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Abstract

In this study a novel approach for exploiting multitemporal remote sensing data focused on real-time monitoring of agricultural
crops is presented. The methodology is defined in a dynamical system context using state-space techniques, which enables the
possibility to merge past temporal information with an update for each new acquisition. The dynamic system context allows us to
exploit classical tools in this domain to perform the estimation of relevant variables. A general methodology is proposed, and a
particular instance is defined in this study based on polarimetric radar data to track the phenological stages of a set of crops. A
model generation from empirical data through a principal component analysis is presented, and an extended Kalman filter is adapted
to perform the phenological stage estimation. Results employing quad-pol Radarsat-2 data over three different cereals are analyzed.
The potential of this methodology to retrieve vegetation variables in real time is shown.
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I. INTRODUCTION

URING the last decades remote sensing has been an extremely important source of information to improve the human

knowledge about the dynamical process occurring in our planet. In particular, data from both optical sensors [1], [2],
[3] and radar systems [4], [5], [6] have been applied to agricultural crop monitoring. In this context, timely and spatially fine
information about the condition of crops is an increasing demand from both farmers (to help precision farming methods) and
institutions at different spatial levels (to improve yield forecasts or to ensure environment-friendly practices). Farming management
by growth stage is critical to optimize returns from inputs such as nitrogen (N), plant growth regulator (PGR), fungicides and
water. For instance, the key growth stages for fungicide application are often within the stem elongation stage, and any variation
in the application timing can affect the final yield [7]. To provide such a frequent update of information, optical data [8], [9] have
an inherent limitation when cloud cover is present. Alternatively, synthetic aperture radars (SAR) can be used, provided their
night-and-day operation and near all-weather independence. In addition, current and upcoming SAR missions (e.g. TerraSAR-X,
Radarsat-2, Sentinel-1, Radarsat Constellation Mission) have been designed to increase their revisit time, achieving very low
values (e.g. 6 days with the pair of Sentinel-1 satellites) as required by this sort of application. However, the processing of time
series of remote sensing data for monitoring the development of agricultural crops is not mature. In this paper we propose a
general framework to exploit jointly the information provided by each acquisition and the expected evolution of the crops with
the aim of producing better estimates of the phenological stage of the observed crops.

Classical approaches employ a single or a subset of pixels from the original signal (in either temporal or spatial domain) with
the aim to enhance a particular value or to infer an external variable. This is the situation, for instance, in a smoothing algorithm
which employs a pixel’s neighborhood to compute its smoothed value. The original observed values are the only source of
information used to compute the filtered data. Dealing with a biological process, however, there exist regularities in the growing
cycle which limit the evolution of some parameters between acquisitions. Thus, the inclusion of any knowledge of the dynamics
of the involved process in the estimation or filtering algorithm should improve the final results.

In this study, the phenological process of a crop, i.e. its growth or development, is interpreted as a dynamical evolution which
responds to an unknown analytical model that depends on a huge number of variables, such as temperature, humidity, irrigation,
soil conditions, solar irradiance, etc. A methodology is proposed to extract the evolution model of a generic crop, either for the
phenology or any other biological process, in a first stage. The final objective is to exploit the created model to estimate, in a
second stage, the growth stage in which a particular crop field is. In order to develop the potential of remote sensing acquisitions,
the estimation step is carried out in real-time. This means that as soon as new input data are available (e.g. a new satellite image
is acquired), the estimation is applied, so it is not necessary to perform the estimation over the whole temporal series.

The definition of both learning and estimation stages are derived in the state-space context. Besides the application of well
known tools of dynamic system theory, this context allows us to describe completely the system at each moment with a single
state. This idea was firstly introduced in [10]. Dual-pol SAR data were used as input and the estimation of the phenology of rice
fields was obtained using a Extended Kalman Filter (EKF). It is important to mention that different approaches have been defined
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in the literature using a similar EKF estimation approach. In [11] a soil moisture estimation is proposed based on SAR data, and
in [12] a land cover change using NDVI MODIS data is analyzed similarly. In both cases, the application of the EKF estimator
relies directly upon a known analytical model, being the main difference with the methodology introduced in this framework.

With respect to [10], a deeper analysis of the methodology and a more complete evaluation over different cereal crops is
carried out in this work. Although in this study we exploit a temporal stack of SAR images, the methodology is not limited
to this data type, since the same approach is valid for other remote sensing data (e.g. optical or NDVI products) or even in a
combined methodology.

Finally, there exists the option to work with an approach based on single acquisitions to estimate the phenological stage.
For instance, in [13], [14] independent SAR acquisitions were employed for the estimation of phenology over rice fields. That
approach will be named hereafter as statical in contrast to the dynamical framework proposed in this paper. Nonetheless, temporal
series of images were also analyzed as part of the training stage to define the employed thresholds. It was shown that with such
an approach rice field phenology was traceable with classification trees employing large phenological intervals, i.e. a wide
discretization of the original scale. The main drawback of this sort of techniques, apart from the wide phenological classes
employed, is that it is necessary to study beforehand the behavior of all polarimetric observables to determine which of them are
useful to perform the estimation. In addition, being based on an empirical analysis, it is not guaranteed that the chosen thresholds
are convenient for other datasets. Clear improvements from this statical approach are the provision of an automatic analysis and
a finer resolution in the estimation of the phenology, which is a key aspect from the end users’ point of view. Recent studies
have also proved the potential of different SAR products in agricultural monitoring, as in [15] where interferometric bistatic
products are employed to derive biophysical parameters in rice fields.

The paper is organized as follows. The tools and methodologies employed in this study are introduced in Section II. The
definition of the dynamical context and the general approach for real-time monitoring are stated. The particular approach employed
in this study is also described. The dataset and the results obtained with this methodology over different cereal crop types are
shown and discussed in Section III. Finally, conclusions are exposed in Section IV, together with some ideas for future work.

II. MATERIALS AND METHODS

The theoretical aspects related to the presented methodology are all described in this Section. First, a brief introduction to
dynamic systems is provided in Section II-A with the definition of the classical Kalman filter approach. A general view of the
methodology is also provided. In the three subsequent points, the particular instance of this methodology, employed in this work,
is described. This includes the state-space description based on polarimetric data in Section II-B, the evolution model generation
in Section II-C, and the details of the filtering strategy in Section II-D.

A. Dynamic approach

A system that evolves in time according to a rule is known as a dynamic system. The temporal evolution of such a system is
defined as a process. The rules of evolution are commonly governed by the following pair of equations [16], [17], [18]:

() = P g, 1, v(1) m
Z(t) = h(X(t)7t>W(t)) 2

where Eq. (1) represents the recursive process equation, describing the evolution of the system over time, and Eq. (2) defines the
measurement equation, describing the observation relation with the system. The n-dimensional state vector or, simply, state x(t)
collects into a single vector the set of n state variables x; which completely describe the system configuration at time ¢. The
n-dimensional domain in which the state is defined is called the state space. The set of functions providing the rate of change of
the state for a particular stage and time are represented by f(). The noise in the evolution is modeled by the stochastic process
v(t). In the measurement equation, the measurement or output vector z(t) is defined by the measurement function h() which
relates the internal state vector with the observed z(t). The observation process is also affected by a noise process w(t).

One of the most remarkable features of the dynamic system approach in the state-space domain is that the information related
to the past of the process is merged into the current state. This is usually known as a Markovian process. In this scenario, once
the system is already defined, a prediction of a state x(¢) at any time can be obtained based only on the system state x(tg) for
a particular time o < t [16]. Moreover, this state is recursively updated as data arrive, thus making the state-space modeling a
proper approach to process data with temporal dependencies.

The dynamic system introduced in Egs. (1) and (2) represents a continuous system because it is defined with respect to the
continuous independent variable ¢. However, for many practical problems, the interest relies only in some states at a discrete set of
times. For this type of problems it is convenient to sort the times according to an integer subscript tg < t1 < to < -+ < tp_1 < tg,
redefining the state of the dynamic system as in Eq. (3):
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where the set of equations f() is transformed from the continuous domain (derivatives) to the discrete domain (difference
equations). Note that the f() functions that appear in (1) and (3) are completely different. However, we have preferred to keep
the same notation in both equations as it is usually done in the literature. In addition, it is more efficient to shorten the notation,
s0, as long as it is understood x(t;) will be expressed as xj. Finally, under an additive noise assumption, the general expression
for a dynamic system in the estimation framework is expressed by Egs. (4) and (5):
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It has to be noted that the additive noise corresponds to the process noise or uncertainty in the state space, and not the noise
present directly in the values of the input data (e.g. speckle in SAR images).

Some considerations are also usually adopted in practice, being the most usual to consider: a) a linear system, and b) process
and measurement noises both additive white Gaussian processes. One of the most known approaches under these conditions
is the Kalman filter (KF) [19], [20]. The KF was proposed in order to obtain optimal estimations for linear systems under
Gaussian hypotheses, both in the transition and in the observation. Later on, different techniques were developed in order to
handle nonlinear dynamic systems with the same general approach, as the Extended Kalman filter (EKF).

This method allows to get a simple approximation to the solution for a nonlinear estimation problem using the linear
approximation described by Egs. (6) and (7):
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where Jy_1 corresponds to the linearized transition matrix at state k — 1, and Hy, is the linearized measurement matrix at state
k. It is noted that the linearization is particularized over the estimated state vector Zj_;. Exploiting these approximations the
nonlinear problem can be described in the same terms as the classical KF.

The estimation algorithm is described in two main stages, namely prediction and update. In the prediction stage, based on
the transition model and the previous state, an a priori estimation for the state and the covariance is provided. As soon as an
observation is available, the algorithm is able to provide an innovation, as the difference between the observed value and the
predicted one. The update stage is driven by the Kalman gain, which provides the optimal (suboptimal for EKF) weighting for
the predicted and the innovation states. As a result, after the update stage, an a posteriori state and a covariance matrix are
generated. It is important to note that the update is done when an observation is available, and there is no need to hold it on for
future observations, hence defining a real-time or online estimation procedure. For the sake of clarity, the stages just described,
corresponding to the EKF approach, are summarized in Table L.

In our application, the development of a crop field, i.e. its phenology, can be considered as a process of a particular dynamic
system. For this reason, in this work we propose this methodology, focused on exploiting the potential provided by these filtering
strategies, such as the EKF. With this objective, a conceptual implementation of the whole methodology is shown in Fig. 1. The
functional model consists of two main blocks, specifically the model generation and the estimation stage. The aims of the first
one are to assess the state-space domain of the system and to generate the dynamic process evolution in the defined state space.
This block can be interpreted as a learning stage from a reference set of data. The second block is devoted to, exploiting the
generated dynamic process, estimate the external variable for a set of input data through a dynamic filter approach. Although
this estimation employs the evolution model, the estimation is performed online (or in real-time) whenever a new observation is
incorporated to the process.

Besides the functional model, the approach is defined by the data. First, the reference dataset, which is used to extract the
model evolution, is defined by different temporal acquisitions (¢;) sampling the relevant temporal range. Each acquisition is
described by a characteristics vector (u;) and the associated crop variable (Y;). The characteristics vector is related with the
remote sensed values, whereas the crop variable defines the biological process we are interested to track or estimate. Second,
the input dataset represents the temporal acquisitions, with their associated characteristics vector, that are evaluated through the
estimation algorithm. Each acquisition is projected into the defined state space and employed to provide an estimation of the
crop variable (e.g. phenological stage) which defines the output data of the algorithm. As depicted in the figure, an optional
feedback can be finally exploited to regenerate or refine the evolution model after each estimation is obtained, hence providing
an online modeling for the model generation.

In the approach described in this work, the dates of sowing of the crop fields in the reference dataset and in the area to be
monitored are required. However, this in situ information is usually not available in the fields in which phenological estimates
are to be obtained. To solve this issue, and also as a standalone application of this general methodology, the model can be also



TABLE 1. ESTIMATION STAGES AND DEFINITIONS IN EKF

Stage
Prediction Rigl—1 = fe—1 (ik*”kfl)
Pyj—1 = Jo—1Py_1jp—1JE_ 1 + Qu—1
Innovation V& =2k — hy(Rpjp—1)

Kalman Gain Ky = Pyg_1Hy, (Hg Py HT + Ri) ™"

Xijk = Xijp—1 T Kr¥k

Update
P = (I — K Hy) Prjp—1
Definitions
>”<1-| s state vector estimation at ¢ given j;
f; (), transition model at ;
Jis linearized transition matrix at ¢;
Qi, model covariance at ;
Py ;, prediction covariance at ¢ given j;
Z;, data observation at 7;
h; (), measurement model at ;
Yi, innovation at 7;
H;, linearized measurement matrix at 7;
K;, Kalman gain at ;
R;, observation covariance at 7.

exploited backwards in time to provide estimates of the date of sowing and other important dates for the farming practices. This
variant of the methodology is described and validated in [21].

In order to obtain an operational approach, a specific instance of the methodology is defined. Different strategies can be
applied over the different sub-blocks of the methodology. For instance, the input data can be derived from different remote
sensing systems, such as optical, hyperspectral or SAR, or even a combination of them. For the case of the estimated output
variables, alternatives as the phenological stage or the leaf area index (LAI) can be considered. Regarding the functional model,
also different options can be taken into account. In the case of the learning strategy, algorithms based on principal component
analysis (PCA), support vector machines (SVM) or artificial neural networks (ANN) can be considered. It has to be remarked
also the importance of the employed reference dataset (i.e. the training set). The employed temporal set should be representative
enough of the space of occurrences, allowing the learning stage to build a general model about this space that enables it to
produce sufficiently accurate predictions for new scenarios. Moreover, there are different approximations based on filtering for the
estimation approach, such as the EKF, the grid-based filter or the particle filter, all of which fit into the described methodology.
As it is described in the following, in this study a implementation based on an input polarimetric dataset is considered to estimate
the phenological stage for different cereal crop types.

B. PolSAR State-Space definition

Fully polarimetric observations of distributed scenes in a monostatic configuration, assuming reciprocity, are defined by their
multi-looked covariance matrix C as in Eq. (8):
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where k = [H H \/2HV VV'| is the polarimetric scattering target vector, and the operator () represent the multi-look process
over N independent looks. It is also common to use the Pauli basis to represent the data, taking the form of the polarimetric
coherency matrix T, which can be obtained through a unitary transformation from C (both are Hermitian positive semidefinite
matrices) [22], [23]. The set of input parameters (observables) employed in this study is obtained from both matrices, and initially
can be divided into two main groups: power of different channels (diagonal terms), and complex correlations between channels
(off diagonal terms) providing each one a normalized correlation and a phase difference between channels. In addition, from both
matrices different decomposition techniques, aimed to provide a physical interpretation, can be applied. In this work the set of
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Fig. 1. Block diagram of the dynamic approach for agricultural crop monitoring. The approach is divided in two functional blocks: model generation and
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estimation stage. A reference dataset is employed to extract the dynamical model. An input dataset is used for estimation.

observables is complemented with the H/A/« polarimetric parameters introduced in [24]. Using this reference, each observation
is described as a set of sixteen different parameters: 5 power terms, 4 normalized correlation values, 4 phase differences, and
3 parameters from the eigenvector decomposition of matrix T. It has to be reminded that this selection of initial parameters is
just an instance of the methodology. Indeed, a complete analysis of the performance as a function of the input domain could be
carried out and would be subject of further discussion, but it is beyond the scope of this manuscript. It should be noted that this
scheme is also suitable for different polarimetric configurations (e.g. dual-pol, hybrid or circular polarizations), and this will be
analyzed in a future study.

In order to define a state space with easy representation, for illustration purposes, in this study the state vectors x;, are derived
from the proposed set of 16 observables after a dimensional reduction. A principal component analysis (PCA) is employed,
whose main goal is to identify the most meaningful basis to re-express the original polarimetric domain. Therefore, the idea is
to employ each polarimetric feature evolution as input to the analysis. The input data consists in the whole set of all merged
reference parcels, described by their polarimetric parameters, to define the common output space, which is later used to project
each parcel evolution. Let Y%, be the original polarimetric data of m observables and n samples (to which a standardize
operation has been applied) for each parcel and date. The PCA approach allows us to obtain a new basis X,xn Which is
related to the original one by a linear transformation A,,xm- Each row of the transformation matrix corresponds to a principal
component and represents the set of new basis vectors used for expressing the columns of Y. As the principal components are
sorted in terms of variance, the dimensional reduction in this domain consists in a truncated transformation matrix. As we will
show in Section III, from the original dataset (m = 16) it is sufficient to consider only the first three components, thus Agxy.
With this consideration, variance is held at 70% of the original value, and the interpretation of the state space can be derived
geometrically. In this way the projected domain over the three main principal components defines the state x; of each parcel
observation.

C. Evolution model

A classical dynamic approach is defined using an analytical function characterizing both the evolution rules f;_1() and the
system output hy (). In our case, due to the nonexistence and complexity of such an analytical model, the dynamics is extracted



directly from the observed data. This learning stage produces a representative model evolution for the kind of crops under study.

For the reference set of parcels, the dynamical evolution is obtained in two steps. The first one involves the computation of
the polarimetric observables at parcel level, i.e. only one covariance matrix is computed for a whole parcel at each temporal
acquisition, and the projection into the space provided by the PCA. The extraction of the principal components had to be carried
out previously as described in Section II-B. Each acquisition is projected to the state space defined by the dimensions expressed
as linear combinations of the polarimetric information as in Eq. (9):

Tn =Y ap; forn=0,1,...,m—1 )
=1

where a; denotes the coefficient (provided by the PCA for each dimension) associated with each polarimetric observable p;, and
T, is the projected value in the n-th dimension. The number of the original parameters m limits the dimension of the projected
space. So far, each field at each date is represented by a coordinate vector [Zo 21 ... Tm—1 ] in the projected space. In order to
illustrate this, Fig. 3 shows the projection over the two first components obtained for each acquisition at three different barley
fields using a stack of 24 images. In the state plane defined by the first two components (zo and x1) each field data at each
acquisition is represented by an up/down triangle for ascending/descending tracks, and the color code denotes the beam (incidence
angle) for each case. Moreover, each of them has an associated phenological interval, minimum and maximum, provided by the
ground campaign. The available phenological information corresponds to the scale defined in [25], coincident with the standard
BBCH scale [26], ranging from O to 100 in a continuous way. A scheme of the scale and their main stages is shown in Fig. 2.
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Fig. 2. Phenological scale employed in the ground campaign. The scale provides a continuous representation of the crop evolution.

The absence of a continuous phenological record, however, prevents us to generate directly a model describing the whole set
of phenological values in the BBCH scale. Instead, a discretization from the original continuous range is performed to provide
a reasonable sampling in the evolution model. Thus, the model is identified in phenological discrete intervals or clusters which
enclose neighbor ranges of phenological values.

The second step consists in obtaining the evolution model in the projected space. A geometrical model is defined for a predefined
set of phenological clusters given by the phenological ranges they represent. Every acquisition falling inside a phenological range
is employed to obtain the center of each cluster, xj, and the associated covariance matrix, (5. For instance, in Fig. 3 the creation
of the first cluster, x;, = 0, is illustrated. In this case there are 6 elements (the ones linked with dotted lines to the cluster center)
in the plane with BBCH values in the range [0 — 12] and they are employed to compute the mean and the covariance value.
This clustering is done for each specified phenological interval. After that, the model is defined by xj, Q1 and the phenological
range BBCHy at k=0,1,2,..., K — 1, where K corresponds to the number of clusters predefined as input. To complete the
model definition, the local temporal variation 6f = dx,,/dt of each cluster is also computed from the state vector variation and
the temporal acquisition ranges of each cluster. As a result, the velocity state vector is also provided at each cluster.

In Fig. 3 a total of K =9 clusters are represented on this bidimensional state space, and the variance at each dimension (i.e.
diagonal elements of the covariance matrix) is denoted by an ellipse. The continuous evolution, represented by the solid black
line connecting the different cluster centers, is obtained by means of a cubic splines interpolation.

D. Phenological Estimation Approach

At this stage, most of the estimation techniques are usually focused on exploiting either the model or the observations, but not
both. In the first case, the introduced geometrical model is assumed to describe fully the crop signature, despite it may be limited
by the set of parcels employed in its generation. If the fields employed in the model generation are representative enough, the
model can be used directly to describe how any field behaves or evolves in time using exclusively temporal information over
the model. In that case, state vectors would be used to provide transitions from one cluster to the next, allowing also the access
to intermediate interpolated values. With such a methodology, the phenological value for each estimation would be retrieved
directly from the cluster assigned after each temporal transition. In the second case, which corresponds to a classical filtering
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Fig. 3. Two-dimensional projection of the reduced space for all Radarsat-2 beams and tracks using three barley crops. Each triangle represents a field acquisition
and the subscripts denote the ground truth provided for the phenological stage at the acquisition date. A total of K=9 phenological intervals are employed in the
clustering process. Results are presented by the cross-marks and the standard deviation of each component is directly represented by an ellipse. The transition
between states described by the continuos line is obtained trough a cubic spline interpolation.

approach, the observation could be filtered with a fixed rule (or function) without incorporating any other knowledge to the
process. In both cases there would be a bias from the real evolution, in contrast with the results that can be obtained by properly
combining both sources of information: model and observations.

In order to combine the information of the previously obtained model and that provided by the observations, a filtering strategy
based in EKF is proposed in the methodology. The most common way to work with this dynamic approach is using an analytical
transition and measurement functions. Nevertheless, it is possible to obtain the functions that define the dynamic of the process
in alternative ways to the analytical case. In this work, we propose to bypass the absence of an analytical model by using a
numerical evolution obtained directly from the empirical observations. The required linearization is not based directly on the
analytical Jacobian matrix. Instead, a numerical derivation using the model is performed. The linearized approximation to the
state transition matrix in the state k — 1 is expressed as in Eq. (10):
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where each differential coefficient is understood as an approximation to the partial derivatives from the classical Jacobian matrix,
but each value is obtained directly from the model. In this methodology, the observation matrix Hj, is considered as an identity
matrix provided that the observations z; are already provided in the projected state space using Eq. (9). The covariance matrix
Ry, for each observation is computed through a Monte Carlo simulation for PolSAR data as described in [22], [23]. Speckle
noise is simulated for each observed polarimetric covariance matrix C' and used to compute, through the linear combination of
Eq. (9), a representative distribution of the observed state. From this distribution the covariance matrix R}, of the observation



in the state space is computed. The Monte Carlo simulation is evaluated over each multi-looked C' matrix under the estimation
stage. The purpose is to create a set of instances of the process behind each observation under estimation. Then the instances are
employed to extract the covariance matrices of the polarimetric parameters and hereafter the covariance of the PCA variables.
The number of samples employed in each simulation is N = 1000.

Extending the basis of the EKF algorithm, the phenological stage retrieval is divided into two main stages: prediction and
update. The prediction stage makes use of the model evolution and the transition matrix. A numerical integration in time is
employed to compute an a priori estimate for the state Xj;_; and the associated covariance matrix Py 1, using just the
previous state estimate Xj_qx—1. It is important to emphasize that this a priori estimation is based only on the previous state
and not in earlier ones.

The second stage (update) occurs when a new data observation is available (e.g. a new satellite image is acquired). The
objective of this second stage is to improve, using sensed data, the previously predicted value by minimizing the covariance of
the estimation. The required input is composed by two parts: the acquired polarimetric observables projected in the state space,
zy, and their associated covariance matrix, Ry. The innovation product ¥, and the Kalman gain are obtained using the equations
defined in the EKF algorithm (Table I), giving a measure of the improvement with respect to the prediction and the observed
data. Both parameters are employed to compute the a posteriori state, Xy;, and its covariance matrix Py, providing an updated
and final state estimate for the current acquisition. Finally, to supply a phenological value in the BBCH scale, the estimated state
is projected to the original evolution model, which bears the corresponding phenological values.

III. RESULTS

Some first results employing the presented methodology were shown in [10]. A stack of dual copolar TerraSAR-X images
was employed over rice fields to check the methodology effectiveness. These results showed a clear improvement with respect to
the static results presented in [13], although a quantitative assessment was not carried out. However, static methodologies have
proven to be effective in the phenological estimation problem over different types of crops using SAR data. In [27] it is shown
that a very high accuracy in the phenological estimation is reached for some crop types. Nevertheless, the way to export this
static methodology to different scenarios is not well defined yet. In contrast, the design of the multitemporal approach proposed
here has been defined specifically for this purpose.

In this Section, an example of the practical operation of the presented methodology over a set of cereal fields is presented,
together with an analysis of the obtained results. The input dataset and the localization of the fields under study are introduced
in Section III-A. The pre-processing of the polarimetric data, required before this methodology is applied, is described in
Section III-B. Details regarding the state-space definition and the model generation are discussed in Section III-C. Finally, the
obtained estimates are shown and analyzed in Section III-D.

A. Datasets

In order to test the presented methodology, we employed the data provided by the ESA-funded AgriSAR 2009 campaign over
Indian Head (Saskatchewan, Canada) where different crop fields were intensively monitored both with remote sensors and on
the ground [28]. The precise location of the area under study is shown in Fig. 4. Three different cereal crops are considered in
this work: barley, wheat and oat.

The available phenological information at the monitored fields is represented graphically in Fig. 5. The ground measurements
were carried out in a weekly basis (every 7 or 10 days). At each date, an interval of values (lowest and highest phenological
values present in a particular field) is provided (denoted by cross marks in Fig. 5). Since the dates of acquisition of the ground
data are not coincident with the SAR acquisitions, a sort of interpolation is required. Attending to the expected behavior of the
agricultural crops, the region of possible values is extended in the following way: each minimum value defines the lower limit
until a new minimum value is specified, and each maximum value can be present from the previous date until it is measured.
As a result, the possible phenological values as a function of date exhibit the staggered aspect shown in the figure.

The original set of SAR data consists of 57 Radarsat-2 images, all in fine quad-pol mode, with incidence angles ranging from
22° to 39° in both ascending and descending orbits. From the whole set, only the images with phenological information (i.e.
from sowing to harvest) have been considered, covering the 3-month period between June 1 and August 31, and no restriction
related to weather conditions has been contemplated. Therefore, the analysis is restricted to 24 valid images from all beams and
incidence angles, listed in Table II.

The influence of including very different incidence angles in the model generation is an issue to be carefully analyzed. Some
polarimetric observables are more influenced than others by incidence angle, so a selection of them could be a good strategy to
avoid mixing different behaviors. This may be especially important when extreme angles are incorporated evenly to the model
(like 22 and 39 degrees as in our case). Another possible approach would consist in restricting the dataset to only similar angles,
hence avoiding this issue. However, in order to provide a valuable tool in the dynamical framework, it is highly important to
hold the shortest sampling rate. Although some differences in extreme incidence angles are detected, we decided to exploit
here as long as possible the similarities in the common behavior. In fact, if we try to reduce the number of images (i.e. the
number of incidence angles) it is not possible to know in this scenario whether the benefits of not mixing incidence angles
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Fig. 4. Crop fields localization and distribution in the analyzed area. A total of seven fields are employed: three barley fields (orange), two wheat fields (green)
and two oat fields (yellow). Photos courtesy of Google Earth.

TABLE II. LIST OF ACQUISITIONS EMPLOYED IN THE ANALYSIS.
Date (yyyymmdd) DoY Pass Beam Inc. angle (deg)
20090603 154 DSC FQO02 22
20090604 155 ASC FQI19 39
20090607 158 DSC FQ19 39
20090608 159 ASC FQO02 22
20090610 161 DSC FQO6 26
20090611 162 ASC FQI15 35
20090617 168 DSC FQI10 30
20090624 175 DSC FQ14 34
20090701 182 DSC FQ19 39
20090702 183 ASC FQO02 22
20090704 185 DSC FQO6 26
20090711 192 DSC FQI10 30
20090712 193 ASC FQ11 31
20090721 202 DSC FQO02 22
20090722 203 ASC FQI19 39
20090726 207 ASC FQO02 22
20090804 216 DSC FQI10 30
20090811 223 DSC FQ14 34
20090812 224 ASC FQO06 26
20090815 227 ASC FQI19 39
20090818 230 DSC FQI19 39
20090819 231 ASC FQO02 22
20090822 234 ASC FQ15 35
20090829 241 ASC FQI11 31

would compensate the loss of temporal sensitivity, especially from the final application point of view. A complete analysis in
this direction will be carried out in the future.

B. PolSAR data pre-processing

A pre-processing block is applied to all selected images in order to use the proposed methodology. It consists basically of
three steps. The first one is the multi-look or speckle filtering (using a simple box car of 9 x 9 pixels), which produces the
estimates of the polarimetric covariance matrix at each pixel. The second step consists in the geocoding of all data over the
same geographical grid. Thus, all the resulting images are in the same reference grid, regardless of their beam or track. The
third step involves the extraction of the polarimetric observables employed in the PCA. A total of 16 polarimetric parameters,
listed at Table III, are employed in the analysis. As previously anticipated, in this example the entries of the covariance matrix
are merged with entries from the polarimetric coherency matrix and outputs of its eigenvector decomposition.
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Fig. 5. Available phenology for each monitored crop: barley (top), oat(middle) and wheat (bottom). Cross marks denote the provided ground data (GT), and
the shadowed region denotes the interpolated values. In each case the first phenological value corresponds to the sowing date.

C. Model generation

For simplicity, the model generation is carried out using the polarimetric covariance matrices averaged at parcel level. As
introduced in Section II-B, the automatic extraction of the characteristics is performed by means of a PCA approach. Then,
for comparison purposes, models have been generated for each crop independently and also combining the data of different
crop types. The distribution of the coefficients of each polarimetric observable employed in each component, resulting from the
PCA, is shown in Fig. 6. Each coefficient is directly related to the weight of each observable in the resulting dimension of the
reprojected space. In all cases, the cumulative variance reached with three components is above 70% from the original set of
sixteen observables, thus the loss of information is quite low when a 3-dimensional state space is used.
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