the number of times a step-like control behavior is detected.

Figure 4.27 shows the mean Ns on each trial for each group. For subjects in group 1

and group 2a, the mean Ns stays relatively small and constant over the 40 trials.

There is no significant difference between the number of step-like behavior detected

for subjects in group 1 and group 2a. In contrast, for the majority of trials, the group

mean of Ns for group 2b is at least 3 times greater than those of groups 1 and 2b.
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Figure 4.27: Mean, median, first quartile, and third quartile of Ns on each trial. The
mean Ns for group 2b is greater than the mean Ns for groups 1 and 2a on all trials.

Moreover, over the 40 trials, the group mean of Ns for group 2b has an increasing

trend, whereas those of groups 1 and 2a remain relatively constant. This increasing

trend is more significant over the last 10 trials, which corresponds to their control

effort reaching a steady state as previously seen in Fig. 4.10. Thus, by the end of the

experiment, group 2b adopts a nonlinear control strategy that yields step-like control

behavior.

Next, we distinguish between the feedforward and feedback nature of the step-like

controls. A step-like control behavior is feedforward, or anticipatory, if control signal u

steps in the opposite direction of the reference command r. It is anticipatory behavior

because the step anticipate the change of direction in the reference command r. In

contrast, a step-like control behavior is feedback, or reactive, if control signal u steps

in the same direction of the reference command r. It is reactive behavior because the

step reacts to the movement of the reference command r and tries to make y to catch

up to r.

Thus, a step-like control at time step kTs is feedforward if u̇(kTs)ṙ(kTs) < 0, and
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Figure 4.28: Mean of Nffs on each trial. The mean Nffs for group 2b is greater than
the mean Nffs for groups 1 and 2a on all trials.

it is feedback if u̇(kTs)ṙ(kTs) > 0. For each trial, let Nffs be the number of times a

feedforward step-like control behavior is detected and let Nfbs be the number of times

a feedback step-like control behavior is detected.

Figures 4.28 and 4.29 show the mean Nffs and the mean Nfbs on each trial for each

group, respectively. For group 1 and group 2a, the mean Nffs and the mean Nfbs are

relatively constant over the trials. In contrast, the mean Nffs and the mean Nfbs for

group 2b tend to increase over the trials. This trend is more visible over the last

10 trials. Moreover, subjects in group 2b have a significantly larger mean Nffs over

majority of the trials compared to their mean Nfbs. In fact, their mean Nfbs is not

significantly different from the mean Nfbs of the subjects in group 1 and group 2a.

One possible explanation for these results is that subjects in group 2b learn to take

advantage of the relaxed control objective by exerting a step-like control as part of

the feedforward component of their control behavior.

The results in this subsection suggest that the subjects in group 2b use a feedforward
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Figure 4.29: Mean of Nfbs on each trial. The mean Nfbs for group 2b is greater than
the mean Nfbs for groups 1 and 2a on all trials.

control strategy that generates step-like controls and yields nonrelaxed command

following behavior at lower frequencies and more relaxed command following behavior

at higher frequencies. We note that feedforward behavior may suggest a predictive

control strategy that relies on some knowledge of the dynamic system G. The step-

like behavior of group 2b precludes the possibility of feedforward plant inversion (i.e.,

Gff = G−1), which the SSID results suggest is used by groups 1 and 2a. However,

other feedforward model-based nonlinear control strategies are possible.

We now present a possible feedforward control strategy that can model several

aspects the group 2b’s control behavior. We also show that this potential feedfor-

ward control strategy could yield a command-following performance similar to the

command-following performance seen in subjects of group 2b.

This control strategy, structure of which is shown in Fig. 4.30, is a relaxed feed-

forward plant inversion and consists of three components. The first component is a

frequency-dependent gain λ, which based on previous observations (see Figs. 4.20,
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Figure 4.30: A pure feedforward controller consisting of a frequency-dependent gain
k cascaded with a feedforward transfer function Gff , and a zero-order hold.

4.22, and 4.23), we define as

λ(ω) ,


1, if ωi ≤ ω ≤ ωc

1− a0(ω − ωc), if ωc < ω ≤ ωf

, (4.4)

where ω is the frequency of the reference command r in Hz, ωi and ωf are the initial

and final frequencies of the reference command r over a trial, ωc is the cut-off frequency

where the gain starts decreasing, and a0 is the rate at which the gain decreases per

Hz. The second component is the feedforward transfer function Gff , which we assume

is a 2nd-order FIR transfer function and is an approximation of inverse of the plant

or G−1. The third component is a zero-order hold with sampling rate of fzoh, which

gives us a step-like behavior in the control signal u. The duration of each step is

determined by the value of sampling rate fzoh.

Figure 4.31 shows y and u for a simulation where ωi = 0 Hz, ωf = 0.5 Hz, ωc = 0.2

Hz, a0 = 2.7 per Hz, and fzoh = 2 Hz. These values are determined by examining

the experimental data of subjects in group 2b, as seen in Figs. 4.22, 4.23, and 4.26.

The time-averaged error for this simulation is ‖z1‖ = 0.60, and the time-averaged

relaxed error for this simulation is ‖z2‖ = 0.15. Moreover, the control effort for this

simulation is ‖u‖ = 1.16. These results are consistent with performance results of

subjects in group 2b (see Figs. 4.8, 4.9, 4.10).
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Figure 4.31: Reference command r and simulation results for output y with system
G and a pure feedforward control signal u consisting of a frequency-dependent gain
cascaded with a second-order FIR approximation of G−1 and a zero-order hold. The
time-averaged error is ‖z1‖ = 0.60, the time-averaged relaxed error is ‖z2‖ = 0.15,
and the control effort is ‖u‖ = 1.16.

Figure 4.32 shows simulation results for output y versus the reference command r.

These results are also consistent with the hysteresis loop we had previously seen in

the control object’s position of the subjects in group 2b (see Fig. 4.23).

4.5 Summary and Conclusions

We now discuss the impacts that relaxing the command-following objectives has

on the control strategies adopted by humans. This chapter presented the results

of a HITL experiment where 22 human subjects interacted with a dynamic system

40 times over a one-week period. The subjects were divided into two groups of

11 subjects. Each group interacted with the same dynamic system performing a

command-following task. The only difference between these two groups was their

control objectives. Group 1’s control objective was to follow the reference command
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Figure 4.32: Simulation results for output y versus the reference command r with
system G and a pure feedforward control signal u consisting of a frequency-dependent
gain cascaded with a 2nd-order FIR approximation of G−1 and a zero-order hold .

as closely as possible at all instants in time. Group 2’s control objective, on the other

hand, was to follow the reference command with some allowable error.

This chapter presented new results on the impact of relaxed command-following

objectives on HITL control behavior. The experimental results indicate that the

average command-following performance of group 1 is better than that of group 2

on all trials (see Fig. 4.3). The same is true about the relaxed command-following

performance of group 1 (see Fig. 4.4). This implies that staying as close to the

center of the reference object as possible at all instants in time is one possible control

strategy that ensures a good result in both performance metrics.

Steady-state control effort results indicate that out of 11 subjects of group 2, 5

exert a significantly smaller control effort compared to the other 6 subjects in the

same group and all 11 subjects of group 1 (see Fig. 4.7). This observation was

the basis for breaking up group 2 into group 2a and group 2b. The command-

following performance results and the control effort results over all trials provide
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further supporting evidence that subjects in group 1 and group 2a employ similar

control strategies, while subjects in group 2b adopt a different approach (see Figs.

4.8, 4.9, and 4.10).

To investigate the control strategies of all three groups, a linear SSID algorithm

is used to identify best-fit feedback and feedforward controllers for each subject and

on each trial. Prior HITL studies suggest that adaptive feedforward inversion is a

primary control strategy for many command-following tasks. The SSID results of

group 1 provide supporting evidence that humans use adaptive feedforward inversion

as their primary control strategy when instructed to perform a non-relaxed command-

following task. Moreover, the SSID results of group 2a show that even when instructed

to perform a relaxed command-following task, some humans use the same control

strategy as the non-relaxed group. The identified feedforward controllers for these

two groups approximate the dynamic system’s inverse better on the last trial than

on the first trial (see Figs. 4.16, 4.17, and 4.15). They also use approximately the

same amount of feedback gain and have similar feedback time delay (see Figs. 4.13

and 4.14).

The SSID results of group 2b, however, show that not all the human subjects

who are instructed to perform a relaxed command-following task adopt adaptive

feedforward inversion as their primary control strategy (see Figs. 4.18 and 4.19). In

fact, the validation of SSID results for this group reveals that their control behavior

cannot be modeled by the LTI control structure used for other groups (see Fig. B.2).

This could be because of nonlinear components that potentially exist in their control

strategy. The experimental data of these subjects provide further evidence in support

of existence of some nonlinear components in their control behavior. One observation

taken from comparing the experimental data of group 2b’s subjects with the other

two groups is that subjects in group 2b try to follow the center of the reference object

at lower frequencies. But, at higher frequencies they potentially attempt to keep
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the control object’s position within the boundaries of the reference object, while at

the same time staying close to the center of the screen (see Figs. 4.20, 4.22, and

4.23). This behavior, which could be modeled by a frequency-dependent gain, is the

first potential nonlinear component of the control behavior of subjects in group 2b.

Another observation comes from comparing the control signal of subjects in each

group. We show that subjects in group 2b have a step-like control behavior, which

corresponds to their significantly lower control effort over the later trials (see Figs.

4.25, 4.26, and 4.27). This step-like behavior, which has an anticipatory nature (see

Fig. 4.28), is the second potential nonlinear component of the control behavior of

subjects in group 2b.

Finally, we propose one possible control strategy that contains the observed non-

linear components of group 2b’s control behavior. This control strategy, which is as-

sumed to be purely feedforward, includes a frequency-dependent gain cascaded with

a second-order FIR approximation of G−1 and a zero-order hold. Using simulation

results, we show that this control strategy could lead to similar command-following

performance and control effort (see Figs. 4.31 and 4.32).
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Chapter 5 Summary and Conclusion

In this dissertation, we investigated the effects of system output nonlinearities and

relaxed command-following control objectives on the human-in-the-loop (HITL) con-

trol behavior by using different subsystem identification (SSID) algorithms as well as

other analytical methods. These SSID algorithms were developed and presented both

in frequency-domain and time-domain, and use the input and output measurements

of the closed-loop system to identify feedback and feedforward components of human

control behavior.

We conducted two HITL experiments in order to explore the impacts of system out-

put nonlinearities and relaxed command-following control objectives on HITL control

behavior. The frequency-domain and time-domain SSID algorithms presented in this

dissertation were applied to the time-domain data obtained from these two experi-

ments to model the human control behavior. Using the SSID results as well as the

experimental data, we sought insight into the effects that system output nonlinear-

ities and relaxed command-following control objectives have on the human learning

and HITL control behavior.

The results of these analyses suggest that similar to many linear systems, humans

also adopt adaptive feedforward inversion as their primary command-following con-

trol strategy for some nonlinear systems. They also suggest that once the control

objectives of a command-following task has been relaxed, some humans choose to use

a step-like control behavior that results in minimum control effort.
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Summary of Results from Chapter 2

In this chapter, we presented a frequency-domain and a time-domain SSID algo-

rithm that could be used to identify best-fit feedback and feedforward controllers of

a closed-loop system where these controllers are connected to a known plant. These

SSID algorithms use a candidate pool to search among all the candidate feedback

controllers. Then, a convex optimization problem is solved to determine the best-fit

feedforward controller. The frequency-domain algorithm is applicable to a closed-loop

system where the plant and the controllers are linear while the time-domain algorithm

is also applicable to a closed-loop system where the plant and/or the feedforward con-

troller contain nonlinear components.

Summary of Results from Chapter 3

In this chapter, new results on the impact of nonlinearities on HITL control behavior

were presented. We presented the results of a HITL experiment, which was designed to

investigate the control strategies that humans use to interact with nonlinear dynamic

systems. In this experiment, 22 human subjects interacted with a dynamic system

and performed a command-following task. One group interacted with an LTI dynamic

system, while the other group interacted with a Wiener system, which consisted of

the same LTI dynamics cascaded with a static output nonlinearity.

The experimental results indicate that static output nonlinearities can make a dy-

namic system more difficult for humans to control. The average command-following

performance of the linear group, who interacted with the linear plant G, is better on

majority of trials than the nonlinear group (see Fig. 3.5).

The SSID results suggest several differences between the linear and nonlinear groups.

The linear group tends to use more feedback-control authority. Specifically, the lin-

ear group has a smaller feedback time delay and uses a larger feedback gain than the
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nonlinear group (see Figs. 3.11 and 3.12). One possible explanation is that the intro-

duction of output nonlinearity adds to the systems’s uncertainty and this uncertainty

results in a more conservative approach by subjects in feedback.

Moreover, the feeforward part of the SSID results suggest that humans use adap-

tive feedforward inversion as their main control strategy for both linear and nonlinear

plant. For both the linear and nonlinear groups, the identified feedforward controllers

approximate the dynamic system’s inverse better on the last trial than on the first

trial (see Figs. 3.14, 3.15, 3.17, and 3.18). However, the linear group achieves bet-

ter approximation of the dynamic system’s inverse (see Figs. 3.16 and 3.19). This

difference in approximating the inverse is a possible explanation for the difference in

performance between the two groups. The SSID results suggest that the nonlinear

subjects learn the linear part of the dynamic system more quickly than they learn the

static output nonlinearity. Over the latter half of the trials, the nonlinear subjects’

feedforward transfer function does not change significantly (see Fig. 3.19), whereas

they continue to learn the output nonlinearity (see Fig. 3.16).

The results from this study provide some insight into human-control strategies for

nonlinear systems. However, many open questions remain. Further investigation

is needed into whether these results extend to dynamic systems with more complex

transfer functions (e.g., higher order, higher relative degree, nonminimum phase, etc.)

and more complex output nonlinearities. The control strategies that humans use for

systems with dynamic nonlinearities is also a significant open question.

Summary of Results from Chapter 4

In this chapter, new results on the impact of relaxed command-following objectives

on HITL control behavior were presented. We presented the results of a HITL ex-

periment where 22 human subjects interacted with a dynamic system 40 times over

a one-week period. The subjects were divided into two groups of 11 subjects. Each
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group interacted with the same dynamic system performing a command-following

task. The only difference between these two groups was their control objectives.

Group 1’s control objective was to follow the reference command as closely as pos-

sible at all instants in time. Group 2’s control objective, on the other hand, was to

follow the reference command with some allowable error.

The experimental results indicate that the average command-following performance

of group 1 is better than that of group 2 on all trials (see Fig. 4.3). The same is true

about the relaxed command-following performance of group 1 (see Fig. 4.4). This

implies that staying as close to the center of the reference object as possible at all

instants in time is one possible control strategy that ensures a good result in both

performance metrics.

Steady-state control effort results indicate that out of 11 subjects of group 2, 5

exert a significantly smaller control effort compared to the other 6 subjects in the

same group and all 11 subjects of group 1 (see Fig. 4.7). This observation was

the basis for breaking up group 2 into group 2a and group 2b. The command-

following performance results and the control effort results over all trials provide

further supporting evidence that subjects in group 1 and group 2a employ similar

control strategies, while subjects in group 2b adopt a different approach (see Figs.

4.8, 4.9, and 4.10).

To investigate the control strategies of all three groups, a linear SSID algorithm

is used to identify best-fit feedback and feedforward controllers for each subject and

on each trial. Prior HITL studies suggest that adaptive feedforward inversion is a

primary control strategy for many command-following tasks. The SSID results of

group 1 provide supporting evidence that humans use adaptive feedforward inversion

as their primary control strategy when instructed to perform a non-relaxed command-

following task. Moreover, the SSID results of group 2a show that even when instructed

to perform a relaxed command-following task, some humans use the same control
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strategy as the non-relaxed group. The identified feedforward controllers for these

two groups approximate the dynamic system’s inverse better on the last trial than

on the first trial (see Figs. 4.16, 4.17, and 4.15). They also use approximately the

same amount of feedback gain and have similar feedback time delay (see Figs. 4.13

and 4.14).

The SSID results of group 2b, however, show that not all the human subjects

who are instructed to perform a relaxed command-following task adopt adaptive

feedforward inversion as their primary control strategy (see Figs. 4.18 and 4.19). In

fact, the validation of SSID results for this group reveals that their control behavior

cannot be modeled by the LTI control structure used for other groups (see Fig. B.2).

This could be because of nonlinear components that potentially exist in their control

strategy. The experimental data of these subjects provide further evidence in support

of existence of some nonlinear components in their control behavior. One observation

taken from comparing the experimental data of group 2b’s subjects with the other

two groups is that subjects in group 2b try to follow the center of the reference object

at lower frequencies. But, at higher frequencies they potentially attempt to keep

the control object’s position within the boundaries of the reference object, while at

the same time staying close to the center of the screen (see Figs. 4.20, 4.22), and

4.23). This behavior, which could be modeled by a frequency-dependent gain, is the

first potential nonlinear component of the control behavior of subjects in group 2b.

Another observation comes from comparing the control signal of subjects in each

group. We show that subjects in group 2b have a step-like control behavior, which

corresponds to their significantly lower control effort over the later trials (see Figs.

4.25, 4.26, and 4.27). This step-like behavior, which has a predictive nature (see Fig.

4.28), is the second potential nonlinear component of the control behavior of subjects

in group 2b.

Finally, we propose one possible control strategy that contains the observed non-
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linear components of group 2b’s control behavior. This control strategy, which is as-

sumed to be purely feedforward, includes a frequency-dependent gain cascaded with

a second-order FIR approximation of G−1 and a zero-order hold. Using simulation

results, we show that this control strategy could lead to similar command-following

performance and control effort (see Figs. 4.31 and 4.32).

The results from this study provide some insight into the impacts of relaxing the

control objectives on the human control strategies in command-following tasks. In

this study, the control objective was relaxed in a pursuit tracking command-following

task. However, further investigation is needed into whether these results extend to

other tasks. Moreover, further experiments are needed to examine the extent to which

the proposed possible control strategy for subjects in group 2b is valid.
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Appendices

A Candidate Pool

The candidate pool Γ is a set that contains approximately 50 million elements and

is designed to capture a wide range of possible human control behavior over the 0-to-

0.5 Hz frequency range. Candidate feedback transfer functions are second-order IIR

with monic denominator and relative degree one, that is, nfb = 1, and dfb = 2. For

each γ ∈ Γ, the following conditions hold:

B1) If λ ∈ C is a root of the candidate polynomial Nfb, then |λ| < 1.

B2) If λ ∈ C is a root of the candidate polynomial Dfb, then |λ| < 1.

B3) maxω∈[0,π]

∣∣∣Nfb(eωTs )
Dfb(eωTs )

∣∣∣ ≤ 30.5.

B4) δ ∈ {4, 5, 6, . . . , 25}.

Conditions B1) and B2) indicate that the parameters of candidate feedback con-

troller are designed such that the zero and poles of Gfb lie inside the unit circle.

Thus, the candidate pool assumes that the feedback control behavior of the subjects

is stable. Condition B3) states that the peak magnitude of the feedback controller

over the frequency range [0, π] rad/s is no more than 30.5 (or approximately 30 dB).

Thus, B3) imposes an upper limit on the magnitude of the feedback controller. The

30 dB upper limit is based on a separate experiment with 10 subjects, where each

subject was asked to follow a single-frequency sinusoid using only error feedback (i.e.,

feedforward of the reference signal was not available). In this experiment, the peak

magnitude of the feedback controller used by the subjects is approximately 30 dB,
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suggesting that 30 dB is the peak gain that a human can use in feedback. Condition

B4) implies that the human’s sensory feedback time delay is in the range of 80 ms

to 500 ms. This is consistent with [33, 41, 96, 97]. Since the sampling rate in this

experiment for both groups is 20 ms, we assume that δ ∈ {4, 5, · · · , 25}.

B Validation of SSID Results

B.1 Experiment on System Output Nonlinearities

To validate the SSID results, for each trial we use the identified control pairs

(d+, G+
fb) and (f+, G+

ff ) to simulate the closed-loop system, where the input to the

simulation is {rk}Ns
k=1, the output of the simulation is the validation data {y+

k }Ns
k=1,

and all initial conditions are zero. We then use the experimental data {yk}Ns
k=1 and

validation data {y+
k }Ns

k=1 to calculate the variance accounted for (VAF) for each trial.

VAF is a measure of the accuracy of the identified controllers and is given by

VAF , 1−
∑Ns

k=1

∣∣yk − y+
k

∣∣2∑Ns

k=1 |yk|
2

. (B.1)

Table B.1 shows the mean VAF on 4 different sets of trials for the linear group

and the nonlinear group. Figure B.1 shows the mean, median, first quartile, and

third quartile of VAF on each trial. For both groups, the mean and median VAF

increase over the 40 trials. The increase in the VAF suggests that the identified

models obtained for the later trials are a more accurate representation of the data

than the models obtained for the earlier trials. This means that as the subjects learn,

their control behavior can be better modeled by the control structure used in this

dissertation.
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Table B.1: Mean VAF and its percentage change from the first 10 trials to the last
10 trials.

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Change
(%)

Linear Group 0.875 0.924 0.943 0.961 +9.8
Nonlinear Group 0.887 0.927 0.938 0.951 +7.2

10 20 30 40

0.6

0.8

1

10 20 30 40

Figure B.1: Mean, median, first quartile, and third quartile of VAF on each trial. For
both groups, the mean and median VAF increase over the 40 trials. • is the mean,
and the boxplot shows the median, first quartile, and third quartile.
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B.2 Experiment on Relaxed Command-following Control Objectives

To validate the SSID results, for each trial we use the identified feedback control

pair (d+, G+
fb) and the identified feedforward transfer function G+

ff to simulate the

closed-loop system, where the input to the simulation is {rk}Ns
k=1, the output of the

simulation is the validation data {y+
k }Ns

k=1, and all initial conditions are zero. We

then use the experimental data {yk}Ns
k=1 and validation data {y+

k }Ns
k=1 to calculate the

variance accounted for (VAF) for each trial using (B.1).

Table B.2 shows the mean VAF on 4 different sets of trials for all three groups.

Figure B.2 shows the mean, median, first quartile, and third quartile of VAF on each

trial. For all three groups, the mean and median VAF increase over the 40 trials.

The increase in the VAF suggests that the identified models obtained for the later

trials are a more accurate representation of the data than the models obtained for

the earlier trials. This means that as the subjects learn, their control behavior can be

better modeled by the control structure used in this dissertation. However, even over

the later trials, the mean VAF for group 2b is not close to 1. This implies that the

control structure used in this dissertation is not a good representation of the control

behavior of subjects in group 2b.

Table B.2: Mean VAF and its percentage change from the first 10 trials to the last
10 trials.

Trials
1–10

Trials
11–20

Trials
21–30

Trials
31–40

Change
(%)

Group 1 0.740 0.823 0.853 0.889 +20.1
Group 2a 0.684 0.765 0.864 0.875 +27.9
Group 2b 0.548 0.649 0.713 0.737 +34.6
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Figure B.2: Mean, median, first quartile, and third quartile of VAF on each trial.
For all three groups, the mean and median VAF increase over the 40 trials. • is the
mean, and the boxplot shows the median, first quartile, and third quartile.
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