19 research outputs found

    Immunity and Pseudorandomness of Context-Free Languages

    Get PDF
    We discuss the computational complexity of context-free languages, concentrating on two well-known structural properties---immunity and pseudorandomness. An infinite language is REG-immune (resp., CFL-immune) if it contains no infinite subset that is a regular (resp., context-free) language. We prove that (i) there is a context-free REG-immune language outside REG/n and (ii) there is a REG-bi-immune language that can be computed deterministically using logarithmic space. We also show that (iii) there is a CFL-simple set, where a CFL-simple language is an infinite context-free language whose complement is CFL-immune. Similar to the REG-immunity, a REG-primeimmune language has no polynomially dense subsets that are also regular. We further prove that (iv) there is a context-free language that is REG/n-bi-primeimmune. Concerning pseudorandomness of context-free languages, we show that (v) CFL contains REG/n-pseudorandom languages. Finally, we prove that (vi) against REG/n, there exists an almost 1-1 pseudorandom generator computable in nondeterministic pushdown automata equipped with a write-only output tape and (vii) against REG, there is no almost 1-1 weakly pseudorandom generator computable deterministically in linear time by a single-tape Turing machine.Comment: A4, 23 pages, 10 pt. A complete revision of the initial version that was posted in February 200

    The complexity of parameters for probabilistic and quantum computation

    Get PDF
    In this dissertation we study some effects of allowing computational models that use parameters whose own computational complexity has a strong effect on the computational complexity of the languages computable from the model. We show that in the probabilistic and quantum models there are parameter sets that allow one to obtain noncomputable outcomes;In Chapter 3 we define BP[beta]P the BPP class based on a coin with bias [beta]. We then show that if [beta] is BPP-computable then it is the case that BP[beta]P = BPP. We also show that each language L in P/CLog is in BP[beta]P for some [beta]. Hence there are some [beta] from which we can compute noncomputable languages. We also examine the robustness of the class BPP with respect to small variations from fairness in the coin;In Chapter 4 we consider measures that are based on polynomial-time computable sequences of biased coins in which the biases are bounded away from both zero and one (strongly positive P-sequences). We show that such a sequence [vector][beta] generates a measure [mu][vector][beta] equivalent to the uniform measure in the sense that if C is a class of languages closed under positive, polynomial-time, truth-table reductions with queries of linear length then C has [mu][vector][beta]-measure zero if and only if it has measure zero relative to the uniform measure [mu]. The classes P, NP, BPP, P/Poly, PH, and PSPACE are among those to which this result applies. Thus the measures of these much-studied classes are robust with respect to changes of this type in the underlying probability measure;In Chapter 5 we introduce the quantum computation model and the quantum complexity class BQP. We claim that the computational complexity of the amplitudes is a critical factor in determining the languages computable using the quantum model. Using results from chapter 3 we show that the quantum model can also compute noncomputable languages from some amplitude sets. Finally, we determine a restriction on the amplitude set to limit the model to the range of languages implicit in others\u27 typical meaning of the class BQP

    Resource-Bounded Balanced Genericity, Stochasticity and Weak Randomness

    No full text
    . We introduce balanced t(n)-genericity which is a refinement of the genericity concept of Ambos-Spies, Fleischhack and Huwig [2] and which in addition controls the frequency with which a condition is met. We show that this concept coincides with the resource-bounded version of Church's stochasticity [6]. By uniformly describing these concepts and weaker notions of stochasticity introduced by Wilber [19] and Ko [11] in terms of prediction functions, we clarify the relations among these resource-bounded stochasticity concepts. Moreover, we give descriptions of these concepts in the framework of Lutz's resource-bounded measure theory [13] based on martingales: We show that t(n)-stochasticity coincides with a weak notion of t(n)-randomness based on so-called simple martingales but that it is strictly weaker than t(n)-randomness in the sense of Lutz. 1 Introduction Over the last years resource-bounded versions of Baire category and Lebesgue measure have been introduced in complexity theor..

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore