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Abstract

In this study a novel approach for exploiting multitemporal remote sensing data focused on real-time monitoring of agricultural
crops is presented. The methodology is defined in a dynamical system context using state-space techniques, which enables the
possibility to merge past temporal information with an update for each new acquisition. The dynamic system context allows us to
exploit classical tools in this domain to perform the estimation of relevant variables. A general methodology is proposed, and a
particular instance is defined in this study based on polarimetric radar data to track the phenological stages of a set of crops. A
model generation from empirical data through a principal component analysis is presented, and an extended Kalman filter is adapted
to perform the phenological stage estimation. Results employing quad-pol Radarsat-2 data over three different cereals are analyzed.
The potential of this methodology to retrieve vegetation variables in real time is shown.
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I. INTRODUCTION

DURING the last decades remote sensing has been an extremely important source of information to improve the human
knowledge about the dynamical process occurring in our planet. In particular, data from both optical sensors [1], [2],

[3] and radar systems [4], [5], [6] have been applied to agricultural crop monitoring. In this context, timely and spatially fine
information about the condition of crops is an increasing demand from both farmers (to help precision farming methods) and
institutions at different spatial levels (to improve yield forecasts or to ensure environment-friendly practices). Farming management
by growth stage is critical to optimize returns from inputs such as nitrogen (N), plant growth regulator (PGR), fungicides and
water. For instance, the key growth stages for fungicide application are often within the stem elongation stage, and any variation
in the application timing can affect the final yield [7]. To provide such a frequent update of information, optical data [8], [9] have
an inherent limitation when cloud cover is present. Alternatively, synthetic aperture radars (SAR) can be used, provided their
night-and-day operation and near all-weather independence. In addition, current and upcoming SAR missions (e.g. TerraSAR-X,
Radarsat-2, Sentinel-1, Radarsat Constellation Mission) have been designed to increase their revisit time, achieving very low
values (e.g. 6 days with the pair of Sentinel-1 satellites) as required by this sort of application. However, the processing of time
series of remote sensing data for monitoring the development of agricultural crops is not mature. In this paper we propose a
general framework to exploit jointly the information provided by each acquisition and the expected evolution of the crops with
the aim of producing better estimates of the phenological stage of the observed crops.

Classical approaches employ a single or a subset of pixels from the original signal (in either temporal or spatial domain) with
the aim to enhance a particular value or to infer an external variable. This is the situation, for instance, in a smoothing algorithm
which employs a pixel’s neighborhood to compute its smoothed value. The original observed values are the only source of
information used to compute the filtered data. Dealing with a biological process, however, there exist regularities in the growing
cycle which limit the evolution of some parameters between acquisitions. Thus, the inclusion of any knowledge of the dynamics
of the involved process in the estimation or filtering algorithm should improve the final results.

In this study, the phenological process of a crop, i.e. its growth or development, is interpreted as a dynamical evolution which
responds to an unknown analytical model that depends on a huge number of variables, such as temperature, humidity, irrigation,
soil conditions, solar irradiance, etc. A methodology is proposed to extract the evolution model of a generic crop, either for the
phenology or any other biological process, in a first stage. The final objective is to exploit the created model to estimate, in a
second stage, the growth stage in which a particular crop field is. In order to develop the potential of remote sensing acquisitions,
the estimation step is carried out in real-time. This means that as soon as new input data are available (e.g. a new satellite image
is acquired), the estimation is applied, so it is not necessary to perform the estimation over the whole temporal series.

The definition of both learning and estimation stages are derived in the state-space context. Besides the application of well
known tools of dynamic system theory, this context allows us to describe completely the system at each moment with a single
state. This idea was firstly introduced in [10]. Dual-pol SAR data were used as input and the estimation of the phenology of rice
fields was obtained using a Extended Kalman Filter (EKF). It is important to mention that different approaches have been defined
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in the literature using a similar EKF estimation approach. In [11] a soil moisture estimation is proposed based on SAR data, and
in [12] a land cover change using NDVI MODIS data is analyzed similarly. In both cases, the application of the EKF estimator
relies directly upon a known analytical model, being the main difference with the methodology introduced in this framework.

With respect to [10], a deeper analysis of the methodology and a more complete evaluation over different cereal crops is
carried out in this work. Although in this study we exploit a temporal stack of SAR images, the methodology is not limited
to this data type, since the same approach is valid for other remote sensing data (e.g. optical or NDVI products) or even in a
combined methodology.

Finally, there exists the option to work with an approach based on single acquisitions to estimate the phenological stage.
For instance, in [13], [14] independent SAR acquisitions were employed for the estimation of phenology over rice fields. That
approach will be named hereafter as statical in contrast to the dynamical framework proposed in this paper. Nonetheless, temporal
series of images were also analyzed as part of the training stage to define the employed thresholds. It was shown that with such
an approach rice field phenology was traceable with classification trees employing large phenological intervals, i.e. a wide
discretization of the original scale. The main drawback of this sort of techniques, apart from the wide phenological classes
employed, is that it is necessary to study beforehand the behavior of all polarimetric observables to determine which of them are
useful to perform the estimation. In addition, being based on an empirical analysis, it is not guaranteed that the chosen thresholds
are convenient for other datasets. Clear improvements from this statical approach are the provision of an automatic analysis and
a finer resolution in the estimation of the phenology, which is a key aspect from the end users’ point of view. Recent studies
have also proved the potential of different SAR products in agricultural monitoring, as in [15] where interferometric bistatic
products are employed to derive biophysical parameters in rice fields.

The paper is organized as follows. The tools and methodologies employed in this study are introduced in Section II. The
definition of the dynamical context and the general approach for real-time monitoring are stated. The particular approach employed
in this study is also described. The dataset and the results obtained with this methodology over different cereal crop types are
shown and discussed in Section III. Finally, conclusions are exposed in Section IV, together with some ideas for future work.

II. MATERIALS AND METHODS

The theoretical aspects related to the presented methodology are all described in this Section. First, a brief introduction to
dynamic systems is provided in Section II-A with the definition of the classical Kalman filter approach. A general view of the
methodology is also provided. In the three subsequent points, the particular instance of this methodology, employed in this work,
is described. This includes the state-space description based on polarimetric data in Section II-B, the evolution model generation
in Section II-C, and the details of the filtering strategy in Section II-D.

A. Dynamic approach
A system that evolves in time according to a rule is known as a dynamic system. The temporal evolution of such a system is

defined as a process. The rules of evolution are commonly governed by the following pair of equations [16], [17], [18]:

ẋ(t) =
dx(t)

dt
= f(x(t), t,v(t)) (1)

z(t) = h(x(t), t,w(t)) (2)

where Eq. (1) represents the recursive process equation, describing the evolution of the system over time, and Eq. (2) defines the
measurement equation, describing the observation relation with the system. The n-dimensional state vector or, simply, state x(t)
collects into a single vector the set of n state variables xi which completely describe the system configuration at time t. The
n-dimensional domain in which the state is defined is called the state space. The set of functions providing the rate of change of
the state for a particular stage and time are represented by f(). The noise in the evolution is modeled by the stochastic process
v(t). In the measurement equation, the measurement or output vector z(t) is defined by the measurement function h() which
relates the internal state vector with the observed z(t). The observation process is also affected by a noise process w(t).

One of the most remarkable features of the dynamic system approach in the state-space domain is that the information related
to the past of the process is merged into the current state. This is usually known as a Markovian process. In this scenario, once
the system is already defined, a prediction of a state x(t) at any time can be obtained based only on the system state x(t0) for
a particular time t0 < t [16]. Moreover, this state is recursively updated as data arrive, thus making the state-space modeling a
proper approach to process data with temporal dependencies.

The dynamic system introduced in Eqs. (1) and (2) represents a continuous system because it is defined with respect to the
continuous independent variable t. However, for many practical problems, the interest relies only in some states at a discrete set of
times. For this type of problems it is convenient to sort the times according to an integer subscript t0 < t1 < t2 < · · · < tk−1 < tk,
redefining the state of the dynamic system as in Eq. (3):

x(tk) = f(x(tk−1), tk−1,v(tk−1)) (3)
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where the set of equations f() is transformed from the continuous domain (derivatives) to the discrete domain (difference
equations). Note that the f() functions that appear in (1) and (3) are completely different. However, we have preferred to keep
the same notation in both equations as it is usually done in the literature. In addition, it is more efficient to shorten the notation,
so, as long as it is understood x(tk) will be expressed as xk. Finally, under an additive noise assumption, the general expression
for a dynamic system in the estimation framework is expressed by Eqs. (4) and (5):

xk = fk−1(xk−1) + vk−1 (4)

zk = hk(xk) +wk (5)

It has to be noted that the additive noise corresponds to the process noise or uncertainty in the state space, and not the noise
present directly in the values of the input data (e.g. speckle in SAR images).

Some considerations are also usually adopted in practice, being the most usual to consider: a) a linear system, and b) process
and measurement noises both additive white Gaussian processes. One of the most known approaches under these conditions
is the Kalman filter (KF) [19], [20]. The KF was proposed in order to obtain optimal estimations for linear systems under
Gaussian hypotheses, both in the transition and in the observation. Later on, different techniques were developed in order to
handle nonlinear dynamic systems with the same general approach, as the Extended Kalman filter (EKF).

This method allows to get a simple approximation to the solution for a nonlinear estimation problem using the linear
approximation described by Eqs. (6) and (7):

Jk−1 ≈
δfk
δx

∣∣∣∣
x=x̂k−1

(6)

Hk ≈
δhk
δx

∣∣∣∣
x=x̂k

(7)

where Jk−1 corresponds to the linearized transition matrix at state k − 1, and Hk is the linearized measurement matrix at state
k. It is noted that the linearization is particularized over the estimated state vector x̂k−1. Exploiting these approximations the
nonlinear problem can be described in the same terms as the classical KF.

The estimation algorithm is described in two main stages, namely prediction and update. In the prediction stage, based on
the transition model and the previous state, an a priori estimation for the state and the covariance is provided. As soon as an
observation is available, the algorithm is able to provide an innovation, as the difference between the observed value and the
predicted one. The update stage is driven by the Kalman gain, which provides the optimal (suboptimal for EKF) weighting for
the predicted and the innovation states. As a result, after the update stage, an a posteriori state and a covariance matrix are
generated. It is important to note that the update is done when an observation is available, and there is no need to hold it on for
future observations, hence defining a real-time or online estimation procedure. For the sake of clarity, the stages just described,
corresponding to the EKF approach, are summarized in Table I.

In our application, the development of a crop field, i.e. its phenology, can be considered as a process of a particular dynamic
system. For this reason, in this work we propose this methodology, focused on exploiting the potential provided by these filtering
strategies, such as the EKF. With this objective, a conceptual implementation of the whole methodology is shown in Fig. 1. The
functional model consists of two main blocks, specifically the model generation and the estimation stage. The aims of the first
one are to assess the state-space domain of the system and to generate the dynamic process evolution in the defined state space.
This block can be interpreted as a learning stage from a reference set of data. The second block is devoted to, exploiting the
generated dynamic process, estimate the external variable for a set of input data through a dynamic filter approach. Although
this estimation employs the evolution model, the estimation is performed online (or in real-time) whenever a new observation is
incorporated to the process.

Besides the functional model, the approach is defined by the data. First, the reference dataset, which is used to extract the
model evolution, is defined by different temporal acquisitions (ti) sampling the relevant temporal range. Each acquisition is
described by a characteristics vector (ui) and the associated crop variable (Yi). The characteristics vector is related with the
remote sensed values, whereas the crop variable defines the biological process we are interested to track or estimate. Second,
the input dataset represents the temporal acquisitions, with their associated characteristics vector, that are evaluated through the
estimation algorithm. Each acquisition is projected into the defined state space and employed to provide an estimation of the
crop variable (e.g. phenological stage) which defines the output data of the algorithm. As depicted in the figure, an optional
feedback can be finally exploited to regenerate or refine the evolution model after each estimation is obtained, hence providing
an online modeling for the model generation.

In the approach described in this work, the dates of sowing of the crop fields in the reference dataset and in the area to be
monitored are required. However, this in situ information is usually not available in the fields in which phenological estimates
are to be obtained. To solve this issue, and also as a standalone application of this general methodology, the model can be also
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TABLE I. ESTIMATION STAGES AND DEFINITIONS IN EKF

Stage

Prediction x̂k|k−1 = fk−1

(
x̂k−1|k−1

)
Pk|k−1 = Jk−1Pk−1|k−1J

T
k−1 +Qk−1

Innovation ỹk = zk − hk(x̂k|k−1)

Kalman Gain Kk = Pk|k−1Hk

(
HkPk|k−1H

T
k +Rk

)−1

Update x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I −KkHk)Pk|k−1

Definitions

x̂i|j , state vector estimation at i given j;
fi (), transition model at i;
Ji, linearized transition matrix at i;
Qi, model covariance at i;
Pi|j , prediction covariance at i given j;
zi, data observation at i;

hi (), measurement model at i;
ỹi, innovation at i;
Hi, linearized measurement matrix at i;
Ki, Kalman gain at i;
Ri, observation covariance at i.

exploited backwards in time to provide estimates of the date of sowing and other important dates for the farming practices. This
variant of the methodology is described and validated in [21].

In order to obtain an operational approach, a specific instance of the methodology is defined. Different strategies can be
applied over the different sub-blocks of the methodology. For instance, the input data can be derived from different remote
sensing systems, such as optical, hyperspectral or SAR, or even a combination of them. For the case of the estimated output
variables, alternatives as the phenological stage or the leaf area index (LAI) can be considered. Regarding the functional model,
also different options can be taken into account. In the case of the learning strategy, algorithms based on principal component
analysis (PCA), support vector machines (SVM) or artificial neural networks (ANN) can be considered. It has to be remarked
also the importance of the employed reference dataset (i.e. the training set). The employed temporal set should be representative
enough of the space of occurrences, allowing the learning stage to build a general model about this space that enables it to
produce sufficiently accurate predictions for new scenarios. Moreover, there are different approximations based on filtering for the
estimation approach, such as the EKF, the grid-based filter or the particle filter, all of which fit into the described methodology.
As it is described in the following, in this study a implementation based on an input polarimetric dataset is considered to estimate
the phenological stage for different cereal crop types.

B. PolSAR State-Space definition
Fully polarimetric observations of distributed scenes in a monostatic configuration, assuming reciprocity, are defined by their

multi-looked covariance matrix C as in Eq. (8):

C =
1

N

∑
〈kk∗T 〉

=

 〈|HH|2〉
√
2〈HHHV ∗〉 〈HHV V ∗〉√

2〈HVHH∗〉 2〈|HV |2〉
√
2〈HV V V ∗〉

〈V V HH∗〉
√
2〈V V HV ∗〉 〈|V V |2〉


(8)

where k =
[
HH

√
2HV V V

]T
is the polarimetric scattering target vector, and the operator 〈〉 represent the multi-look process

over N independent looks. It is also common to use the Pauli basis to represent the data, taking the form of the polarimetric
coherency matrix T, which can be obtained through a unitary transformation from C (both are Hermitian positive semidefinite
matrices) [22], [23]. The set of input parameters (observables) employed in this study is obtained from both matrices, and initially
can be divided into two main groups: power of different channels (diagonal terms), and complex correlations between channels
(off diagonal terms) providing each one a normalized correlation and a phase difference between channels. In addition, from both
matrices different decomposition techniques, aimed to provide a physical interpretation, can be applied. In this work the set of
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Fig. 1. Block diagram of the dynamic approach for agricultural crop monitoring. The approach is divided in two functional blocks: model generation and
estimation stage. A reference dataset is employed to extract the dynamical model. An input dataset is used for estimation.

observables is complemented with the H/A/α polarimetric parameters introduced in [24]. Using this reference, each observation
is described as a set of sixteen different parameters: 5 power terms, 4 normalized correlation values, 4 phase differences, and
3 parameters from the eigenvector decomposition of matrix T. It has to be reminded that this selection of initial parameters is
just an instance of the methodology. Indeed, a complete analysis of the performance as a function of the input domain could be
carried out and would be subject of further discussion, but it is beyond the scope of this manuscript. It should be noted that this
scheme is also suitable for different polarimetric configurations (e.g. dual-pol, hybrid or circular polarizations), and this will be
analyzed in a future study.

In order to define a state space with easy representation, for illustration purposes, in this study the state vectors xk are derived
from the proposed set of 16 observables after a dimensional reduction. A principal component analysis (PCA) is employed,
whose main goal is to identify the most meaningful basis to re-express the original polarimetric domain. Therefore, the idea is
to employ each polarimetric feature evolution as input to the analysis. The input data consists in the whole set of all merged
reference parcels, described by their polarimetric parameters, to define the common output space, which is later used to project
each parcel evolution. Let Ymxn be the original polarimetric data of m observables and n samples (to which a standardize
operation has been applied) for each parcel and date. The PCA approach allows us to obtain a new basis Xmxn which is
related to the original one by a linear transformation Amxm. Each row of the transformation matrix corresponds to a principal
component and represents the set of new basis vectors used for expressing the columns of Y. As the principal components are
sorted in terms of variance, the dimensional reduction in this domain consists in a truncated transformation matrix. As we will
show in Section III, from the original dataset (m = 16) it is sufficient to consider only the first three components, thus A3xn.
With this consideration, variance is held at 70% of the original value, and the interpretation of the state space can be derived
geometrically. In this way the projected domain over the three main principal components defines the state xk of each parcel
observation.

C. Evolution model
A classical dynamic approach is defined using an analytical function characterizing both the evolution rules fk−1() and the

system output hk(). In our case, due to the nonexistence and complexity of such an analytical model, the dynamics is extracted
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directly from the observed data. This learning stage produces a representative model evolution for the kind of crops under study.
For the reference set of parcels, the dynamical evolution is obtained in two steps. The first one involves the computation of

the polarimetric observables at parcel level, i.e. only one covariance matrix is computed for a whole parcel at each temporal
acquisition, and the projection into the space provided by the PCA. The extraction of the principal components had to be carried
out previously as described in Section II-B. Each acquisition is projected to the state space defined by the dimensions expressed
as linear combinations of the polarimetric information as in Eq. (9):

xn =

m∑
i=1

aipi for n = 0, 1, . . . ,m− 1 (9)

where ai denotes the coefficient (provided by the PCA for each dimension) associated with each polarimetric observable pi, and
xn is the projected value in the n-th dimension. The number of the original parameters m limits the dimension of the projected
space. So far, each field at each date is represented by a coordinate vector [ x0 x1 . . . xm−1 ] in the projected space. In order to
illustrate this, Fig. 3 shows the projection over the two first components obtained for each acquisition at three different barley
fields using a stack of 24 images. In the state plane defined by the first two components (x0 and x1) each field data at each
acquisition is represented by an up/down triangle for ascending/descending tracks, and the color code denotes the beam (incidence
angle) for each case. Moreover, each of them has an associated phenological interval, minimum and maximum, provided by the
ground campaign. The available phenological information corresponds to the scale defined in [25], coincident with the standard
BBCH scale [26], ranging from 0 to 100 in a continuous way. A scheme of the scale and their main stages is shown in Fig. 2.

Scale

Germination
Leaf development
Tillering
Stem elongation
Booting
Infloresc. emergence
Flowering
Fruit development
Ripening
Senescence

00
10
20
30
40
50
60
70
80
90

100

Vegetative

Reproductive

Maturation

Fig. 2. Phenological scale employed in the ground campaign. The scale provides a continuous representation of the crop evolution.

The absence of a continuous phenological record, however, prevents us to generate directly a model describing the whole set
of phenological values in the BBCH scale. Instead, a discretization from the original continuous range is performed to provide
a reasonable sampling in the evolution model. Thus, the model is identified in phenological discrete intervals or clusters which
enclose neighbor ranges of phenological values.

The second step consists in obtaining the evolution model in the projected space. A geometrical model is defined for a predefined
set of phenological clusters given by the phenological ranges they represent. Every acquisition falling inside a phenological range
is employed to obtain the center of each cluster, xk, and the associated covariance matrix, Qk. For instance, in Fig. 3 the creation
of the first cluster, xk = 0, is illustrated. In this case there are 6 elements (the ones linked with dotted lines to the cluster center)
in the plane with BBCH values in the range [0 − 12] and they are employed to compute the mean and the covariance value.
This clustering is done for each specified phenological interval. After that, the model is defined by xk, Qk and the phenological
range BBCHk at k = 0, 1, 2, . . . ,K − 1, where K corresponds to the number of clusters predefined as input. To complete the
model definition, the local temporal variation δfk = δxn/δt of each cluster is also computed from the state vector variation and
the temporal acquisition ranges of each cluster. As a result, the velocity state vector is also provided at each cluster.

In Fig. 3 a total of K = 9 clusters are represented on this bidimensional state space, and the variance at each dimension (i.e.
diagonal elements of the covariance matrix) is denoted by an ellipse. The continuous evolution, represented by the solid black
line connecting the different cluster centers, is obtained by means of a cubic splines interpolation.

D. Phenological Estimation Approach
At this stage, most of the estimation techniques are usually focused on exploiting either the model or the observations, but not

both. In the first case, the introduced geometrical model is assumed to describe fully the crop signature, despite it may be limited
by the set of parcels employed in its generation. If the fields employed in the model generation are representative enough, the
model can be used directly to describe how any field behaves or evolves in time using exclusively temporal information over
the model. In that case, state vectors would be used to provide transitions from one cluster to the next, allowing also the access
to intermediate interpolated values. With such a methodology, the phenological value for each estimation would be retrieved
directly from the cluster assigned after each temporal transition. In the second case, which corresponds to a classical filtering
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Fig. 3. Two-dimensional projection of the reduced space for all Radarsat-2 beams and tracks using three barley crops. Each triangle represents a field acquisition
and the subscripts denote the ground truth provided for the phenological stage at the acquisition date. A total of K=9 phenological intervals are employed in the
clustering process. Results are presented by the cross-marks and the standard deviation of each component is directly represented by an ellipse. The transition
between states described by the continuos line is obtained trough a cubic spline interpolation.

approach, the observation could be filtered with a fixed rule (or function) without incorporating any other knowledge to the
process. In both cases there would be a bias from the real evolution, in contrast with the results that can be obtained by properly
combining both sources of information: model and observations.

In order to combine the information of the previously obtained model and that provided by the observations, a filtering strategy
based in EKF is proposed in the methodology. The most common way to work with this dynamic approach is using an analytical
transition and measurement functions. Nevertheless, it is possible to obtain the functions that define the dynamic of the process
in alternative ways to the analytical case. In this work, we propose to bypass the absence of an analytical model by using a
numerical evolution obtained directly from the empirical observations. The required linearization is not based directly on the
analytical Jacobian matrix. Instead, a numerical derivation using the model is performed. The linearized approximation to the
state transition matrix in the state k − 1 is expressed as in Eq. (10):

Jk−1 =


δf0
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0
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2
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 (10)

where each differential coefficient is understood as an approximation to the partial derivatives from the classical Jacobian matrix,
but each value is obtained directly from the model. In this methodology, the observation matrix Hk is considered as an identity
matrix provided that the observations zk are already provided in the projected state space using Eq. (9). The covariance matrix
Rk for each observation is computed through a Monte Carlo simulation for PolSAR data as described in [22], [23]. Speckle
noise is simulated for each observed polarimetric covariance matrix C and used to compute, through the linear combination of
Eq. (9), a representative distribution of the observed state. From this distribution the covariance matrix Rk of the observation
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in the state space is computed. The Monte Carlo simulation is evaluated over each multi-looked C matrix under the estimation
stage. The purpose is to create a set of instances of the process behind each observation under estimation. Then the instances are
employed to extract the covariance matrices of the polarimetric parameters and hereafter the covariance of the PCA variables.
The number of samples employed in each simulation is N = 1000.

Extending the basis of the EKF algorithm, the phenological stage retrieval is divided into two main stages: prediction and
update. The prediction stage makes use of the model evolution and the transition matrix. A numerical integration in time is
employed to compute an a priori estimate for the state x̂k|k−1 and the associated covariance matrix Pk|k−1, using just the
previous state estimate x̂k−1|k−1. It is important to emphasize that this a priori estimation is based only on the previous state
and not in earlier ones.

The second stage (update) occurs when a new data observation is available (e.g. a new satellite image is acquired). The
objective of this second stage is to improve, using sensed data, the previously predicted value by minimizing the covariance of
the estimation. The required input is composed by two parts: the acquired polarimetric observables projected in the state space,
zk, and their associated covariance matrix, Rk. The innovation product ŷk and the Kalman gain are obtained using the equations
defined in the EKF algorithm (Table I), giving a measure of the improvement with respect to the prediction and the observed
data. Both parameters are employed to compute the a posteriori state, x̂k|k and its covariance matrix Pk|k, providing an updated
and final state estimate for the current acquisition. Finally, to supply a phenological value in the BBCH scale, the estimated state
is projected to the original evolution model, which bears the corresponding phenological values.

III. RESULTS

Some first results employing the presented methodology were shown in [10]. A stack of dual copolar TerraSAR-X images
was employed over rice fields to check the methodology effectiveness. These results showed a clear improvement with respect to
the static results presented in [13], although a quantitative assessment was not carried out. However, static methodologies have
proven to be effective in the phenological estimation problem over different types of crops using SAR data. In [27] it is shown
that a very high accuracy in the phenological estimation is reached for some crop types. Nevertheless, the way to export this
static methodology to different scenarios is not well defined yet. In contrast, the design of the multitemporal approach proposed
here has been defined specifically for this purpose.

In this Section, an example of the practical operation of the presented methodology over a set of cereal fields is presented,
together with an analysis of the obtained results. The input dataset and the localization of the fields under study are introduced
in Section III-A. The pre-processing of the polarimetric data, required before this methodology is applied, is described in
Section III-B. Details regarding the state-space definition and the model generation are discussed in Section III-C. Finally, the
obtained estimates are shown and analyzed in Section III-D.

A. Datasets
In order to test the presented methodology, we employed the data provided by the ESA-funded AgriSAR 2009 campaign over

Indian Head (Saskatchewan, Canada) where different crop fields were intensively monitored both with remote sensors and on
the ground [28]. The precise location of the area under study is shown in Fig. 4. Three different cereal crops are considered in
this work: barley, wheat and oat.

The available phenological information at the monitored fields is represented graphically in Fig. 5. The ground measurements
were carried out in a weekly basis (every 7 or 10 days). At each date, an interval of values (lowest and highest phenological
values present in a particular field) is provided (denoted by cross marks in Fig. 5). Since the dates of acquisition of the ground
data are not coincident with the SAR acquisitions, a sort of interpolation is required. Attending to the expected behavior of the
agricultural crops, the region of possible values is extended in the following way: each minimum value defines the lower limit
until a new minimum value is specified, and each maximum value can be present from the previous date until it is measured.
As a result, the possible phenological values as a function of date exhibit the staggered aspect shown in the figure.

The original set of SAR data consists of 57 Radarsat-2 images, all in fine quad-pol mode, with incidence angles ranging from
22◦ to 39◦ in both ascending and descending orbits. From the whole set, only the images with phenological information (i.e.
from sowing to harvest) have been considered, covering the 3-month period between June 1 and August 31, and no restriction
related to weather conditions has been contemplated. Therefore, the analysis is restricted to 24 valid images from all beams and
incidence angles, listed in Table II.

The influence of including very different incidence angles in the model generation is an issue to be carefully analyzed. Some
polarimetric observables are more influenced than others by incidence angle, so a selection of them could be a good strategy to
avoid mixing different behaviors. This may be especially important when extreme angles are incorporated evenly to the model
(like 22 and 39 degrees as in our case). Another possible approach would consist in restricting the dataset to only similar angles,
hence avoiding this issue. However, in order to provide a valuable tool in the dynamical framework, it is highly important to
hold the shortest sampling rate. Although some differences in extreme incidence angles are detected, we decided to exploit
here as long as possible the similarities in the common behavior. In fact, if we try to reduce the number of images (i.e. the
number of incidence angles) it is not possible to know in this scenario whether the benefits of not mixing incidence angles
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Fig. 4. Crop fields localization and distribution in the analyzed area. A total of seven fields are employed: three barley fields (orange), two wheat fields (green)
and two oat fields (yellow). Photos courtesy of Google Earth.

TABLE II. LIST OF ACQUISITIONS EMPLOYED IN THE ANALYSIS.

Date (yyyymmdd) DoY Pass Beam Inc. angle (deg)
20090603 154 DSC FQ02 22
20090604 155 ASC FQ19 39
20090607 158 DSC FQ19 39
20090608 159 ASC FQ02 22
20090610 161 DSC FQ06 26
20090611 162 ASC FQ15 35
20090617 168 DSC FQ10 30
20090624 175 DSC FQ14 34
20090701 182 DSC FQ19 39
20090702 183 ASC FQ02 22
20090704 185 DSC FQ06 26
20090711 192 DSC FQ10 30
20090712 193 ASC FQ11 31
20090721 202 DSC FQ02 22
20090722 203 ASC FQ19 39
20090726 207 ASC FQ02 22
20090804 216 DSC FQ10 30
20090811 223 DSC FQ14 34
20090812 224 ASC FQ06 26
20090815 227 ASC FQ19 39
20090818 230 DSC FQ19 39
20090819 231 ASC FQ02 22
20090822 234 ASC FQ15 35
20090829 241 ASC FQ11 31

would compensate the loss of temporal sensitivity, especially from the final application point of view. A complete analysis in
this direction will be carried out in the future.

B. PolSAR data pre-processing

A pre-processing block is applied to all selected images in order to use the proposed methodology. It consists basically of
three steps. The first one is the multi-look or speckle filtering (using a simple box car of 9 × 9 pixels), which produces the
estimates of the polarimetric covariance matrix at each pixel. The second step consists in the geocoding of all data over the
same geographical grid. Thus, all the resulting images are in the same reference grid, regardless of their beam or track. The
third step involves the extraction of the polarimetric observables employed in the PCA. A total of 16 polarimetric parameters,
listed at Table III, are employed in the analysis. As previously anticipated, in this example the entries of the covariance matrix
are merged with entries from the polarimetric coherency matrix and outputs of its eigenvector decomposition.
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Fig. 5. Available phenology for each monitored crop: barley (top), oat(middle) and wheat (bottom). Cross marks denote the provided ground data (GT), and
the shadowed region denotes the interpolated values. In each case the first phenological value corresponds to the sowing date.

C. Model generation

For simplicity, the model generation is carried out using the polarimetric covariance matrices averaged at parcel level. As
introduced in Section II-B, the automatic extraction of the characteristics is performed by means of a PCA approach. Then,
for comparison purposes, models have been generated for each crop independently and also combining the data of different
crop types. The distribution of the coefficients of each polarimetric observable employed in each component, resulting from the
PCA, is shown in Fig. 6. Each coefficient is directly related to the weight of each observable in the resulting dimension of the
reprojected space. In all cases, the cumulative variance reached with three components is above 70% from the original set of
sixteen observables, thus the loss of information is quite low when a 3-dimensional state space is used.

In order to improve the statistical analysis, increasing the number of significant samples, the PCA space definition has been
also carried out by using combinations of different crop types, since they share actually similar biophysical features, hence
representing with a common model the evolution of more than one crop. The first combination consists of only wheat and barley,
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TABLE III. LIST OF POLARIMETRIC OBSERVABLES CONSIDERED AT EACH ACQUISITION.

Polarimetric observable Description

|HH|2 Backscattering coefficient in the co-polar horizontal channel

|V V |2 Backscattering coefficient in the co-polar vertical channel

|HV |2 Backscattering coefficient in the cross-polar channel

|P1|2 Backscattering coefficient in the 1st Pauli channel (|HH + V V |2/2)

|P2|2 Backscattering coefficient in the 2nd Pauli channel (|HH − V V |2/2)
ρHHV V Correlation magnitude between co-polar channels
φHHV V Polarimetric phase between co-polar channels
ρHHHV Correlation magnitude between horizontal co-polar and cross-polar channels
φHHHV Polarimetric phase between horizontal co-polar and cross-polar channels
ρV V HV Correlation magnitude between vertical co-polar and cross-polar channels
φV V HV Polarimetric phase between horizontal co-polar and cross-polar channels
ρP1P2

Correlation magnitude between 1st and 2nd Pauli channels
φP1P2

Polarimetric phase between vertical co-polar and cross-polar channels
H Entropy
A Anisotropy
α1 Dominant alpha angle in the eigen-decomposition of T

Fig. 6. Component coefficients obtained in the PCA analysis. Different cases correspond to models obtained: independently for each crop (top row) or combining
different crops (bottom row). Two independent plots are provided at each figure. Color bars indicate the weight of each polarimetric feature (correspondent to
the legend) in the 3D space after the PCA analysis. Grey bars indicate the cumulative variance provided as the number of dimension in the PCA space increases.
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which are the most similar cereals in this study. In that case, the analysis is carried out by considering a total of five parcels.
The last combination to be tested is formed by all the three crop types, using the whole set of parcels in the analysis. In this
case the main behavior is similar to the one already described.

The 3D evolution models generated by the proposed automatic extraction technique are shown in Fig. 7 and 8. The interpretation
of the crop signatures is not straightforward, but some comments can be done to explain their basic meaning. The models in
which barley is involved exhibit three easily recognizable regions: the first one between stages 0 and 4 (BBCH 00 - 39), the
second one between stages 5 and 6 (BBCH 40 - 69), and the last one from stage 7 to 8 (BBCH 70 - 99). Not incidentally,
this matches almost perfectly with a phenological scale with three main levels: vegetative (BBCH 00-49), reproductive (50-69)
and maturation (BBCH 70-99) [26]. The behavior of the model along the first axis is defined in two zones: a linear increment
from stages 0 to 6 and a saturation effect dominating both final stages 7 and 8. In the second axis there are three clear zones:
a decrease for stages 0 to 3, an almost constant region for stages 4 to 6, and an increase for the final stages. Although with
different signs, a similar behavior is observed for the third dimension, for which an increase dominates from stages 0 to 4, then
a turning point occurs, and the central and last stages are defined by two different decrease ratios.

Even though the distributions of coefficients are similar to the other cases, the model obtained independently for wheat seems
more chaotic and no direct interpretation can be found. The case for the oat model is also different, apart from a saturation effect
in the third component during the last stages. In both cases (wheat and oat) there are only two parcels involved in the model
generation, so the lower number of representative data is expected to produce less reliable models.

Although falling partially outside the scope of this work, it is also interesting to test the possibility of defining the three
components of the evolution model in a manual way, that is, taken directly from the set of 16 polarimetric observables. Attending
to the analysis shown in [27], three good candidates are the backscattering coefficient of the 2nd Pauli channel (x0), the dominant
alpha angle (x1), and the correlation magnitude between the first two Pauli channels (x2). In this case these three polarimetric
observables define directly the state space of the model. The phenology retrieval procedure proposed in this work will be also
applied to this direct model and the results will be discussed in next Section. The physical interpretation of this model is relatively
straightforward as each component represents only one observable. Although the signatures are different depending on the crop
type, the following considerations hold for all of them. There is an increase at both early stages and the late ones in the x0
component, driven by the initial growth of the plants and the increase of their randomness at the last dates, respectively. In x1
there is also an increase during the whole cycle but for the two last stages, when its value saturates, showing an increasing
departure from the surface scattering produced by the ground. The same behavior serves to describe the x2 component, and thus
the signature in the plane defined by the last two coordinates describes an almost linear trend. Nevertheless, the manual definition
of the state-space model has the main drawback of being less flexible, needing a polarimetric analysis prior the definition.

D. Estimation results
In this Section the results that have been obtained employing the proposed methodology are presented and discussed. The

estimation of phenology is carried out using the previously generated models and the available polarimetric acquisitions,
considered as input data. The results obtained with the model derived independently for each crop type are shown in Fig. 9
and 10. The estimations are performed at pixel level, i.e. an estimate is provided for each pixel of the multilooked and geocoded
images. Fig. 9 compares the obtained results with the ground data for the three crop types. The estimation range (min-max) at
pixel level is denoted by the whiskers. In accordance with the number of available parcels, a total of three estimation ranges
are shown for barley and only two for wheat and oat. In general, an increase in the variance of the estimates as a function of
date is observed for all crop types, which is not present in the ground data. Moreover, a slight underestimation is observed in
the second half of the cultivation cycle, which is larger in the case of oat fields. The temporal variation of the phenological
estimates is quite smooth as observed shown in Fig. 10. However, within each field we can observe a noticeable heterogeneity in
the phenology estimates. Such an heterogeneity maybe induced by the natural variability of the crops (some areas develop faster
than others), as well as by the intrinsic variance in the radar data. It must be stated that we have not applied a segmentation or
similar image processing technique to the data, which would contribute to get more spatially homogeneous estimates. Such a
processing is left for future work.

The validation of the obtained estimates against the ground truth has been carried out as in a classification case, since
phenological intervals can be regarded as different classes of the same crop. For each evaluated case, a confusion matrix and
the κ coefficient [29] are provided. The evaluation is established over 6 phenological intervals (i.e. classes) which are defined in
Table IV. It should be remarked here that the estimation is obtained in a continuous phenological BBCH scale, but a discretization
is applied later in order to compare with the provided ground truth. The mode (most frequent value) of the pixel estimates within
each parcel is used for comparison with the ground data. For this comparison, also the ground truth data have to be adapted, so
the mean value of the provided ranges is employed in the analysis.

Using the models generated independently for each crop type, we obtained the classification results shown in Table V. For
both barley and wheat a significant κ value is obtained, despite a lack of accuracy is exhibited during the intermediate stages. In
all crop types, the highest accuracy in the estimation is obtained for the first and last phenological stages. In the case of barley
and wheat crops, some accuracy is also achieved during the vegetative phase. However, the accuracy in the reproductive and in
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Fig. 7. Evolution model obtained by PCA for the three crops analyzed independently. Each cross mark represents the cluster center in the state-space model,
with its corresponding phenological interval.

the first part of the maturation phase is low. Observing Fig. 9, it seems that the nonlinear behavior of phenology as a function of
time (or date) is not followed properly by the estimation procedure. Hence, other potential filtering approaches (different from
EKF) could be tested to avoid this problem. Anyway, the general accuracy in both crop types is high enough, considering the
different uncertainty sources involving the ground data. In contrast, in oat fields there is a lack of accuracy in all the intermediate
stages and thus the general estimation accuracy is lower.

If the model generated jointly for both barley and wheat is considered, the accuracy during the intermediate stages is
significantly improved, as shown in Table VI. The overall performances of the estimation can be considered almost the same as
the particular field application (independent models for each crop type) having a total accuracy of 76% and a κ value of 0.69.
In this case the accuracy in the estimation of the intermediate stages is more uniform, showing values above 55% in all user
and producer accuracies but in one case. This can be explained due to the fact that in this scenario the model is created with
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Fig. 8. Evolution model obtained by PCA for two combinations of crops. Each cross mark represents the cluster center in the state-space model, with its
corresponding phenological interval.

Fig. 9. Statistics of the phenology estimates obtained for the three crop types following the proposed methodology: barley (left), wheat (middle) and oat (right).

more significant samples and thus the estimation is performed with a robust methodology.
For completeness, the results obtained employing the polarimetric observables directly as components of the state-space model

are shown in Table VII. In this case, the general accuracy does not increase, and the lack of sensitivity is even higher for later
stages (3 to 5).

Although the number of parcels available to perform the analysis is low, the results obtained for wheat and barley show
clearly the potential of the methodology. Moreover, the strategy of combining parcels to obtain a more significant model has
proven to be useful, based on an increase in the number of samples included in the learning stage. It should be reminded that
different beams are included in the data in order to provide a fine temporal sampling in both model generation and variable
estimation, so it is likely that this incidence angle combination is introducing some level of uncertainty at both stages (modeling
and estimation). The available ground truth produces also some level of uncertainty. In Fig. 5 only the minimum and maximum
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TABLE IV. CLASSES DEFINITION IN THE CONFUSION MATRIX ANALYSIS.

Class BBCH Range Description
1 00 - 21

Vegetative2 22 - 39
3 40 - 49
4 50 - 69 Reproductive
5 70 - 79 Maturation6 80 - 99

TABLE V. CONFUSION MATRICES OF THE ESTIMATES OBTAINED WITH THE PCA-BASED MODELS GENERATED INDEPENDENTLY FOR EACH CROP TYPE

Barley
Class 1 2 3 4 5 6 # Acc.

1 22 2 24 92
2 2 7 9 78
3 1 4 1 6 67
4 1 4 1 6 16
5 2 1 3 34
6 2 22 24 92
# 24 11 8 4 3 22 72

Acc. 92 64 50 25 33 100 80
κ 0.72

Wheat
Class 1 2 3 4 5 6 # Acc.

1 15 1 16 94
2 6 6 100
3 2 2 4 50
4 1 3 4 0
5 2 1 1 4 25
6 2 12 14 86
# 15 10 7 1 3 12 48

Acc. 100 61 29 0 34 100 75
κ 0.68

Oat
Class 1 2 3 4 5 6 # Acc.

1 16 16 100
2 4 2 6 34
3 8 8 0
4 0 0
5 3 1 4 0
6 7 7 14 50
# 20 10 10 1 0 7 48

Acc. 80 20 0 0 0 100 53
κ 0.37

TABLE VI. CONFUSION MATRIX OF THE ESTIMATES OBTAINED WITH THE PCA-BASED MODEL GENERATED JOINTLY WITH BARLEY AND WHEAT

Class 1 2 3 4 5 6 # Acc.
1 35 5 40 87
2 14 1 15 93
3 3 7 10 70
4 2 2 6 10 60
5 2 1 4 7 57
6 1 12 25 38 66
# 35 24 12 8 16 25 120

Acc. 100 58 58 75 25 100 76
κ 0.69

TABLE VII. CONFUSION MATRIX OF THE ESTIMATES OBTAINED WITH THE MODEL GENERATED WITH DIRECT POLARIMETRIC OBSERVABLES AND
JOINTLY FOR BARLEY AND WHEAT

Class 1 2 3 4 5 6 # Acc.
1 40 40 100
2 2 13 15 87
3 5 5 10 50
4 10 10 0
5 5 2 7 0
6 1 20 1 2 14 38 37
# 42 19 40 3 2 14 120

Acc. 95 68 12 0 0 100 60
κ 0.50
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Fig. 10. Mosaic of all maps of retrieved phenology at pixel level using the proposed methodology.

phenological values at each date are depicted, but for some dates the supplied values are quite heterogeneous. For instance, in the
case of barley two or three different phenological ranges, later assigned to different clusters, are provided for the same date in
the vegetative phases, but there is no information about their spatial distribution or the percentage of areas under each range. To
avoid stronger assumptions, a uniform distribution is considered within the provided minimum and maximum range. However,
the real scenario could differ much from this hypothesis.

At comparative level, oat results are less accurate than those obtained for wheat and oat. It can be explained in part because
of a lower sensitivity from the radar response to this crop, as pointed out in [27]. In order to obtain more reliable results, it
seems that in this case a larger number of data is still needed. The higher radar sensitivity for wheat and barley explains the
better performance with the same number of parcels. Either increasing the parcels in the modeling stage or the revisit time could
affect positively the quality of the obtained estimates.

To provide an extended qualitative assessment, the estimation procedure has been applied also to a bigger area where the only
available ground truth information is the crop type. It consist in the surrounding area to the reference set, and the distribution
of parcels and crop types is illustrated at Fig. 11. A total set of 59 fields are considered. In particular, the set is divided in 10
barley, 8 oat and 41 spring wheat fields.

Exploiting the model generated for the reference set of parcels, the estimation is applied for each depicted field exploiting the
same stack of Radarsat-2 images. The obtained results, shown in Fig. 12, are plotted against the provided ground truth for the
reference set of parcels. In general, there exist a common trend in the three set of crop types following the reference ground
truth. It can be observed that, also for this evaluation, oat fields present the highest deviation from the reference ground truth. In
Fig. 13 maps of the estimates are presented for five different dates. Although there is no knowledge of the actual phenological
stages at any date, it is expected that the fields in the area behave in a similar way. For that reason with this evaluation we can
not assess quantitatively the methodology but prove visually that the methodology is useful and exportable.

Working in a reduced state space of three dimensions has the advantage of providing an easy interpretation, since the evolution
can be represented graphically. However, there is no restriction in the use of a higher dimensional space. The same methodology
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Fig. 11. Distribution of cereal fields over the whole area where the phenological stage is retrieved. The red box indicates the location of the reference set of
parcels. Photo courtesy of Google Earth.
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Fig. 12. Estimated phenological stage for each crop type over the extended set of fields. The ground truth for the learning set of parcels is provided for
reference.
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Fig. 13. Temporal subset corresponding to a sequence of the estimated phenological stages over the extended area.

is suitable for a N-dimensional space. In the analyzed scenario, for instance, cumulative variances close to 90% can be reached
considering 5 dimensions, so it has to be tested how, despite the reduced number of data, a higher dimension approximation
affects the estimation.

Regarding the results obtained with a manual selection of the polarimetric observables that define the state space, two main
ideas can be extracted. The first one is related with the accuracy obtained with the methodology. The direct usage of the
polarimetric observables as components in the methodology has provided less accurate estimates than the ones obtained with
the PCA. Different combinations of parameters could be employed to maximize the estimation accuracy. However, with the
automatic analysis this is not necessary. The second idea is involved directly with the potential of the approach to be exported to
other fields or crop types. In the direct selection of components, a manual assessment has to be carried out externally to apply
the methodology, i.e. to detect the most sensitive parameters to phenology. This has to be repeated each time a new crop type
is going to be monitored. Alternatively, an automatic analysis tool, as the one proposed in this paper, provides the assessment
in a more effective way.

IV. CONCLUSION

In this work a novel approach to analyze and monitor with remote sensing the evolution of crop fields has been proposed and
tested. The methodology is based on considering the crop evolution as a dynamic system, hence providing a real-time monitoring
based on remote sensing input data. It has been shown that multitemporal data are suitable to define an approach in that context.
Although the methodology has been tested using polarimetric SAR data, the approach is fully capable to define the same strategy
by employing any other remotely sensed data with sensitivity to different biological crop variables. The results obtained, based
on a subset of parcels for which ground truth is available and extended to a surrounding area of parcels of unknown ground truth,
have shown the potential of the presented framework. The real-time capabilities of this approach enable the final users with the
possibility to obtain estimates as remote sensing data are available, and hence contribute to develop new practical applications.
For instance, real-time alerts about crop anomalies can be easily derived from this methodology. In addition, the prediction stage
could be used standalone to infer future stages in the phenological evolution, from a current known one, or the dates in which a
particular crop will reach some predefined condition. Such tools would help to increase crop yields and to optimize the available
farming resources.

Besides final applications, the presented approach has a great potential in this field thanks to its flexibility and its the capability
to be exported to different scenarios. The definition of the methodology in the state-space domain enables the use of different
filtering techniques exploiting the temporal dimension. The entire procedure defines a close optimal approach for the phenological
estimation, despite nonlinear behaviors. In addition to different types of input/output data, the proposed methodology represents
a general algorithm with a modular structure, as shown in Fig. 1. In this sense, this work sets up the basis for a dynamical
approach focused on crop monitoring. As a proof of concept, in this study a PCA/EKF combination has been employed, but
alternative modeling stages (e.g. ANN or SVM) and filtering strategies (e.g. particle filters or grid-based estimators) can be
applied. In particular, filtering strategies specific for nonlinear scenarios would produce a better performance in the estimation
stage. A similar strategy was employed successfully in [30], [31] for interferometric phase unwrapping. In these works, the
dynamics definition of the phase unwrapping problem in the state-space domain allowed the exploitation of different filtering
approaches, as the grid-based and the particle filter.
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The proposed model generation from empirical data, employing an automatic analysis tool, has proven to be successful in
this context. The reduction from a large number of variables can be done using the PCA and without any supervision. Only
the cluster ranges for the model have to be specified by the user in order to create the model. Also the proposed numerical
linearization has been effective, so the overall idea of the EKF has been successfully translated and applied to the dynamic
phenological evolution problem.

From the analyzed dataset, satisfactory results are obtained for wheat and barley with an agreement close to κ = 0.7 during
the whole cultivation cycle. In the case of oat the results showed only good sensitivity during the first and last stages of the
phenological evolution. In all cases, the number of available fields is rather low. Consequently, the main limitations in this work
stem from the low number of fields involved in the study. Naturally, this could be solved using more fields to get the most
representative features for each crop within the model. In this regard, an online modeling methodology could be defined in the
future. This approach will increase the model accuracy each time an estimation is performed. Moreover, a further analysis should
also be driven to assess the effects of the incidence angle in a common scenario and how changes on the temporal sampling rate
(considering different stacks of images) affect the dynamic process underneath.

Together with other sources of remote sensing data, the methodology is suitable for different polarimetric modes. A further
analysis in this matter will be made with the objective of determining the impact of the polarimetric configuration and how
the dimensional reduction affects the phenological estimation quality compared to those obtained for the full polarization case.
Moreover, the adopted filtering strategy allows us to further establish the mechanisms to fuse data from different remote sensing
sources, for instance SAR and hyperspectral data. This scenario would increase the temporal resolution, due to different sampling
rates and the sensitivity to phenology, being each of the sensor types responsive to different aspects of the crop field evolution.
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