271 research outputs found

    Monitoring Rice Phenology Based on Backscattering Characteristics of Multi-Temporal RADARSAT-2 Datasets

    Get PDF
    Accurate estimation and monitoring of rice phenology is necessary for the management and yield prediction of rice. The radar backscattering coefficient, one of the most direct and accessible parameters has been proved to be capable of retrieving rice growth parameters. This paper aims to investigate the possibility of monitoring the rice phenology (i.e., transplanting, vegetative, reproductive, and maturity) using the backscattering coefficients or their simple combinations of multi-temporal RADARSAT-2 datasets only. Four RADARSAT-2 datasets were analyzed at 30 sample plots in Meishan City, Sichuan Province, China. By exploiting the relationships of the backscattering coefficients and their combinations versus the phenology of rice, HH/VV, VV/VH, and HH/VH ratios were found to have the greatest potential for phenology monitoring. A decision tree classifier was applied to distinguish the four phenological phases, and the classifier was effective. The validation of the classifier indicated an overall accuracy level of 86.2%. Most of the errors occurred in the vegetative and reproductive phases. The corresponding errors were 21.4% and 16.7%, respectively

    Polarimetric Response of Rice Fields at C-Band: Analysis and Phenology Retrieval

    Get PDF
    A set of ten RADARSAT-2 images acquired in fully polarimetric mode over a test site with rice fields in Seville, Spain, has been analyzed to extract the main features of the C-band radar backscatter as a function of rice phenology. After observing the evolutions versus phenology of different polarimetric observables and explaining their behavior in terms of scattering mechanisms present in the scene, a simple retrieval approach has been proposed. This algorithm is based on three polarimetric observables and provides estimates from a set of four relevant intervals of phenological stages. The validation against ground data, carried out at parcel level for a set of six stands and up to nine dates per stand, provides a 96% rate of coincidence. Moreover, an equivalent compact-pol retrieval algorithm has been also proposed and validated, providing the same performance at parcel level. In all cases, the inversion is carried out by exploiting a single satellite acquisition, without any other auxiliary information.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and European Union FEDER under Project TEC2011-28201-C02-02

    Retrieval of phenological stages of onion fields during the first year of growth by means of C-band polarimetric SAR measurements

    Get PDF
    The phenological stages of onion fields in the first year of growth are estimated using polarimetric observables and single-polarization intensity channels. Experiments are undertaken on a time series of RADARSAT-2 C-band full-polarimetric synthetic aperture radar (SAR) images collected in 2009 over the Barrax region, Spain, where ground truth information about onion growth stages is provided by the European Space Agency (ESA)-funded agricultural bio/geophysical retrieval from frequent repeat pass SAR and optical imaging (AgriSAR) field campaign conducted in that area. The experimental results demonstrate that polarimetric entropy or copolar coherence when used jointly with the cross-polarized intensity allows unambiguously distinguishing three phenological intervals.This work was partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and EU FEDER, under Project TEC2011-28201-C02-02

    Rice Phenology Monitoring by means of SAR Polarimetry at X-Band

    Get PDF
    The feasibility of retrieving the phenological stage of rice fields at a particular date by employing coherent copolar dual-pol X-band radar images acquired by the TerraSAR-X sensor has been investigated in this paper. A set of polarimetric observables that can be derived from this data type has been studied by using a time series of images gathered during the whole cultivation period of rice. Among the analyzed parameters, besides backscattering coefficients and ratios, we have observed clear signatures in the correlation (in magnitude and phase) between channels in both the linear and Pauli bases, as well as in parameters provided by target decomposition techniques, like entropy and alpha from the eigenvector decomposition. A new model-based decomposition providing estimates of a random volume component plus a polarized contribution has been proposed and employed in interpreting the radar response of rice. By exploiting the signatures of these observables in terms of the phenology of rice, a simple approach to estimate the phenological stage from a single pass has been devised. This approach has been tested with the available data acquired over a site in Spain, where rice is cultivated, ensuring ground is flooded for the whole cultivation cycle, and sowing is carried out by randomly spreading the seeds on the flooded ground. Results are in good agreement with the available ground measurements despite some limitations that exist due to the reduced swath coverage of the dual-pol HHVV mode and the high noise floor of the TerraSAR-X system.This work was supported by the Spanish Ministry of Science and Innovation (MICINN) and EU FEDER under Projects TEC2008-06764-C02-02 and TEC2011-28201-C02-02, by the National Program of Human Resources Movability under Grant PR2009-0364, by the University of Alicante under Project GRE08J01, and by Generalitat Valenciana under Projects GV/2009/079 and ACOMP/2010/082

    Monitoring Agricultural Fields Using Sentinel-1 and Temperature Data in Peru: Case Study of Asparagus (Asparagus officinalis L.)

    Get PDF
    This paper presents the analysis and a methodology for monitoring asparagus crops from remote sensing observations in a tropical region, where the local climatological conditions allow farmers to grow two production cycles per year. We used the freely available dual-polarisation GRD data provided by the Sentinel-1 satellite, temperature from a ground station and ground truth from January to August of 2019 to perform the analysis. We showed how particularly the VH polarisation can be used for monitoring the canopy formation, density and the growth rate, revealing connections with temperature. We also present a multi-output machine learning regression algorithm trained on a rich spatio-temporal dataset in which each output estimates the number of asparagus stems that are present in each of the pre-defined crop phenological stages. We tested several scenarios that evaluated the importance of each input data source and feature, with results that showed that the methodology was able to retrieve the number of asparagus stems in each crop stage when using information about starting date and temperature as predictors with coefficients of determination (R2) between 0.84 and 0.86 and root mean squared error (RMSE) between 2.9 and 2.7. For the multitemporal SAR scenario, results showed a maximum R2 of 0.87 when using up to 5 images as input and an RMSE that maintains approximately the same values as the number of images increased. This suggests that for the conditions evaluated in this paper, the use of multitemporal SAR data only improved mildly the retrieval when the season start date and accumulated temperature are used to complement the backscatter

    Dynamical Approach for Real-Time Monitoring of Agricultural Crops

    Get PDF
    In this paper, a novel approach for exploiting multitemporal remote sensing data focused on real-time monitoring of agricultural crops is presented. The methodology is defined in a dynamical system context using state-space techniques, which enables the possibility of merging past temporal information with an update for each new acquisition. The dynamic system context allows us to exploit classical tools in this domain to perform the estimation of relevant variables. A general methodology is proposed, and a particular instance is defined in this study based on polarimetric radar data to track the phenological stages of a set of crops. A model generation from empirical data through principal component analysis is presented, and an extended Kalman filter is adapted to perform phenological stage estimation. Results employing quad-pol Radarsat-2 data over three different cereals are analyzed. The potential of this methodology to retrieve vegetation variables in real time is shown.This work was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) and EU FEDER under Project TEC2011-28201-C02-02 and in part by the Generalitat Valenciana under Project ACOMP/2014/136

    Influence of Incidence Angle on the Coherent Copolar Polarimetric Response of Rice at X-Band

    Get PDF
    The coherent nature of the acquisition by TerraSAR-X of both copolar channels (HH and VV) enables the generation of many different polarimetric observables with physical interpretation, as have recently been used for monitoring rice fields. In this letter, the influence of incidence angle upon these polarimetric observables is analyzed by comparing three stacks of images that were acquired simultaneously at different incidence angles (22°, 30°, and 40°) during a whole cultivation campaign. We show that the response of observables related to dominance (entropy, ratios of components) and type of scattering mechanisms (alpha angles) is not greatly influenced by incidence angle at some stages: early and advanced vegetative phases, and maturation. Moreover, the acquisition geometry drives the sensitivity to the presence of the initial stems and tillers, being detected earlier at shallower angles. This analysis is a necessary step before studying potential methodologies for combining different orbits and beams for reducing the time between acquisitions for monitoring purposes.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and EU FEDER under Project TEC2011-28201-C02-02, and by the Generalitat Valenciana under Project ACOMP/2014/136

    Estimation of Key Dates and Stages in Rice Crops Using Dual-Polarization SAR Time Series and a Particle Filtering Approach

    Get PDF
    Information of crop phenology is essential for evaluating crop productivity. In a previous work, we determined phenological stages with remote sensing data using a dynamic system framework and an extended Kalman filter (EKF) approach. In this paper, we demonstrate that the particle filter is a more reliable method to infer any phenological stage compared to the EKF. The improvements achieved with this approach are discussed. In addition, this methodology enables the estimation of key cultivation dates, thus providing a practical product for many applications. The dates of some important stages, as the sowing date and the day when the crop reaches the panicle initiation stage, have been chosen to show the potential of this technique.This work was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) and EU FEDER under Project TEC2011-28201-C02-02, and in part by the Generalitat Valenciana under Project ACOMP/2014/136. All SAR images have been provided by DLR in the framework of projects LAN0021 and LAN0234 of the prelaunch AO of TerraSAR-X

    Optimal Grid-Based Filtering for Crop Phenology Estimation with Sentinel-1 SAR Data

    Get PDF
    In the last decade, suboptimal Bayesian filtering (BF) techniques, such as Extended Kalman Filtering (EKF) and Particle Filtering (PF), have led to great interest for crop phenology monitoring with Synthetic Aperture Radar (SAR) data. In this study, a novel approach, based on the Grid-Based Filter (GBF), is proposed to estimate crop phenology. Here, phenological scales, which consist of a finite number of discrete stages, represent the one-dimensional state space, and hence GBF provides the optimal phenology estimates. Accordingly, contrarily to literature studies based on EKF and PF, no constraints are imposed on the models and the statistical distributions involved. The prediction model is defined by the transition matrix, while Kernel Density Estimation (KDE) is employed to define the observation model. The approach is applied on dense time series of dual-polarization Sentinel-1 (S1) SAR images, collected in four different years, to estimate the BBCH stages of rice crops. Results show that 0.94 ≤ R2 ≤ 0.98, 5.37 ≤ RMSE ≤ 7.9 and 20 ≤ MAE ≤ 33.This research was funded in part by the Spanish Ministry of Science and Innovation (State Agency of Research, AEI) and the European Funds for Regional Development (EFRD) under Projects TEC2017-85244-C2-1-P and PID2020-117303GB-C22, and in part by the University of Alicante (ref. VIGROB-114)

    Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data

    Get PDF
    Sentinel-1 Synthetic Aperture Radar (SAR) data have provided an unprecedented opportunity for crop monitoring due to its high revisit frequency and wide spatial coverage. The dual-pol (VV-VH) Sentinel-1 SAR data are being utilized for the European Common Agricultural Policy (CAP) as well as for other national projects, which are providing Sentinel derived information to support crop monitoring networks. Among the Earth observation products identified for agriculture monitoring, indicators of vegetation status are deemed critical by end-user communities. In literature, several experiments usually utilize the backscatter intensities to characterize crops. In this study, we have jointly utilized the scattering information in terms of the degree of polarization and the eigenvalue spectrum to derive a new vegetation index from dual-pol (DpRVI) SAR data. We assess the utility of this index as an indicator of plant growth dynamics for canola, soybean, and wheat, over a test site in Canada. A temporal analysis of DpRVI with crop biophysical variables (viz., Plant Area Index (PAI), Vegetation Water Content (VWC), and dry biomass (DB)) at different phenological stages confirms its trend with plant growth dynamics. For each crop type, the DpRVI is compared with the cross and co-pol ratio (σVH0/σVV0) and dual-pol Radar Vegetation Index (RVI = 4σVH0/(σVV0 + σVH0)), Polarimetric Radar Vegetation Index (PRVI), and the Dual Polarization SAR Vegetation Index (DPSVI). Statistical analysis with biophysical variables shows that the DpRVI outperformed the other four vegetation indices, yielding significant correlations for all three crops. Correlations between DpRVI and biophysical variables are highest for canola, with coefficients of determination (R2) of 0.79 (PAI), 0.82 (VWC), and 0.75 (DB). DpRVI had a moderate correlation (R2≳ 0.6) with the biophysical parameters of wheat and soybean. Good retrieval accuracies of crop biophysical parameters are also observed for all three crops.This work was supported by the Spanish Ministry of Science, Innovation and Universities, the State Agency of Research (AEI) and the European Funds for Regional Development (EFRD) under Project TEC2017-85244-C2-1-P
    • …
    corecore