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Abstract

Mitigating the Effect of Covariates in Face Recognition

By

Richa Singh

Current face recognition systems capture faces of cooperative individuals in controlled
environment as part of the face recognition process. It is therefore possible to control
lighting, pose, background, and quality of images. However, in a real world application,
we have to deal with both ideal and imperfect data. Performance of current face recog-
nition systems is affected for such non-ideal and challenging cases. This research focuses
on designing algorithms to mitigate the effect of covariates in face recognition.

To address the challenge of facial aging, an age transformation algorithm is proposed
that registers two face images and minimizes the aging variations. Unlike the conventional
method, the gallery face image is transformed with respect to the probe face image and
facial features are extracted from the registered gallery and probe face images. The
variations due to disguises cause change in visual perception, alter actual data, make
pertinent facial information disappear, mask features to varying degrees, or introduce
extraneous artifacts in the face image. To recognize face images with variations due to
age progression and disguises, a granular face verification approach is designed which uses
dynamic feed-forward neural architecture to extract 2D log polar Gabor phase features at
different granularity levels. The granular levels provide non-disjoint spatial information
which is combined using the proposed likelihood ratio based Support Vector Machine
match score fusion algorithm. The face verification algorithm is validated using five
face databases including the Notre Dame face database, FG-Net face database and three
disguise face databases.

The information in visible spectrum images is compromised due to improper illu-
mination whereas infrared images provide invariance to illumination and expression. A
multispectral face image fusion algorithm is proposed to address the variations in illumi-
nation. The Support Vector Machine based image fusion algorithm learns the properties
of the multispectral face images at different resolution and granularity levels to determine
optimal information and combines them to generate a fused image. Experiments on the
Equinox and Notre Dame multispectral face databases show that the proposed algorithm
outperforms existing algorithms. We next propose a face mosaicing algorithm to address
the challenge due to pose variations. The mosaicing algorithm generates a composite
face image during enrollment using the evidence provided by frontal and semiprofile face



images of an individual. Face mosaicing obviates the need to store multiple face tem-
plates representing multiple poses of a users face image. Experiments conducted on three
different databases indicate that face mosaicing offers significant benefits by accounting
for the pose variations that are commonly observed in face images.

Finally, the concept of online learning is introduced to address the problem of clas-
sifier re-training and update. A learning scheme for Support Vector Machine is designed
to train the classifier in online mode. This enables the classifier to update the decision
hyperplane in order to account for the newly enrolled subjects. On a heterogeneous
near infrared face database, the case study using Principal Component Analysis and C2
feature algorithms shows that the proposed online classifier significantly improves the
verification performance both in terms of accuracy and computational time.
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Chapter 1

Introduction

Humans effortlessly process information obtained from multiple sensory inputs and

have the ability to recognize individuals even with limited correlation information, re-

dundant information, or when certain features appear partially hidden, camouflaged or

disguised. To recognize an individual, the visual cortex exploits spatial correlations by

processing overlapping information extracted at global and local levels and effectively

combines them to make a decision. The information is gathered using a set of inherent

spatial filters that accurately detects any change in orientation, color, spatial frequency,

texture, motion, and other pertinent features. For several years, many researchers have

been motivated in developing algorithms to emulate the near perfect face recognition

capability of human mind. However, human face is not a rigid object and can have dif-

ferent variations due to inter-personal or intra-personal transformations. Inter-personal

variations can be attributed to changes in race or genetics, while intra-personal variations

can be attributed to changes in expression, aging, hair, cosmetics, and facial accessories.

Automatic face recognition is a long standing problem in computer vision that

requires the ability to identify an individual despite several variations in the appearance of

face. As shown in Figure 1.1, current face recognition systems capture faces of cooperative

individuals in a controlled environment as part of the face recognition process. It is

therefore possible to control the lighting, pose, background, and quality of images. The

results of the recent face recognition test reports, Face Recognition Grand Challenge

2004 [74] and Face Recognition Vendor Test 2006 [75], show that under normal changes

1



Figure 1.1: Face images of a cooperative user under controlled environment.

in a constrained environment, the performance of existing face recognition systems is

greatly enhanced. However, in a real world application, we have to deal with both

ideal and imperfect data. Figure 1.2 represents the biometric space in terms of the

several challenges of face recognition. As shown in Figure 1.3, many applications require

face images to be captured outdoors where the lighting conditions are unpredictable,

the subjects may not be cooperative, the poses may vary, or the angles and distances

from the camera may not be normal. Performance of current face recognition systems

significantly deteriorates for such imperfect and challenging cases.

In the face recognition community, several covariates for face recognition have been

identified such as pose, expression, illumination and aging. We expand the problem to

include additional covariates of face recognition:

• Illumination: Images with proper illumination captured under controlled envi-

ronment are ideal for face recognition. However, face images with illumination

variations (Figure 1.4a) reduce the performance of recognition algorithms because

illumination variations may alter the appearance and the features may be hidden.

• Image Quality: Quality of a face image depends on various features such as mo-

tion blur, sensor noise, environmental noise, image resolution, and gray scale/color

depth. Any degradation in the quality of face images, as shown in Figure 1.4b, can

lead to reduced recognition performance.

• Expression: Variations in expression can cause deformation in deformation in
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Uncooperative
subjects

Motion

Distance(0, 0, 0)

Current face recognition
algorithms and protocols

Figure 1.2: Current face recognition algorithms focus on regions near (0,0,0) but the data

in real world applications stretches in the complete space.

Figure 1.3: Face images of an individual captured under varying conditions.
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local facial structure and also change the facial appearance and local geometry of

the face. Figure 1.4c shows example of variations in facial features which can reduce

the recognition accuracy.

• Pose: Frontal face images contain ample information to be used for face recog-

nition. However, in a profile or semi-profile face image, as shown in Figure 1.4d,

some features are not visible and matching a frontal face image with a profile face

image may produce incorrect results.

• Aging: Temporal variations in human face is a regular process and with age pro-

gression, these variations may cause major structural changes. As shown in Figure

1.4e, aging variations among the three face images of an individual are difficult to

handle by an automated face recognition system.

• Disguise: The most challenging among all the covariates is the variations due

to disguise in which an individual can use makeup accessories to alter the facial

features and impersonate another person or hide one’s identity. As shown in Figure

1.4f, simple accessories such as beard and mustache can change the appearance of

an individual.

Apart from these covariates, another challenge for face recognition algorithms is the

computational time required for training and updating parameters as new data is added

to the database. Most state-of-the-art biometric algorithms use training for parameter

estimation and learning the decision boundary. Currently, biometric systems are trained

offline with available training data and domain specific knowledge. However, large scale

biometric applications such as US-VISIT continuously enroll new individuals. Due to

the high computational complexity required for re-training, it is not feasible to regularly

update the system knowledge and decision boundary. The delay in re-training biometric

systems affects the recognition performance because without re-training, the disparate

characteristics of additional biometric data may lead to reduced recognition performance.

Other than these covariates, there are some challenges that are pertinent to law

enforcement applications such as limited training dataset, matching a scanned face image
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.4: Covariates in face recognition: (a) illumination, (b) image quality, (c) ex-

pression, (d) pose, (e) aging, and (f) disguise.
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with digitally captured face images, matching sketch images generated by forensic artists

with the digital face images. Some of these challenges have a linear relation to the above

mentioned covariates, e.g. matching a scanned face image with digital face images.

However, challenges such as matching sketches with a database of digital images require

specially designed algorithms.

1.1 Related Work

Over the last 40 years, researchers have proposed different algorithms to address

the issues of illumination, image quality, pose and expression variations [58], [75], [120].

Several algorithms have been proposed such as Principal Component Analysis [113],

Linear Discriminant Analysis [11], Local Feature Analysis [71], Elastic Bunch Graph

Matching [122], wavelet features [62], local binary patterns [1] and many others [129].

Apart from these feature extraction and matching algorithms, preprocessing algorithms

have also been designed such as illumination rectification algorithms and image quality

enhancement for illumination correction and quality enhancement [40], [49], [88], [89]

transformation algorithms for geometric deformation correction [100], active appearance

[48] and morphable models [12] to handle pose variations. While illumination, image

quality, pose, and expression have been well studied and documented in the literature,

the challenge of face aging and disguise remains. Although few researchers have proposed

age simulation algorithms [15], [39], [53], [81], these approaches are not sufficient to handle

large temporal variations. Similarly, research in face recognition with disguise variations

is in very early stages. Mainly, principal component analysis based algorithms have been

proposed which do not provide good performance for even minor variations in disguise.

As mentioned before, existing algorithms generally require training and regular

knowledge update. Traditionally, the face recognition algorithms are re-trained with the

old and new database which is a computationally expensive exercise. In biometrics, very

limited research has been undertaken to address this issue [79]. These algorithms address

the challenge to some extent; but more research is required to circumvent the challenges
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of computationally efficient knowledge update and re-training as the size of database

increases.

1.2 Research Objectives

This research focuses on designing algorithms to mitigate the effect of covariates

and improve the performance of face recognition. Specifically, the research objectives

are:

• Transformation and recognition algorithm for aging and disguise: Design

a transformation algorithm to register the gallery face image with respect to the

probe face image to account for variations due to structural changes, genetics and

environmental factors. Further, develop a face recognition algorithm that incor-

porates results from human cognition to efficiently recognize aged and disguised

faces.

• Multispectral image fusion algorithm for illumination variation: Design

an image fusion algorithm to fuse invariant information from multispectral face

images in order to address the illumination and expression variations in the gallery

and probe face images.

• Face mosaicing scheme for pose invariant face recognition: Design a face

mosaicing scheme to address the variations due to differences in pose. Since the

amount of information present in mosaiced and non-mosaiced face images vary

significantly, develop a local feature extraction based face recognition algorithm to

match non-mosaiced and mosaiced face images.

• Computationally efficient online learning for classifier re-training and

update: Design an online classification algorithm to efficiently classify the users

as genuine or impostor. The classification algorithm should be able to perform

faster training and also update the decision hyperplane to account for variations
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due to new enrollments in the database. Online training of the classifier should

facilitate updated learning in real-time by reducing the computational cost and

making the biometric system scalable.

1.3 Research Contributions

This section delineates an overview of the algorithms designed to accomplish the

above mentioned research objectives.

Transformation and Recognition Algorithm for Aging and Disguise

An age transformation algorithm is developed to handle the challenge of facial aging in

face recognition. The proposed algorithm registers the gallery and probe face images

in polar coordinate domain and minimizes the variations in facial features caused due

to aging. Further, a novel face recognition algorithm is designed that extracts non-

disjoint facial features at different levels of granularity. These features are extracted using

neural network architecture based 2D log polar Gabor transform. Finally, likelihood ratio

based support vector machine match score fusion is developed to combine the granular

information.

Multispectral Face Image Fusion Algorithm for Illumination Variation

Two multispectral image fusion algorithms are developed to address illumination and

expression variations. The first algorithm is a simple approach in which Discrete Wavelet

Transform is used for image fusion. The second algorithm uses a learning technique for

image fusion. Specifically, the learning based image fusion algorithm utilizes 2ν-granular

support vector machine to learn the properties of the multispectral face images at different

resolution. It further determines optimal information in both the images and combines

them to generate a fused image.

Face Mosaicing Scheme for Pose Invariant Face Recognition
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To address the variations due to pose, a face mosaicing scheme is designed that generates

a composite face image during enrollment based on the evidence provided by frontal

and semi-profile face images of an individual. In the proposed scheme, the side profile

images are aligned with the frontal image using a hierarchical registration algorithm

that exploits neighborhood properties to determine the transformation relating the two

images. Multiresolution splining is then used to blend the side profiles with the frontal

image thereby generating a composite face image of the user. A texture-based face

recognition technique that is a slightly modified version of the C2 algorithm proposed

by Serre et al. [87] is used to compare a probe face image with the gallery face mosaic.

Computationally Efficient Online Learning for Classifier Re-training and Up-

date

To address the computational aspect and regular update, a new biometric classifier up-

date algorithm is developed that incrementally re-trains the classifier using online learn-

ing and progressively establishes a decision hyperplane for improved classification. The

proposed algorithm incorporates soft labels in the formulation of 2ν-online granular soft

support vector machine to re-train the classifier using only the new data.
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Chapter 2

Face Recognition with Aging and

Disguise Variations

Recognizing individuals with altered appearances is a major challenge of face recog-

nition. Current face recognition algorithms are not capable of detecting appearances

altered due to aging or disguise; even if the images are captured in a controlled envi-

ronment. The ability to recognize individuals who deliberately alter their appearance

is very important in security applications such as identifying impostors and terrorists,

and missing person database. The challenges due to aging and disguises cause change

in data structures, alter actual data, make pertinent data disappear, mask features to

varying degrees, or introduce extraneous artifacts in the face image. Many forensic and

law enforcement applications have to deal with challenges due to aging and disguises.

However, the performance of face recognition systems for such cases are not very encour-

aging. In this chapter, we specifically undertake the challenge of face verification due to

age progression and variations in disguise.

Human face undergoes significant changes as a person grows older. The facial

features vary for every person and are affected by several factors such as exposure to

sunlight, inherent genetics, and nutrition. The performance of face recognition systems

cannot contend with the dynamics of temporal metamorphosis over a period of time.

Law enforcement agencies regularly require matching a probe image with individuals in

the missing person database. In such applications, there may be significant differences
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between facial features of probe and gallery images due to age variation. For example, if

the age of an individual in the probe image is 15 years and the age of the same individual

in the gallery image is five years, existing face recognition algorithms are ineffective and

may not yield the desired results. One approach to handle this challenge is to regularly

update the database with recent images or templates. However, this method is not

feasible for applications such as border control, homeland security, and missing person

verification.

Researchers have proposed several age simulation and modeling techniques to ad-

dress the challenge of recognizing faces with aging. These techniques model the facial

growth over a period of time to minimize the difference between probe and gallery images.

Burt and Perrett [15] proposed an age simulation algorithm using shape and texture to

create composite face images for different age groups. They further analyzed and mea-

sured the facial cues affected by age variations. Tiddeman et al. [111] proposed wavelet

transform based age simulation to prototype the composite face images. Lanitis et al.

[53]-[55] proposed statistical models for face simulation. They used training images to

learn the relationship between coded face representation and actual age of subjects. This

relationship is then used to estimate the age of an individual and to reconstruct the face

at any age. Gandhi [39] proposed Support Vector Regression to predict the age of frontal

faces. The aging function is used with the image based surface detail transfer method

to simulate face image at any younger or older age. Wang et al. [118] obtained the

texture and shape information of a face image using PCA and used this information in

reconstructing the shape and texture at any particular age. Recently, Ramanathan and

Chellappa [81], [82] proposed a craniofacial growth model that characterizes the shape

variations in human faces during formative years. They further developed a Bayesian

age difference classifier to estimate the age difference between two images and verify the

identity. Park et al. [70] designed an aging simulation technique that learns the aging

patterns of the shape and the texture based on PCA coefficients. A 3D morphable model

is adapted using the 2D face image database which compensates for the aging variations

between the gallery and probe faces.
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The inter-personal and intra-personal characteristics can be modeled to alter the

appearance of an individual to impersonate another person or hide one’s identity. The

ability to recognize individuals who deliberately alter their appearance is very important

in security applications for identifying terrorists, controlling access to sensitive areas, or

monitoring border crossing. The recognition of faces with disguise is a major challenge

and has only been recently addressed by few researchers [2], [69], [80], [91]. Alexander

and Smith [2] used PCA based algorithm with Mahalanobis angle as the distance metric.

The results show an accuracy of 45.8% on the AR database [66]. Silva et al. [91] proposed

using Eigen-eyes to handle several challenges of face recognition including disguise. Using

the Yale database [124], the algorithm was able to achieve an accuracy of around 87.5%.

The advantage of the algorithm is that alterations in facial features excluding the eye

region do not affect the accuracy. Ramanathan et al. [80] studied the facial similarity

for several variations including disguise by forming two eigenspaces from two halves of

the face, one using the left half and the other using the right half. From the test image,

optimally illuminated half face is chosen and is projected into the eigenspace. This

algorithm has been tested on the AR face database [66] and the National Geographic

database [80] which consists of variations in smile, glasses, and illumination. An accuracy

of around 39% for the best two matches is reported on the AR database. Pamudurthy

et al. [69] proposed a face recognition algorithm that uses dynamic features obtained

from skin correlation and the features are matched using nearest neighbor classifier. On

a database of 10 individuals, authors reported that this approach gives accurate results.

The limitation of these algorithms is that the performance degrades when important

regions such as the eye and the mouth are covered. Moreover, the AR and Yale databases

do not contain many images with disguise and therefore are not ideal for validating

algorithms under comprehensive disguise scenarios.

Generally face recognition algorithms either use facial information in a holistic

way or extract features and process them in parts. On the other hand, cognitive neu-

roscientists have observed that humans solve problem using perception and knowledge

represented at different levels of information granularity [101]. Humans recognize faces
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using a combination of holistic approach together with discrete levels of information or

features. They can identify specific facial features and associate a contextual relationship

among them to recognize a face even with altered, occluded, and aged appearances. We

have designed preprocessing and face verification algorithms to recognize faces with vari-

ations in aging and disguise. Specifically, an age transformation algorithm is proposed

that registers two face images to minimize the aging variations. Unlike the conventional

method, the gallery face image is transformed with respect to the probe face image and

facial features are extracted from the registered gallery and probe face images. We further

propose a granular approach for face verification by using dynamic feed-forward neural

architecture and extracting 2D log polar Gabor phase features [97] at different granular

levels. The granular levels exhibit non-disjoint spatial features which are combined using

the proposed likelihood ratio based Support Vector Machine match score fusion algo-

rithm. The proposed face verification algorithm is validated using five face databases.

The Notre Dame face database [22], [37] is used for performance evaluation since it con-

tains comprehensive variations in expression and illumination, and has been widely used

for evaluating face recognition algorithms. In addition, we have used a face database

which contains images with age variations and three face databases specifically aimed at

validating the performance for disguised face images. The performance of the proposed

face verification algorithm is also compared with existing face verification algorithms.

2.1 Proposed Registration based Age Transforma-

tion Algorithm

Face verification with age variations is a very challenging problem and most of

the existing algorithms do not yield good recognition performance for face images with

large age differences. The growth of facial features is dynamic in nature and depends on

several factors such as genetics, environment, and living habits. Researchers have used

anthropometric measures or learning methods to simulate the facial growth and applied
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Face Image
Cartesian Coordinates

Face Image
Polar Coordinates

Figure 2.1: Example of cartesian to polar coordinate conversion.

face verification algorithms. However, these age simulation algorithms do not include the

dynamics in the facial growth thus causing lower verification accuracy. Another way to

address the issue is to minimize the aging difference between the gallery and probe face

images using a registration technique. We propose the mutual information registration

based age transformation algorithm which can be used to recognize face images with

significant age difference between them. The details of age difference minimization using

the registration of gallery and probe face images is described below:

Let F be the face image and subscripts g and p represent the gallery and probe

respectively. Let Fg and Fp be the detected gallery and probe face images to be matched.

Fg(x, y) and Fp(x, y) are transformed into polar form to obtain F T
g (r, θ) and F T

p (r, θ)

respectively. Here, r and θ are defined with respect to the center coordinate (xc, yc).

r =
√

(x− xc)2 + (y − yc)2 0 ≤ r ≤ rmax (2.1)

θ = tan−1
(
y − yc

x− xc

)
(2.2)

The coordinates of eyes and mouth are used to form a triangle and the center of this

triangle is chosen as the center point, (xc, yc), for cartesian to polar conversion. Figure 2.1

shows an example of cartesian to polar conversion around the center point. This cartesian

to polar conversion eliminates minor variations due to pose and provides robust feature

mapping used in the next steps of the algorithm.

Mutual information is a concept from information theory in which statistical de-
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pendence is measured between two random variables. Using mutual information, the

proposed registration algorithm minimizes the geometric differences between the gallery

and probe face images. Mutual information between two polar face images can be rep-

resented as [65], [76],

M(F T
g , F

T
p ) = H(F T

g ) +H(F T
p ) −H(F T

g , F
T
p ) (2.3)

where, H(·) is the entropy1 of the face image and H(F T
g , F

T
p ) is the joint entropy of

gallery and probe face images. Registering a gallery face image F T
g with respect to a

probe face image F T
p requires maximizing the entropy between H(F T

g ) and H(F T
p ), and

minimizing the joint entropy H(F T
g , F

T
p ). Hill et al. [44] proposed normalized mutual

information which can be represented as,

M̃(F T
g , F

T
p ) =

H(F T
g ) +H(F T

p )

H(F T
g , F

T
p )

(2.4)

In this research, we use the normalized mutual information for minimizing aging differ-

ences in a transformation space, S, defined as

S =




a1 a2 0

a3 a4 0

a5 a6 1




(2.5)

This transformation space includes the parameters ai (i = 1, · · ·, 6) for shear, scale,

rotation, and translation. The optimal transformation parameters S∗ are obtained by

exploring the search space S using normalized mutual information. The search strategy

is defined as Equation 2.6.

S∗ = arg max{S}{M̃(F T
p , S(F T

g ))} (2.6)

The gallery and probe face images F T
g and F T

p are registered using the optimal trans-

formation parameters S∗. This registration algorithm is linear in nature and does not

1Entropy =
∑

i
pilog(pi), where p contains the histogram counts of the image.
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accommodate for the non-linear dynamic variations present in face images. To address

the non-linearity present in face images, we apply the multiresolution image pyramid

scheme with the registration algorithm. A Gaussian pyramid of both the gallery and

probe face images is constructed. Registration parameters are estimated at the coarsest

level and are used to warp the gallery face image in the next level of the pyramid. The

process is iteratively repeated through each level of the pyramid and a final transformed

gallery face image is obtained at the finest pyramid level. In this manner, the global

variations are handled at the coarsest resolution level and the local non-linear variations

at the finest resolution level. Besides minimizing the age differences, this approaches also

reduces the differences due to minor pose and expression variations. Thus, this algorithm

can also be viewed as a preprocessing scheme to reduce the spatial variations between

the gallery and probe images (Figure 2.2). The registered face images are finally trans-

formed back to cartesian coordinates from polar coordinates. Using the FG-Net face

database [35], Figures 2.2 and 2.3 show the registered gallery face images transformed

with respect to the probe face images. Since the algorithm performs registration between

two images, it can minimize the difference between faces of two individuals. However, as

shown in Figure 2.3, the inter-personal differences cannot be exactly registered and any

efficient face recognition algorithm can reject these transformed impostor images. Once

the age difference between the gallery and probe face image is minimized, face verification

algorithms can be applied to verify the identity of the probe image.

2.2 Granular Approach for Face Recognition

Sinha et al. established 19 results based on face recognition capabilities of human

mind [101]. They suggested that humans can efficiently recognize familiar face images

even with low resolution and withstand noise factors. Moreover, high and low frequency

facial information are processed both holistically and locally. Shape, motion, and imaging

conditions are also important factors in processing facial information by the human mind.

On the other hand, researchers from psychology and neuro-cognition have simulated and
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Figure 2.2: Results of the proposed age transformation algorithm on images from the

FG-Net face database when the gallery and probe images belong to the same individual

[35].
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Figure 2.3: Results of the proposed age transformation algorithm on images from the FG-

Net face database when the gallery and probe images belong to different individual [35].

Any efficient face recognition algorithm can identify these cases as impostors because the

registration algorithm does not minimizes the inter-personal variations.
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analyzed human visual cortex by conducting certain experiments. The analysis shows

that Gabor transform represents the properties of human visual cortex [25], [27], [119]

and exhibits log polar distribution response [28]. It is our hypothesis that if these capa-

bilities can be encoded in an automatic face recognition algorithm, then the recognition

performance of the algorithm can be comparable to the performance of human mind.

To incorporate the above mentioned research findings, we propose a granular ap-

proach for facial feature extraction and matching. The approach is based on the concept

that human mind solves problems at different levels of granularity [7], [8], [21]. In this

concept, known as granular computing, a unified framework is used to extract non-

disjoint features at different granularity levels and are synergistically combined to obtain

a composite information. Granular computing framework is more useful in solving prob-

lems when the global information is fuzzy. For example, it is difficult to produce correct

verification result with a disguised face image. However, with granulated information,

more flexibility is achieved in analyzing the underlying information such as nose, ears,

forehead, hair, cheeks, or combination of two or more features.

There are four basic components of granular computing [7], [8], [21]: granules,

granular structure, granulation, and information retrieval from granules.

• Granules are the basic component of granular computing. These are small particles

which collectively provide a representation with respect to a particular level. Gran-

ules have internal, external and contextual properties which reflect interaction of

elements inside a granule, interaction with other granules, and relationship among

granules.

• Granular structure provides a structured description of the problem. This structure

can be interpreted as a level or granulated view in the overall hierarchy.

• Granulation involves construction of granules and granular structure, and defines

the representation and characterization of granules and its structure.

• Information retrieval from granules involves granular information processing such

as feature extraction and matching. This component may also involve computing
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Figure 2.4: Illustrating the concept of the proposed face recognition algorithm.

the relationship among granules, processing based on priors, and preservation of

invariant properties.

The proposed face recognition algorithm generates face granules by granulating

face image at three different levels. The granules are generated such that non-disjoint

facial features can be extracted to provide resilience to variations in disguise. Further,

features are extracted from the face granules and are fused using the proposed match score

fusion algorithm. As shown in Figure 2.4, the proposed face recognition algorithm thus

comprises of three steps: generating granules from the face image, feature extraction

from the face granules and feature matching, and fusion of granular match scores for

recognition.

2.3 Generating Granules from Face Image

Let F be the detected and preprocessed frontal face image of size n × n. Face

granules are generated pertaining to three different levels of granularity. The first level of

granularity provides global information at multiple levels of resolution. This is analogous

to a human mind processing holistic information for face recognition at varying resolu-

tions. Campbell et al. have shown that inner and outer facial regions provide distinct

information to recognize face images [16]. At the second level of granularity, different

inner and outer facial information are extracted. Further, local facial features play an

important role in face recognition by human mind. Humans efficiently process informa-

tion in parts and are able to recognize occluded faces. Therefore, at the third level of

granularity, we extract facial features from the local facial fragments.
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In the first level, face granules are generated by applying the Gaussian and Lapla-

cian operators [14]. The Gaussian operator generates a sequence of low pass filtered

images by iteratively convolving each of the constituent images with a 2D Gaussian filter

kernel [98]. The resolution and sample density of the image is reduced between successive

iterations and therefore the Gaussian kernel operates on a reduced version of the original

image in every iteration. The resultant images I0, I1, . . . , IA may be viewed as a pyramid

with I0 having the highest resolution and IA having the lowest resolution. Let w(x, y)

represent the Gaussian kernel of dimension 5 × 5 and reduction factor 4. The Reduce

operation can be written as,

Reduce[F (p, q)] =
5∑

x=1

5∑

y=1

w(x, y)F (2p+ x, 2q + y) (2.7)

A Gaussian pyramid IB is defined as,

I0 = F (2.8)

IB = Reduce[IB−1], 0 < B < A (2.9)

Further, the Laplacian operator generates band-pass images and the process can be

summarized as follows:

LB = IB − Expand[IB+1], 0 ≤ B < A (2.10)

Here, the Expand[·] operator interpolates a low-resolution image to the next highest

resolution and can be represented as,

Expand[IB,D(p, q)] = 4
2∑

x=−2

2∑

y=−2

w(x, y)IB,D−1

(
p− x

2
,
q − y

2

)
(2.11)

Note that IB,D in Equation 2.11 denotes expanding IB D number of times. Let the

granules generated by Gaussian and Laplacian operators be represented by FGri, where i

represents the granule number. For a face image of size 128×128, Figure 2.5 represents the
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FGr1 FGr2 FGr3 FGr4 FGr5 FGr6

Figure 2.5: Face granules generated in the first level of granularity. FGr1, FGr2, andFGr3

are generated by the Gaussian operator, and FGr4, FGr5, and FGr6 are generated by the

Laplacian operator.

face granules generated in the first level by applying Gaussian and Laplacian operators.

FGr1 to FGr3 are the granules generated by Gaussian operator and FGr4 to FGr6 are the

granules generated by Laplacian operator. The size of the smallest granule in the first

level is 32 × 32. These operators are applied only to three levels of resolution because

facial features are not useful for recognition when image size is less than 32 × 32. In

these six granules, facial features are segregated at different resolutions to provide edge

information, noise, smoothness, and blurriness present in a face image. This level of

granular information thus provides resilience to disguise variations in facial features such

as eyes, mouth, and nose.

Campbell et al. reported that different inner and outer facial regions represent

distinct information which is useful for face recognition [16]. Therefore, in the second

level of granularity, we generate the horizontal and vertical granules by dividing the face

image F into different regions as shown in Figures 2.6 and 2.7. Here, FGr7 to FGr15 denote

the horizontal granules and FGr16 to FGr24 denote the vertical granules. Among the nine

horizontal granules, the first three granules i.e. FGr7, FGr8, and FGr9 have the same size

n× n
3
. The next three granules, i.e., FGr10, FGr11, and FGr12 are generated such that the

size of FGr10 and FGr12 is n × (m − ε) and the size of FGr11 is n × (m + 2ε). Further,

FGr13, FGr14, and FGr15 are generated such that the size of FGr13 and FGr15 is n× (m+ ε)

and the size of FGr14 is n× (m− 2ε). Similarly, nine vertical granules FGr16 to FGr24 are
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Figure 2.6: Horizontal face granules generated from a face image at the second level of

granularity (FGr7 to FGr15).

... … ….. … ... ..... … ...

FGr16 FGr17 FGr18 FGr19 FGr20 FGr21 FGr22 FGr23 FGr24

Figure 2.7: Vertical face granules generated from a face image at the second level of

granularity (FGr16 to FGr24).

generated. Figures 2.6 and 2.7 show horizontal and vertical granules when the size of

normalized face image is 128 × 128 and ε = 102. This level of granularity provides the

relation between horizontal and vertical granules to handle minor variations in disguise

such as glasses, hair style, beard, and mustache.

Researchers in cognitive science suggest that local facial fragments can provide

robustness against partial occlusion and change in viewpoints [42], [86], [101]. Moreover,

human mind can distinguish and classify individuals with their local facial fragments

such as nose, eyes, and mouth. To incorporate this property, we extract local facial

2In our experiments, ε = 10 yields the best verification results with face images of size 128 × 128.
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Figure 2.8: Golden ratio [3] for selecting local facial fragments.

Figure 2.9: Face granules generated in the third level of granularity representing local

information (FGr25 to FGr40).

fragments and use them as face granules in the third level of granularity. Given the eye

coordinates, 16 local facial fragments are extracted using the golden ratio face template [3]

shown in Figure 2.8. Each of these fragments is a granule representing local information

that provide invariant and unique features for handling variations due to expression and

disguise. Figure 2.9 shows an example of local facial fragments used as face granules in

the third level of granularity.

The proposed granulation technique is used to generate 40 non-disjoint face granules

from a face image of size 128 × 128. The technique is based on using a fixed structure

(golden ratio template). However, for face images captured in a controlled setting, the

images can be granulated according to local features. For face images with variations

due to aging and disguise, identifying features is challenging and hence feature-based

partitioning does not yield accurate results compared to fixed structure partitioning.
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2.4 Log Polar Gabor Transform for Feature Extrac-

tion

Face recognition using Gabor features has been proposed in several research papers

[6], [46], [62], [90], [122], [128]. Most of the algorithms extract amplitude and phase

features at different scale and orientation. These features are either matched using a

matching algorithm or the features are first subjected to techniques such as Principal

Component Analysis, Independent Component Analysis, or histogram analysis and then

matched. However, neural networks can also be used to combine the response of Gabor

transform and obtain an optimal composite Gabor response. Further, face recognition

algorithms are based on feature extraction from a cartesian perspective. The image rep-

resented in the human visual cortex is negatively correlated with retinal cell eccentricity.

This property causes a formulation of spatial log polar transformation. In this transfor-

mation, the image is resampled as a logarithmic function of the distance from the center.

This fundamental concept of log polar transformation has been used by Smeraldi and

Bigun [103], and Tistarelli and Grosso [112]. These algorithms use a log polar transfor-

mation which simulates the retinal sampling resolution.

In this section, we present the proposed face recognition algorithm which is based

on the textural information of face image extracted using 2D log polar Gabor transform.

We further extend the 2D log polar Gabor transform based feature extraction algorithm

to learn and combine Gabor responses using dynamic neural network.

2.4.1 Overview of Gabor Transform

Researchers from psychology and physics have simulated and analyzed the human

visual cortex by conducting certain experiments. It has been reported that the prop-

erties of a human visual cortex can be represented by the Gabor transform [25], [27],

[119]. In 1946, D. Gabor [38] established the uncertainty principle where the product

of uncertainties in frequency ∆f and time ∆t must exceed a fixed constant. If the sig-

25



nal is transmitted through a bank of bandpass filters, the closest frequencies which can

be distinguished are given by ∆f = 1/∆t. In Fourier space, the product of time and

bandwidth gives the maximum amount of information that can be transmitted. Gabor

showed that the minimum area in Fourier space is achieved by the Gaussian modulated

complex exponential functions of the form

φjk(t) = exp
[
−π(t− j∆t)2/α2

]
exp [2πik∆f(t− j∆t)] (2.12)

where ∆f∆t = 1. In this equation, the first exponential term represents a Gaussian

envelop centered on j∆t and the second term represents the conjugate exponential form

of the trigonometric functions of frequency k∆f which is a periodic function, and denotes

the locality of the Gaussian envelop. Equation 2.12 can also be represented as,

φjk(t) = exp
[
−π(t− j∆t)2/α2

]
[cos[2πik∆f(t− j∆t)] + isin [2πik∆f(t− j∆t)]]

(2.13)

Figure 2.10: Even and odd components of the 2D Gabor filter.

As α→ ∞, Gabor transform reduces to Fourier transform and no locality is shown

at this point. Experiments performed by the researchers show that the receptive fields of

simple cells in a visual cortex are similar to the Gaussian modulated sinusoids and 97%

of them are statistically indistinguishable from the odd symmetric or even symmetric

parts of a 2D Gabor elementary function [26]. This quadrature phase relationship can

be computed from the odd and the even symmetric parts of the 2D Gabor transform
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[26], as can be seen in Equation 2.13. Figure 2.10 shows the odd and the even symmetric

parts of the 2D Gabor transform and Figure 2.11 shows the Gabor response at different

scales and orientations. Gabor transform is a non-orthogonal transform and according to

Daugman [27], non-orthogonal representations are ubiquitous in biological sensory and

motor systems. Therefore, it can be used for efficiently imitating the visual cortex and

coding the visual information.

Figure 2.11: Gabor filter at different scales and orientations.

Another property of neurophysiological and psychological system is that they show

a log-polar distribution of response selectivity in cells in the visual cortex, which shows

the orientation half-bandwidth of ±150 and the frequency bandwidth of 1.5 octaves [28].

To account for this property, we have used log-polar Gabor transform for representing the

face image in which radial distance represents the spatial frequency and the polar angle

represents the orientation. Log polar Gabor transform is a form of Gabor transform

[10], [64], [68] which is based on polar coordinates and the dependency of directional

independent variance (σ) on the polar coordinate is realized by a logarithmic scale. Thus

the functional form of 2D log polar Gabor filter can be represented as
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Gr0,θ0
(r, θ) = exp

(
−2π2σ2

) [
(ln(r) − ln(r0))

2 + (ln(r)sin(θ− θ0))
]

(2.14)

and the position of filter in the Fourier domain is defined by

r00 =
√

2, r0i = 2i ∗ r00, θ0i = i ∗ 2π

Nθ

(2.15)

where r00 is the smallest possible frequency, Nθ is the number of filters on the unit circle,

and at index L, σL and sL are further defined by

σL =
1

ln(r0)πsin(π/Nθ)

√
ln2

2
(2.16)

sL =
ln(r0)πsin(π/Nθ)

ln2

√
ln2

2
(2.17)

Log-Gabor transform has no DC component and has an extended tail. According

to Field [34], log-Gabor functions with extended tail are able to encode the images more

efficiently compared to Gabor transform, because Gabor transform would over represent

the low frequency components and under represent the high frequency components. Log-

polar Gabor transform also provides invariance to rotation and scaling.

2.4.2 Phase Feature Extraction and Matching

Let the size of preprocessed face image F (x, y) be N × N . The face image is

transformed into its log polar form F (r, θ) [78],

F (r, θ) = F
([
N

2

]
+
[
θcos

(
2πr

s

)]
,
[
N

2

]
−
[
θsin

(
2πr

s

)])
(2.18)
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where r = 0, ..., s − 1, θ = 0, ..., [N/2] − 1, and s is the factor by which the image is

sampled from 00 to 3600 to produce its equivalent polar form. This polar face image is

then operated with 2D log polar Gabor transform [38] which provides both amplitude

and phase information. Let Fg(r, θ) be the output of this operation. Venkatesh and

Owens [115] showed that the degree of phase is independent of overall magnitude of the

face image and provides invariance to the changes in illumination and contrast. Phase

features are computed from Fg(r, θ) using Equation 2.19. The features are quantized using

Equation 2.20 to generate a binary representation, B, referred to as phase template.

P (r, θ) = tan−1

(
ImFg(r, θ)

ReFg(r, θ)

)
(2.19)

B(r, θ) =





[1, 1] if 00 < P (r, θ) ≤ 900

[0, 1] if 900 < P (r, θ) ≤ 1800

[0, 0] if 1800 < P (r, θ) ≤ 2700

[1, 0] if 2700 < P (r, θ) ≤ 3600

(2.20)

To match the two phase templates, first the templates are divided into m frames

each of size p×q. Corresponding frames from the two phase templates are matched using

hamming distance as shown in Equation 2.21.

Di = min

(
Σi (B

1
i ⊗ B2

i )

p ∗ q

)
(2.21)

where B1
i and B2

i are the ith frames for the two templates, ⊗ represents the XOR op-

eration, Di is the corresponding distance measure, and min computes the minimum

hamming distance. A circular shift of eight pixels in all directions is applied and the

minimum hamming distance is computed to make the process shift invariant. The phase

matching score MP is then calculated using Equations 2.22 and 2.23,

MP
s =




MP

s + 1, if Di ≥ η1

MP
s , if Di < η1

(2.22)
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MP =
MP

s

m
(2.23)

where η1 is the frame matching threshold, MP
s is the intermediate matching score for

frames, and m is the number of frames. A match occurs if the matching score MP < η2,

where η2 is the phase matching threshold for the face template.

2.4.3 Learning Discriminative Log Polar Gabor Phase Features

using Dynamic Neural Network Architecture

Since the log polar Gabor transform does not form an orthogonal basis, it is very

difficult to obtain the expansion of the image. Daugman proposed a solution of this

problem by using neural network architecture to extract the Gabor coefficients [29]. In

the implementation, Daugman fixed a set of Gabor functions and expressed a pixel based

image as an expression in the basis of Gabor function. A network of neuron like units with

a particular learning rule is used and the architecture is designed in such a manner that

the output weights after stabilization are the best least mean square approximation to the

Gabor parameters. This is achieved by finding the dimension of error with respect to each

of the Gabor parameters and using a gradient descent method to iteratively approximate

the solution. However, classical neural networks inherently have static architecture. In

such networks the number of neurons is fixed. Also adaptation is a slow process with

limited connectivity between neurons, and the number of neurons needed for learning is

dependent on the problem being solved.

In this research, we propose the use of four layer dynamic neural network for com-

puting the discriminative log polar Gabor phase features. It is a fully connected, four

layer feed-forward neural network with a dynamic first hidden layer architecture trained

using a modified back-propagation technique. The dynamic neural network architecture

[84] is defined during the feature extraction process and evolves to a quasi-optimal topol-

ogy for the given task. In this network, two hidden layers are used and are central to

the adaptation capabilities. The first hidden layer is dynamic in size and provides the
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necessary learning support to satisfy the goals of adding knowledge capacity to the net-

work as well as providing generalization capabilities for unknown input data. The second

hidden layer is fixed in size because the need of a fixed dimension for data representation

necessitates the use of a fixed second hidden layer representation. The size of input and

output layers are same, and are constrained by the needs of the facial feature encoding

to provide an auto-associative mapping from the input pattern to the output pattern. If

the size of the dynamic hidden layer is too large, the neurons over-specialize and learn

individual patterns instead of their underlying features. If the dynamic hidden layer is

too small then the neurons are not able to provide the bounded distortion rates needed

for facial feature extraction. We can use the traditional back-propagation techniques

for training such networks but it can result in unbalanced training errors for different

patterns. This is addressed in the dynamic neural network learning algorithm by the use

of the descending epsilon technique [127]. Epsilon represents the margin of the tolerable

error at each stage of training. It improves the correctness ratio of the network for each

pattern as epsilon is reduced, and hence improves the general behavior of the trained

network. The dynamic neural network algorithm also utilizes the techniques described in

[45] to determine the size of the network needed for providing architectural support dur-

ing learning and avoid stagnation during training. During the expansion stage, hidden

layer neurons are added one at a time as required, to enable the network to escape from

local minima. When a new unit is added, the dimension of the weight space increases,

providing a new path for the trapped network to escape. After reaching the desired error

rate, the network is pruned and tested for convergence until the optimal size is reached.

In the learning process, we train the dynamic neural network to synergistically com-

bine the discriminating and unique log polar Gabor phase features for optimal recognition

performance. Learning is performed on a labeled training database which is prepared by

combining images from different existing face databases. Details of the training database

are provided in Section 2.7.1.

We use a filterbank of 64 log polar Gabor filters along with 8 center surround

differences of Gaussian filters and 4 low pass filters. Thus a total of 76 filters are used in
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the proposed face recognition algorithm. These filters are used as the weights of dynamic

hidden layer. Input to the neural network is the training face images in log polar form.

Training is initialized with one filter (from the 76 filters) as the weight of the dynamic

hidden layer. Suppose the log polar Gabor transform is Gi(r, θ) where i = number of

filters and the training polar face image is Ft(r, θ). Output of the first hidden layer is
∑

iGi(r, θ)×Ft(r, θ), which is provided as input to the second hidden layer. In the second

hidden layer, we synergistically combine the response of the first hidden layer with weight

wj which is computed as,

wj =

∑
r,θ Gi(r, θ)Ft(r, θ)∑

r,θ G2
i (r, θ)

(2.24)

where j is the number of nodes in the second hidden layer. Finally, the output of the

second hidden layer is used as input to the output layer and an auto-associative mapping

is performed such that the size of output layer is the same as the input layer or the size

of input image. Let the output responses be Ftg(r, θ), then

Ft(r, θ) =
∑

i

∑

r,θ

Ftg(r, θ) Gi(r, θ) (2.25)

Here, we represent Ft(r, θ) by finding the projection coefficients and projecting it into a

set of chosen vectors Gi(r, θ) which provides the response Ftg(r, θ). We thus transform

the face information into Gabor domain and represent face image with Ftg(r, θ) which

is a complex valued matrix containing the amplitude and the phase information. Phase

information is then computed using Equations 2.19 and 2.20.

Similarly, we compute the phase features for all the face images in the training

and validation database in the first iteration of learning. Phase templates are then

matched using the phase template matching algorithm described in Section 2.4.2. For

the first iteration with one filter, the verification error on the validation database is

58.3%. To reduce the error rate, we repeatedly add filters to the first hidden layer

until the verification error on the validation database converges to a small value. We

further perform the same learning procedure for all possible combinations of filters and
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the learning finally converges at the error rate of 1.9%, i.e., verification accuracy of

98.1%. Figure 2.12 shows the final quantized phase feature obtained using the proposed

dynamic neural network architecture based 2D log polar Gabor transform. Once the

learning is complete and discriminating log polar Gabor phase features are learned, we

use the trained neural network architecture for face recognition. Figure 2.13 shows the

Gabor filters selected after training.

The training process is performed separately for all 40 face granules. At the end

of the training procedure, we have 40 quantized phase features, one for each granule.

For testing, the trained neural network architecture is used to generate the gallery phase

templates corresponding to the gallery face images and are stored in the database. During

query, phase template for the probe image is generated and matched using the phase

template matching algorithm. The algorithm generates match scores, si, (i = 1, · · · , 40),
pertaining to 40 face granules. Each of these match scores are in the range [0, 1] where

0 represents perfect reject and 1 represents perfect accept.

Figure 2.12: Face image and corresponding quantized phase feature obtained using dy-

namic neural network architecture based 2D log polar Gabor transform.

Figure 2.13: Even and odd components of Gabor filters selected after training. Size of

the face image is 128 × 128.
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2.5 Granular Information Fusion

The final step in the proposed granular approach for face verification is fusion of

match scores obtained from different face granules. In the case of disguise and aging, face

granules may provide conflicting decisions. For example, due to variations in disguise,

Gaussian granules may reject the genuine subject but some of the local granules may

provide a decision to accept. In such cases, a carefully designed fusion algorithm is

required to efficiently combine these confounding match scores. This section presents a

match score fusion algorithm to combine the match scores obtained from face granules.

The novelty of this algorithm lies in integrating likelihood ratio test-statistic [67] in a

SVM fusion framework. The likelihood ratio aspect of the algorithm makes it robust to

uncertainties in the face granules whereas the use of SVM ensures that the algorithm is

less prone to over-fitting thereby permitting it to handle conflicting match scores. The

fusion algorithm consists of three steps: (1) transforming match scores into likelihood

ratio, (2) integrating the verification prior of each face granule, and (3) applying support

vector machine fusion. This section presents an overview of 2ν-support vector machine

followed by the proposed fusion algorithm.

2.5.1 2ν-Support Vector Machine

Support vector machine [116] is a pattern classifier that constructs non-linear hy-

perplanes in a multidimensional space. In this research, we use dual ν-SVM [24] which

is an attractive alternative to SVM and offers much more natural setting for parameter

selection with reduced computational complexity.

Let {xi, yi} be the set of N data vectors where i = 1, ..., N , xi ∈ <d and yi is the

hard label such that yi ∈ (+1,−1). The basic principle of SVM is to find the hyperplane

that separates the two classes with the widest margin, i.e., wϕ(x) + b = 0 to minimize,

1
2
‖w‖2 + C

∑
i ψi

subject to yi (wϕ(xi) + b) ≥ (1 − ψi), ψi ≥ 0
(2.26)
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where b is the offset of the decision hyperplane, w is the normal weight vector, ϕ(x)

is the mapping function used to map the data space to the feature space and provide

generalization for the decision function. C is the regularization factor between the total

distance of each error from the margin and the width of the margin, and ψi is the slack

variable used for classification errors [116]. The optimal SVM parameters are obtained

by manually setting the parameters until an optimal error rate is achieved. This heuristic

process is very time consuming. Dual ν-SVM, originally proposed by [24], is a compu-

tationally efficient variant of SVM. It is more flexible in the training and overcomes the

issues when the training class sizes are not same. In Equation 2.26, additional class

dependent parameters (ρ, ν and Ci) are introduced such that the formulation becomes,

min{1
2
‖w‖2 −∑

iCi(νρ − ψi)}
subject to yi (wϕ(xi) + b) ≥ (ρ − ψi), ρ, ψi ≥ 0

(2.27)

where ρ is the position of the margin and ν is the error parameter that can be calculated

using ν+ and ν− which are the error parameters for training the positive and negative

classes respectively.

ν = 2ν+ν−
ν+ + ν−

, 0 < ν+ < 1 and 0 < ν− < 1 (2.28)

Ci(νρ−ψi) is the cost of errors and Ci is the error penalty for each class which is calculated

as,

Ci =




C+, if yi = +1

C−, if yi = −1
(2.29)

where,

C+ = ν
2n+ν+

,

C− = ν
2n−ν−

.

(2.30)

Here, n+ and n− are the number of training points for the positive and negative classes

respectively. Further, the 2ν-SVM objective function can be formulated as (Wolfe Dual
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formulation),

L =
∑

i

αi −




1

2

∑

i,j

αi αj yi yj K(xi, xj)



 (2.31)

where i, j ∈ 1, ..., N , K(xi,xj) is the kernel function [116], αi, αj are the Lagrange mul-

tipliers such that 0 ≤ αi ≤ Ci,
∑

i αiyi = 0, and
∑

i αi ≥ ν.

2.5.2 Incorporating Likelihood Ratio Test Statistic in a SVM

Fusion Framework

Traditionally, SVM-based fusion techniques use the match scores directly in the

fusion process. However, match scores may provide inaccurate or fuzzy information due

to environmental dynamics or matcher limitations. By transforming the match scores

into likelihood ratio, the uncertainties associated with them can be addressed better

[67]. Therefore, the input to the fusion algorithm comprises of likelihood ratio induced

from match scores and the verification prior of individual face granules (i.e., precision of

the face granules). The procedure of transforming match scores into likelihood ratio is

described as follows:

For a two-class biometrics problem, i.e. Θ = {genuine, impostor}, the match scores

corresponding to all N = 40 face granules are first computed, i.e. s = (s1, s2, · · · , sN), and

then the densities of the genuine and impostor scores (Jgen(s) and Jimp(s), respectively)

are estimated. In the proposed SVM fusion algorithm, it is assumed that the distribution

of match scores is a Gaussian distribution, i.e.,

Jj(si, µij, σij) =
1

σij

√
2π
exp


−1

2

{
si − µij

σij

}2

 (2.32)

where, µij and σij are the mean and standard deviation of the ith classifier corresponding

to the jth element of Θ. While this is a very strong assumption, it does not impact the

performance of the fusion system in the context of this application.

We compute the likelihood ratio Vi = Jgen(si)
Jimp(si)

ai pertaining to each face granule where

ai is the verification prior. The resultant value Vi is used as input to the SVM fusion
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algorithm. Further, utilizing the SVM classifier for fusion addresses the limitations of

the likelihood test-statistic if the input data does not conform to the Gaussian assumption

(which is usually the case).

In the training phase, likelihood values induced from the match scores and their

labels are used to train the 2ν-SVM for fusion. Let the labeled training data be repre-

sented as Zi = (Vi, Y ), where, i represents the ith face granule. For each match score,

the class label Y ∈ Θ (or Y ∈ (+1,−1); where +1 represents the genuine class and -1

represents the impostor class). N SVMs are trained using these labeled training data;

one for each face granule. The training data is mapped to a higher dimensional feature

space such that Z → ϕ(Z) and ϕ(·) is the mapping function. The optimal hyperplane

which separates the data into two different classes in the higher dimensional feature space

can be obtained using 2ν-SVM learning [24].

In the testing phase, the fused score of a multimodal test pattern [Vi], i = 1, · · · , N
is defined as,

Vfused =
N∑

i=1

f(Vi) (2.33)

where,

f(Vi) = wiϕ(Vi) + bi (2.34)

Here, wi and bi are the parameters of the 2ν-SVM hyperplane. Finally, to verify the

identity, decision of accept or reject is made on the test pattern using a threshold t,

Decision(f(Vfused)) =




Accept, if output f(Vfused) > t

Reject, otherwise.
(2.35)

2.6 Databases and Algorithms used for Validation

To evaluate the performance of the proposed granular approach for face recogni-

tion, five face databases are used and the performance is compared with five existing

37



algorithms. Details of these databases and algorithms are presented in Section 2.6.1 and

Section 2.6.2 respectively.

2.6.1 Databases used for Validation

Currently, there is no comprehensive face disguise and aging database available in

public domain. The authors have prepared three databases which contain face images

with different disguise variations. These three databases are compiled using disguised

faces of real people, disguised synthetic faces, and disguised faces of actors and actresses

extracted from movie clips. The Notre Dame Face database [22], [37] and the FG-Net face

database [35] are also used to evaluate the performance of the proposed face recognition

algorithm. The characteristics of all five databases are explained below.

• Notre Dame Face Database [22], [37]: This database is a part of the NIST Face

Recognition Grand Challenge (FRGC). We use collection B of the Notre Dame face

database which contains around 35,000 high resolution frontal face images with

different lighting conditions and expressions. This database also provides images

of few individuals with time difference of six months to one year. It is one of the

most comprehensive face databases widely used for evaluating the performance of

face recognition algorithms. Sample images from the Notre Dame face database

are shown in Figure 2.14.

• Aging Database To evaluate the performance of the proposed algorithm on aging

variations, we use the face aging database which comprises of 1578 images from 130

individuals or subjects. The images are obtained partly from the FG-Net database

[35] and partly collected by the authors. Figure 2.15 shows an example of images

from the FG-Net face database.

• Real Face Disguise Database: This database is prepared by the authors. It con-

tains face images of 25 individuals with 15-25 different variations in images of each

individual. To prepare this database, we first analyze possible variations of dis-

guises and classify them into eight categories depending on its effect on appearance
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Figure 2.14: Sample images from the Notre Dame face database.

Figure 2.15: Sample images from the aging face database.
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and facial features. The disguise images are collected to comprehensively include

the following eight categories.

– Minimal variations

– Variations in hair style

– Variations in beard and mustache

– Variations in glasses

– Variations in cap and hat

– Variations in lips, eyebrows or nose

– Variations in aging and wrinkle

– Multiple disguise variations

Since our goal is to evaluate the performance of the proposed face recognition

algorithm on disguise, the database contains frontal face images with less emphasis

on variations due to illumination, expression and pose. Details of the number of

images for each category of disguise variations is provided in Table 2.1. Figure 2.16

shows an example of this database.

• Synthetic Face Disguise Database: Creating a large real face disguise database

is a challenging task. We used FACES software [33] to generate 4000 frontal face

images of 100 subjects with a comprehensive set of variations for disguise. Details of

the number of images in each of the eight categories are listed in Table 2.1. Figure

2.17 shows an example of 40 variations of the same face image generated using

disguise accessories and makeup tools. This database is used to comprehensively

evaluate the performance of the proposed algorithm for disguised images.

• Movie Face Database: Movies are a good source for finding face images of a

large number of individuals with variations in aging and disguise. Over a period of

time, an actor or actress uses makeup tools and accessories providing face images

with different variations including aging and disguises. A face database is prepared
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Figure 2.16: Images from the real face disguise database showing 18 variations of an

individual.

Figure 2.17: Images from the synthetic face disguise database showing 40 variations of

the same face [97].
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Table 2.1: Details of the face disguise databases used for evaluation.

Disguise Database - Images per subject

Real Faces Synthetic Faces

Disguise Categories No. of subjects = 25 No. of subjects = 100
Images per subject = 15-25 Images per subject = 40
Total no. of images = 475 Total no. of images = 4000

Minimal variations 4-5 4

Hair style 1-3 4

Beard and mustache 1-2 4

Glasses 1-2 4

Cap and hat 1-3 2

Lips, eyebrow and nose 1-2 4

Aging and wrinkles 1-3 4

Multiple variations 4-6 14

by collecting frontal face images of actors and actresses from movie clips. This

database contains 3500 face images pertaining to 100 individuals, i.e., 35 images

per individual. These images contain variations in expression, illumination, age,

and disguise along with minor variations in pose. This is a diverse disguise database

containing a number of real world non-ideal images.

2.6.2 Face Recognition Algorithms used for Comparison

To compare the performance of the proposed algorithm, we selected five existing

face recognition algorithms namely Principal Component Analysis [2], Half Face [80],

Eigen-eyes based algorithm [91], and Local Binary Pattern [1]. We also evaluate the

performance of 2D log polar Gabor transform with neural network and when subjected

to only 128 × 128 face image without granulation, and it is referred to as 2DLPG-NN.
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2.7 Experimental Results

To evaluate the performance of the proposed granular approach for face verification,

the image of all five databases are first detected manually by locating the eyes and

mouth coordinates. The size of detected face images is normalized to 128 × 128. This

section is divided into four parts: (1) experimental protocol, (2) performance evaluation

of face recognition algorithms, (3) effect of aging on verification performance, (4) effect

of different types of disguise on verification performance.

2.7.1 Experimental Protocol

In most of the real world applications, a face verification system is first trained on

a training database and then the trained system is used to perform recognition on the

gallery-probe face database. It is very likely that there is no overlap between the subjects

used in the training database and the subjects in the gallery-probe database. To evalu-

ate the performance in such an application scenario, the databases are partitioned into

two groups: training database and testing database. From each of the face databases,

we select some subjects for training and the remaining images for testing. Face images

pertaining to 282 subjects (40% from each database) are used to train the proposed algo-

rithm (estimating densities, learning SVM classifier, computing granulation parameters,

learning feature extraction algorithm, and computing verification priors). The remaining

images pertaining to 423 subjects (60% from each database) are used as the test (gallery-

probe) database for performance evaluation. This partition ensures that the verification

is performed on unseen images. The train-test partitioning is repeated fifty times and

the Receiver Operating Characteristics curves are generated by computing the false re-

jection rates over these trials at different false accept rate. The verification accuracy is

computed at 0.01% FAR. The above experimental protocol is further used to compare

the performance with other face recognition algorithms.
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2.7.2 Performance Evaluation of Face Recognition Algorithms

The verification performance of the proposed granular face recognition algorithm is

evaluated and a comparison is performed with existing face recognition algorithms using

five face databases. The results are summarized in Table 2.2 and the ROC plots for each

of the five database are shown in Figures 2.18 - 2.22.

On the Notre Dame face database [37], existing face recognition algorithms yield

verification accuracy ranging from 49.1% to 93.4%. The lower performances of PCA, Half

face and Eigen-eyes are due to the variations in expression and illumination present in

the Notre Dame face database. Since the experiments are performed with single gallery

per subject, these algorithms are not able to obtain an individualistic representation for

every subject which is required to match face images with different variations. LBP and

2DLPG-NN can verify an individual if the variations are minor or moderate. However,

the performance of these two algorithms suffer with multiple variations such as matching

an indoor face image with an outdoor face image that have variations in facial expression.

The proposed face recognition algorithm outperforms existing algorithms by at

least 5.7% and gives an accuracy of 99.1%. The proposed algorithm provides such a

high level of performance because the non-disjoint texture features extracted at different

levels of granularity provide local and global information at multiple resolutions. Also,

the face granulation step incorporates cognitive and psychological research findings and

feature extraction uses 2D log polar Gabor transform which emulates the visual cortex

[25]. Finally, granular information fusion is performed using the proposed algorithm that

integrates likelihood test statistics in a SVM fusion framework that makes it resilient to

sensor noise and environmental dynamics.

The other four databases on the other hand contain comprehensive disguised face

images and images with aging variations. Using these databases, the verification accuracy

of the proposed face recognition algorithm is in the range of 81.5 - 95.7% which is at least

7.8% better than existing algorithms. Existing algorithms perform better on synthetic

face disguise database compared to other databases because it contains minor variations
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Table 2.2: Comparing performance of the proposed algorithm with existing face recogni-
tion algorithms.

Database Verification Accuracy (%) at 0.01% FAR

PCA Half Face Eigen-eyes LBP 2DLPG Proposed
[2] [80] [91] [1] -NN Algorithm

Notre Dame [37] 49.1 61.3 62.8 81.2 93.4 99.1

Aging [37] 19.7 29.1 27.3 55.9 64.0 81.5

Synthetic Face Disguise 67.2 70.0 73.7 86.1 87.9 95.7

Real Face Disguise 19.1 21.6 17.8 57.5 74.8 90.0

Movie Face 30.9 33.2 43.9 55.7 72.9 86.4

in pose, expression, and illumination along with disguise and aging. The absence of all

other variations in the synthetic face disguise database leads to improved verification per-

formance. Using one gallery image per subject, the proposed face recognition algorithm

shows a significantly high level of performance on the aging and disguise databases that

contain images with minor variations in pose, expression, and illumination. Finally, the

results of t-test show that the proposed granular approach is significantly different than

existing face verification algorithms.

2.7.3 Effect of Aging on Verification Performance

The performance of the proposed algorithm is evaluated for aging variations using

the face aging database. The face database is divided into three age groups: (1) 1-18

years, (2) 19-40 years, and (3) beyond 40 years. The database is divided into these three

age groups because we observed that face development depends on the age of a person.

For example, development in muscles and bone structure cause significant changes in the

face during the age of 1-18 years. From 19-40 years, the growth rate is comparatively

lower, whereas after 40 years, wrinkles and skin loosening cause major change in facial

features and appearance. It is thus very difficult to accurately model an individual’s face

for large age variations such as from age 10 to age 60. Considering these factors, we
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Figure 2.18: ROC plot on the Notre Dame face database [37].
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Figure 2.19: ROC plot on the aging database.
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Figure 2.20: ROC plot on the real face disguise database.
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Figure 2.21: ROC plot on the synthetic face disguise database.
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Figure 2.22: ROC plot on the movie database.

divide the database into three age groups to evaluate the performance. Details of the

images in these three age groups are provided in Table 2.3.

The experiments show that for the age group of 1-18 years, the verification accuracy

is 65.2% whereas with other age groups it is greater than 76% (Table 2.4). The results

also suggest that the proposed algorithm yields better performance for 19-40 years, and

beyond 40 years age groups compared to 1-18 years age group. This is because there

is greater change in facial features during the 1-18 years age group than any other age

Table 2.3: Details of the face aging database.

Age Number Total number Total number of Average age
group of subjects of images images per subject difference in years

1-18 years 59 605 5-16 8

19-40 years 68 735 8-15 10

Beyond 40 years 34 238 4-10 5

48



Table 2.4: Verification results of the proposed age transformation algorithm. Verification
performance is computed at 0.01% FAR.

Verification accuracy (%)

Age group Without registration With registration based Improvement in
based age transformation age transformation verification accuracy

1-18 years 23.4 65.2 41.8

19-40 years 51.7 76.8 25.1

Beyond 40 years 73.1 87.5 14.4

group. For example, if the age difference between the gallery and probe image is two

years, the rate of growth during 1-18 years is faster than 19-40 years or beyond 40 years.

Therefore, we can assert that due to feature stabilization, other age groups provide better

verification performance. The results show that the age group of beyond 40 years yields

the best verification accuracy of 87.5%. We also evaluate the performance of the proposed

face recognition algorithm without applying the age transformation algorithm. Table 2.4

summarizes the verification performance of the proposed face recognition algorithm with

and without the proposed age transformation algorithm for the three age groups. For

the age group of 1-18 years, an improvement of 41.8% is observed with the use of the

proposed age transformation algorithm. Since the transformation algorithm minimizes

the variations by registering the gallery and probe images both locally and globally, the

performance of face recognition is greatly enhanced. Similarly, for other age groups, the

performance of face recognition improves by at least 14.4%.

2.7.4 Effect of Different Types of Disguise on Verification Per-

formance

Currently, many security applications use human observers to recognize the face of

an individual. In some applications, face recognition systems are used in conjunction with

limited human intervention. For autonomous operation, it is highly desirable that the face
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recognition systems be able to provide high reliability and accuracy under multifarious

conditions, including disguise. In this section, we analyze the performance of the proposed

and existing face recognition algorithms for each disguise category on the real, synthetic,

and movie face databases.

Table 2.5 summarizes the performance of the face recognition algorithms for dif-

ferent categories of disguise variations. For most of the variations, appearance based

algorithms [2], [80], [91] yield lower verification accuracy because these algorithms use

facial appearance to determine the identity, and the make up tools and accessories sig-

nificantly alter the facial appearance. On the other hand, texture based algorithms such

as the proposed algorithm and LBP [1] provide significantly better verification accuracy

compared to appearance based algorithms. Conversely, these algorithms do not yield

good verification accuracy with moderate to large disguise variations.

The proposed face recognition algorithm emulates the problem solving approach

of human mind and the results show that by fusing the granular information obtained

at various levels of granularity, the proposed algorithm yields high verification accuracy.

However, the performance of the proposed algorithm reduces for variations in beard,

mustache, and multiple disguise variations. On a P-IV 3.2 GHz PC with 2GB RAM

under MATLAB programming environment, the proposed algorithm requires around 5

seconds for face granulation, feature extraction, fusion, and decision making.

2.8 Summary

Generally, face recognition systems and algorithms are designed to recognize faces

of cooperative individuals in controlled environment and a high level of performance has

been achieved. However, it becomes a challenging problem when the faces are altered due

to aging and disguise. Recognizing faces with altered appearances is a challenging task

and is only now beginning to be addressed by researchers. In this chapter, we present a

novel face recognition algorithm that extracts facial features at different levels of granular-

ity. The proposed approach is based on the observation that human mind recognizes face

50



Table 2.5: Comparing the performance of the proposed algorithm with existing algo-
rithms for each disguise category.

Verification Accuracy (%)

Database Disguise PCA Half Eigen- LBP 2DLPG Proposed
Categories [2] Face [80] eyes [91] [1] -NN Algorithm

Minimal 89.5 72.7 93.1 98.5 98.9 100

Hair Style 85.8 89.0 88.4 95.1 95.4 99.7

Beard + Mustache 43.2 45.3 92.5 83.8 84.7 96.6

Glasses 60.9 62.7 13.7 84.3 86.0 96.1

Synthetic Cap/Hat 82.7 85.1 79.2 93.7 95.1 99.9

Lips/Eyebrows/Nose 86.8 89.3 79.7 96.9 97.2 99.4

Aging/Wrinkles 75.6 77.9 73.1 94.5 95.6 99.3

Multiple Disguise 18.7 21.1 50.3 63.4 72.9 89.5

Minimal 31.3 35.5 26.7 79.1 96.2 100

Hair Style 30.6 33.4 25.2 75.3 87.7 99.9

Beard + Mustache 21.0 23.7 26.9 37.4 72.3 92.8

Glasses 22.4 24.1 0.0 50.7 77.9 96.5

Real Cap/Hat 27.1 28.3 10.6 72.9 78.2 99.8

Lips/Eyebrows/Nose 28.3 29.2 19.8 75.6 81.7 98.3

Aging/Wrinkles 27.2 28.9 19.5 66.3 81.1 95.2

Multiple Disguise 10.3 12.4 11.9 29.1 58.3 81.4

Minimal 40.7 43.3 55.2 60.4 90.2 98.6

Hair Style 39.1 41.6 53.8 76.4 88.7 98.3

Beard + Mustache 31.3 34.8 54.9 37.1 72.5 87.9

Glasses 32.0 35.2 3.7 48.9 79.4 93.0

Movie Cap/Hat 35.4 37.1 32.3 69.6 83.3 97.6

Lips/Eyebrows/Nose 34.9 38.0 31.5 77.2 82.7 97.9

Aging/Wrinkles 28.5 29.9 33.0 65.1 83.2 97.4

Multiple Disguise 13.8 16.1 21.5 30.7 58.9 73.7
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image by analyzing the relation among different non-disjoint spatial features extracted

at different granular levels. These non-disjoint features are extracted using neural net-

work architecture based 2D log polar Gabor transform. Variations in aging and disguise

cause alteration in appearance and features which may lead to imprecise matching. So,

to fuse the imprecise information obtained from these features, we propose the use of

likelihood ratio based SVM match score fusion. The proposed granular face recognition

algorithm is validated using the Notre Dame face database, FG-Net face database and

three other databases specially prepared with disguised face images. The performance is

also compared with existing state of the art face recognition algorithms and algorithms

specifically designed to recognize disguised face images. Experimental results show that

the proposed algorithm outperforms existing algorithms by at least 5.7%.
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Chapter 3

Multispectral Face Image Fusion for

Reducing the Effect of Illumination

Variations

Face recognition algorithms generally use visible spectrum images for recognition

because they provide clear representation of facial features and face texture to differenti-

ate between two individuals. However, visible spectrum images also possess several other

properties which affect the performance of recognition algorithms. For example, changes

in lighting affect the representation of visible spectrum images and can influence feature

extraction. Other variations in face images such as facial hairs, wrinkles, and expression

are also evident in visible spectrum images and these variations increase the false rejection

rate of face recognition algorithms. To address the challenges posed by visible spectrum

images, researchers have used infrared images for face recognition [23], [51], [52], [77].

Among all the infrared spectrum images, long wave infrared images possess several prop-

erties that are complementary to visible images. Long wave infrared or thermal images

are captured in the range of 8-12 µm. These images represent the heat pattern of the

object and are invariant to illumination and expression. Face images captured in long

wave infrared spectrum have less intra-class variation and help to reduce the false rejec-

tion rate of recognition algorithms. These properties of long wave infrared and visible

images can be combined to improve the performance of face recognition algorithms.
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In literature, researchers have compared the performance of visible and thermal

face recognition using several face recognition algorithms. These results show that for

variation in expression and illumination, thermal images provide better recognition per-

formance compared to visible images [23], [104], [121]. Further, several fusion algorithms

have been proposed to fuse the information extracted from visible and LWIR face images

at image level [41], [43], [94], feature level [94], [95], match score level [95], and decision

level [95]. Information fusion of multispectral images provides better performance com-

pared to either visible or infrared spectrum images. However, research in multispectral

information fusion is relatively new and intelligent techniques such as Granular comput-

ing, Support Vector Machine, and theory of evidence have not been explored. These

intelligent techniques can enhance the recognition performance by providing better gen-

eralization capabilities to handle imprecise information.

In multispectral image fusion, images of two different spectrum are combined to

generate a fused image followed by feature extraction and matching using the fused im-

age. In this chapter, we have proposed two image fusion algorithms to fuse long wave

infrared and visible face images. The first algorithm is a simple approach in which Dis-

crete Wavelet Transform is used for image fusion. The second algorithm uses a learning

technique for image fusion. Specifically, the learning based image fusion algorithm uti-

lizes 2ν-Granular Support Vector Machine to learn the properties of the multispectral

face images at different resolution. It further determines optimal information in both the

images and combines them to generate a fused image. 2D log polar Gabor and local bi-

nary pattern [1] face recognition algorithms are used to extract global and local features

from the fused image for matching.

3.1 Multispectral Face Image Fusion

Visible images provide the reflectance property and long wave infrared images pro-

vide the thermal property. In multispectral image fusion, we combine these properties

to generate a fused image which possess both the properties and can be used to improve

54



the recognition performance. Although there are several multispectral face image fusion

algorithms in literature, they have some limitations which affect the face recognition

performance. Genetic algorithm based fusion proposed by Bebis et al. [9] suffers from

making a good choice of fitness function. Fusion algorithm proposed by Kong et al.

[52] suffers from the empirical constant weights which are assigned to the wavelet coeffi-

cients of visible and LWIR images. In this chapter, we propose two multispectral fusion

algorithms. Input to both the algorithms are registered multispectral face images. There-

fore, we present the mutual information based multispectral image registration algorithm

followed by the proposed image fusion algorithms.

3.1.1 Mutual Information based Multispectral Face Image Reg-

istration

Visible and infrared images captured at different time instances can have variations

due to camera angle, expression, and geometric deformations. To optimally fuse two

multispectral images, we first need to minimize the linear and non-linear differences

between the two images. In this research, we propose the use of mutual information

based registration algorithm for registering visible and thermal face images. Similar to

the age transformation algorithm described in Section 2.1, Gaussian pyramid approach

registers the visible spectrum face image with respect to the infrared spectrum face image.

Figure. 3.1 shows an example of multispectral image registration.

3.1.2 Multispectral Face Image Fusion using DWT

In this section, we propose an algorithm to fuse the visible and LWIR face image

using DWT with mother wavelet Daubechies 9/7 [4]. This mother wavelet is chosen

because it is among the best filters for wavelet based operations such as image compression

when operating in a distributed environment [117]. Let V and I be the registered visible

and IR face images. First, the pixel values of V and I are transformed in the range

of [0, 1]. Single level DWT is then applied on these images to obtain the detail and
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Face Image

LWIR
Face Image

Visible
Face Image

Figure 3.1: Example of visible and infrared image registration on the Notre Dame face

database [37]. Visible image is registered with respect to the LWIR image. Size of the

detected visible face image is 855 × 1024 and infrared face image is 115 × 156.

approximation wavelet bands for both the images. Let VLL, VLH , VHL and VHH be the

four bands from visible face image and ILL, ILH, IHL and IHH be the corresponding

bands from IR face image as shown in Figure 3.2. To preserve the features from both

the images, coefficients from approximation band of V and I are averaged,

FLL = mean(VLL, ILL) (3.1)

where FLL is the approximation band of the fused image. For the three detailed bands,

each band is divided into windows of size 3 × 3 and the sum of absolute value of all the

pixels in each window is calculated. Binary decision maps, DM , are generated for all

the three detail bands using Equations 3.2, 3.3, and 3.4. A value 1 is assigned if the

window from visible image has a value greater than the corresponding window from the

IR image; otherwise a value 0 is assigned.

DMLH =





1 if max3×3VLH > max3×3ILH

0 if max3×3VLH < max3×3ILH

(3.2)

DMHL =





1 if max3×3VHL > max3×3IHL

0 if max3×3VHL < max3×3IHL

(3.3)
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Figure 3.2: Multispectral image level fusion of visible and medium-wave infrared face

images

DMHH =





1 if max3×3VHH > max3×3IHH

0 if max3×3VHH < max3×3IHH

(3.4)

where DMLH , DMHL and DMHH are the binary decision maps for three detail bands,

shown in Figure 3.3. Based on these decision maps, the coefficients are selected from V

and I , and the detailed bands for the fused image FLH, FHH, and FHH are generated.

Inverse DWT is then applied on the four fused bands to generate the fused image.

F = IDWT (FLL, FLH , FHL, FLH) (3.5)

3.1.3 2ν-GSVM Image Fusion Algorithm

In real world applications, weights should be dynamically and locally assigned for

optimal multispectral information fusion. In this section, we propose the multispectral

face image fusion algorithm which dynamically and locally computes the weights for
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Figure 3.3: Decision maps for the horizontal, vertical and diagonal bands

fusion using 2ν-GSVM. Figure 3.4 illustrates the steps involved in the proposed image

fusion algorithm.

Based on the experimental results of Chapter 2, we observed that 2ν-SVM provides

better classification accuracy compared to classical SVM and is computationally more

efficient. Recently, Tang et al. [105] - [108], applied the concept of granular computing

[7], [8], [21], [126] to SVM and proposed Granular SVM which is more adaptive to

the data distribution in comparison to SVM. Tang et al. have also shown that for

several classification applications, GSVM outperforms SVM both in terms of classification

accuracy and computational time. In this chapter, we extend the formulation to 2ν-

Granular Support Vector Machine which embodies the properties of both GSVM and

2ν-SVM. Using this concept, the formulation of 2ν-SVM is extended to 2ν-GSVM.

Let the complete feature space be divided into k subspaces with one 2ν-SVM oper-

ating on each subspace. The ith 2ν-SVM is represented by 2νSVMi where i = 1, 2, ..., k.

From each subspace, we obtain the corresponding Li using Equation 2.31. We then

compute the compound margin width W by using all the Li values.

W =

∣∣∣∣∣

k∑

i=1

ti
t
(2νSV Mi :→ Li) − L0

∣∣∣∣∣ (3.6)

where ti is the number of training data in the ith subspace and t =
∑k

i=1 ti. 2νSVMi :→ Li

represents the SVM operating on the ith subspace. 2ν-SVM learning yields Li at local

level, and L0 is obtained by learning another 2ν-SVM on the complete feature space at

global level. This equation provides the margin width associated to a hyperplane. How-
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Figure 3.4: Schematic diagram of the proposed 2ν-GSVM image fusion algorithm.

ever, there are different ways to divide the feature space and hence different hyperplanes

associated with each of the granule generation method can be obtained. We compute

the classification accuracy of all the hyperplanes on the training data and then select the

hyperplane that optimally classifies the training data. In contrast to a single SVM that

deals with large parameter space and results in large training time, 2ν-Granular SVM

uses multiple SVMs to learn both the local and global properties of the training data

at different granularity levels. This 2ν-GSVM is then used for fusing multispectral face

images.

In the proposed face image fusion algorithm, registered visible and infrared face im-

ages are fused using 2ν-GSVM and Discrete Wavelet Transform [4]. The fusion algorithm

uses the activity level, a, of face images which is defined as,

a =

√√√√√ 1

XY




X−1∑

i=0

Y −1∑

j=1

{V (i, j)− V (i, j − 1)}2 +
Y −1∑

j=0

X−1∑

i=1

{V (i, j) − V (i− 1, j)}2


 (3.7)
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where V is the visible face image, and X and Y are the rows and columns of the face

image respectively. The proposed learning based fusion algorithm is divided into two

parts: (1) training and (2) classification and fusion.

Training 2ν-GSVM: We learn the 2ν-GSVM for image fusion by using the activity

levels of labeled visible and infrared training face images. The training algorithm is

described as follows:

Step 1: Visible and infrared training face images are decomposed using DWT to obtain

3-level approximation, horizontal, vertical, and diagonal subbands.

Step 2: Let VLLj
, VLHj

, VHLj
, and VHHj

be the subbands of visible face image where

j = 1, 2, 3 represents the decomposition levels. Similarly, let ILLj
, ILHj

, IHLj
, and IHHj

be the subbands of infrared face image corresponding to each decomposition level, j.

Each subband of both visible and infrared face images is divided into windows of size

8 × 8 and the activity level of each window is computed using Equation 3.7.

Step 3: The activity levels of all labeled training face images are used as input to 2ν-

GSVM. In training, two 2ν-GSVMs are learned, one for visible face images and another

for infrared face images.

Step 4: 2ν-GSVM trained for visible images classifies the activity levels of visible spec-

trum face images as Good or +1 and Bad or −1. Similarly, 2ν-GSVM trained for infrared

face images classifies the activity levels of infrared face images into Good or Bad class.

Classification and Fusion: We classify the properties of visible and infrared face

images using trained 2ν-GSVMs. This classification is used to dynamically compute the

weights of visible and infrared face images in multispectral image fusion.

Step 1: Visible and infrared face images of an individual are provided as input. Similar

to Steps 1 and 2 of the training algorithm, both the input face images are decomposed

into 3-level DWT and activity levels of 8 × 8 windows are computed. Let aV and aI be

the activity levels computed from visible and infrared face images respectively.

Step 2: 2ν-GSVM classifier is used to classify the activity levels of different subbands of

visible face images as Good or Bad. A binary decision matrix, dV , is generated which
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contains value 1 if the activity level is Good and 0 if the activity level is Bad.

Step 3: Similar to Step 2, activity levels of infrared face image are classified and a binary

decision matrix, dI , is generated.

Step 4: Weight matrices ωV and ωI are computed using binary decision matrices (dV and

dI) and the following three conditions:

1. If dV (i) = dI(i) = 1, then ωV (i) = ωI(i) = 0.5.

2. If dV (i) = 1 and dI(i) = 0, then ωV (i) > ωI(i) and

ωV (i) =
|aV (i) + 2aI(i)− aImedian

|
aV (i) + aI(i)

(3.8)

ωI(i) =
|aImedian

− aI(i)|
aV (i) + aI(i)

(3.9)

3. If dV (i) = 0 and dI(i) = 1, then ωV (i) < ωI(i) and

ωV (i) =
|aVmedian

− aV (i)|
aV (i) + aI(i)

(3.10)

ωI(i) =
|aI(i) + 2aV (i)− aVmedian

|
aV (i) + aI(i)

(3.11)

where, i is the window count, and aVmedian
and aImedian

are the median values of aV

and aI matrices respectively. Further, in all three cases, ωV (i) + ωi(i) = 1.

In condition 1, the activity levels of both visible and infrared image windows are

classified as Good and hence equal weights are assigned. Condition 2 states that if the

activity level of window corresponding to visible face image is classified as Good and the

activity level of the window corresponding to infrared face image is classified as Bad, then

higher weight is assigned to the visible face image window. In condition 3, higher weight

is assigned to the infrared face image window because 2ν-GSVM classifies the activity
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Figure 3.5: Sample result of the proposed 2ν-GSVM learning based image fusion algo-

rithm.

level of visible face image window as Bad and the activity level of infrared face image

window as Good.

Step 5: Visible and infrared face images are then fused using Equation 3.12.

Fj8×8
(i) = ωV (i)Vj8×8

(i) + ωI(i)Ij8×8
(i) (3.12)

where, Fj is the fused subband, j represents the approximate, vertical, horizontal, and

diagonal subbands, subscript 8 × 8 denotes that the fusion is performed at window level

of size 8 × 8, and i represents the window count.

Step 6: Finally, inverse DWT is applied on fused subbands to generate the fused multi-

spectral face image, FSV M . Figure 3.5 shows an example of visible, infrared, and fused

face images of an individual.

3.2 Databases used for Validation

To validate the proposed fusion algorithms, we used the Notre Dame [22], [37] and

Equinox/NIST [32] multispectral face databases. In addition, we used 2D log polar Gabor

transform and local binary pattern algorithms [1] for face verification. For comparing

the performance of the proposed algorithms, we used DWT based existing image fusion

algorithm to fuse visible and infrared spectrum face images [52]. In this section, we

briefly describe the details of the databases used in our experiments.

• Notre Dame Face Database: Notre Dame face database [22], [37] contains
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Table 3.1: Number of visible and infrared image pairs in the training, gallery, and probe
databases.

Face database
Number of visible and infrared image pairs in

Training database Gallery database Probe database

Notre Dame 477 159 1815

Equinox 285 95 18715

LWIR and visible images from 159 classes with variations in expression, lighting,

and time lapse. We have chosen three visible and LWIR face images with neutral

expression for the training database, one neutral visible and LWIR image for the

gallery database, and the remaining images comprise the probe dataset. Table 3.1

shows the details of training, gallery, and probe images used in the experiments.

• Equinox Face Database: Equinox face database [32] contains long wave infrared,

medium wave infrared, short wave infrared, and visible face images pertaining to

95 individuals. Long wave infrared images are captured at 8-12 µm, medium wave

infrared images at 3-5 µm, and short wave infrared images at 0.9-1.7 µm. The

images are captured under different illumination conditions and contain variations

with expression and glasses. In our research, we have used only long wave infrared

images and visible images. The number of LWIR and visible images per class vary

from 43 to 516. We chose three visible and LWIR images with neutral expression

and without glasses for training, one LWIR and visible image with neutral expres-

sion, uniform illumination, and no glasses for gallery, and the remaining images as

probe.

3.3 Experimental Evaluation of Proposed Algorithms

In this section, we present the experimental results of the proposed image fusion

algorithms. 2ν-GSVM image fusion algorithm is trained using the training images and
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Table 3.2: Verification performance of the proposed 2ν-GSVM and existing image fusion
algorithms at 0.01% FAR.

Face database
Recognition Verification accuracy (%)

algorithm Visible LWIR Kong DWT 2ν-GSVM
image image fusion [52] fusion fusion

Notre Dame
2D-LPG 89.36 88.09 86.74 91.88 95.85

LBP 88.20 87.44 85.87 91.79 94.80

Equinox
2D LPG 78.91 82.75 80.83 90.06 94.98

LBP 76.80 81.52 80.69 89.93 94.71

the Radial Basis Function kernel with RBF parameter as 4. The performance is evaluated

in terms of verification accuracy at 0.01% False Accept Rate.

For evaluation, we separately computed the verification accuracies of visible face

image and long wave infrared face image using both 2D log polar Gabor and local binary

pattern face verification algorithms. The third and fourth columns of Table 3.2 summarize

the verification performance of visible face image and long wave infrared face image

respectively using both the verification algorithms. These results establish the baseline

for evaluating and comparing the performance of fusion algorithms. We then compute

the verification accuracies of the proposed DWT and 2ν-GSVM multispectral face image

fusion algorithms and the existing image fusion algorithm. The results summarized in

Table 3.2 show that the proposed 2ν-GSVM image fusion algorithm outperforms both

the existing and DWT fusion algorithms by at least 3.9% for the Notre Dame database

and 4.9% for the Equinox database. ROC plots in Figures 3.6 and 3.7 show the results

for the Notre Dame and Equinox face databases respectively.

The proposed 2ν-GSVM image fusion algorithm performs correct classification of

multispectral face information at different levels of granularity which is subsequently

used for computing the dynamic weights of visible and LWIR face images. This granular

learning results in better generalization and fusion of high entropy visible and LWIR facial

features. Further, as shown in Figure 3.8 and Table 3.3, fused face images generated from
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Figure 3.6: ROC plots of the proposed 2ν-GSVM and existing image fusion algorithms

on the Notre Dame face database. Results are computed using (a) 2D log polar Gabor

(b) Local binary pattern based verification algorithms.
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Figure 3.7: ROC plots of the proposed 2ν-GSVM and existing image fusion algorithms

on the Equinox face database. Results are computed using (a) 2D log polar Gabor (b)

Local binary pattern based verification algorithms.
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Table 3.3: Performance evaluation of multispectral image fusion algorithms with expres-
sion and illumination variations at 0.01% FAR.

Verification accuracy (%)

Database Classifier Covariate Visible LWIR Kong DWT 2ν-GSVM
image image fusion [52] fusion fusion

2D-LPG
Expression 88.72 87.96 85.29 91.03 95.68

Notre Illumination 89.77 88.25 87.70 92.16 95.92

Dame
LBP

Expression 87.91 87.62 84.53 90.98 94.71

Illumination 88.46 88.75 86.49 92.07 94.85

2D-LPG
Expression 78.04 82.68 78.84 89.33 94.86

Equinox Illumination 79.57 82.84 81.70 90.81 95.05

LBP
Expression 76.51 80.79 80.19 89.23 94.62

Illumination 76.99 82.24 80.92 90.18 94.76

the 2ν-GSVM image fusion algorithm provide higher invariance to illumination compared

to the visible images. The fused images also provide more distinguishing information

compared to the LWIR face images. These properties of the proposed 2ν-GSVM image

fusion algorithm leads to improved face verification performance.

3.4 Summary

Visible and long wave infrared images provide complementary properties which can

be combined to improve the performance of face recognition and address the challenges

due to illumination variations. In this chapter, we proposed two image fusion algorithms

to fuse information obtained from multispectral face images. We first apply mutual infor-

mation based registration algorithm to register multispectral face images and then fuse

the images using the proposed DWT image fusion algorithm and 2ν-Granular Support

Vector Machine based image fusion algorithm. The fused image contains the properties

of both visible and long wave infrared images and can efficiently be used for face recog-
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Figure 3.8: Results of the proposed image fusion algorithms on the Equinox face database
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nition. The performance of the proposed image fusion algorithms is validated using the

Notre Dame and Equinox face databases. Experimental results show that the proposed

2ν-GSVM image fusion algorithm yields better performance than the proposed DWT

and existing fusion algorithms even with illumination variations.
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Chapter 4

A Mosaicing Scheme for Pose

Invariant Face Recognition

The problem of 2D face recognition continues to pose challenges even after several

years of research in this field [129]. State-of-the-art algorithms exhibit various degrees of

sensitivity to changes in illumination, pose, facial expressions, accessories, etc. Designing

pose-invariant algorithms is challenging as discussed in the Face Recognition Vendor

Test 2002 report [73]. Several methods have been suggested to address the issue of pose

variations including the use of active appearance models [48], morphable models [12],

3D facial imaging [19], multiple templates [114], and multiclassifier fusion [63], [85]. In

this research, we propose an image fusion scheme to generate the 2D face mosaic of an

individual during enrollment that can be successfully used to match various poses of

a person’s face during authentication. Mosaicing uses the frontal and side-profile face

images (2D) of a user to generate an extended 2D image. The goal is to adequately

characterize an individual’s face in a 2D plane without attempting to compute the 3D

structure of the face. This avoids the complexity of generating 3D structure information

from multiple registered 2D images. Mosaicing also obviates the need to store multiple

templates of a user during enrollment thereby optimizing storage demands and processing

time.

The potential of mosaicing facial images has not received extensive attention in the

literature. Table 4.1 summarizes the face mosaicing techniques proposed by researchers.
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Yang et al. [125] propose an algorithm to create panoramic face mosaics. Their acqui-

sition system consists of five cameras that simultaneously obtain five different views of

a subject’s face. In order to determine the corresponding points in multiple face views,

the authors place ten colored markers on the face. Based on these control points, their

algorithm uses a series of fast linear transformations on component images to generate

a face mosaic. Finally, a local smoothing process is carried out to smooth the mosaiced

image. Two different schemes are used to represent the panoramic image: one in the

spatial domain and the other in the frequency domain. The frequency representation is

observed to result in an identification accuracy of 97.46% and the spatial representation

in an accuracy of 93.21% on a database of 12 individuals.

Liu and Chen [59] describe a face mosaicing technique that uses a statistical model

to represent the mosaic. Given a sequence of face images captured under an orthographic

camera model, each frame is unwrapped onto a certain portion of the surface of a sphere

via a spherical projection. A minimization procedure using the Levenberg-Marquardt

algorithm is employed to optimize the distance between an unwrapped image and the

sphere. The statistical representational model comprises of a mean image and a number

of eigen-images. The novelty of this technique is (a) the use of spherical projection,

as opposed to cylindrical projection, which works better when there is head motion in

both the horizontal and vertical directions, and (b) the computation of a representational

model using both the mean image and the eigen-images rather than a single template

image. Although the authors state that this method can be used for face recognition,

no experimental results have been presented in the paper. In [60], the authors propose

another algorithm in which the human head is approximated with a 3D ellipsoidal model.

The face, at a certain pose, is viewed as a 2D projection of this 3D ellipsoid. All 2D face

images of a subject are projected onto this ellipsoid via geometrical mapping to form a

texture map which is represented by an array of local patches. Matching is accomplished

by adopting a probabilistic model to compute the distance of patches from an input face

image. The authors report an identification accuracy of 90% on the CMU PIE database

[92].
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Table 4.1: A comparison of three existing face mosaicing schemes.

Yang et al. [125] Liu & Chen [59] Singh et al. [96]

Subjects 12 68 12 + 15

Registration Affine using points Affine using triangles Affine using regions

Mosaicing Concatenation Geometrical mapping Multi-resolution splines

Representation Spatial: PCA, Statistical model Local binary pattern
Frequency: FFT amplitude

Face mosaicing has also been used in non-biometric applications such as facial ani-

mation and rendering [47], and 3D face image generation [13]. However, these algorithms

generate the face mosaic using complex models which do not necessarily preserve the bio-

metric features of the face.

The concept of mosaicing may be viewed as an exercise in information fusion. When

multiple images of a subject’s face are available at the time of enrollment, a common

approach is to treat these images (also known as gallery images) as independent entities;

thus, when a probe (query) image is presented to the system it is compared against each

gallery image independently and the resulting set of scores consolidated to generate a

single score (e.g., via the sum rule) indicating the proximity of the probe image with the

subject in the database. This is fusion at the match score level. However, in the case of

mosaicing, multiple images of a subject’s face are fused into a single entity in the image

domain. Hence, this could be viewed as fusion at the raw data (i.e., image) level.

4.1 Proposed Face Mosaicing Algorithm

This section describes the face mosaicing algorithm used to consolidate the evidence

presented by multiple pose images of the same face. It is assumed, therefore, that at the

time of enrollment, multiple poses of an individual’s face are available. The face is

segmented (localized) from each image using the Gradient Vector Flow technique (see
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[123] for details). A pair of face images, typically representing the frontal and profile

views of an individual, are mosaiced after aligning them using a hierarchical registration

algorithm. Registered images are mosaiced using the multiresolution splines algorithm

based on Gaussian and Laplacian pyramids [14]. Multiresolution splines also perform

blending as an integral part of mosaicing thereby offering some inherent advantages.

4.1.1 Hierarchical Registration Model

Before mosaicing, it is necessary to transform the images obtained during enroll-

ment into a common image domain. The process of finding the transform that aligns

one image to another is called image registration. As described earlier in Section 2.1,

existing face mosaicing algorithms use some form of affine transformation for registra-

tion. However, these algorithms do not consider the non-linear deformation present in

the images. In this section, we propose a hierarchical registration algorithm in which we

first perform approximate registration using an affine transformation model [72]. The

affine transformed images are then finely registered using a mutual information-based

registration algorithm [44], [65] resulting in a more exact alignment between the images.

Affine Transformation Model

Let I1 = I(x, y, t1) and I2 = I(x, y, t2) be the two images to be mosaiced. Here, I1

is the source image and I2 is the target image, i.e., I1 has to be suitably transformed in

order to align it with I2. The pixel coordinates are represented using x and y spanning

the domain of the image. The relationship of the pixels and their intensities between the

two images can be modeled as,

I(x, y, t1) =
I(a1x+ a2y + a3, a4x+ a5y + a6, t2) − a7

a8
(4.1)

where a1, a2, a4 and a5 are the affine parameters summarizing the rotation, scaling and

shear; a3 and a6 are the translation parameters; and a7 and a8 are the parameters that

embody changes in brightness and contrast, respectively. The following error function is

minimized in order to estimate these parameters:
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Error(a) =
∑

x,y

[
I(x, y, t1) −

I(a1x+ a2y + a3, a4x+ a5y + a6, t2) − a7)

a8

]2

, (4.2)

where a = (a1, a2, . . . , a8)
T . Approximating this error function using the first order

truncated Taylor series expansion gives [72],

Error(a) =
∑

x,y

[
It(x, y, t)−

(a1x+ a2y + a3 − x)Ix(x, y, t)

a8

+
(a4x+ a5y + a6 − y)Iy(x, y, t)− a7

a8

]2

(4.3)

where, Ix(·), Iy(·), and It(·) are the spatial and temporal derivatives of I(·). This error

function can be minimized by differentiating with respect to a, i.e., dError(a)
da

= 0. The

solution of Equation 4.3 is,

a = [
∑

x,y

ATA]−1[
∑

x,y

Ab] (4.4)

where, A = (xIx, yIx, xIy, yIy, Ix, Iy, −I, −1, )T , and b = It − I + xIx + Iy. The

output of this minimization problem gives the eight optimal parameters. Using these

parameters, the source face image I1 is transformed to obtain the registered face image

IR. In this manner, the affine model performs a coarse registration of the two images.

However, local regions such as the eyes and mouth still need to be finely aligned in order

to remove the degeneracies present in the transformed image.

Mutual Information based Transformation Model

In two coarsely registered face images, the neighborhood of the corresponding re-

gions may not be rigorously identical. This is due to differences in the geometry and

local deformations present in the constituent images. Sub-pixel shifting can also occur

leading to differences in the two images. Thus, a fine alignment is necessary to account

for these non-linear deformations.

Let I2 be the target face image and IR be the face image which is coarsely registered

with respect to I2 using the affine transformation described earlier. For fine registration,

we transform IR such that the mutual information between I2 and IR is maximized [65].
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We use the weighted normalized mutual information for face images which can be written

as,

M̂(I2, IR, c) = c

(
H(I2) +H(IR)

H(I2, IR)

)
(4.5)

where c (0 < c ≤ 1) is a weighting parameter that controls the amount of localization in

the similarity measure. This method is a modification over the one proposed by Hill et al.

[44]. The modified function represented by Equation 4.5 is used for the fine registration

of I2 and IR. The transformation parameters computed from the affine transformation

model, a, are used as the initial transformation parameters along with c = 0.01. Thus, a

total of nine parameters are used as the initial transformation parameters for this model.

A set of mutual information values between I2 and IR is computed by varying the pa-

rameters with a small step size (≈ 0.01) in both the positive and negative directions.

Parameters are varied in the range
[
−a

5
, a

5

]
. The mutual information is computed for all

possible combinations of the parameters, and the transformation parameters correspond-

ing to the maximum mutual information are selected for fine registration. To account

for the non-linearity present in face images, the mutual information based registration

is performed in blocks of size 8 × 8. The coarsely registered profile image, IR, is trans-

formed using these parameters to obtain the final registered image. Figure 4.1 shows a

profile image (I1) transformed with respect to the frontal image (I2).

4.1.2 Mask Generation

Once a pair of images is registered, the next step involves blending the two images

into a single entity. This entails the development of a spatial mask indicating the pixel-

wise contribution of the individual images to the final mosaiced image. Since the facial

structure is different for every individual, a dynamic runtime mask generation algorithm

is used. The mask is computed using the local phase correlation between the two images.

The two images are first tessellated into blocks of size 8× 8. Next, the phase correlation

between corresponding blocks from the two face images is computed. When a correlation
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(a) (b) (c)

Figure 4.1: Image registration using the proposed hierarchical registration algorithm.

Frontal and profile images are first placed on the center of a 256 × 256 image space. (a)

Input profile image (b) Input frontal image (c) Profile image registered with respect to

the target frontal image.

peak is observed, the block is labeled as a match otherwise it is labeled as a non-match.

This results in a cluster of match/non-match blocks. The boundary of the matched region

is selected as the boundary of the mask. The mask values on one side of the boundary

is set to ‘0’ while the other side is set to ‘1’ (e.g., ‘1’ may correspond to the frontal

face image and ‘0’ to the profile face image). If there are any isolated blocks with the

label match, they are reassigned the label non-match and do not contribute to the mask

boundary. Generally, the correlation peak is found in a thin vertical region containing

the eye (left eye for left profile image and right eye for right profile image). Figure 4.2

shows the sample masks generated for a left and right profile face image with respect to

an arbitrary frontal image. This mask is used during the blending process as will be seen

in the next subsection.

4.1.3 Stitching and Blending

For blending the two images into a single mosaic we use multiresolution splines

[14]. Image splining (i.e., blending) can be performed based on a simple spline-weighting
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Figure 4.2: Masks generated from two profile images.

function1 straddling the boundary of the two images, but the quality of the stitched

image depends on the step size (or window) that is chosen. A large step size may lead

to blurring whereas a small step size may result in discontinuities at the boundary. To

overcome this problem, Burt and Adelson [14] used multiresolution splines to determine

different step sizes for the various frequency components constituting the boundary. The

crux of this technique involves computing a Gaussian pyramid of sub-images, followed

by a Laplacian pyramid, based on the two images to be mosaiced; the pyramid structure

is used to estimate the spline weighting function that relies on the frequency domain

information of the image.

A sequence of low pass filtered images is obtained by iteratively convolving each

of the constituent images with a 2D Gaussian filter kernel. The resolution and sample

density of the image between successive iterations (levels) is reduced and, therefore, the

Gaussian kernel operates on a reduced version of the original image in every iteration.

The resultant images G0, G1, . . . , GN may be viewed as a ‘pyramid’ with G0 having the

highest resolution (lowermost level) and GN having the lowest resolution (uppermost

level) (see Figure 4.3). Let w(m,n) represent the Gaussian kernel of dimension 5×5 and

reduction factor 4. The reduce operation can be written as,

Reduce(I(i, j)) =
5∑

m=1

5∑

n=1

w(m,n)I(2j +m, 2j + n) (4.6)

A Gaussian pyramid Gl is defined as,

1The term splining is used to refer to a transition function that indicates the weighting of pixels

associated with the two images at the boundary (see [14] for details).
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(a) (b) (c) (d)

Figure 4.3: Levels in the Gaussian pyramid expanded to the original size to see the effects

of the low pass filter. (a) Level 0; (b) Level 1; (c) Level 2; and (d) Level 3.

G0 = I (4.7)

Gl = Reduce[Gl−1], 0 < l < N (4.8)

As shown in Figure 4.3, the effect of convolution is to blur the image, thereby reducing

the filter band-limit by an octave between levels whilst reducing the sample density by

the same factor. The Gaussian pyramid has the effect of a low pass filter to soften the

edges of the mask.

The multiresolution spline as described in [14] requires band pass images as opposed

to low pass images. Band pass images are computed by interpolating (resizing) the image

at each level of the Gaussian pyramid and then subtracting it from the next lowest level.

This results in a sequence of band pass images that may be viewed as a Laplacian pyramid

(L0, L1, . . . , LN ) as shown in Figures 4.4 and 4.5. The term Laplacian is used since the

Laplacian operator resembles the difference of Gaussian-like functions. These band-pass

images are a result of convolving the difference of two Gaussians with the original image.

The steps used to construct this pyramid can also be used to exactly recover the original

image. The process described above may be summarized as follows:

Ll = Gl − Expand[Gl+1], 0 ≤ l < N (4.9)
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Figure 4.4: The Laplacian pyramid of a profile image from Level 0 to Level 6.

Here, the Expand[·] operator interpolates a low-resolution image to the next highest level

and can be written as,

Gl,k(i, j) = 4
2∑

m=−2

2∑

n=−2

w(m,n)Gl,k−1

(
i−m

2
,
j − n

2

)
. (4.10)

Note that Gl,k in Equation 4.10 denotes expanding Gl k number of times. Various

features of the face are segregated by scale in different levels of the pyramid. Hence,

as shown in Figures 4.4, 4.5, and 4.6, the textural features of face are preserved over

multiple levels of the pyramid. Let L1 and L2 represent the Laplacian pyramids of the

two images that are being splined (i.e., blended). Let GR be the pyramid associated

with the Gaussian-weighted mask discussed in Section 4.1.2. The multiresolution spline,

LS, is then computed as,

LSl(i, j) = GRl(i, j)L1l
(i, j) + (1 −GRl(i, j))L2l

(i, j) (4.11)

where l is the level of the pyramid. The splined images at various levels are expanded and

summed together to obtain the final face mosaic as shown in Figure 4.7. Gradient vector

flow based active contour model is used to extract the face boundary of the mosaiced

face.
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Figure 4.5: The Laplacian pyramid of a frontal image from Level 0 to Level 6.

Figure 4.6: The Laplacian pyramid of the mosaiced image from Level 0 to Level 6.

(a) (b) (c) (d) (e)

Figure 4.7: (a), (b), (c) Frontal and profile input images. (d) Mosaiced face generated

using (a), (b) and (c). (e) Final mosaiced and cropped face image.
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4.2 Face Recognition using Modified C2 Features

Several different texture-based face recognition algorithms have been proposed in

the literature [30], [61]. However, most of the current texture-based face recognition

algorithms fail to explicitly account for important spatial statistics between texture ele-

ments. Spatial statistics are important when analyzing facial textures that have similar

texture frequency but differ in the distribution of texture elements. Face recognition

algorithms should also handle small distortions and preserve the local feature geometry.

In [87], a generic model-based feature extraction algorithm is proposed, which extracts

visual features from an object using the fundamentals of a biological visual system. The

model is a feedforward hierarchy consisting of four layers of computational units: simple

S units and complex C units. The simple S units combine their inputs with Gaussian-

like tuning to increase object selectivity. The complex C units pool their inputs through

a maximum operation to achieve scale and shift invariance. The feature extractor is a

Gabor filterbank consisting of 16 different filters and 4 different orientations resulting in

64 different maps when applied to a circular image patch. Each filter is parameterized

based on its scale, width and frequency. The 64 maps are arranged in 8 bands (see [87]

for details about the filterbank). The C2 algorithm operates as follows:

• The input face image is subjected to the Gabor filter bank described above resulting

in 64 maps arranged in 8 bands. These maps constitute the S1 feature set.

• The C1 feature set is obtained by computing the maximum response over all scales

in each band for all 4 orientations. A large pool of patches Pi=1,...,K is extracted at

random positions from all the training images. These patches are extracted for all

4 orientations and the radii of these patches varies from 4 to 16.

• For each feature set, C1, the value Y is computed across all the bands for all image

patches (X) at all positions (P ) using the following equation:

Y = exp
(
−γ||X − P ||2

)
, (4.12)
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where γ is the aspect ratio. These patches are set as the prototypes or centers of

S2 units. The S2 units behave as radial basis function during recognition.

• The maximum over all positions and scales for each S2 map gives the C2 features

which are shift and scale invariant.

In [87], the authors have demonstrated superior recognition performance due to

these features on different face and texture databases. For our purposes, we have modified

this basic feature extraction algorithm to make it compatible with a face mosaicing

application. In the modified algorithm, the filter bank is generated with 2D log polar

Gabor transform. The bank of filter comprises of 16 filters at 4 orientations along with

the 8 center surround differences of Gaussian filters and 4 low pass Gaussian filters. So,

the modified filter bank consists of 76 filters which are used to compute the final C2

features. The size of the C2 feature vector varies for different face images. To efficiently

match the mosaiced image with a non-mosaiced image, we use a learning based 2ν-SVM

classifier [20], [24]. The classifier is trained with the features extracted from 148 mosaiced

and 900 non-mosaiced face images of 108 individuals. This trained classifier is used to

perform classification [31].

4.3 Database used for Evaluation

To validate the performance of the proposed face mosaicing and recognition algo-

rithms, we used the following two databases:

• CMU PIE Face Database: The CMU PIE [92] face database contains images from

68 individuals with variations in pose, illumination, and expression. For mosaicing,

we use the images with variation in pose, i.e., the images labeled as c27, c37,

c22, c11, and c34 from both sessions. Figure 4.8 shows the two sets of images of

an individual from the CMU PIE database. For each individual, that set of face

images with neutral expression is used as the gallery image set. The images from
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c22 c37 c27 c11 c34

Figure 4.8: Examples of images from the CMU PIE database.

the three other sessions, which have minimum variation in lighting and expression,

are chosen as probe images.

• WVU Multispectral Face Database: We assembled a multispectral face database

of 40 individuals. The database contains face images in both the visible and short

wave infrared light spectrum. For each spectral channel, images are captured in two

different sessions, with seven images in each session. The seven images correspond

to one frontal, three left profile, and three right profile images. Successive images

are separated by a pose angle of approximately 200. Figure 4.9 shows examples

of images from the database. Various researchers have demonstrated the superior

performance of face recognition on SWIR images [23], [51], [56], [77], [99].
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Figure 4.9: Images from the WVU multispectral face database. (a) Visible spectrum.

(b) Short wave infrared spectrum.

4.4 Experimental Results

4.4.1 Performance Evaluation of Modified C2 Feature based

Face Recognition Algorithm

We first validate the performance of the proposed face recognition algorithm de-

scribed in Section 4.2 using the non-mosaiced face images. The 2ν-SVM classifier [20],

[24] is trained using the C2 features extracted from the 620 labeled non-mosaiced training

face images of the CMU PIE (68×5) and the WVU visible-light (40×7) databases. The

classifier learns the genuine and impostor features from these training images prior to

performing classification [87].

Recognition performance is evaluated separately for the two visible-light face databases.

For evaluating the performance on the CMU PIE dataset, all the training images are used

as gallery images and face images from the other sessions are used as probe images. Simi-

larly, for the WVU visible-light face database, the training images are used as the gallery

images and the remaining images are used as probe images to compute the identification
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performance. The performance of the proposed recognition algorithm is also compared

with five existing face recognition algorithms:

• Principal component analysis [113];

• Fisher linear discriminant analysis [11];

• Local feature analysis [71] refers to a class of algorithms that extract a set of

geometrical features and distances from facial images and use these features as the

basis for face representation and comparison. Hopfield network is used to extract

the output which represents uncorrelated local features.

• 2D log polar Gabor: Face recognition algorithm described in Chapter 2 without

granulation, only full resolution face image;

• Original C2 features [87].

A similar experiment is conducted for evaluating the performance on the SWIR

database. 280 labeled non-mosaiced images from the WVU SWIR face database (40×7)

are used for training the classifier. These images are further used as gallery images and the

remaining 280 SWIR images are used as probe images. Identification accuracy for all the

recognition algorithms are shown in Table 4.2 and the Receiver Operating Characteristic

plots are shown in Figures 4.10, 4.11 and 4.12. The results indicate that modified C2

based feature extraction algorithm outperforms the other recognition algorithms for both

the visible-light and SWIR face databases. The images contain variation in pose and

expression, which leads to changes in the number and position of the features present in

individual images. Therefore, several face recognition algorithms that are appearance-

based or feature-based do not perform well. However, the texture-based recognition

algorithm results in better performance and exhibits tolerance to these variations. Table

4.2 and the ROC plots in Figures 4.10, 4.11 and 4.12 show that the modified C2 feature

based face recognition algorithm provides the best performance.

A mosaiced face image is expected to contain all the features in a face while the

frontal and side profile images have only a limited number of features. To match a
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Table 4.2: The identification accuracy of multiple face recognition algorithms on the
three databases.

Algorithm CMU PIE Face WVU Visible-light WVU SWIR
Database [92] Face Database Face Database

PCA [113] 53.81% 49.63% 52.94%

FLDA [11] 58.24% 54.19% 58.38%

LFA [71] 72.59% 71.37% 73.86%

2D log Gabor 95.32% 96.22% 97.19%

Original C2 feature [87] 95.41% 96.24% 97.21%

Modified C2 feature 96.76% 97.06% 97.92%

Figure 4.10: ROC indicating the performance of multiple face recognition algorithms on

the CMU PIE database.
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Figure 4.11: ROC indicating the performance of multiple face recognition algorithms on

the WVU visible-light database.

Figure 4.12: ROC indicating the performance of multiple face recognition algorithms on

the WVU SWIR face database.
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mosaiced face with a non-mosaiced face image, we need a recognition algorithm which

efficiently extracts the local features from the face and compares them by assigning proper

weights to the features while appropriately accounting for missing features. To facilitate

this, we use a local representation based on the textural features obtained using the

modified C2 feature extraction algorithm in order to evaluate the performance of the

proposed face mosaicing algorithm.

4.4.2 Performance Evaluation of Face Mosaicing and Recogni-

tion Algorithm

The CMU PIE training set contains 68 mosaiced and 340 non-mosaiced labeled

images; the WVU visible-light training set contains 40 mosaiced and 280 non-mosaiced

labeled face images; and the WVU SWIR training set contains 40 mosaiced and 280

non-mosaiced labeled face images. The following experimental setup is used to compute

the matching performance on all three databases separately.

• C2 features extracted from the mosaiced and non-mosaiced training images are

used to train the 2ν-SVM based classifier.

• C2 features extracted from the mosaiced face images are used as the gallery features.

• On all three databases, the following set of experiments is then conducted:

– The first set of experiments is performed to compute the optimal sequence

and number of face images used for mosaicing (Section 4.4.2.1).

– In the second experiment, the performance of match score fusion techniques

[85] - the sum rule and the min/max rules - is compared against that of the

mosaiced images (image level fusion) (Section 4.4.2.2).
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4.4.2.1 Optimal Sequence for Face Mosaicing

The CMU PIE database contains two left and two right profile face images with suc-

cessive images having a difference of approximately 22.50, while the WVU multispectral

database contains three left and three right profile face images with a difference of around

200 between successive images. To find the optimal sequence and number of images for

mosaicing, the frontal image of a subject is mosaiced with various combinations of the

profile face images. In all sequences, an equal number of left and right profile images is

used, and the difference in pose between successive profile images and the frontal image

is approximately the same. This ensures that the extent of information on both sides

of the mosaiced face is the same. Thus, we have four possible input sequences for the

CMU PIE database [92] and eight possible input sequences for the WVU multispectral

database.

Mosaiced face images are generated with the training dataset representing all pos-

sible input sequences. The verification and identification performance is evaluated by

matching a mosaiced face image with all the probe non-mosaiced face images. Verifica-

tion accuracy is computed at 0.001% false accept rate. Table 4.3 shows the results of this

experiment. For the CMU PIE database, the input sequence ‘c37 - c27 - c11’ results in

the best verification and identification accuracy of 96.54% and 96.88%, respectively. For

both visible-light and SWIR images from the WVU multispectral database, the input

sequence ‘p4 - p1 - p5’ results in the best performance. This suggests that increasing the

number of input images for face mosaicing does not guarantee better performance. Ex-

periments on all the databases indicate that the best result is obtained when the mosaic

is generated using profile images having a difference of around 450 with the frontal image.

Figure 4.13 shows samples of mosaiced images generated using the optimal sequence for

all three databases.

89



Table 4.3: Performance of face mosaicing based on different input image sequences.

Database Image Sequence Verification Accuracy Identification
(0.001% FAR) Accuracy

CMU PIE
Face
Database [92]

c27 61.36% 61.41%

c37 − c27 − c11 96.54% 96.88%

c22 - c27 - c34 77.54% 75.98%

c22 - c37 - c27 -c11 - c34 96.37% 96.40%

WVU Visible
Face
Database

p1 63.05% 64.51%

p2 - p1 - p3 96.27% 96.35%

p4 − p1 − p5 96.98% 97.52%

p6 - p1 - p7 73.30% 71.19%

p4 - p2 - p1 - p3 - p5 96.20% 96.37%

p6 - p2 - p1 - p3 - p7 93.65% 93.44%

p6 - p4 - p1 - p5 - p7 94.32% 94.35%

p6 - p4 - p2 - p1 - p3 - p5 - p7 95.82% 95.80%

WVU SWIR
Face
Database

p1 64.47% 64.67%

p2 - p1 - p3 97.13% 96.28%

p4 − p1 − p5 97.91% 98.16%

p6 - p1 - p7 74.02% 73.76%

p4 - p2 - p1 - p3 - p5 96.99% 97.08%

p6 - p2 - p1 - p3 - p7 96.26% 96.43%

p6 - p4 - p1 - p5 - p7 95.84% 95.89%

p6 - p4 - p2 - p1 - p3 - p5 - p7 94.70% 94.81%
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Figure 4.13: Mosaiced images generated with the optimal input sequence. (a) CMU PIE

face database [92]. (b) WVU visible-light face database. (c) WVU SWIR face database.
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Figure 4.14: Block diagram illustrating the difference between image mosaicing (a) and

match score fusion (b).
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4.4.2.2 Comparing Face Mosaicing with Other Fusion Algo-

rithms

We next compare the performance of fusion at the image level (mosaicing) with a

few fusion operators at the match score level (sum rule and min/max rules). Figure 4.14

shows the steps involved in generating the final match score using these two methods. In

the case of mosaicing, the gallery is assumed to contain only those mosaiced images cor-

responding to the optimal sequence obtained from the previous experiment. However, in

the case of score fusion, all training images are used as gallery images. The experimental

set-up is summarized below.

• Image Fusion: The gallery contains mosaiced images corresponding to the optimal

sequence from one session and the probe consists of the mosaiced and non-mosaiced

images from the rest of the sessions. Images are matched using the proposed face

recognition algorithm. Results of this experiment for the three databases are shown

in the first row of Tables 4.4, 4.5, and 4.6.

• Score Fusion: The gallery comprises of all the non-mosaiced images from one ses-

sion. The probe images correspond to all the non-mosaiced as well as mosaiced

images (generated using the optimal input sequence) from the other sessions. Re-

sults are shown in the second and third row of Tables 4.4, 4.5, and 4.6.

Tables 4.4, 4.5, and 4.6 show the identification accuracies for all three experiments

on the CMU PIE, WVU visible-light and WVU SWIR face databases, respectively. The

results from the three tables are summarized below,

• The modified C2 feature-based face recognition method gives good performance

for images having variations in size and content making it particularly useful for

recognizing mosaiced faces.

• A matching accuracy of 100% is obtained when both the gallery and probe images

are mosaiced images.
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Table 4.4: Identification accuracy on the CMU PIE database before and after fusion [92].

Gallery Image Test Image

Mosaiced (%) c27 (%) c37 (%) c22 (%) c11 (%) c34 (%)

Mosaiced 100 99.93 98.01 97.84 98.90 97.34

Sum Rule [85] 93.16 82.41 81.91 77.64 80.52 77.92

Min/Max Rule [85] 92.88 91.47 89.72 87.81 89.60 87.04

c27 98.91 99.89 84.07 80.76 83.96 79.16

c37 97.17 84.17 96.49 90.28 71.15 68.81

c22 97.02 80.71 90.01 95.61 66.84 62.18

c11 97.84 83.99 71.63 67.90 96.71 90.47

c34 97.07 79.10 69.47 63.37 90.11 95.90

Table 4.5: Identification accuracy on the WVU visible-light face database before and
after fusion.

Gallery Image Test Image

Mosaiced p1 (%) p2 (%) p4 (%) p6 (%) p3 (%) p5 (%) p7 (%)

Mosaiced 100 99.96 98.24 97.11 96.98 98.19 97.16 96.81

Sum Rule [85] 94.20 83.03 82.89 80.00 76.90 83.01 79.71 76.90

Min/Max Rule [85] 94.93 91.56 89.99 88.04 87.61 89.75 87.11 86.63

p1 99.92 99.95 89.16 85.18 81.70 89.53 84.92 80.65

p2 98.19 89.23 97.25 91.67 89.53 81.21 73.13 68.90

p4 97.13 85.26 91.93 97.01 91.16 75.33 68.46 63.08

p6 97.01 81.51 89.60 90.97 95.59 70.01 65.22 61.91

p3 98.07 89.59 80.76 74.51 70.31 97.34 91.53 87.86

p5 97.24 85.08 72.49 68.19 65.19 91.60 96.78 90.19

p7 96.90 81.13 68.31 62.87 62.00 88.17 90.47 95.29
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Table 4.6: Identification accuracy on the WVU SWIR face database before and after
fusion.

Gallery Image Test Image

Mosaiced p1 (%) p2 (%) p4 (%) p6 (%) p3 (%) p5 (%) p7 (%)

Mosaiced 100 100 98.79 98.11 97.36 98.70 98.12 97.22

Sum Rule [85] 95.08 90.86 90.03 87.64 83.96 90.81 85.69 82.71

Min/Max Rule [85] 95.73 93.41 92.71 90.51 89.32 92.24 90.06 88.83

p1 100 100 92.47 90.31 86.90 91.64 90.14 86.37

p2 98.71 91.49 98.75 93.22 90.51 91.29 89.73 85.98

p4 97.94 89.64 93.16 98.09 92.02 76.46 69.20 63.46

p6 97.07 86.58 90.37 91.88 96.99 71.24 65.79 62.90

p3 98.59 91.31 81.21 76.06 71.16 98.70 92.24 88.89

p5 98.00 89.67 73.19 69.20 65.87 92.26 97.51 91.25

p7 97.21 86.29 68.92 63.31 62.76 89.09 91.37 96.43

• Matching mosaiced images with non-mosaiced images gives higher accuracy com-

pared to matching a non-mosaiced image with other non-mosaiced profiles.

• The proposed face mosaicing algorithm (image level fusion) gives better perfor-

mance compared to the sum rule and min/max rules (score fusion algorithms).

• SWIR face recognition (using non-mosaiced as well as mosaiced images) results in

better matching performance compared to visible-light face recognition. This may

be attributed to the illumination invariant characteristic of SWIR images. Figure

4.15 illustrates the match scores generated using visible-light and SWIR images.

The match scores are obtained using the modified C2 feature based recognition

algorithm. It is evident from this example that the match scores obtained using

SWIR images are more discriminating compared to that of visible-light face images.

• The performance of the proposed face mosaicing and recognition algorithm lies
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0.56 0.41 -0.09 -0.34

0.80 0.82 -0.63 -0.91

Figure 4.15: Match scores obtained using the modified C2 feature based algorithm. A

value of 1 indicates a perfect match while a −1 represents a perfect reject. (a) WVU

visible-light database. (b) WVU SWIR database.
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Figure 4.16: Performance of recognition algorithm with mosaiced face image as the

database image on the CMU PIE database [92].

between 96.85% and 100% for all three databases.

Figures 4.16, 4.17, and 4.18 show the ROC curves as a result of comparing mosaiced

face images with other mosaiced and non-mosaiced images. The verification time using

a mosaiced image is ∼ 6 seconds while that using the score fusion based approach is

between 8-12 seconds (in a Matlab environment). For the score fusion scheme, the

matcher has to be invoked multiple times corresponding to each subject. Further, if

M is the memory required to store one face image (in bytes), the memory requirement

without mosaicing is between 5M and 7M whereas it is approximately 1.1M for the

mosaiced image. These results show that image mosaicing enhances the performance of

face recognition algorithms whilst reducing the memory requirement and the matching

time.
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Figure 4.17: Performance of recognition algorithm with mosaiced face image as the

database image on the WVU visible-light database.

Figure 4.18: Performance of recognition algorithm with mosaiced face image as the

database image on the WVU SWIR database.
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4.5 Summary

The primary goal of this chapter was to demonstrate the role of face mosaicing in

enhancing the matching performance of a face recognition system for pose variations.

Given multiple images of a face during enrollment, the mosaicing algorithm blends them

into a single entity by employing a multiresolution splining scheme. Experiments reported

on three different databases suggest that fusing information at the image level is better

than fusing information at the match score level. A modified version of the C2 algorithm,

originally developed by Serre et al., was used to extract features from the mosaiced and

non-mosaiced face images. The modified algorithm is observed to perform very well both

in the verification and identification modes of operation.
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Chapter 5

Biometric Classifier Update using

Online Learning

A carefully designed biometric system should be stable and robust to environmental

dynamics and variations in the data distribution. However, in real world applications,

these systems are affected by several factors including template aging, improper inter-

action of the user with the sensor, and noise. Furthermore, as the size of a biometric

database increases, the system has to re-train itself in order to handle the variations

introduced due to the newly enrolled subjects. For example, an identification system

may have to re-compute its thresholds to handle the increased number of subjects, a

verification system may have to re-compute its decision boundaries based on the new

set of genuine and impostor scores, and a face recognition system may have to update

its templates to address the aging effects of the face biometric. The re-training process

can be time consuming and may not be pragmatic for large scale applications. A generic

biometric system, as shown in Figure 5.1, has five modules that require regular update

or re-training. Template update is required to address the issue of template aging, sensor

update is necessary to accommodate advancements in sensor technology, re-training of

the preprocessing and feature extraction algorithms is necessary to handle variations in

data, and classifiers have to be updated to account for changes in the intra-class and

inter-class dynamics of the subjects.

Currently, biometric classifiers such as support vector machine and neural net-
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Figure 5.1: Block diagram representing the modules of a biometric system that may

require regular update or re-training.

work are trained offline with the available training data and domain specific knowledge.

However, large scale biometric applications such as US-VISIT continuously enroll new

individuals. Due to the high computational complexity required for re-training in such

applications, it is not feasible to regularly update the classifier knowledge and decision

boundary, thereby affecting the recognition performance of the biometric system. Online

learning presents an efficient alternative to offline learning and classification by updating

the classifier knowledge upon the arrival of new data. While it has been extensively used

in problems related to machine learning [5], [17], [50], [102], [110], very limited research

has been conducted in biometrics [79]. Considering the high applicability of this con-

cept in biometrics, this chapter introduces the concept of online learning for biometric

classifier training and update thus reducing the computational time.

The contribution of the research lies in incorporating soft labels [109] and gran-

ular computing in the formulation of a 2ν-Support Vector Machine [24] to design a

2ν-Granular Soft Support Vector Machine and applying the online learning concept for

classifier update. The introduction of soft labels and granular computing increases clas-

sification performance while online learning enables the classifier to update its knowledge

as database enrollments increase. The performance of the algorithm is evaluated in the

context of a near infra-red face recognition application. Facial features are computed

using Principal Component Analysis [113] and modified C2 features (Section 4.2). Ex-

periments performed on a heterogeneous NIR face database indicate that the proposed
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algorithm not only improves the classification performance but also reduces the training

time significantly.

5.1 Why Online Learning is Applicable in Biomet-

rics?

Online learning is a concept from machine learning and inspired by human cogni-

tion. Humans are very good in adapting to the environment and learning concepts based

on new information. Starting from childhood, a natural learning process constantly trains

the human mind to develop new abilities and sustain old (useful) behavior. It also learns

to remove behaviors or patterns that become extraneous and redundant over time. Thus,

online learning has two components namely incremental and decremental learning.

Mathematically, we have the instance space I consisting of patterns, label space

Y indicating the classes of patterns, and a learning based classifier =. The task of the

classifier = is to map I to Y using training examples. In general, there are two modes of

learning: (1) offline/batch learning mode and (2) online learning mode. In batch mode, a

set of training samples (xi, yi) ∈ I×Y are used as input (i = 1, · · · , N where N is number

of training samples). The learning classifier, =B (B denotes batch mode), attempts

to obtain a robust/optimal solution such that =B(xi) = yi. Unlike batch learning, in

the online learning mode, training samples become available in a sequential manner.

In other words, at time j, training sample (xj, yj) and previously processed samples

(x1, y1), · · · , (xj−1, yj−1) are used to train the learning classifier =O (O denotes online

mode) by predicting y′j = =O(xj) and comparing it with the true label yj. The objective

of online learning classifier is to accommodate new training samples and minimize the

error over the whole training sequence. It is intuitive that online learning is pertinent to

real world biometric applications where training samples are available sequentially (one at

a time) and data representation must be updated for optimal classification performance.

Another important aspect of online learning is that for a large scale application, it is
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computationally efficient to solve the offline/batch training process in an online manner

[50].

In large scale real world biometrics applications, it is challenging and computa-

tionally complex to train a classifier in advance. Without re-training, the disparate

characteristics of additional biometric data can cause the performance to degrade. How-

ever, training the classifier dynamically online facilitates updated learning in real-time by

reducing the computational cost. In a typical biometric system, online learning can be

applied to any module that requires training and learning. In this chapter, we propose a

2ν-Online Granular Soft Support Vector Machine and apply it in the classification stage

of the biometric system.

5.2 Formulation of 2ν-Online Granular Soft Support

Vector Machine

As described in Section 2.5.1, {xi, yi} is the set of N data vectors where i = 1, ..., N ,

xi ∈ <d and yi ∈ (+1,−1). 2ν-SVM objective function can be formulated as,

min{1
2
‖w‖2 −∑

iCi(νρ − ψi)}
subject to yi (wϕ(xi) + b) ≥ (ρ − ψi), ρ, ψi ≥ 0

(5.1)

where i, j ∈ 1, ..., N , K(xi,xj) is the kernel function [116], αi, αj are the Lagrange mul-

tipliers such that 0 ≤ αi ≤ Ci,
∑

i αiyi = 0, and
∑

i αi ≥ ν.

During training, it is possible that some of the data points may be noisy or incor-

rectly labeled. In such cases, like any classifier, 2ν-SVM performs erroneous classification.

To address this limitation, the formulation of 2ν-SVM is extended to include soft labels.

Tao et al. [109] have shown that the use of soft labels not only reduces the classification

error but also decreases the number of stored support vectors. Let zi be the soft label for

the ith training data xi. 2ν-SVM is transformed into 2ν-Soft SVM (2ν-SSVM) as follows,
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min
{

1
2
‖w‖2 −∑

iCi(νρ − ψi)
}

subject to zi (wϕ(xi) + b) ≥ z2
i (ρ − ψi).

(5.2)

Even with the availability of 2ν-SSVM, training a large database is still time consuming.

Granular computing [7] is based on a divide and conquer approach, aimed at reducing

the computational time as well as increasing the adaptability to data distribution both

locally and globally. In the proposed 2ν-Granular SSVM, the data space is divided into

c subspaces with one 2ν-SSVM operating on each subspace. Let 2ν-SSVMi represent the

ith 2ν-SSVM, and 2νSSVMi :→ Li represents the 2ν-SSVM operating on the ith subspace

(i = 1, 2, ..., c). The compound margin width W is computed using Equation 5.3.

W =
∣∣∣
∑c

i=1
ti
t
(2νSSV Mi :→ Li) − L0

∣∣∣ ,

t =
∑c

i=1 ti

(5.3)

where ti is the number of training data in the ith subspace. 2ν-SSVM learning yields

Li at the local level and L0 is obtained by learning another 2ν-SSVM on the complete

feature space at the global level. Equation 5.3 provides the margin width associated with

the 2ν-GSSVM hyperplane.

5.2.1 2ν-Online GSSVM

Support Vector Machines, including the proposed 2ν-GSSVM, are trained using

the training database and evaluation is performed using the testing database. Several

applications including biometrics, that use SVM as a classifier, require re-training at

regular intervals to accommodate the changes in data distribution. Re-training the SVM

every time is computationally expensive and may not be feasible for real time applications.

In this chapter, we propose an online learning scheme for 2ν-GSSVM and is termed

as 2ν-OGSSVM. The main concept behind the proposed approach is to first construct

the decision hyperplane using an initial training dataset and then re-train the classifier

by incorporating the new training data points into the decision hyperplane. It also
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removes unnecessary and irrelevant data so that the number of support vectors does not

increase drastically with the increase in training samples. Thus, the proposed online

learning algorithm includes both incremental and decremental learning. In this process,

the Karush-Kuhn Tucker conditions [36] are maintained so that the 2ν-OGSSVM provides

an optimal decision hyperplane. The training procedure of 2ν-OGSSVM is as follows:

1. 2ν-GSSVM is trained using an initial training database and a decision hyperplane

is obtained.

2. For each new training data x̄i,

(a) x̄i is classified using the trained 2ν-GSSVM.

(b) The classification output is compared with the associated label z̄i; if the clas-

sification is correct then re-training is not required.

(c) Otherwise,

i. The decision hyperplane is recomputed using the m trained support vec-

tors and {x̄i, z̄i}.

ii. After recomputing the hyperplane, the number of support vectors in-

creases. If the number of support vectors is more than m + λ, then a

support vector that is farthest from the current decision hyperplane is

selected.

iii. The selected support vector is removed from the list of support vectors

and stored in the list, l. The classifier with m+ λ− 1 support vectors is

used for validation and testing.

3. The support vectors in the list l are used to test the new classifier. If there is any

misclassification, Step 2(c) is repeated to minimize the classification error.

4. The least recently included support vectors are removed from the list, l, in the final

classifier.
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Figure 5.2 shows an example of the decision boundary generated using the pro-

posed 2ν-OGSSVM approach. The two classes in the example represent the genuine and

imposter match scores obtained from a face verification algorithm. Figure 5.2a shows

the result with 200 training samples. In this case, the 2ν-SVM uses all 200 training

samples as input for off-line or batch learning, while the proposed 2ν-OGSSVM uses

the 200 training samples to perform the initial training for online learning. Figure 5.2b

compares the performance when the number of training samples is increased to 400.

In this case, the 2ν-SVM uses all 400 training samples for off-line or batch learning,

while the 2ν-OGSSVM updates the previously trained classifier one sample at a time

with the remaining 200 samples for online learning. The figure shows that the proposed

2ν-OGSSVM efficiently performs binary classification.

5.3 Application of Proposed 2ν-OGSSVM to Near

Infrared Face Verification

Recent studies have shown the usefulness of near infrared face images for recognition

[57], [99]. Previous research results from Chapter 4 also suggest that the performance

of face recognition with NIR images is better than visible spectrum images. This is

because the near infrared spectrum provides resilience to varying image quality, changes

in illumination, and minor variations in expression. Since the proposed 2ν-OGSSVM can

reduce the computational time required for re-training the classifiers, in this case study,

NIR face verification is used for performance evaluation.

Figure 5.3 shows the steps involved in NIR face recognition. Since the proposed

2ν-OGSSVM is a two-class classifier, it can be used for biometric verification. Firstly,

the classifier is trained for two-class classification (genuine and impostor). Next, at

the probe level, facial features are extracted from the NIR face image using feature

extraction algorithms (PCA/C2). Match scores are computed using the Mahalanobis

distance measure by comparing the extracted features against the stored features. Finally,
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Figure 5.2: Comparison of non-linear decision boundary generated with offline learn-

ing using 2ν-SVM and online learning using the proposed 2ν-OGSSVM. (a) Number of

training samples = 200 (b) Number of training samples = 400.
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Figure 5.3: Illustrating the steps involved in the NIR face recognition case study.

classification is performed using the trained classifier.

5.3.1 Training 2ν-OGSSVM

Let the input training data be {xi, zi} where i = 1, ..., N . N is the total number

of training samples and xi is the ith match score. zi is the soft class label and labeling

is performed using the density estimation approach [130]. For the ith training sample,

likelihood ratio Pi = ggen(xi)

gimp(xi)
is computed where ggen and gimp represent the marginal

densities of genuine and impostor respectively. Soft label is assigned as a P value with

‘+’ sign if P ≥ 0 (i.e. genuine sample) otherwise it is assigned as a P value with ‘-’ sign

(i.e. impostor sample). 2ν-OGSSVM is trained using the radial basis function (RBF)

kernel (= exp(−γ||xi − xj||2)). The output of the trained 2ν-OGSSVM is a non-linear

decision hyperplane that can classify genuine and impostor match scores.

5.3.2 Probe Classification and Decision Making

At the probe level, the trained 2ν-OGSSVM is used to classify the match scores.

The match score obtained by matching the probe and gallery facial features, xp, is pro-

vided as input to the mixture model and the likelihood ratio Pp = ggen(xp)
gimp(xp)

is computed.

Finally, the trained 2ν-OGSSVM is used for classifying the likelihood ratio and a decision

of accept or reject is made.
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Table 5.1: Composition of the heterogeneous NIR face database.

Face Database Number of Subjects Number of Images

CBSR 197 3940

Equinox 91 1307

WVU 40 560

Total 328 5807

5.3.3 Experimental Protocol

The images from three NIR face databases are combined to create a relatively large

database with heterogeneous characteristics. As shown in Table 5.1, the CBSR NIR face

database [18] contains 3940 images pertaining to 197 subjects, the WVU database [98]

contains 560 images belonging to 40 subjects, and the Equinox database has 1307 images

from 91 subjects. Combining these databases provides a wide range of interclass and

intraclass variations that typically occur in real world face recognition applications. The

database is divided into training database and testing database. The training database

contains four images of each individual and the remaining images are used as the testing

or probe dataset.

For feature extraction and evaluation, two different algorithms are used. The first

facial feature extraction algorithm is the appearance based PCA algorithm [113] and the

second algorithm is the modified C2 feature extraction algorithm [98] which is a local

texture feature based approach. The training database is used to train these feature

extraction algorithms and verification is performed using a two-class classifier such as

SVM, 2ν-GSSVM and 2ν-OGSSVM. To evaluate the efficacy of the proposed approach,

the experimental comparison of SVM, 2ν-SVM, and 2ν-GSSVM with online classification

(2ν-OGSSVM) is performed. For SVM, 2ν-SVM, and 2ν-GSSVM, the complete training

database is used to train the classifier (batch learning mode). On the other hand, to

evaluate the performance of the proposed 2ν-OGSSVM, the 2ν-OGSSVM classifier is

initially trained with 100 subjects and then online learning is performed with training
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samples from the remaining 228 subjects i.e., online training with one sample at a time.

Further, the train-test partitioning is performed 20 times for cross-validation and ROC

curves are generated by computing the false reject rate over these trials at different false

accept rates. Finally, verification accuracies are reported at 0.01% FAR.

5.3.4 Experimental Results

In all the experiments, RBF kernel with γ = 6 is used for SVM, 2ν-SVM, 2ν-

GSSVM and 2ν-OGSSVM classifiers. In the first case, PCA coefficients are extracted

and matching is performed using the Mahalanobis distance measure. The match score

is further classified using these classifiers separately. The verification performance of

PCA with non-linear classification is also compared with the traditional PCA algorithm

[113] (that uses Euclidean distance and a linear decision threshold for classification) and

incremental PCA algorithm [79]. This experiment provides the baseline performance

to facilitate systematic comparison with other algorithms. Furthermore, accuracies are

also computed when IPCA is combined with the proposed 2ν-OGSSVM (i.e. IPCA +

2ν-OGSSVM, both feature extraction and classification algorithms are online). In the

second case, modified C2 features are classified using the three classifiers separately. The

ROC plots in Figures 5.4 and 5.5, and Tables 5.2 and 5.3 show the experimental results

for comparison. The key results and analysis are summarized below:

• Baseline PCA (batch/offline learning mode) and IPCA (online learning mode) pro-

vide similar verification performance, but the advantage of IPCA is reduced com-

putational cost1 (Table 5.4). Specifically, the training time of IPCA is significantly

lower compared to PCA. Experimentally, this shows that the online learning ap-

proach is a faster alternative for biometrics applications.

• PCA with SVM classifier yields the verification accuracy of 62.23% whereas with

2ν-GSSVM, the verification accuracy improves by 8.9%. This suggests that incor-

1Time is computed on a 2 GHz Pentium Duo Core processor with 2 GB RAM under MATLAB

environment.
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porating granular computing and soft labels improve the classification performance.

Granular computing makes it adaptive to variations in data distribution and soft

labels provide resilience to noise.

• When the feature extraction algorithm and classification algorithm both are in

online learning mode, i.e. IPCA + 2ν-OGSSVM, verification accuracy is about 1%

greater than when both the algorithms are in batch learning mode (PCA + 2ν-

GSSVM). However, the training time in online learning mode, as shown in Table

5.4 is about half of the batch learning mode which shows the suitability of online

learning algorithms for large scale real time applications.

• Similar improvements are observed in the case of modified C2 feature algorithm.

Since the modified C2 algorithm [98] originally uses SVM for classification and de-

cision making, the comparative study is performed with different variants of SVM.

Compared to the SVM classifier, 2ν-OGSSVM improves the verification accuracy

by 5.77%, while the training time of the proposed 2ν-OGSSVM classifier is about

three times faster than the classical SVM classifier.

• From Tables 5.2 and 5.3, the covariate analysis with respect to variations in expres-

sion, illumination and pose shows that the pose variations cause a large reduction

in the accuracy of appearance based PCA algorithm. On the other hand, local

texture feature based modified C2 algorithm provides consistent performance for

all three variations. The experiments also show that the modified C2 algorithm

with 2ν-OGSSVM classifier yields a verification accuracy of more than 92% which

is around 21.7% better than PCA with 2ν-OGSSVM classifier.

• For both the PCA and modified C2 feature algorithms, verification accuracies of

the proposed 2ν-OGSSVM are slightly better than 2ν-GSSVM classifier. However,

the advantage of the 2ν-OGSSVM is significant reduction in computational time.

Compared to classical SVM, 2ν-GSSVM reduces the training time significantly

because the dual-ν formulation requires less time for parameter estimation and
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the granular computing approach reduces the time by dividing the problem into

subproblems and solving it efficiently both in terms of accuracy and time. With

online learning approach (i.e. 2ν-OGSSVM), the training time is further reduced

because initial training with 100 subjects requires limited computational time (for

instance, only 36.1 minutes are required in the case of PCA) and then a relatively

small amount of time (22.3 minutes in the case of PCA) is required to train the

remaining 228 subjects in online mode (thus the total training time for PCA +

2ν-OGSSVM is 58.4 minutes).

• Table 5.4 also shows that the testing time is considerably reduced when 2ν-OGSSVM

is used as the classifier. The reason for this improved performance is same as for

the reduced training time.

• As mentioned in Section 5.1, another possible advantage of online learning is to

efficiently solve the offline training process in an online manner. To evaluate the

appropriateness of this statement in biometric classifier training, a comparative

analysis of verification accuracies obtained from 2ν-GSSVM and 2ν-OGSSVM is

performed. Figure 5.6 shows that at the end of learning process with 328 subjects,

verification accuracies obtained in the online learning mode converges to the accu-

racy obtained in the batch learning mode. Further, the time required for online

learning is around half of the offline/batch training. Therefore, it is possible to ap-

ply online learning scheme in preference to offline training scheme without affecting

the verification accuracy.

• Finally, t-test at 95% confidence shows that the 2ν-GSSVM is significantly dif-

ferent than the SVM classifier whereas there is no statistical difference between

2ν-GSSVM and 2ν-OGSSVM. However, as mentioned previously, the main advan-

tage of 2ν-OGSSVM is reduced computational time and online classifier update.

The experiments demonstrate that the online learning approach reduces the compu-

tational cost without compromising the verification accuracy. Therefore, it is an effective

alternative to traditional batch/offline learning methods.
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Table 5.2: Covariate analysis of PCA and IPCA based verification algorithms with mul-
tiple classifiers.

Feature Extraction Covariate

and Classification Expression Illumination Pose Overall

PCA [113] 51.87 52.24 45.46 49.21

PCA + SVM 64.76 65.34 58.17 62.23

PCA + 2ν-SVM 64.98 65.83 58.41 62.95

PCA + 2ν-GSSVM 73.63 74.04 67.86 71.14

PCA + 2ν-OGSSVM 72.82 73.95 67.49 70.97

IPCA [79] 51.73 52.21 45.02 49.17

IPCA + 2ν-OGSSVM 73.67 74.11 67.92 71.22

Table 5.3: Covariate analysis of modified C2 based verification algorithm with multiple
classifiers.

Feature Extraction Covariate

and Classification Expression Illumination Pose Overall

C2 + SVM 87.76 87.93 85.17 86.94

C2 + 2ν-SVM 87.79 88.02 85.59 87.21

C2 + 2ν-GSSVM 92.67 92.85 91.81 92.46

C2 + 2ν-OGSSVM 92.79 92.88 92.03 92.71

113



10
−2

10
−1

10
0

10
1

0

10

20

30

40

50

60

False Accept Rate (%)

F
a

ls
e

 R
e

je
c
t 

R
a

te
 (

%
)

 

 

PCA

IPCA

PCA + SVM

PCA + 2v−SVM

PCA + 2v−GSSVM

PCA + 2v−OGSSVM

IPCA + 2v−OGSSVM

Figure 5.4: Comparing the performance of the proposed 2ν-OGSSVM (online classifier)
with SVM and 2ν-GSSVM using appearance based PCA algorithm [113].
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Table 5.4: Computational time analysis for the proposed 2ν-OGSSVM and comparison
with other classification approaches.

Feature Extraction Computation Time

+ Classification Training Time (Minutes) Testing Time (Seconds)

PCA [113] 43.6 0.5

PCA + SVM 221.5 1.7

PCA + 2ν-SVM 194.8 1.4

PCA + 2ν-GSSVM 118.2 1.1

PCA + 2ν-OGSSVM 58.4 0.8

IPCA [79] 31.2 0.4

IPCA + 2ν-OGSSVM 52.5 0.7

C2 + SVM 336.8 2.1

C2 + 2ν-SVM 282.1 1.8

C2 + 2ν-GSSVM 192.4 1.6

C2 + 2ν-OGSSVM 109.7 1.2
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5.4 Summary

Similar to template update, the parameters of the classifiers used in biometric

system also require to be updated to accommodate for variations in data distribution.

Current systems frequently re-train the algorithms using all enrolled subjects. This

process may not be feasible for large scale systems where the number of newly enrolled

subjects is significantly high. This chapter introduces the concept of online learning in

biometrics to address the problem of classifier re-training and update. An online learning

for 2ν-GSSVM is proposed to train the classifier in online mode so that it can update

the decision hyperplane according to the newly enrolled subjects. This online classifier

is used for feature classification and decision making in a face recognition system. On

a heterogeneous NIR face database, the case study using PCA and modified C2 feature

algorithms shows that the proposed online classifier significantly improves the verification

performance both in terms of accuracy and computational time. Indeed, it is observed

that the proposed online classifier is at least three times faster than the conventional

SVM classifier.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Existing face recognition systems have demonstrated success in constrained settings

with limited variability in illumination, pose, and expression. However, they are not

sufficient to transcend the challenging applications such as recognizing missing persons

or terrorists that require recognition of face images with aging and disguise variations.

Further, large variations in pose, expression and illumination are challenges that severely

affect the performance of face recognition algorithms. Along with these covariates, the

computational complexity of classifier training and regular update is a challenging issue.

In this research, we first designed a face recognition algorithm that addresses two

major challenges: aging and disguise. A novel age transformation algorithm is proposed

to minimize the age difference between gallery and probe face images. Unlike the con-

ventional method, we transform gallery face images with respect to probe face image

using normalized mutual information based registration technique. Next, we designed a

granular approach for face recognition in which the face image is decomposed at different

levels of granularity to extract non-disjoint textural features from each face granule. At

the first level, face granules are generated by applying Gaussian and Laplacian operators

to extract features at different resolutions and image properties. The second level of

granularity consists of vertical and horizontal granules of different sizes to specifically

handle variations in pose and disguises. At the third level of granularity, the face image
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is partitioned into small local structures to extract local features effectively. A four-layer

neural network implementation of the 2D log polar Gabor transform is applied to each

face granule to extract the phase features for matching. The matching scores of all face

granules are effectively fused using likelihood ratio induced SVM match score fusion al-

gorithm to arrive at a final decision. Evaluation is performed using five databases that

comprises of the Notre Dame face database, FG-Net face database, disguised faces of real

people, disguised synthetic face images, and disguised faces of actors and actresses from

movie clips. The experimental results show that the proposed algorithm outperforms ex-

isting face recognition algorithms and is able to optimally recognize individuals despite

minor to moderate level of aging and disguise variations.

We next described an image fusion algorithm that combines multispectral face im-

ages to provide invariance to illumination variations. Visible and long wave infrared

images provide complementary properties that can be combined to improve the perfor-

mance of face recognition. We proposed image fusion algorithms to fuse information

obtained from multispectral face images. We first apply mutual information based regis-

tration algorithm to register multispectral face images and then fuse the images using the

proposed algorithms. We proposed two fusion algorithms: DWT based fusion and 2ν-

GSVM based fusion. DWT based image fusion algorithm is a simple approach whereas

2ν-GSVM based fusion algorithm is a learning based approach that assigns proper weights

to multispectral images according to the activity level or entropy. The properties of both

visible and long wave infrared images are preserved in the fused face image that can

efficiently be used for face recognition. We evaluated the performance of the proposed

image fusion algorithms using the Notre Dame and Equinox multispectral face databases.

Experimental analysis shows that the proposed 2ν-GSVM based image fusion algorithm

is able to sustain illumination variations that are usually encountered in visible spectral

face recognition.

To account for the pose variations and to demonstrate the role of face mosaicing

in enhancing the matching performance of a face recognition system, we proposed a

multiresolution mosaicing scheme. Given multiple images of a face during enrollment, the
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mosaicing algorithm combines them into a single entity by employing a multiresolution

splining scheme. Experiments reported on three different databases suggest that fusing

information at the image level is better than fusing information at the match-score level

in the context of this work. A modified version of the C2 algorithm, originally developed

by Serre et al. [87], is used to extract features from the mosaiced and non-mosaiced face

images. The modified algorithm is observed to perform very well both in the verification

and identification modes of operation.

Finally, we described a new biometric classifier update algorithm to incrementally

re-train the classifier using online learning and to progressively establish a decision hy-

perplane for improved classification. The proposed algorithm incorporates soft labels and

granular computing in the formulation of 2ν-Online GSSVM to retrain the classifier using

only the new data. Granular computing approach makes it adaptive to local and global

variations in data distribution, while soft labels provide resilience to noise. With new

data, additional support vectors that are linearly independent are added and existing

support vectors that do not improve the classifier performance are removed. This con-

strains the size of the support vectors and significantly reduces the training time without

compromising the classification accuracy. The efficacy of the proposed online learning

strategy is validated in a near-infrared face recognition application involving different

covariates. The results obtained on a heterogeneous near-infrared face database show

that in all experiments using different feature extraction and classification algorithms,

the proposed 2ν-Online GSSVM learning approach was 2-3 times faster while achieving

a high level of accuracy similar to offline training using all data.

6.2 Future Research Directions

We have designed reliable and fast approaches for face recognition to mitigate

the effects of covariates such as aging, disguise, illumination, pose and computational

time. We strongly believe that these approaches can pave the path of future research in

face recognition to address non-ideal and challenging scenarios. We conclude this thesis
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with possible future research directions that can be explored for further advancing and

developing a highly accurate face recognition system.

• The problem becomes more complicated if we have to contend with variations in

pose, expression and illumination along with aging and disguise altogether. This

research can be further extended to address such type of non-ideal challenges of

face recognition. However, undertaking such research would necessitate creating

a comprehensive database that comprises of face images with pose, expression,

illumination, aging and disguise variations.

• Image quality plays an important role in improving the recognition performance

and it can be used to further extend the multispectral face image fusion algorithm.

A carefully designed multispectral image quality assessment algorithm incorporated

in the image fusion can further improve the recognition performance with variations

in disguise, expression, and illumination.

• The role of mosaicing can be investigated in perturbing the biometric content of

the human face. Also, the use of facial symmetry can be examined to create face

mosaics when the frontal image is not available and only the left and right profiles

are available.

• The emergence and viability of using online learning algorithms in the design of

biometric classifiers addresses the real-time performance and scalability challenges,

however more research is essential in order to fully understand the benefits in large-

scale applications.
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