5 research outputs found

    Atmospheric turbulence mitigation for sequences with moving objects using recursive image fusion

    Get PDF
    This paper describes a new method for mitigating the effects of atmospheric distortion on observed sequences that include large moving objects. In order to provide accurate detail from objects behind the distorting layer, we solve the space-variant distortion problem using recursive image fusion based on the Dual Tree Complex Wavelet Transform (DT-CWT). The moving objects are detected and tracked using the improved Gaussian mixture models (GMM) and Kalman filtering. New fusion rules are introduced which work on the magnitudes and angles of the DT-CWT coefficients independently to achieve a sharp image and to reduce atmospheric distortion, respectively. The subjective results show that the proposed method achieves better video quality than other existing methods with competitive speed.Comment: IEEE International Conference on Image Processing 201

    Restoration of Videos Degraded by Local Isoplanatism Effects in the Near-Infrared Domain

    Get PDF
    When observing a scene horizontally at a long distance in the near-infrared domain, degradations due to atmospheric turbulence often occur. In our previous work, we presented two hybrid methods to restore videos degraded by such local perturbations. These restoration algorithms take advantages of a space-time Wiener filter and a space-time regularization by the Laplacian operator. Wiener and Laplacian regularization results are mixed differently depending on the distance between the current pixel and the nearest edge point. It was shown that a gradation between Wiener and Laplacian areas improves results quality, so that only the algorithm using a gradation will be used in this article. In spite of a significant improvement in the obtained images quality, our restoration results greatly depend on the segmentation image used in the video processing. We then propose a method to select automatically the best segmentation image

    Atmospheric Turbulence Mitigation for Sequences with Moving Objects Using Recursive Image Fusion

    Get PDF

    BATUD: Blind Atmospheric TUrbulence Deconvolution

    Get PDF
    A new blind image deconvolution technique is developed for atmospheric turbulence deblurring. The originality of the proposed approach relies on an actual physical model, known as the Fried kernel, that quantifies the impact of the atmospheric turbulence on the optical resolution of images. While the original expression of the Fried kernel can seem cumbersome at first sight, we show that it can be reparameterized in a much simpler form. This simple expression allows us to efficiently embed this kernel in the proposed Blind Atmospheric TUrbulence Deconvolution (BATUD) algorithm. BATUD is an iterative algorithm that alternately performs deconvolution and estimates the Fried kernel by jointly relying on a Gaussian Mixture Model prior of natural image patches and controlling for the square Euclidean norm of the Fried kernel. Numerical experiments show that our proposed blind deconvolution algorithm behaves well in different simulated turbulence scenarios, as well as on real images. Not only BATUD outperforms state-of-the-art approaches used in atmospheric turbulence deconvolution in terms of image quality metrics, but is also faster
    corecore