50 research outputs found

    FRAMEWORK FOR LOW-QUAL ITY RETINAL MOSAICING

    Get PDF
    The medical equipment used to capture retinal fundus images is generally expensive. With the development of technology and the emergence of smartphones, new portable screening options have emerged, one of them being the D-Eye device. This and other similar devices associated with a smartphone, when compared to specialized equipment, present lower quality in the retinal video captured, yet with sufficient quality to perform a medical pre-screening. From this, if necessary, individuals can be referred for specialized screening, in order to obtain a medical diagnosis. This dissertation contributes to the development of a framework, which is a tool that allows grouping a set of developed and explored methods, applied to low-quality retinal videos. Three areas of intervention were defined: the extraction of relevant regions in video sequences; creating mosaicing images in order to obtain a summary image of each retinal video; develop of a graphical interface to accommodate the previous contributions. To extract the relevant regions from these videos (the retinal zone), two methods were proposed, one of them is based on more classical image processing approaches such as thresholds and Hough Circle transform. The other performs the extraction of the retinal location by applying a neural network, which is one of the methods reported in the literature with good performance for object detection, the YOLOv4. The mosaicing process was divided into two stages; in the first stage, the GLAMpoints neural network was applied to extract relevant points. From these, some transformations are carried out to have in the same referential the overlap of common regions of the images. In the second stage, a smoothing process was performed in the transition between images. A graphical interface was developed to encompass all the above methods to facilitate access to and use of them. In addition, other features were implemented, such as comparing results with ground truth and exporting videos containing only regions of interest

    Incorporating spatial information for microaneurysm detection in retinal images

    Get PDF
    The presence of microaneurysms(MAs) in retinal images is a pathognomonic sign of Diabetic Retinopathy (DR). This is one of the leading causes of blindness in the working population worldwide. This paper introduces a novel algorithm that combines information from spatial views of the retina for the purpose of MA detection. Most published research in the literature has addressed the problem of detecting MAs from single retinal images. This work proposes the incorporation of information from two spatial views during the detection process. The algorithm is evaluated using 160 images from 40 patients seen as part of a UK diabetic eye screening programme which contained 207 MAs. An improvement in performance compared to detection from an algorithm that relies on a single image is shown as an increase of 2% ROC score, hence demonstrating the potential of this method

    Superimposition of eye fundus images for longitudinal analysis from large public health databases

    Get PDF
    In this paper, a method is presented for superimposition (i.e. registration) of eye fundus images from persons with diabetes screened over many years for diabetic retinopathy. The method is fully automatic and robust to camera changes and colour variations across the images both in space and time. All the stages of the process are designed for longitudinal analysis of cohort public health databases where retinal examinations are made at approximately yearly intervals. The method relies on a model correcting two radial distortions and an affine transformation between pairs of images which is robustly fitted on salient points. Each stage involves linear estimators followed by non-linear optimisation. The model of image warping is also invertible for fast computation. The method has been validated (1) on a simulated montage and (2) on public health databases with 69 patients with high quality images (271 pairs acquired mostly with different types of camera and 268 pairs acquired mostly with the same type of camera) with success rates of 92% and 98%, and five patients (20 pairs) with low quality images with a success rate of 100%. Compared to two state-of-the-art methods, ours gives better results.Comment: This is an author-created, un-copyedited version of an article published in Biomedical Physics \& Engineering Express. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/2057-1976/aa7d1

    A Stronger Stitching Algorithm for Fisheye Images based on Deblurring and Registration

    Full text link
    Fisheye lens, which is suitable for panoramic imaging, has the prominent advantage of a large field of view and low cost. However, the fisheye image has a severe geometric distortion which may interfere with the stage of image registration and stitching. Aiming to resolve this drawback, we devise a stronger stitching algorithm for fisheye images by combining the traditional image processing method with deep learning. In the stage of fisheye image correction, we propose the Attention-based Nonlinear Activation Free Network (ANAFNet) to deblur fisheye images corrected by Zhang calibration method. Specifically, ANAFNet adopts the classical single-stage U-shaped architecture based on convolutional neural networks with soft-attention technique and it can restore a sharp image from a blurred image effectively. In the part of image registration, we propose the ORB-FREAK-GMS (OFG), a comprehensive image matching algorithm, to improve the accuracy of image registration. Experimental results demonstrate that panoramic images of superior quality stitching by fisheye images can be obtained through our method.Comment: 6 pages, 5 figure

    Mitigating the effect of covariates in face recognition

    Get PDF
    Current face recognition systems capture faces of cooperative individuals in controlled environment as part of the face recognition process. It is therefore possible to control lighting, pose, background, and quality of images. However, in a real world application, we have to deal with both ideal and imperfect data. Performance of current face recognition systems is affected for such non-ideal and challenging cases. This research focuses on designing algorithms to mitigate the effect of covariates in face recognition.;To address the challenge of facial aging, an age transformation algorithm is proposed that registers two face images and minimizes the aging variations. Unlike the conventional method, the gallery face image is transformed with respect to the probe face image and facial features are extracted from the registered gallery and probe face images. The variations due to disguises cause change in visual perception, alter actual data, make pertinent facial information disappear, mask features to varying degrees, or introduce extraneous artifacts in the face image. To recognize face images with variations due to age progression and disguises, a granular face verification approach is designed which uses dynamic feed-forward neural architecture to extract 2D log polar Gabor phase features at different granularity levels. The granular levels provide non-disjoint spatial information which is combined using the proposed likelihood ratio based Support Vector Machine match score fusion algorithm. The face verification algorithm is validated using five face databases including the Notre Dame face database, FG-Net face database and three disguise face databases.;The information in visible spectrum images is compromised due to improper illumination whereas infrared images provide invariance to illumination and expression. A multispectral face image fusion algorithm is proposed to address the variations in illumination. The Support Vector Machine based image fusion algorithm learns the properties of the multispectral face images at different resolution and granularity levels to determine optimal information and combines them to generate a fused image. Experiments on the Equinox and Notre Dame multispectral face databases show that the proposed algorithm outperforms existing algorithms. We next propose a face mosaicing algorithm to address the challenge due to pose variations. The mosaicing algorithm generates a composite face image during enrollment using the evidence provided by frontal and semiprofile face images of an individual. Face mosaicing obviates the need to store multiple face templates representing multiple poses of a users face image. Experiments conducted on three different databases indicate that face mosaicing offers significant benefits by accounting for the pose variations that are commonly observed in face images.;Finally, the concept of online learning is introduced to address the problem of classifier re-training and update. A learning scheme for Support Vector Machine is designed to train the classifier in online mode. This enables the classifier to update the decision hyperplane in order to account for the newly enrolled subjects. On a heterogeneous near infrared face database, the case study using Principal Component Analysis and C2 feature algorithms shows that the proposed online classifier significantly improves the verification performance both in terms of accuracy and computational time

    Review on retrospective procedures to correct retinal motion artefacts in OCT imaging

    Get PDF
    Motion artefacts from involuntary changes in eye fixation remain a major imaging issue in optical coherence tomography (OCT). This paper reviews the state-of-the-art of retrospective procedures to correct retinal motion and axial eye motion artefacts in OCT imaging. Following an overview of motion induced artefacts and correction strategies, a chronological survey of retrospective approaches since the introduction of OCT until the current days is presented. Pre-processing, registration, and validation techniques are described. The review finishes by discussing the limitations of the current techniques and the challenges to be tackled in future developments

    Advanced retinal imaging: Feature extraction, 2-D registration, and 3-D reconstruction

    Get PDF
    In this dissertation, we have studied feature extraction and multiple view geometry in the context of retinal imaging. Specifically, this research involves three components, i.e., feature extraction, 2-D registration, and 3-D reconstruction. First, the problem of feature extraction is investigated. Features are significantly important in motion estimation techniques because they are the input to the algorithms. We have proposed a feature extraction algorithm for retinal images. Bifurcations/crossovers are used as features. A modified local entropy thresholding algorithm based on a new definition of co-occurrence matrix is proposed. Then, we consider 2-D retinal image registration which is the problem of the transformation of 2-D/2-D. Both linear and nonlinear models are incorporated to account for motions and distortions. A hybrid registration method has been introduced in order to take advantages of both feature-based and area-based methods have offered along with relevant decision-making criteria. Area-based binary mutual information is proposed or translation estimation. A feature-based hierarchical registration technique, which involves the affine and quadratic transformations, is developed. After that, a 3-D retinal surface reconstruction issue has been addressed. To generate a 3-D scene from 2-D images, a camera projection or transformations of 3-D/2-D techniques have been investigated. We choose an affine camera to characterize for 3-D retinal reconstruction. We introduce a constrained optimization procedure which incorporates a geometrically penalty function and lens distortion into the cost function. The procedure optimizes all of the parameters, camera's parameters, 3-D points, the physical shape of human retina, and lens distortion, simultaneously. Then, a point-based spherical fitting method is introduced. The proposed retinal imaging techniques will pave the path to a comprehensive visual 3-D retinal model for many medical applications

    Real-time synthetic primate vision

    Get PDF

    Developing object detection, tracking and image mosaicing algorithms for visual surveillance

    Get PDF
    Visual surveillance systems are becoming increasingly important in the last decades due to proliferation of cameras. These systems have been widely used in scientific, commercial and end-user applications where they can store, extract and infer huge amount of information automatically without human help. In this thesis, we focus on developing object detection, tracking and image mosaicing algorithms for a visual surveillance system. First, we review some real-time object detection algorithms that exploit motion cue and enhance one of them that is suitable for use in dynamic scenes. This algorithm adopts a nonparametric probabilistic model over the whole image and exploits pixel adjacencies to detect foreground regions under even small baseline motion. Then we develop a multiple object tracking algorithm which utilizes this algorithm as its detection step. The algorithm analyzes multiple object interactions in a probabilistic framework using virtual shells to track objects in case of severe occlusions. The final part of the thesis is devoted to an image mosaicing algorithm that stitches ordered images to create a large and visually attractive mosaic for large sequence of images. The proposed mosaicing method eliminates nonlinear optimization techniques with the capability of real-time operation on large datasets. Experimental results show that developed algorithms work quite successfully in dynamic and cluttered environments with real-time performance

    Multi-Modal Imaging Techniques for Early Cancer Diagnostics

    Get PDF
    Cancer kills more Americans under the age of 75 than any other disease. Although most cancers occur in epithelial surfaces that can be directly visualized, the majority of cases are detected at an advanced stage. Optical imaging and spectroscopy may provide a solution to the need for non-invasive and effective early detection tools. These technologies are capable of examining tissue over a wide range of spatial scales, with widefield macroscopic imaging typically spanning several square-centimeters, and high resolution in vivo microscopy techniques enabling cellular and subcellular features to be visualized. This work presents novel technologies in two important areas of optical imaging: high resolution imaging and widefield imaging. For subcellular imaging applications, new high resolution endomicroscope techniques are presented with improved lateral resolution, larger field-of-view, increased contrast, decreased background signal, and reduced cost compared to existing devices. A new widefield optical technology called multi-modal spectral imaging is also developed. This technique provides real-time in vivo spectral data over a large field-of-view, which is useful for detecting biochemical alterations associated with neoplasia. The described devices are compared to existing technologies, tested using ex vivo tissue specimens, and evaluated for diagnostic potential in a multi-patient oral cancer clinical trial
    corecore