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ABSTRACT

Uncertainty Quantification in Data-Driven Simulation and

Optimization: Statistical and Computational Efficiency

Huajie Qian

Models governing stochasticity in various systems are typically calibrated from data, therefore

are subject to statistical errors/uncertainties which can lead to inferior decision making. This thesis

develops statistically and computationally efficient data-driven methods for problems in stochastic

simulation and optimization to quantify and hedge impacts of these uncertainties.

The first half of the thesis focuses on efficient methods for tackling input uncertainty which refers

to the simulation output variability arising from the statistical noise in specifying the input models.

Due to the convolution of the simulation noise and the input noise, existing bootstrap approaches

consist of a two-layer sampling and typically require substantial simulation effort. Chapter 2

investigates a subsampling framework to reduce the required effort, by leveraging the form of the

variance and its estimation error in terms of the data size and the sampling requirement in each

layer. We show how the total required effort is reduced, and explicitly identify the procedural

specifications in our framework that guarantee relative consistency in the estimation, and the

corresponding optimal simulation budget allocations. In Chapter 3 we study an optimization-

based approach to construct confidence intervals for simulation outputs under input uncertainty.

This approach computes confidence bounds from simulation runs driven by probability weights

defined on the data, which are obtained from solving optimization problems under suitably posited

averaged divergence constraints. We illustrate how this approach offers benefits in computational

efficiency and finite-sample performance compared to the bootstrap and the delta method. While

resembling distributionally robust optimization, we explain the procedural design and develop tight

statistical guarantees via a generalization of the empirical likelihood method.



The second half develops uncertainty quantification techniques for certifying solution feasibility

and optimality in data-driven optimization. Regarding optimality, Chapter 4 proposes a statis-

tical method to estimate the optimality gap of a given solution for stochastic optimization as an

assessment of the solution quality. Our approach is based on bootstrap aggregating, or bagging,

resampled sample average approximation (SAA). We show how this approach leads to valid statis-

tical confidence bounds for non-smooth optimization. We also demonstrate its statistical efficiency

and stability that are especially desirable in limited-data situations. We present our theory that

views SAA as a kernel in an infinite-order symmetric statistic. Regarding feasibility, Chapter 5

considers data-driven optimization under uncertain constraints, where solution feasibility is often

ensured through a “safe” reformulation of the constraints, such that an obtained solution is guar-

anteed feasible for the oracle formulation with high confidence. Such approaches generally involve

an implicit estimation of the whole feasible set that can scale rapidly with the problem dimension,

in turn leading to over-conservative solutions. We investigate validation-based strategies to avoid

set estimation by exploiting the intrinsic low dimensionality of the set of all possible solutions

output from a given reformulation. We demonstrate how our obtained solutions satisfy statistical

feasibility guarantees with light dimension dependence, and how they are asymptotically optimal

and thus regarded as the least conservative with respect to the considered reformulation classes.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

In the data-rich era, decision making under uncertainty often relies on inference of unknown stochas-

ticity from real-world data. A common concern, however, is that the model and statistical errors

from the data may not be properly controlled when integrating into the downstream simulation and

optimization tasks, thus leading to inferior decisions. Therefore a quantitative understanding of the

statistical uncertainties is crucial in guarding against catastrophic decision making. Broadly speak-

ing, this has stimulated interests across multiple research communities, and various approaches

have been proposed to handle statistical uncertainties for different kinds of problems, such as un-

certainty sets in (distributionally) robust opotimization, penalties in regularized risk minimization,

and upper confidence bound (UCB) algorithms in reinforcement learning. This thesis instead in-

vestigates uncertainty quantification methods for two commonly used tools in operations research,

i.e., stochastic simulation (in Chapters 2 and 3) and optimization under uncertainty (in Chapters

4 and 5), and focuses on statistical and/or computational efficiencies of these methods.

1.1 Stochastic Simulation under Input Uncertainty

The first part (Chapters 2 and 3) of the thesis is on efficient methods for tackling input uncertainty

in stochastic simulation. Stochastic simulation has been used routinely to assess and optimize

performances of stochastic operational systems. In conventional simulation output analysis, the
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underlying input models are assumed completely known or given by expert opinions, and simulation

outputs generated from these input models are used to make statistical inference on the performance

metric of interest. In a data-driven setting, however, input models are estimated from data to drive

simulation, and input uncertainty arises due to the propagation of the input estimation errors

to the output. Therefore, statistically valid inference and performance prediction require careful

incorporation of model errors on top of the stochastic computation noises in the Monte Carlo

simulation.

To further illustrate the necessity of tackling input uncertainty, consider an M/M/1 queue with

arrival rate 0.8 and service rate 1.0, and the performance measure of interest is the mean waiting

time of the first 20 arrivals (true value ≈ 2.57). Suppose that the true arrival and service rates

are unknown and can only be estimated from data of inter-arrival times and service times, each

of size 50, therefore input uncertainty is present. Suppose that a criterion in designing the queu-

ing system is that the mean waiting time must be no longer than 2.5 units of time (the current

design is infeasible). We compare two approaches to assessing feasibility of the current design,

both involving the construction of upper confidence bounds for the target quantity. In the first

approach, an arrival rate and a service rate are estimated from the data, and then treated as the

truth to drive the simulation to obtain a 95%-level performance bound based on 500 replications.

The experiment is then repeated on 1000 independent input data sets, and the distribution of the

obtained performance bounds are shown in Figure 1.1a. The second approach, however, acknowl-

edges the statistical errors in the estimated input models, and incorporate them in constructing

the performance bounds. The results are in Figure 1.1b. We observe that when input uncertainty

is ignored the obtained bounds often (44%) fall below the threshold 2.5, rendering a substantial

chance of incorrect feasibility assessment, whereas after incorporating input uncertainty misassess-

ment happens much less frequently (10%). Quantification of input uncertainty therefore is essential

for correctly hedging the total risk in the output.

There are several challenges in quantifying input uncertainty. The first is the computational

demand in disentangling the statistical noise in calibrating the input model from the Monte Carlo

noise. Previous approaches to this problem such as the bootstrap (Barton and Schruben (1993,
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Figure 1.1: Distribution of upper confidence bounds, relative to the threshold 2.5.

2001), Cheng and Holland (1997)) require a substantial computation effort because of the need to

conduct multi-layer nested simulation and consequently a multiplicatively growing size of simulation

replications. Secondly, approaches based-on the delta method (e.g., Chapter 3 in Asmussen and

Glynn (2007) and Cheng and Holland (1997, 1998)) construct interval estimates from a linearization

of the performance metric and an estimation of the standard error term, which tend to undercover

the true performance metric under small input data. Chapters 2 and 3, respectively, are devoted

to addressing these challenges.

Chapter 2 develops a subsampling technique that significantly reduces the order of computation

in each layer of the nested simulation, by leveraging and properly rescaling the standard error arising

from input uncertainty according to the subsample size parameters. The proposed method provably

allows the simulation cost to grow independently of the data size, in contrast to the standard

bootstrap where the required simulation burden has to grow linearly, thus making our method

more attractive when each simulation run is computationally expensive or simulation resources are

limited. We also derive the optimal algorithmic configurations, regarding choices of the subsample

size and the simulation sizes to allocate to each layer, that achieve the minimum error in estimating

the input uncertainty under a fixed simulation budget, by balancing a trade-off between a Monte

Carlo (computational) error and a statistical error.

In Chapter 3 we propose an optimization-based approach that computes interval estimates as

the optimal values of suitably posited optimization problems which do not rely on linearization.
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Our formulation is based on an “empirical” version of distributionally robust optimization (DRO).

The latter is a decision-making framework for stochastic problems where the underlying distribution

is not fully known, which advocates the search of the best solution over the worst-case scenario.

Our formulation constructs interval estimates by optimizing the performance metric over a set of

distributions that are supported on the input data, satisfying a suitably weighted Kullback-Leibler

divergence constraint. We demonstrate how our approach can conform naturally to the numerical

boundary of the performance metric and leads to better finite-sample coverage than linearization-

based interval estimates. Moreover, we develop tight coverage guarantees via a generalization of

the empirical likelihood theory, in contrast to potentially loose confidence guarantees in previous

data-driven DRO formulations.

1.2 Uncertainty Quantification in Data-Driven Optimization

In the second part (Chapters 4 and 5) we switch focus to uncertainty quantification for data-

driven optimization. Stochastic optimization has been extensively used for decision making under

uncertainty in both operations research and machine learning, where the decision maker optimizes a

certain expected performance measure, potentially subject to uncertain constraints. In the context

where the governing distributions are estimated from data, Chapters 4 and 5 investigate statistically

efficient methodologies to assess and improve solution performances in terms of optimality and

feasibility.

Chapter 4 presents a novel method based on bagging or bootstrap aggregating, an ensemble

method in machine learning, to compute bounds for the optimality gap of a given solution. The

motivation is that data-driven solutions to stochastic optimization can be suboptimal due to con-

tamination from statistical and model errors, and a quantitative assessment of solution quality can

help with screening out inferior solutions. The goal here is to assess solution performance by using

data; this is in contrast to the common analyses of stochastic optimization algorithms that reveal

the convergence rate, which are based on the worst-case and could be over-conservative for a given

particular problem instance. Existing methods based on data batching (Mak et al. (1999)) tend
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to generate unnecessarily loose bounds due to the inefficient use of the data, while those based on

sample average approximation (SAA) asymptotics (Shapiro et al. (2014), Bayraksan and Morton

(2006)) require Lipschitz smoothness from the optimization and can perform poorly in practice

due to the instability in estimating the standard error. The proposed bagging method reduces the

estimation variance of optimality gap bounds and stabilizes estimation of the standard error by

averaging a large number of resampled estimates, and at the same time extends the SAA asymp-

totic theories to non-smooth problems by smoothing the SAA optimal values. Mathematically, we

established the asymptotic performance of our bagging approach by utilizing the so-called infinite-

order symmetric statistics, in which the SAA optimal value can be viewed as the kernel of the

corresponding statistics.

Chapter 5 focuses on improving data-driven solutions for optimization under uncertain con-

straints, such as probabilistic or expectation constraints. When these constraints are only observ-

able via data, feasibility can only be guaranteed at best with high confidence, and a data-driven

procedure needs to strike a balance between optimality and feasibility. Common data-driven for-

mulations, such as DRO, SAA, and robust optimization, ensure feasibility guarantees via a feasible

set estimation, or in other words, an implicit simultaneous estimation problem of the noisy con-

straint over the whole decision space. This could subsequently lead to over-conservative solutions

especially for high dimensional problems. To address this issue, we develop a general constraint-

validation framework that allows one to examine feasibility only on a low dimensional solution

path that is intrinsic to these common data-driven optimization formulations. We establish both

asymptotic and finite-sample performance guarantees of our framework, and dissect our results

to various formulations, by using recently developed high-dimensional Berry-Esseen theorem and

empirical process theory.

In the remainder of the thesis, Chapters 2-5 present in detail the four projects mentioned above,

and Appendices A-D contain technical proofs for each of the chapters respectively. As an effort

to improve the manageability of the notation system, mathematical symbols will be made self-

contained within each chapter, in other words, a symbol that refers to a certain object in one

chapter may be used to represent a different object in another chapter. The thesis is based on Lam
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and Qian (2018c, 2017, 2018b, 2019a), for which preliminary versions have appeared in Lam and

Qian (2018d, 2016, 2018a, 2019b).
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Chapter 2

Subsampling to Enhance Efficiency in

Input Uncertainty Quantification

2.1 Introduction

Stochastic simulation is one of the most widely used analytic tools in operations research. It provides

a flexible means to approximate complex models and to inform decisions. See, for instance, Law

et al. (2000) and Banks et al. (2005) for applications in manufacturing, revenue management,

service and operations systems etc. In practice, the simulation platform relies on input models

that are typically observed or calibrated from data. These statistical noises can propagate to the

output analysis, leading to significant errors and suboptimal decision-making. In the literature,

this problem is commonly known as input uncertainty or extrinsic uncertainty.

In conventional simulation output analysis where the input model is completely pre-specified,

the statistical errors come solely from the Monte Carlo noises, and it suffices to account only

for such noises in analyzing the output variability. When input uncertainty is present, such an

analysis will undermine the actual variability. One common approach to quantify the additional

uncertainty is to estimate the variance in the output that is contributed from the input noises

(e.g., Song et al. (2014)); for convenience, we call this the input variance. This quantity acts as an

uncertainty measure which, when added together with the Monte Carlo variance, gives rise to the
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overall variance in the outputs. A refined decomposition of input variance across multiple input

sources can be used to identify models that are overly ambiguous and flag the need of more data

collection (e.g., Song et al. (2014)). Input variance also provides a building block to construct

valid output confidence intervals (CIs) that account for combined input and simulation errors (e.g.,

Cheng and Holland (2004)). Motivated by its central role in quantifying input uncertainty, this

chapter aims to study the efficient estimation of input variance.

In the literature, bootstrap resampling is a common approach for the above purpose. This

applies most prominently in the nonparametric regime, namely when no assumptions are placed

on the input parametric family. It could also be used in the parametric case (where more alter-

natives are available). For example, Cheng and Holland (1997) proposes the variance bootstrap,

and Song and Nelson (2015) studies the consistency of this strategy on a random-effect model that

describes the uncertainty propagation. A bottleneck with using bootstrap resampling in estimat-

ing input variances, however, is the need to “outwash” the simulation noise, which often places

substantial burden on the required simulation effort. More precisely, to handle both the input and

the simulation noises, the bootstrap procedure typically comprises a two-layer sampling that first

resamples the input data (i.e., outer sampling), followed by running simulation replications using

each resample (i.e., inner replications). Due to the reciprocal relation between the magnitude of

the input variance and the input data, the input variance becomes increasingly small as the input

data size increases. This deems the control of the relative estimation error increasingly expensive,

and requires either a large outer bootstrap size or inner replication size to extinguish the effect of

simulation noises.

The main goal of this chapter is to investigate subsampling as a simulation saver for input

variance estimation. This means that, instead of creating distributions by resampling a data set

of the full size, we only resample (with or without replacement) a set of smaller size. We show

that a judicious use of subsampling can reduce the total simulation effort from an order bigger

than the data size in the conventional two-layer bootstrap to an order independent of the data

size, while retaining the estimation accuracy. This approach leverages the interplay between the

form of the input variance and its estimation error, in terms of the data size and the sampling
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effort in each layer of the bootstrap. On a high level, the subsample is used to estimate an input

variance as if less data are available, followed by a correction of this discrepancy in the data size by

properly rescaling the input variance. We call this approach proportionate subsampled variance

bootstrap. We explicitly identify the procedural specifications in our approach that guarantee

estimation consistency, including the minimally required simulation effort in each layer. We also

study the theoretical behavior of our estimation error, in relation to the simulation effort allocation

in these layers as well as the input data and subsample sizes, which in turn reveals the optimal

configurations and provides implementation guidance.

In the statistics literature, subsampling has been used as a remedy for situations where the

full-size bootstrap does not apply, due to a lack (or undeterminability) of uniform convergence

required for its statistical consistency, which relates to the functional smoothness or regularity of

the estimators (e.g., Politis and Romano (1994)). Subsampling has been used in time series and

dependent data (e.g., Politis et al. (1999), Hall et al. (1995), Datta and McCormick (1995)), ex-

tremal estimation (e.g., Bickel and Sakov (2008)), shape-constrained estimation (e.g., Sen et al.

(2010)) and other econometric contexts (e.g., Abadie and Imbens (2008), Andrews and Guggen-

berger (2009, 2010)). In contrary to these works, our subsampling approach is introduced to reduce

the simulation effort faced by the two-layer sampling necessitated from the presence of both the

input and simulation noises. In other words, we are not concerned about the issue of uniform

convergence, but instead, we aim to distort the relation between the required simulation effort and

data size in a way that allows more efficient deconvolution of the effects of the two noises. We

also note that, as we will use resampling with replacement (instead of without replacement), our

approach is closer to the so-called m out of n bootstrap (Bickel et al. (1997), Bickel and Sakov

(2008)). For coherence, throughout the chapter we use the term subsampling broadly to indicate a

bootstrap with a smaller resample size than the original data size.

We close this introduction with a brief review of other related work in input uncertainty. In the

nonparametric regime (the focus of this chapter), besides Cheng and Holland (1997) and Song and

Nelson (2015) that study bootstrap-based estimation of the input variance, Barton and Schruben

(1993) and Barton and Schruben (2001) investigate the percentile bootstrap to construct CIs (i.e.,
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the CI limits are determined from the quantiles of the bootstrap distributions). Like variance boot-

strap, percentile bootstrap also encounters two-layer sampling that requires substantial simulation

efforts. Yi and Xie (2017) investigates adaptive budget allocation policies based on ranking and

selection to reduce simulation cost in the percentile bootstrap, and empirically shows the computa-

tional advantage of their approach. On the other hand, contrary to this work, they do not investigate

the required simulation efforts in relation to the input data size. Lam and Qian (2016, 2017) study

the use of empirical likelihood as an optimization-based alternative to the percentile bootstrap,

which requires simulation efforts to estimate the gradient information that remain substantial. Be-

yond the frequentist regime considered in this chapter, Xie et al. (2018) studies nonparametric

Bayesian methods based on Dirichlet process mixtures to estimate the variance contributed from

input uncertainty and construct CIs. Glasserman and Xu (2014), Hu et al. (2012), Lam (2016b)

and Ghosh and Lam (2019) study input uncertainty from a robust optimization viewpoint, where

they compute worst-case bounds subject to constraints or so-called uncertainty sets that represent

partial beliefs on unknown distributions. In the parametric regime, Barton et al. (2013) and Xie

et al. (2016) investigate the basic bootstrap with a metamodel built in advance, a technique known

as the metamodel-assisted bootstrap. Cheng and Holland (1997) studies the delta method, and

Cheng and Holland (1998, 2004) reduce its computation burden via the so-called two-point method.

Lin et al. (2015) and Song and Nelson (2019) study regression approaches to estimate sensitivity

coefficients which are used to apply the delta method, generalizing the gradient estimation method

in Wieland and Schmeiser (2006). Zhu et al. (2020) studies risk criteria and computation to quan-

tify parametric uncertainty. Finally, Chick (2001), Zouaoui and Wilson (2003), Zouaoui and Wilson

(2004) and Xie et al. (2014) study variance estimation and interval construction from a Bayesian

perspective. We comment that although the exposition in this chapter focuses on the nonparamet-

ric setting, the same idea of subsampling can be adapted naturally to the parametric setting, with

similar advantages in computational efficiency. For general surveys on input uncertainty, readers

are referred to Barton et al. (2002), Henderson (2003), Chick (2006), Barton (2012), Song et al.

(2014), Lam (2016a), and Nelson (2013) Chapter 7.

The remainder of this chapter is as follows. Section 2.2 introduces the input uncertainty problem
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and explains the simulation complexity bottleneck in the existing bootstrap schemes. Section 2.3

presents our subsampling idea, procedures and the main statistical results. Section 2.4 discusses

the key steps in our theoretical developments. Section 2.5 reports our numerical experiments. All

proofs are relegated to Appendix A.

2.2 Problem Motivation

This section describes the problem and our motivation. Section 2.2.2 first describes the input

uncertainty problem, Section 2.2.3 presents the existing bootstrap approach, and Section 2.2.4

discusses its computational barrier, thus motivating our subsampling investigation. We aim to

provide intuitive explanations in this section, and defer mathematical details to later sections.

2.2.1 Notation

We use the following notations. For any sequences an and bn, both depending on n, we say that

an = O(bn) if |an/bn| ≤ C for some constant C > 0 for all sufficiently large n, and an = o(bn) if

an/bn → 0 as n → ∞. Alternately, we say an = Ω(bn) if |an/bn| ≥ C for some constant C > 0

for all sufficiently large n, and an = ω(bn) if |an/bn| → ∞ as n → ∞. We say that an = Θ(bn)

if C ≤ |an/bn| ≤ C as n → ∞ for some constants C,C > 0. We use An = Op(bn) to represent

a sequence of random variables An that has stochastic order at least bn, i.e., for any ε > 0, there

exists M,N > 0 such that P (|An/bn| ≤ M) > 1 − ε for n > N . We use An = op(bn) to represent

a sequence of random variables An that has stochastic order less than bn, i.e., An/bn
p→ 0. We use

An = Θp(bn) to represent a sequence An that has stochastic order exactly at bn, i.e., An satisfies

An = Op(bn) but not An = op(bn).

2.2.2 The Input Uncertainty Problem

Suppose there are m independent input processes driven by input distributions F1, F2, . . . , Fm.

We consider a generic performance measure ψ(F1, . . . , Fm) that is simulable, i.e., given the input

distributions, independent unbiased replications of ψ can be generated in a computer. As a primary
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example, think of F1 and F2 as the interarrival and service time distributions in a queue, and ψ is

some output measure such as the mean queue length averaged over a time horizon.

The input uncertainty problem arises in situations where the input distributions F1, . . . , Fm are

unknown but real-world data are available. One then has to use their estimates F̂1, . . . , F̂m to drive

the simulation. Denote a point estimate of ψ(F1, . . . , Fm) as ψ̄(F̂1, . . . , F̂m), where typically we

take

ψ̄(F̂1, . . . , F̂m) =
1

q

q∑
r=1

ψ̂r(F̂1, . . . , F̂m)

with ψ̂r(F̂1, . . . , F̂m) being a conditionally unbiased simulation replication driven by F̂1, . . . , F̂m.

This point estimate is affected by both the input statistical noises and the simulation noises. By

conditioning on the estimated input distributions (or viewing the point estimate as a random

effect model with uncorrelated input and simulation noises), the variance of ψ̄(F̂1, . . . , F̂m) can be

expressed as

Var[ψ̄(F̂1, . . . , F̂m)] = σ2
I + σ2

S

where

σ2
I = Var[ψ(F̂1, . . . , F̂m)] (2.1)

is the input variance, and

σ2
S =

E[Var[ψ̂r(F̂1, . . . , F̂m)|F̂1, . . . , F̂m]]

q

is the variance contributed from the simulation noises. Assuming that the estimates F̂i’s are

consistent in estimating Fi’s, then, as ni grows, σ2
S is approximately Var[ψ̂r(F1, . . . , Fm)]/q and

can be estimated by taking the sample variance of all simulation replications (see, e.g., Cheng and

Holland (1997)). On the other hand, σ2
I signifies the output variance contributed solely from the

input data noises, assuming a fully accurate evaluation of the performance measure ψ. Estimating

σ2
I is the key and the challenge in quantifying input uncertainty, which is the focus of this chapter.

Before going into details, we discuss two conceptual properties on σ2
I that would be relevant in

motivating and pinpointing our study. First, suppose further that for each input model i, we have
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ni i.i.d. data {Xi,1, . . . , Xi,ni} generated from the distribution Fi. When ni’s are large, typically

the overall input variance σ2
I is decomposable into

σ2
I ≈

m∑
i=1

σ2
i

ni
(2.2)

where σ2
i /ni is the variance contributed from the data noise for model i, with σ2

i being a constant. In

the parametric case where F̂i comes from a parametric family containing the estimated parameters,

this decomposition is well known from the delta method (Asmussen and Glynn (2007), Chapter 3).

Here, σ2
i /ni is typically ∇iψ′Σi∇iψ, where ∇iψ is the collection of sensitivity coefficients, i.e., the

gradient, with respect to the parameters in model i, and Σi is the asymptotic estimation variance

of the point estimates of these parameters (scaled reciprocally with ni). In the nonparametric

case where the empirical distribution F̂i(x) :=
∑ni

j=1 δXi,j (x)/ni is used (where δXi,j denotes the

delta measure at Xi,j), (2.2) still holds under mild conditions (e.g., Propositions 2.4.1 and 2.4.6 in

the sequel). In this setting the quantity σ2
i is equal to VarFi [gi(Xi)], where gi(·) is the influence

function (Hampel (1974)) of ψ with respect to the distribution Fi, whose domain is the value space

of the input variate Xi, and VarFi [·] denotes the variance under Fi. The influence function can

be viewed as a functional derivative taken with respect to the probability distributions Fi’s (see

Serfling (2009), Chapter 6), and dictates the first-order asymptotic behavior of the plug-in estimate

of ψ. Although the mathematical form of σ2
i ’s is known, it relies on gradient information that needs

to be estimated via simulation itself. Moreover, in the nonparametric case, the gradient dimension

in a sense grows with the data size. Thus directly using the delta method in this case could be

challenging. In our subsequent developments, we focus on the nonparametric case, both because

this is more challenging, and also that this can be viewed as a generalization of the parametric case

by viewing the “parameter” simply as a function of Fi’s.

Second, under further regularity conditions, a Gaussian approximation holds for ψ̄(F̂1, . . . , F̂m)

so that

ψ̄(F̂1, . . . , F̂m)± z1−α/2

√
σ2
I + σ2

S (2.3)

is an asymptotically tight (1− α)-level CI for ψ(F1, . . . , Fm), where z1−α/2 is the standard normal
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1−α/2 quantile. This CI, which provides a bound-based alternative to quantify input uncertainty,

again requires a statistically valid estimate of σ2
I or

∑m
i=1 σ

2
i /ni (and σ2

S). In this chapter we

primarily focus on the estimation of σ2
I and how our proposed approach substantially improves

upon previous methods in this regard. Naturally, the improved estimate of σ2
I also translates into

a better CI when using (2.3). We caution, however, that an optimal procedural configuration to

estimate σ2
I does not necessarily correspond to an optimal configuration in constructing the CI, as

the performance of the latter is measured by different criteria such as coverage or half-width (such

a difference in optimally estimating variance versus CI has also been observed in other contexts

such as time series (Sun et al. (2008))). Nonetheless, we will show that a direct plug-in of our new

estimator of σ2
I into (2.3) is already enough to significantly outperform conventional bootstrap-

based CIs suggested in the literature, both theoretically and also supported by consistent empirical

evidence.

Next we will discuss bootstrap resampling, the commonest estimation technique that forms the

basis of our comparison.

2.2.3 Bootstrap Resampling

Let F̂ ∗i represent the empirical distribution constructed using a bootstrap resample from the original

data {Xi,1, . . . , Xi,ni} for input Fi, i.e., ni points drawn by uniformly sampling with replacement

from {Xi,1, . . . , Xi,ni}. The bootstrap variance estimator is Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)], where Var∗[·]

denotes the variance over the bootstrap resamples from the data, conditional on F̂1, . . . , F̂m.

The principle of bootstrap entails that Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)] ≈ Var[ψ(F̂1, . . . , F̂m)] = σ2

I . Here

Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)] is obtained from a (hypothetical) infinite number of bootstrap resamples and

simulation runs per resample. In practice, however, one would need to use a finite bootstrap size

and a finite simulation size. This comprises B conditionally independent bootstrap resamples of

{F̂ ∗1 , . . . , F̂ ∗m}, and R simulation replications driven by each realization of the resampled input

distributions. This generally incurs two layers of Monte Carlo errors.

Denote ψ̂r(F̂
b
1 , . . . , F̂

b
m) as the r-th simulation run driven by the b-th bootstrap resample. Denote

ψ̄b as the average of the R simulation runs driven by the b-th resample, and ¯̄ψ as the grand sample
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average from all the BR runs. An unbiased estimator for Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)] is given by

1

B − 1

B∑
b=1

(ψ̄b − ¯̄ψ)2 − V

R
(2.4)

where

V =
1

B(R− 1)

B∑
b=1

R∑
r=1

(ψ̂r(F̂
b
1 , . . . , F̂

b
m)− ψ̄b)2.

To explain, the first term in (2.4) is an unbiased estimate of the variance of ψ̄b, which can be

expressed as Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)] + (1/R)E∗[Var[ψ̂r(F̂

∗
1 , . . . , F̂

∗
m)|F̂ ∗1 , . . . , F̂ ∗m]] (where E∗[·] denotes

the expectation on F̂ ∗i ’s conditional on F̂i’s), since ψ̄b incurs both the bootstrap noise and the

simulation noise. In other words, the variance of ψ̄b is upward biased for Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)]. The

second term in (2.4), namely V/R, removes this bias. This bias adjustment can be derived by view-

ing Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)] as the variance of a conditional expectation. Alternately, ψ̂r(F̂

∗
1 , . . . , F̂

∗
m)

can be viewed as a random effect model where each “group” corresponds to each realization of

F̂ ∗1 , . . . , F̂
∗
m, and (2.4) estimates the “between-group” variance in an analysis-of-variance (ANOVA).

Formula (2.4) has appeared in the input uncertainty literature, e.g., Cheng and Holland (1997),

Song and Nelson (2015), Lin et al. (2015), and also in Zouaoui and Wilson (2004) in the Bayesian

context. Algorithm 1 summarizes the procedure.

More generally, to estimate the variance contribution from the data noise of model i only, namely

σ2
i /ni, one can bootstrap only from {Xi,1, . . . , Xi,ni} and keep other input distributions F̂j , j 6= i

fixed. Then F̂ ∗i and F̂j , j 6= i are used to drive the simulation runs. With this modification, the same

formula (2.4) or Algorithm 1 is an unbiased estimate for Var∗[ψ(F̂1, . . . , F̂i−1, F̂
∗
i , F̂i+1, . . . , F̂m)],

which is approximately Var[ψ(F1, . . . , Fi−1, F̂i, Fi+1, . . . , Fm)] by the bootstrap principle, in turn

asymptotically equal to σ2
i /ni introduced in (2.2). This observation appeared in, e.g., Song et al.

(2014); in Section 2.4 we give further justifications.

2.2.4 A Complexity Barrier

We explain intuitively the total number of simulation runs needed to ensure that the variance

bootstrap depicted above can meaningfully estimate the input variance. For convenience, we call
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Algorithm 1 ANOVA-based Variance Bootstrap

Given: B ≥ 2, R ≥ 2; data = {Xi,j : i = 1, . . . ,m, j = 1, . . . , ni}

for b = 1 to B do

For each i, draw a sample {Xb
i,1, . . . , X

b
i,ni
} uniformly with replacement from the data to obtain

a resampled empirical distribution F̂ bi

for r = 1 to R do

Simulate ψ̂r(F̂
b
1 , . . . , F̂

b
m)

end for

Compute ψ̄bBV = 1
R

∑R
r=1 ψ̂r(F̂

b
1 , . . . , F̂

b
m)

end for

Compute V = 1
B(R−1)

∑B
b=1

∑R
r=1(ψ̂r(F̂

b
1 , . . . , F̂

b
m)− ψ̄bBV )2 and ¯̄ψBV = 1

B

∑B
b=1 ψ̄

b
BV

Output σ̂2
BV = 1

B−1

∑B
b=1(ψ̄bBV −

¯̄ψBV )2 − V
R

this number the simulation complexity. This quantity turns out to be of order bigger than the

data size. On a high level, it is because the input variance scales reciprocally with the data

size (recall (2.2)). Thus, when the data size increases, the input variance becomes smaller and

increasingly difficult to estimate with controlled relative error. This in turn necessitates the use of

more simulation runs.

To explain more concretely, denote n as a scaling of the data size, i.e., we assume ni all grow

linearly with n, which in particular implies that σ2
I is of order 1/n. We analyze the error of σ̂2

BV

from Algorithm 1 in estimating σ2
I . Since σ̂2

BV is unbiased for Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)] which is in turn

close to σ2
I , roughly speaking it suffices to focus on the variance of σ̂2

BV . To analyze this later

quantity, we denote a generic simulation run in our procedure, ψ̂r(F̂
∗
1 , . . . , F̂

∗
m), as

ψ̂r(F̂
∗
1 , . . . , F̂

∗
m) = ψ(F̂1, . . . , F̂m) + δ + ξ

where

δ := ψ(F̂ ∗1 , . . . , F̂
∗
m)− ψ(F̂1, . . . , F̂m), ξ := ψ̂r(F̂

∗
1 , . . . , F̂

∗
m)− ψ(F̂ ∗1 , . . . , F̂

∗
m).
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are the errors arising from the bootstrap of the input distributions and the simulation respectively.

If ψ is sufficiently smooth, δ elicits a central limit theorem and is of order Θp(1/
√
n). On the other

hand, the simulation noise ξ is of order Θp(1).

Via an ANOVA-type analysis as in Sun et al. (2011), we have

Var∗[σ̂
2
BV ] =

1

B
(E∗[δ4]− (E∗[δ2])2) +

2

B(B − 1)
(E∗[δ2])2 +

2

B2R2(B − 1)
(E∗[ξ2])2 +

2

B2R3
E∗[ξ4]

+
2(B + 1)

B2R(B − 1)
E∗[δ2]E∗[ξ2] +

2(BR2 +R2 − 4R+ 3)

B2R3(R− 1)
E∗[(E[ξ2|F̂ ∗1 , . . . , F̂ ∗m])2]

+
4B + 2

B2R
E∗[δ2ξ2] +

4

B2R2
E∗[δξ3]. (2.5)

Now, putting δ = Θp(1/
√
n) and ξ = Θp(1) formally into (2.5), and ignoring constant factors,

results in

Var∗[σ̂
2
BV ] = Op

(
1

Bn2
+

1

B2n2
+

1

B3R2
+

1

B2Rn
+

1

B2R3
+

1

BR2
+

1

BRn
+

1

B2R2
√
n

)

or simply

Op

(
1

Bn2
+

1

BR2

)
(2.6)

The two terms in (2.6) correspond to the variances coming from the bootstrap resampling and the

simulation runs respectively.

Since σ2
I is of order 1/n, meaningful estimation of σ2

I needs measured by the relative error. In

other words, we want to achieve σ̂2
BV /σ

2
I

p→ 1 as the simulation budget grows. This property, which

we call relative consistency, requires σ̂2
BV to have a variance of order o(1/n2) (i.e., a standard error

of o(1/n)) in order to compensate for the decreasing order of σ2
I .

We argue that this implies unfortunately that the total number of simulation runs, BR, must

be ω(n), i.e., of order higher than the data size. To explain, note that the first term in (2.6) forces

one to use B = ω(1), i.e., the bootstrap size needs to grow with n, an implication that is quite

natural. The second term in (2.6), on the other hand, dictates also that BR2 = ω(n2), which

is satisfied if we use R = Θ(n) provided that B is already ω(1). Note that this gives rise to a
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total simulation effort BR = ω(1) · Θ(n) = ω(n), which can not be reduced further because the

requirement BR2 = ω(n2) already entails that (BR)2 ≥ BR2 = ω(n2) must hold.

We summarize the above with the following result. Let N be the total simulation effort, and

recall n as the scaling of the data size. We have:

Theorem 2.2.1 (Simulation complexity of variance bootstrap) Under Assumptions 2.4.1-

2.4.7 to be stated in Section 2.4.1, the required simulation budget to achieve relative consistency in

estimating σ2
I by Algorithm 1, i.e., σ̂2

BV /σ
2
I

p→ 1, is N = ω(n).

Though out of the scope of this work, there are indications that such a computational barrier

occurs in other types of bootstrap. For instance, the percentile bootstrap studied in Barton and

Schruben (1993, 2001) appears to also require an inner replication size large enough compared

to the data size in order to obtain valid quantile estimates (the authors actually used one inner

replication, but Barton (2012) commented that more is needed). Yi and Xie (2017) provides an

interesting approach based on ranking and selection to reduce the simulation effort, though they

do not investigate the order of the needed effort relative to the data size. The empirical likelihood

framework studied in Lam and Qian (2017) requires a similarly higher order of simulation runs

to estimate the influence function. Nonetheless, in this work we focus only on how to reduce

computation load in variance estimation.

2.3 Procedures and Guarantees in the Subsampling Framework

This section presents our methodologies and results on subsampling. Section 2.3.1 first explains

the rationale and the subsampling procedure. Section 2.3.2 then presents our main theoretical

guarantees, deferring some elaborate developments to Section 2.4.

2.3.1 Proportionate Subsampled Variance Bootstrap

As explained before, a huge simulation effort is required for the σ̂2
BV in Algorithm 1 to achieve

relative consistency, because the input variance shrinks at the rate 1/n as the input data size

grows. In general, in order to estimate a quantity that is of order 1/n, one must use a sample size
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more than n so that the estimation error relatively vanishes. This requirement manifests in the

inner replication size R = Θ(n) needed in constructing σ̂2
BV .

To reduce the inner replication size, we leverage the relation between the form of the input

variance and the estimation variance depicted in (2.6) as follows. The approximate input variance

contributed from model i, with data size ni, has the form σ2
i /ni. If we use the variance bootstrap

directly as in Algorithm 1, then we need an order more than n total simulation runs due to (2.6).

Now, pretend that we have fewer than ni but still sufficiently many data, say si, then the input

variance will be approximately σ2
i /si, and the required simulation runs is now only of order higher

than si due to a reduced inner replication size R = Θ(si). An estimate of σ2
i /si, however, already

gives us enough information in estimating σ2
i /ni, because we can rescale our estimate of σ2

i /si

by si/ni to get an estimate of σ2
i /ni. Estimating σ2

i /si can be done by subsampling the input

distribution with size si. With this, we can both use fewer simulation runs and also retain correct

estimation via multiplying by a si/ni factor.

To make the above argument more transparent, the bootstrap principle and the asymptotic

approximation of the input variance imply that

Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)] =

m∑
i=1

σ2
i

ni
(1 + op(1))

as the input data size n grows while F1, . . . , Fm and ψ are fixed. As a side note, we comment

that the op(1) error term is usually independent of the dimensions of the inputs Fi’s because the

variance depends on the inputs only through the scalar quantity ψ (see the proof of Theorem 2.4.7

for a related analysis). The subsampling approach builds on the observation that a similar relation

holds for

Var∗[ψ(F̂ ∗s1,1, . . . , F̂
∗
sm,m)] =

m∑
i=1

σ2
i

si
(1 + op(1))

where F̂ ∗si,i denotes a bootstrapped input distribution of size si (i.e., an empirical distribution of

size si that is uniformly sampled with replacement from {Xi,1, . . . , Xi,ni}). If we let si = bθnic for

some θ > 0 so that si → ∞ (where b·c is the floor function, i.e. the largest integer less than or
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equal to ·), then we have

Var∗[ψ(F̂ ∗bθn1c,1, . . . , F̂
∗
bθnmc,m)] =

m∑
i=1

σ2
i

θni
(1 + op(1)).

Multiplying both sides with θ, we get

θVar∗[ψ(F̂ ∗bθn1c,1, . . . , F̂
∗
bθnmc,m)] =

m∑
i=1

σ2
i

ni
(1 + op(1)).

Note that the right hand side above is the original input variance of interest. This leads to our

proportionate subsampled variance bootstrap: We repeatedly subsample collections of input distri-

butions from the data, with size bθnic for model i, and use them to drive simulation replications.

We then apply the ANOVA-based estimator in (2.4) on these replications, and multiply it by a

factor of θ to obtain our final estimate. We summarize this procedure in Algorithm 2. The term

“proportionate” refers to the fact that we scale the subsample size for all models with a single

factor θ. For convenience, we call θ the subsample ratio.

Algorithm 2 Proportionate Subsampled Variance Bootstrap

Parameters: B ≥ 2, R ≥ 2, 0 < θ ≤ 1; data = {Xi,j : i = 1, . . . ,m, j = 1, . . . , ni}

Compute si = bθnic for all i

for b = 1 to B do

For each i, draw a subsample {Xb
i,1, . . . , X

b
i,si
} uniformly with replacement from the data, which

forms the empirical distribution F̂ bsi,i

for r = 1 to R do

Simulate ψ̂r(F̂
b
s1,1

, . . . , F̂ bsm,m)

end for

Compute ψ̄b = 1
R

∑R
r=1 ψ̂r(F̂

b
s1,1

, . . . , F̂ bsm,m)

end for

Compute V = 1
B(R−1)

∑B
b=1

∑R
r=1(ψ̂r(F̂

b
s1,1

, . . . , F̂ bsm,m)− ψ̄b)2 and ¯̄ψ = 1
B

∑B
b=1 ψ̄

b

Output σ̂2
SV B = θ( 1

B−1

∑B
b=1(ψ̄b − ¯̄ψ)2 − V

R )
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Similar ideas apply to estimating the individual variance contribution from each input model,

namely σ2
i /ni. Instead of subsampling all input distributions, we only subsample the distribution,

say F̂ ∗si,i whose uncertainty is of interest, while fixing all the other distributions as the original

empirical distributions, i.e., F̂j , j 6= i. All the remaining steps in Algorithm 2 remain the same

(thus the “proportionate” part can be dropped). This procedure is depicted in Algorithm 3.

Algorithm 3 Subsampled Variance Bootstrap for Variance Contribution from the i-th Input Model

Parameters: B ≥ 2, R ≥ 2, 0 < θ ≤ 1; data = {Xi,j : i = 1, . . . ,m, j = 1, . . . , ni}

Compute si = bθnic

for b = 1 to B do

Draw a subsample {Xb
i,1, . . . , X

b
i,si
} uniformly with replacement from the i-th input data set,

which forms the empirical distribution F̂ bsi,i

for r = 1 to R do

Simulate ψ̂r(F̂1, . . . , F̂i−1, F̂
b
si,i
, F̂i+1, . . . , F̂m)

end for

Compute ψ̄b = 1
R

∑R
r=1 ψ̂r(F̂1, . . . , F̂i−1, F̂

b
si,i
, F̂i+1, . . . , F̂m)

end for

Compute V = 1
B(R−1)

∑B
b=1

∑R
r=1(ψ̂r(F̂1, . . . , F̂i−1, F̂

b
si,i
, F̂i+1, . . . , F̂m)−ψ̄b)2 and ¯̄ψ = 1

B

∑B
b=1 ψ̄

b

Output σ̂2
SV B,i = θ( 1

B−1

∑B
b=1(ψ̄b − ¯̄ψ)2 − V

R )

2.3.2 Statistical Guarantees

Algorithm 2 provides the following guarantees. Recall that N = BR is the total simulation effort,

and n is the scaling of the data size. We have the following result:

Theorem 2.3.1 Under Assumptions 2.4.1-2.4.7 to be stated in Section 2.4.1, if the parameters

B,R, θ of Algorithm 2 are chosen such that

B →∞, BR2

(θn)2
→∞, θn→∞ as n→∞ (2.7)
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then the variance estimate σ̂2
SV B is relatively consistent, i.e. σ̂2

SV B/σ
2
I

p→ 1.

Theorem 2.3.1 tells us what orders of the bootstrap size B, inner replication size R and subsample

ratio θ would guarantee a meaningful estimation of σ2
I . Note that θ ≈ si/ni for each i, so that

θn = ω(1) is equivalent to setting the subsample size si = ω(1). In other words, we need the natural

requirement that the subsample size grows with the data size, albeit can have an arbitrary rate.

Given a subsample ratio θ specified according to (2.7), the configurations of B and R under (2.7)

that achieve the minimum overall simulation budget is B = ω(1) and R = Ω(θn). This is because

to minimize N = BR while satisfying the second requirement in (2.7), it is more economical to

allocate as much budget to R instead of B. This is stated precisely as:

Corollary 2.3.2 Under the conditions of Theorem 2.3.1, given θ such that θn→∞, the values of

B and R to achieve (2.7) and hence relative consistency that requires the least order of effort are

B → ∞ and R ≥ Cθn for some constant C > 0, leading to a total simulation budget N such that

N
θn →∞.

Note that θn is the order of the subsample size. Thus Corollary 2.3.2 implies that the required

simulation budget must grow linearly in the subsample size. However, since the subsample size can

be chosen to grow at an arbitrarily small rate, this implies that the total budget can also grow

arbitrarily slow relative to the input data size. Therefore, we have:

Corollary 2.3.3 (Simulation complexity) Under the same conditions of Theorem 2.3.1, the

minimum required simulation budget to achieve relative consistency in estimating σ2
I by Algorithm

2, i.e., σ̂2
SV B/σ

2
I

p→ 1, is N →∞ as n→∞ by using a θ such that θn→∞.

Compared to Theorem 2.2.1, Corollary 2.3.3 stipulates that our subsampling approach reduces

the required simulation effort from a higher order than n to an arbitrary order, i.e., independent of

the data size. This is achieved by using a subsample size that grows with n at an arbitrary order,

or equivalently a subsample ratio θ that grows faster than 1/n.

The following result describes the configurations of our scheme when a certain total simulation

effort is given. In particular, it shows, for a given total simulation effort, the range of subsample
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ratio for which Algorithm 2 can possibly generate valid variance estimates by appropriately choosing

B and R:

Theorem 2.3.4 (Valid subsample ratio given total budget) Assume the same conditions of

Theorem 2.3.1. Given a total simulation budget N such that N →∞, if the subsample ratio satisfies

θn→∞ and θn
N → 0, then the bootstrap size B and the inner replication size R can be appropriately

chosen according to criterion (2.7) to achieve relative consistency, i.e., σ̂2
SV B/σ

2
I

p→ 1.

The next result is on the optimal configurations of our scheme in minimizing the Monte Carlo

error. To proceed, define

σ2
SV B = θVar∗[ψ(F̂ ∗bθn1c,1, . . . , F̂

∗
bθnmc,m)] (2.8)

as the perfect form of our proportionate subsampled variance bootstrap introduced in Section 2.3.1,

namely without any Monte Carlo noises, and 0 < θ ≤ 1 is the subsample ratio. We have:

Theorem 2.3.5 (Optimal budget allocation) Assume the same conditions of Theorem 2.3.1.

Given a simulation budget N and a subsample ratio θ such that N
θn →∞ and θn→∞, the optimal

outer and inner sizes that minimize the order of the conditional mean squared error E∗[(σ̂2
SV B −

σ2
SV B)2] are

B∗ =
N

R∗
, R∗ = Θ(θn)

giving a conditional mean squared error E∗[(σ̂2
SV B − σ2

SV B)2] = Θ(θ/(Nn))(1 + op(1)).

Note that the mean squared error, i.e. E∗[(σ̂2
SV B − σ2

SV B)2], of the Monte Carlo estimate σ̂2
SV B is

random because the underlying resampling is conditioned on the input data, therefore the bound

at the end of Theorem 2.3.5 contains a stochastically vanishing term op(1).

We next present the optimal tuning of the subsample ratio. This requires a balance of the

trade-off between the input statistical error and the Monte Carlo simulation error. To explain, the

overall error of σ̂2
SV B by Algorithm 2 can be decomposed as

σ̂2
SV B − σ2

I = (σ̂2
SV B − σ2

SV B) + (σ2
SV B − σ2

I ). (2.9)
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The first term is the Monte Carlo error for which the optimal outer size B, inner size R and the

resulting mean squared error are governed by Theorem 2.3.5. In particular, the mean squared error

there shows that under a fixed simulation budget N and the optimal allocation R = Θ(θn), the

Monte Carlo error gets larger as θ increases. The second term is the statistical errors due to the

finiteness of input data and θ. Since θ measures the amount of data contained in the resamples,

we expect this second error to become smaller as θ increases. The optimal tuning of θ relies on

balancing such a trade-off between the two sources of errors.

We have the following optimal configurations of B, R and θ altogether given a budget N :

Theorem 2.3.6 (Optimal subsample size) Suppose Assumptions 2.4.1, 2.4.3-2.4.7 in Section

2.4.1 and Assumptions 2.4.10-2.4.12 in Section 2.4.3 hold. For a given simulation budget N such

that N → ∞ as n → ∞, if the subsample ratio θ and outer and inner sizes B,R for Algorithm 2

are set to 
θ∗ = Θ

(
N1/3n−1

)
if 1� N ≤ n3/2

Θ(n−1/2) ≤ θ∗ ≤ Θ
(
Nn−2 ∧ 1

)
if N > n3/2

(2.10)

R∗ = Θ(θ∗n), B∗ =
N

R∗
(2.11)

then the gross error σ̂2
SV B − σ2

I = E + op(N
−1/3n−1 + n−3/2), where the leading term has a mean

squared error

E[E2] = O
( 1

N2/3n2
+

1

n3

)
. (2.12)

Moreover, if R = Θ((ns)−1) and at least one of the Σi’s are positive definite, where R and Σi are

as defined in Lemma 2.4.8, then (2.12) holds with an exact order (i.e., O(·) becomes Θ(·)) and the

configuration (2.10), (2.11) is optimal in the sense that no configuration gives rise to a gross error

σ̂2
SV B − σ2

I = op
(
N−1/3n−1 + n−3/2

)
.

Note from (2.12) that, if the budget N = ω(1), our optimal configurations guarantee the

estimation mean squared error decays faster than 1/n2. Recall that the input variance is of order

1/n, and thus an estimation error of order higher than 1/n2 ensures that the estimator is relatively
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consistent in the sense σ̂2
SV B/σ

2
I

p→ 1. This recovers the result in Corollary 2.3.3. We also comment

that the algorithmic configuration given in Theorem 2.3.6 is chosen to optimize the mean squared

error of the input variance estimate, but does not necessarily generates the most accurate CI. There

exists evidence (e.g., Sun et al. (2008)) that the optimal choice to minimize the mean squared error

of the variance estimate can be different from the one that is optimal for statistical inference,

although in our experiments they seem to match closely with each other.

We comment that all the results in this section hold if one estimates the individual variance

contribution from each input model i, namely by using Algorithm 3. In this case we are interested

in estimating the variance σ2
i /ni, and relative consistency means σ̂2

SV B,i/(σ
2
i /ni)

p→ 1. The data

size scaling parameter n can be replaced by ni in all our results.

Finally, we also comment that the complexity barrier described in Section 2.2.4 and our frame-

work presented in this section applies in principle to the parametric regime, i.e., when the input

distributions are known to lie in parametric families with unknown parameters. The assumptions

and mathematical details would need to be catered to that situation, which could be done naturally

by viewing the “parameter” as a function of Fi’s.

2.4 Developments of Theoretical Results

We present our main developments leading to the algorithms and results in Section 2.3. Section

2.4.1 first states in detail our assumptions on the performance measure. Section 2.4.2 presents the

theories leading to estimation accuracy, simulation complexity and optimal budget allocation in the

proportionate subsampled variance bootstrap. Section 2.4.3 investigates optimal subsample sizes

that lead to overall best configurations.

2.4.1 Regularity Assumptions

We first assume that the data sets for all input models are of comparable size.

Assumption 2.4.1 (Balanced data) lim supall ni→∞
maxi ni
mini ni

<∞ as all ni →∞.



CHAPTER 2. SUBSAMPLING TO ENHANCE EFFICIENCY 26

Recall in Sections 2.2 and 2.3 that we have denoted n as a scaling of the data size. More concretely,

we take n = (1/m)
∑m

i=1 ni as the average input data size under Assumption 2.4.1.

We next state a series of general assumptions on the performance measure ψ. These assumptions

hold for common finite-horizon measures, as we will present. For each i let Ξi be the support of

the i-th true input model Fi, and the collection of distributions Pi be the convex hull spanned by

Fi and all Dirac measures on Ξi, i.e.

Pi =
{
ν1Fi +

l∑
k=2

νk1xk :
l∑

k=1

νk = 1, νk ≥ 0, l <∞, xk ∈ Ξi for all k
}
.

We assume the following differentiability of the performance measure.

Assumption 2.4.2 (First order differentiability) For any distributions Pi, Qi ∈ Pi, denote

P νii = (1− νi)Pi + νiQi for νi ∈ [0, 1]. Assume there exist functions gi(P1, . . . , Pm; ·) : Ξi → R such

that EPi [gi(P1, . . . , Pm;Xi)] = 0 for i = 1, . . . ,m and as all νi’s approach zero

ψ(P ν11 , . . . , P νmm )−ψ(P1, . . . , Pm) =

m∑
i=1

νi

∫
gi(P1, . . . , Pm;x)d(Qi−Pi)(x) + o

(√√√√ m∑
i=1

ν2
i

)
. (2.13)

The differentiability described above is defined with respect to a particular direction, namely Qi−

Pi, in the space of probability measures, and is known as Gateaux differentiability or directional

differentiability (e.g., Serfling (2009), Van der Vaart (2000)). Assumption 2.4.2 therefore requires

the performance measure ψ to be Gateaux differentiable when restricted to the convex set P1 ×

· · · × Pm. The functions gi’s are also called the influence functions (e.g., Hampel (1974)) that

play analogous roles as standard gradients in the Euclidean space. The condition of gi’s having

vanishing means is without loss of generality since such a condition can always be achieved by

centering, i.e., subtracting the mean. Note that doing this does not make any difference to the first

term of expansion (2.13) because both Qi and Pi are probability measures. Taking each νi = 1 in

(2.13), one informally obtains the Taylor expansion of ψ around Pi’s

ψ(Q1, . . . , Qm)− ψ(P1, . . . , Pm) ≈
m∑
i=1

∫
gi(P1, . . . , Pm;x)d(Qi − Pi)(x).
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When each Pi is set to be the true input model Fi and Qi to be the empirical input model F̂i, the

above linear expansion is expected to be a reasonably good approximation as the data size grows.

The next assumption imposes a moment bound on the error of this approximation:

Assumption 2.4.3 (Smoothness at true input models) Denote by gi(·) := gi(F1, . . . , Fm; ·)

the influence functions at the true input distributions Fi, i = 1, . . . ,m. Assume that the remainder

in the Taylor expansion of the performance measure

ψ(F̂1, . . . , F̂m) = ψ(F1, . . . , Fm) +

m∑
i=1

∫
gi(x)d(F̂i − Fi)(x) + ε (2.14)

satisfies E[ε2] = o(n−1) as n → ∞, and the influence functions gi’s are non-degenerate, i.e. σ2
i :=

VarFi [gi(Xi)] > 0, and have finite fourth moments, i.e. EFi [g4
i (Xi)] <∞.

Assumption 2.4.3 entails that the error of the linear approximation formed by influence functions

is negligible in the asymptotic sense. Indeed, the linear term in (2.14) is asymptotically of order

Θp(n
−1/2) by the central limit theorem, whereas the error ε is implied by Assumption 2.4.3 to

be op(n
−1/2). Hence the variance of the linear term contributes dominantly to the overall input

variance as ni’s are large. Note that, like the op(1) error in approximating the input variance using

the bootstrap principle, the o(n−1) order for E[ε2] is typically independent of the dimensions of

the input distributions, as can be seen from the proof of Theorem 2.4.7. Then, thanks to the

independence among the input models, the input variance can be expressed in the additive form

described in (2.2) together with a negligible error.

Proposition 2.4.1 Under Assumptions 2.4.1-2.4.3, the input variance σ2
I defined in (2.1) takes

the form

σ2
I =

m∑
i=1

σ2
i

ni
+ o
( 1

n

)
as n→∞

where each σ2
i = VarFi [gi(Xi)] is the variance of the i-th influence function.

As mentioned before, consistent estimation of input variance σ2
I relies on the bootstrap principle,

for which we make the following additional assumptions. The assumption states that the error of

the linear approximation (2.14) remains small when the underlying distributions Fi are replaced by
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the empirical input distributions F̂i, hence can be viewed as a bootstrapped version of Assumption

2.4.3.

Assumption 2.4.4 (Smoothness at empirical distributions) Let ĝi(·) := gi(F̂1, . . . , F̂m; ·) be

the influence functions at the empirical input distributions F̂i, i = 1, . . . ,m. Assume the empirical

influence function converges to the truth in the sense that E[(ĝi− gi)4(Xi,1)]→ 0. For each i let F i

be either the i-th empirical input model F̂i or the resampled model F̂ ∗si,i. For every (F 1, . . . , Fm) ∈∏m
i=1{F̂i, F̂ ∗si,i}, assume the remainder in the Taylor expansion

ψ(F 1, . . . , Fm) = ψ(F̂1, . . . , F̂m) +

m∑
i=1

∫
ĝi(x)d(F i − F̂i)(x) + ε∗ (2.15)

satisfies E∗[(ε∗)4] = op
(
s−2
)

as both n, s→∞, where s := 1
m

∑m
i=1 si is the average subsample size.

As the data sizes ni’s grow, the empirical input distributions F̂i converge to the true ones Fi. Hence

the empirical influence functions ĝi’s are expected to approach the influence functions gi’s associated

with the true input distributions, which explains the convergence condition in Assumption 2.4.4.

The fourth moment condition on the remainder ε∗ is needed for controlling the variance of our

variance estimator. Since the fourth moment is with respect to the resampling measure and thus

depends on the underlying input data, the condition is described in terms of stochastic order. Note

that we require (2.15) to hold not just when F i = F̂ ∗si,i for all i but also when some F i = F̂i.

This allows us to estimate the variance contributed from an arbitrary group of input models and

in particular an individual input model.

Assumptions 2.4.2-2.4.4 are on the performance measure ψ itself. Next we impose assumptions

on the simulation noise, i.e. the stochastic error ψ̂r−ψ where ψ̂r is an unbiased simulation replication

for ψ. We denote by τ2(P1, . . . , Pm) the variance of ψ̂r when simulation is driven by arbitrary input

models P1, . . . , Pm, i.e.

τ2(P1, . . . , Pm) = EP1,...,Pm [(ψ̂r − ψ(P1, . . . , Pm))2].

Similarly we denote by µ4(P1, . . . , Pm) the fourth central moment of ψ̂r under the input models
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P1, . . . , Pm

µ4(P1, . . . , Pm) = EP1,...,Pm [(ψ̂r − ψ(P1, . . . , Pm))4].

In particular, for convenience we write τ2 = τ2(F1, . . . , Fm) for the variance of ψ̂ under the true

input models, and τ̂2 = τ2(F̂1, . . . , F̂m) for that under the empirical input models.

The assumptions on the simulation noise are:

Assumption 2.4.5 (Convergence of empirical variance) τ̂2 p→ τ2 as n→∞.

Assumption 2.4.6 (Convergence of bootstrapped variance) For every (F 1, . . . , Fm) where

each F i = F̂i or F̂ ∗si,i, it holds that E∗[(τ2(F 1, . . . , Fm)− τ̂2)2] = op(1) as both n, s→∞.

Assumption 2.4.7 (Boundedness of the fourth moment) For every (F 1, . . . , Fm) such that

each F i = F̂i or F̂ ∗si,i, it holds that E∗[µ4(F 1, . . . , Fm)] = Op(1) as both n, s→∞.

Assumptions 2.4.5 and 2.4.6 stipulate that the variance of the simulation replication ψ̂r as a func-

tional of the underlying input models is smooth enough in the inputs. Conceptually Assumption

2.4.5 is in line with Assumption 2.4.3 in the sense that both concern smoothness of a functional

around the true input models, whereas Assumption 2.4.6 is similar to Assumption 2.4.4 since both

are about smoothness property around the empirical input models. Assumption 2.4.7 is a fourth

moment condition like in Assumption 2.4.4 used to control the variance of the variance estimator.

Similar to Assumption 2.4.4, we impose Assumptions 2.4.6 and 2.4.7 for each F i = F̂i or F̂ ∗si,i

so that the same guarantees remain valid when estimating input variances from individual input

models, i.e., Algorithm 3.

Although the above assumptions may look complicated, they can be verified, under minimal

conditions, for generic finite-horizon performance measures in the form

ψ(F1, . . . , Fm) = EF1,...,Fm [h(X1, . . . ,Xm)] (2.16)

where Xi = (Xi(1), . . . , Xi(Ti)) represents the i-th input process consisting of Ti i.i.d. variables

distributed under Fi, each Ti being a deterministic time, and h is a performance function. An

unbiased simulation replication ψ̂r of the performance measure is h(X1, . . . ,Xm).
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Suppose we have the following conditions for the performance function h:

Assumption 2.4.8 For each i, 0 < VarFi [
∑Ti

t=1 EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) = Xi]] <∞.

Assumption 2.4.9 (Parameter k) For each i let Ii = (Ii(1), . . . , Ii(Ti)) be a sequence of indices

such that 1 ≤ Ii(t) ≤ t, and Xi,Ii = (Xi(Ii(1)), . . . , Xi(Ii(Ti))). Assume

max
I1,...,Im

EF1,...,Fm [|h(X1,I1 , . . . ,Xm,Im)|k] <∞.

The conditional expectation in Assumption 2.4.8 is in fact the influence function of the performance

measure (2.16) under the true input models. So Assumption 2.4.8 is precisely the non-degenerate

variance condition in Assumption 2.4.3. All other parts of Assumptions 2.4.2-2.4.7 are consequences

of the moment condition in Assumption 2.4.9:

Theorem 2.4.2 Under Assumptions 2.4.1, 2.4.8 and Assumption 2.4.9 with k = 4, we have As-

sumptions 2.4.2-2.4.7 hold for the finite-horizon performance measure ψ given by (2.16).

2.4.2 Simulation Complexity and Allocation

This section presents theoretical developments on our proportionate subsampled variance bootstrap.

We first establish relative consistency assuming infinite computation resources. Recall (2.8) as

the proportionate subsampled variance bootstrap estimator without any Monte Carlo errors. The

following theorem gives a formal statement on the performance of this estimator discussed in Section

2.3.1.

Theorem 2.4.3 Under Assumptions 2.4.1-2.4.4, if the subsample ratio θ satisfies θn → ∞, then

the proportionate subsampled variance bootstrap without Monte Carlo error, namely (2.8), is rela-

tively consistent as n→∞, i.e.

σ2
SV B/σ

2
I

p→ 1.

The requirement θ = ω(n−1) implies that si → ∞, which is natural as one needs minimally an

increasing subsample size to ensure the consistency of our estimator. It turns out that this minimal

requirement is enough to ensure consistency even relative to the magnitude of σ2
I .
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Now we turn to the discussion of the Monte Carlo estimate of the bootstrap variance generated

from Algorithm 2. The following lemma characterizes the amount of Monte Carlo noise in terms

of mean squared error.

Lemma 2.4.4 The output σ̂2
SV B of Algorithm 2 is unbiased for the proportionate subsampled vari-

ance bootstrap without Monte Carlo errors, namely σ2
SV B. Furthermore, under Assumptions 2.4.1-

2.4.7, if

B →∞, θn→∞ as n→∞ (2.17)

and R is arbitrary, then the conditional mean squared error

E∗[(σ̂2
SV B − σ2

SV B)2] =
2

B

( m∑
i=1

σ2
i

ni
+
τ2θ

R

)2
(1 + op(1)). (2.18)

In addition to the condition θ = ω(n−1) which has appeared in Theorem 2.4.3, we also require

B = ω(1) in Lemma 2.4.4. As the proof reveals, with such a choice of B, we can extract the leading

term of the conditional mean squared error shown in (2.18), which takes a neat form and is easy

to analyze.

Note that σ2
I here is of order n−1 by Proposition 2.4.1. Hence the Monte Carlo noise of the

variance estimate output by our algorithm has to vanish faster than n−1 in order to achieve relative

consistency. Combining Theorem 2.4.3 and Lemma 2.4.4, we obtain the simulation complexity of

σ̂2
SV B in Theorem 2.3.1. To establish the theoretical optimal allocation on the outer and inner sizes

B, R, for given data sizes ni, subsample ratio θ, and total simulation budget N , we minimize the

conditional mean square error (2.18) subject to the budget constraint BR = N . This gives rise to

the following result that gives a more precise (theoretical) statement than Theorem 2.3.5.

Theorem 2.4.5 Suppose Assumptions 2.4.1-2.4.7 hold. Given a simulation budget N and a sub-

sample ratio θ such that N
θn → ∞ and θn → ∞, the optimal outer and inner sizes that minimize

the conditional mean squared error E∗[(σ̂2
SV B − σ2

SV B)2] are

B∗ =
N

R∗
, R∗ =

θτ2∑m
i=1 σ

2
i /ni
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which gives a conditional mean squared error

E∗[(σ̂2
SV B − σ2

SV B)2] =
8θτ2

N

m∑
i=1

σ2
i

ni
(1 + op(1)). (2.19)

Theorem 2.4.5 gives the exact choices of B and R that minimize the Monte Carlo error. However,

this is more of theoretical interest because the optimal R∗ involves the desired input variance∑m
i=1 σ

2
i /ni. Having said that, we can conclude from the theorem that the optimal inner size R is

of order Θ(θn), the same as the subsample size, because the input variance is of order Θ(1/n) by

Proposition 2.4.1 and τ2 is a constant. This results in Theorem 2.3.5 in Section 2.3.2.

2.4.3 Optimal Subsample Ratio

In this section we further establish the optimal subsample ratio θ or equivalently subsample sizes

si that balance the two sources of errors in (2.9). For this, we need more regularity conditions on

the performance measure. The first assumption we need is third order Gateaux differentiability in

the convex set P1 × · · · × Pm:

Assumption 2.4.10 (Third order differentiability) Using the same notations Pi, Qi, P
νi
i as

in Assumption 2.4.2, assume that there exist second order influence functions gi1i2(P1, . . . , Pm; ·) :

Ξi1 × Ξi2 → R and third order influence functions gi1i2i3(P1, . . . , Pm; ·) : Ξi1 × Ξi2 × Ξi3 → R for

i1, i2, i3 = 1, . . . ,m which are symmetric under permutations, namely

gi1i2(P1, . . . , Pm;x1, x2) = gi2i1(P1, . . . , Pm;x2, x1)

gi1i2i3(P1, . . . , Pm;x1, x2, x3) = gi2i1i3(P1, . . . , Pm;x2, x1, x3) = gi1i3i2(P1, . . . , Pm;x1, x3, x2).

and for all x, y satisfy

EPi2 [gi1i2(P1, . . . , Pm;x,Xi2)] = 0, EPi3 [gi1i2i3(P1, . . . , Pm;x, y,Xi3)] = 0.
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Moreover, as all νi’s approach zero the following Taylor expansion holds

ψ(P ν11 , . . . , P νmm )− ψ(P1, . . . , Pm)

=

m∑
i=1

νi

∫
gi(P1, . . . , Pm;x)d(Qi − Pi)(x)

+
1

2

m∑
i1,i2=1

νi1νi2

∫
gi1i2(P1, . . . , Pm;x1, x2)

2∏
k=1

d(Qik − Pik)(xk)

+
1

6

m∑
i1,i2,i3=1

νi1νi2νi3

∫
gi1i2i3(P1, . . . , Pm;x1, x2, x3)

3∏
k=1

d(Qik − Pik)(xk) + o
(( m∑

i=1

ν2
i

) 3
2

)
.

Assumption 2.4.10 complements and strengthens Assumption 2.4.2 in that it imposes stronger

differentiability property. Similarly, the following two assumptions strengthen Assumptions 2.4.3

and 2.4.4 respectively by considering cubic expansions.

Assumption 2.4.11 (Third order smoothness at true input models) Denote by gi1i2(·) :=

gi1i2(F1, . . . , Fm; ·) and gi1i2i3(·) := gi1i2i3(F1, . . . , Fm; ·) the second and third order influence func-

tions under the true input models. Assume the remainder in the Taylor expansion of the plug-in

estimator ψ(F̂1, . . . , F̂m)

ψ(F̂1, . . . , F̂m) = ψ(F1, . . . , Fm) +
m∑
i=1

∫
gi(x)d(F̂i − Fi)(x)

+
1

2

m∑
i1,i2=1

∫
gi1i2(x1, x2)

2∏
k=1

d(F̂ik − Fik)(xk)

+
1

6

m∑
i1,i2,i3=1

∫
gi1i2i3(x1, x2, x3)

3∏
k=1

d(F̂ik − Fik)(xk) + ε3

satisfies E[ε23] = o(n−3) as n → ∞, and the high order influence functions satisfy the moment

conditions

E[g4
i1i2(Xi1,1, Xi2,j2)] <∞, E[g2

i1i2i3(Xi1,1, Xi2,j2 , Xi3,j3)] <∞

for all i1, i2, i3 and j2 ≤ 2, j3 ≤ 3, where Xi,j is the j-th data point from the i-th input model.
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Similar to the remainder ε in Assumption 2.4.3, the moment condition on ε3 here is used to

control the error of the cubic approximation of ψ formed by up to third order influence functions.

With these additional assumptions, the error term in Proposition 2.4.1 can be refined as follows:

Proposition 2.4.6 Under Assumptions 2.4.1, 2.4.3 and 2.4.10-2.4.11, the overall input variance,

as defined in (2.1), can be expressed as

σ2
I =

m∑
i=1

σ2
i

ni
+O

( 1

n2

)
as n→∞.

We also need third order differentiability around the empirical input models:

Assumption 2.4.12 (Third order smoothness at empirical input models) Let ĝi1i2(·) :=

gi1i2(F̂1, . . . , F̂m; ·) and ĝi1i2i3(·) := gi1i2i3(F̂1, . . . , F̂m; ·) be the second and third order influence

functions under the empirical input models. Assume that the remainder in the Taylor expansion of

the bootstrapped performance measure ψ(F̂ ∗s1,1, . . . , F̂
∗
sm,m)

ψ(F̂ ∗s1,1, . . . , F̂
∗
sm,m) = ψ(F̂1, . . . , F̂m) +

∫
ĝi(x)d(F̂ ∗si,i − F̂i)(x)

+
1

2

m∑
i1,i2=1

∫
ĝi1i2(x1, x2)

2∏
k=1

d(F̂ ∗sik ,ik
− F̂ik)(xk)

+
1

6

m∑
i1,i2,i3=1

∫
ĝi1i2i3(x1, x2, x3)

3∏
k=1

d(F̂ ∗sik ,ik
− F̂ik)(xk) + ε∗3

satisfies E∗[(ε∗3)2] = op(s
−3) as both n, s → ∞. In addition, assume the high order empirical

influence functions ĝi1i2 and ĝi1i2i3 converge in mean square error, i.e.

E[(ĝi1i2 − gi1i2)2(Xi1,1, Xi2,j2)]→ 0, E[(ĝi1i2i3 − gi1i2i3)2(Xi1,1, Xi2,j2 , Xi3,j3)]→ 0

for all i1, i2, i3 and j2 ≤ 2, j3 ≤ 3, where Xi,j is the j-th data point from the i-th input model. For

the first order influence function ĝi, assume the remainder in the Taylor expansion

ĝi(Xi,1) = gi(Xi,1) +

m∑
i′=1

∫
gii′(Xi,1, x)d(F̂i′ − Fi′)(x)−

∫
gi(x)d(F̂i − Fi)(x) + εg
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satisfies E[ε2g] = o(n−1) as n→∞.

As for Assumptions 2.4.3 and 2.4.4, finite-horizon performance measures under mild conditions

satisfy the above two assumptions:

Theorem 2.4.7 Under Assumptions 2.4.1, 2.4.8 and Assumption 2.4.9 with k = 4, we have As-

sumptions 2.4.10-2.4.12 hold for the finite-horizon performance measure ψ given by (2.16).

With Assumptions 2.4.11 and 2.4.12, we can identify the statistical error of our variance estimator

assuming infinite computation resources, which we summarize in the following lemma.

Lemma 2.4.8 Under Assumptions 2.4.1, 2.4.3-2.4.4 and 2.4.10-2.4.12, the statistical error of the

proportionate subsampled bootstrap variance is characterized by

σ2
SV B − σ2

I = Z +R+ op(
1

n3/2
+

1

ns
) (2.20)

where Z is a random variable such that

E[Z] = 0, Var[Z] =
m∑
i=1

λTi Σiλi
ni

with λi = (1/ni, 2/n1, . . . , 2/nm)T and

Σi = covariance matrix of (g2
i (Xi),EX′1 [g1(X ′1)g1i(X

′
1, Xi)], . . . ,EX′m [gm(X ′m)gmi(X

′
m, Xi)]).

R is defined as

R =
m∑
i=1

1

nisi
Cov(gi(Xi), gii(Xi, Xi)) +

m∑
i,i′=1

1

nisi′
Cov(gi(Xi),EX′

i′
[gii′i′(Xi, X

′
i′ , X

′
i′)])

+

m∑
i=1

frac(θni)σ
2
i

nisi
+

m∑
i,i′=1

Var[gii′(Xi, X
′
i′)]

4nisi′

where frac(x) := x−bxc denotes the fraction part of x ∈ R, and for each i, Xi, X
′
i are independent

copies of the random variable distributed under Fi.
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Combining the statistical error (2.20), and the minimum Monte Carlo error (2.19) under the

optimal budget allocation into the trade-off (2.9), we obtain the overall error of the output σ̂2
SV B

of Algorithm 2:

Theorem 2.4.9 (Overall error of the variance estimate) Suppose Assumptions 2.4.1, 2.4.3-

2.4.7 and 2.4.10-2.4.12 hold. Given a simulation budget N and a subsample ratio θ such that N
θn →

∞ and θn → ∞, if outer and inner sizes B,R for Algorithm 2 are chosen to be R = Θ(θn), B =

N/R, then the gross error of our Monte Carlo estimate σ̂2
SV B−σ2

I = E+op(θ
1/2(Nn)−1/2+θ−1n−2+

n−3/2), where the leading term has a mean squared error

E[E2] = Θ
( θ

Nn
+R2 +

m∑
i=1

λTi Σiλi
ni

)
(2.21)

where R, λi’s and Σi’s are defined in Lemma 2.4.8.

It is clear from their definitions in Lemma 2.4.8 that R = O(θ−1n−2) and each (λTi Σiλi)/ni =

O(n−3), hence the mean squared error (2.21) is in general of order O(θ(Nn)−1 + θ−2n−4 + n−3).

WhenR and at least one of the λTi Σiλi’s satisfy the non-degeneracy condition in Theorem 2.3.6, this

bound becomes tight in order, and the optimal subsample ratio can be established by minimizing

the order of the leading overall error E .

2.5 Numerical Experiments

This section reports our experimental findings. We consider two examples with different scales and

complexities:

M/M/1 queue: The first example we consider is an M/M/1 queue that has true arrival rate

0.5 and service rate 1. Suppose the system is empty at time zero. The performance measure of

interest is the probability that the waiting time of the 20-th arrival exceeds 2 units of time, whose

true value is approximately 0.182. Specifically, the system has two input distributions, i.e., the

inter-arrival time distribution F1 = Exp(0.5) and the service time distribution F2 = Exp(1), for

which we have n1 and n2 i.i.d. data available respectively. If At is the inter-arrival time between the
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t-th and (t+ 1)-th arrivals, and St is the service time for the t-th arrival, then the system output

ψ(F1, F2) = EF1,F2 [1{W20 > 2}]

where the waiting time W20 is calculated by the Lindley recursion Wt+1 = max{Wt+St−At, 0} for

t = 1, . . . , 19 and W1 = 0. To test the proposed approach under different levels of utilization, we

also consider true arrival rate 0.9 and service rate 1, for which case the target performance measure

is taken to be the probability that the waiting time of the 20-th arrival exceeds 6 units of time

(true value 0.190). The data sizes n1, n2 are chosen so that n1 = 2n2 in the experiments, so only

the minimum mini ni is reported for convenience.

Computer network: We also consider a computer communication network borrowed from

Cheng and Holland (1997) and Lin et al. (2015). The structure of the system is characterized by

the undirected graph in Figure 2.1: Four message-processing units, which correspond to the nodes,

are connected by four transport channels that are represented by the edges. For every pair i, j

Figure 2.1: A computer network with four nodes and four channels.

of processing units with i 6= j, there are external messages that enter into unit i and are to be

transmitted to unit j through a fixed path, and their arrival follows a Poisson process with rate

λi,j . The specific values for λi,j ’s are summarized in Table 2.1. Each unit takes a constant time of

0.001 seconds to process a message, and has unlimited storage capacity. The messages have lengths

that are independent and follow an exponential distribution with mean 300 bits, and each channel

has a capacity of 275000 bits, therefore there are queuing and transmission delays. The messages
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node i

node j
1 2 3 4

1 n.a. 40 30 35
2 50 n.a. 45 15
3 60 15 n.a. 20
4 25 30 40 n.a.

Table 2.1: True arrival rates λi,j of messages to be transmitted from node i to node j.

travel through the channels with a velocity of 150000 miles per second, and the i-th channel has a

length of 100 · i miles for i = 1, 2, 3, 4, leading to a propagation delay of 100·i
150000 seconds along the

i-th channel. The total time that a message of length l bits occupies the i-th channel is therefore

l
275000 + 100·i

150000 seconds. Suppose the system is empty at time zero. The performance measure of

interest is the average delay of the first 30 messages that arrive to the system, or mathematically,

E[ 1
30

∑30
k=1Dk], where Dk is the time for the k-th message to be transmitted from its entering

node to destination node. The true value of the performance measure is approximately 6.91× 10−3

seconds. In the experiment, we assume that the arrival rates of the different types of messages, as

well as the distribution of the message length, are unknown, therefore there are 13 input models in

total. Like in the example of M/M/1 queue, the data sizes across different input models are kept

proportional to each other and only the minimum size is reported.

In the experiments we investigate the simulation efforts needed for our subsampling procedure

to generate accurate estimates of the input variance, the impacts of the procedural parameters

θ,B,R on the estimation accuracy, and practical guidelines on optimal choices of these parameters.

Regarding performance metrics of the method, we primarily focus on the mean squared error of

the obtained input variance estimate. In addition, note that our estimated input variance can also

be used to construct CIs by plugging into formula (2.3). We also examine the quality of these CIs,

measured by coverage accuracy and width, as impacted by the estimation accuracy of the input

variance.

We compare our subsampling approach with the variance bootstrap depicted in Algorithm 1 and

the percentile bootstrap suggested by Barton and Schruben (1993, 2001). The percentile bootstrap

adopts the same nested simulation structure as in variance bootstrap, but does not estimate the
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input variance and instead directly outputs order statistics of the resampled performance measures

to construct CIs. Specifically, after obtaining B bootstrapped performance measure estimates

ψ̄b := 1
R

∑R
r=1 ψ̂r(F̂

b
1 , . . . , F̂

b
m), each averaged over R i.i.d. replications, the percentile bootstrap

outputs the α
2 (B + 1)-th and (1− α

2 )(B + 1)-th order statistics of {ψ̄b : b = 1, . . . , B} as a (1− α)-

level CI.

In converting our subsampled input variance estimate to CI, we also investigate the use of a

“splitting” versus a “non-splitting” approach. In most part of this section, we use the splitting

approach that divides the budget into two portions with one used to estimate the input variance

and the other to compute the point estimator. To describe it in detail, suppose we have a total

budget of N simulation runs. We allocate Rv simulation runs to estimate σ2
I using either Algorithm

1 or 2, and the remaining Re = N −Rv simulation runs driven by the empirical input distributions

to compute the point estimator ψ̄(F̂1, . . . , F̂m). When constructing the CI in (2.3), the simulation

variance σ2
S is calculated as τ̃2

Re
, where τ̃2 is the sample variance computed from the Re simulation

replications. The second, “non-splitting”, approach invests all the N simulation runs in estimating

σ2
I , and constructs the point estimator by averaging all the replications, i.e., ψ̄ = 1

B

∑B
b=1 ψ̄

b, where

ψ̄b is the performance measure estimate for the b-th resample from Algorithm 2. The simulation

variance σ2
S in this case is taken to be the sample variance of all the ψ̄b’s divided by the bootstrap

size B. The rationale for this approach is that, when the subsample size θn is large, E∗[ψ̄] should

accurately approximate the plug-in estimator ψ(F̂1, . . . , F̂m) with an error that is negligible relative

to the input variability. Using the former as a surrogate for the latter avoids splitting the budget;

however, we will see later that this may introduce too much bias to maintain the desired coverage

level when the subsample size is relatively small.

The rest of this section is organized as follows. Section 2.5.1 investigates practical guidelines for

choosing the algorithmic parameters in our procedure. Using these guidelines, in Section 2.5.2 we

compare the proposed procedure with the variance bootstrap and the percentile bootstrap. Section

2.5.3 studies further the conversion of input variance estimate into CI, and compares the associated

splitting and nonsplitting approaches.
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2.5.1 Guidelines for Algorithmic Configuration
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(a) θmini ni = 5.
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(b) θmini ni = 30.
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(c) θmini ni = 120.

Figure 2.2: Input variance estimation accuracy under different configurations of B,R such that
BR = 1000.

We examine the performances using a wide range of parameter choices for θ,B,R. For each

of the two considered examples, and input data sizes from 30 to 2000, we test our subsampling

approach at various combinations of θ,B,R where the subsample size θmini ni ∈ {5, 15, 30, 60, 120}

and the budget allocation parameters (B,R) ∈ {(25, 40), (50, 20), (100, 10), (200, 5)} (a total of 1000

simulation runs). To calculate the mean square error of the input variance estimate, we perform

1000 independent runs of the procedure, each on an independently generated input data set, and

then take the average of the squared errors. The reported error metric is the relative root mean

squared error (rmse) which can be expressed as

√
E[(σ̂2

I−σ
2
I )2]

σ2
I

where σ̂2
I and σ2

I are the estimated

and true input variances respectively.

We first study and establish guidelines for the outer size B and inner size R for a given subsample
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size. Figure 2.2 shows how the estimation error changes as the inner replication size R grows from

5 to 40 (correspondingly the outer size B drops from 200 to 25) and the subsample size θmini ni

is fixed at a certain value. Each curve represents the results for one of the considered examples

under a particular input data size. Although the precise optimal choice for B,R varies from one

example to another even when the subsample size is chosen the same, the estimation error appears

robust to the parameter choices, with a range of values that only slightly underperform the optimal.

In particular, compared to the unknown optimal choice, an R between 1
6θmini ni and 1

3θmini ni

seems to achieve a comparable accuracy level in the variance estimation, hence is recommended as

a general choice.
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Figure 2.3: Input variance estimation accuracy under different subsample sizes with B,R optimally
tuned.

Now we turn to optimal choices for the subsample size. Provided that B,R is properly chosen

as above, we examine the behavior of the variance estimation error as the subsample size varies. As

we have discussed in Section 2.3.1, subsampling is preferred when the input data size is relatively

large, and thus we consider input data sizes ≥ 500 for our M/M/1 queue and computer network,

and for each considered data size we plot the variance estimation error versus the subsample size in

Figure 2.3. We see that a too large size such as 120 always leads to a larger estimation error than

moderate sizes like 30, whereas a too small size around 5 can lift the error by even more in some

cases, which is consistent with the theoretical insight from the bound (2.21). Therefore, in general

we recommend the use of a subsample size θmini ni between 20 and 40 to optimize the estimation

accuracy. Figure 2.3 shows that, under the suggested subsample size, the relative rmse is as low as
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0.2-0.5 across all the cases.

2.5.2 Comparisons with the Variance Bootstrap and the Percentile Bootstrap

We compare our subsampling method with the standard variance bootstrap and the percentile

bootstrap, under the same total budget of 1500 simulation runs. In addition to the relative rmse

of the input variance estimate, we also report the actual coverage probability and width of the CI

constructed by plugging in the input variance estimate. To estimate all these performance metrics,

we construct 1000 95%-level CIs for the target performance measures, each from an independently

generated input data set. The “splitting” approach that splits the total budget intoRv = 1000, Re =

500 is adopted for the subsampling approach and the variance bootstrap, whereas for the percentile

bootstrap all the 1500 simulation runs are used for the resamples. As suggested in Section 2.5.1, we

use the parameter values θ = 30
mini ni

, B = 100, R = 10 in our method in all the cases, whereas for the

other two methods we vary the parameter configurations over a reasonable range constrained by the

simulation budget and then report the best results generated by these considered configurations.

In particular, the parameters for the variance bootstrap are chosen to minimize the mean square

error of the input variance estimate from four combinations, “B = 25, R = 40”, “B = 50, R = 20”,

“B = 100, R = 10”, “B = 200, R = 5”, and those for the percentile bootstrap are chosen to achieve

the best the coverage accuracy from four combinations, “B = 50, R = 30”, “B = 100, R = 15”,

“B = 300, R = 5”, “B = 1500, R = 1”. Note that these give an upper hand to our competing

alternatives in the comparisons.

Tables 2.2 and 2.3 summarize the experimental results for the M/M/1 queue when the true

arrival rate is 0.5 and 0.9 respectively, and Table 2.4 shows those for the computer network. The

shorthand “PSVB” stands for proportionate subsampled variance bootstrap, i.e., our subsampling

approach. For each method, the “coverage estimate” column displays estimates of the actual

coverage probability based on 1000 independent CIs, and the “CI width” column shows their

average width. The second column of each table shows the ratio between the input standard error

σI and the simulation standard error σS for different input data sizes in our “splitting” approach. A

ratio close to or greater than 1 means that the input noise is a major source of uncertainty relative
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to the simulation noise, thus indicating the need to be taken into account in output analysis.

mini ni
σI
σS

PSVB variance bootstrap percentile bootstrap
relative
rmse

coverage
estimate

CI width
relative
rmse

coverage
estimate

CI width
coverage
estimate

CI width

30 7.74 0.73 84.3% 0.422 0.73 84.3% 0.422 91.9% 0.467
100 3.77 0.55 92.5% 0.251 0.80 88.6% 0.248 98.8% 0.356
300 2.13 0.44 94.8% 0.156 1.04 85.6% 0.148 99.9% 0.307
1000 1.15 0.38 95.0% 0.103 2.48 89.4% 0.111 100% 0.285
2000 0.79 0.38 95.9% 0.087 5.43 92.8% 0.107 100% 0.280

Table 2.2: Results for the M/M/1 queue with arrival rate 0.5 and service rate 1.

mini ni
σI
σS

PSVB variance bootstrap percentile bootstrap
relative
rmse

coverage
estimate

CI width
relative
rmse

coverage
estimate

CI width
coverage
estimate

CI width

30 11.12 0.59 81.4% 0.609 0.59 81.4% 0.609 94.6% 0.639
100 6.22 0.42 89.9% 0.372 0.63 88.6% 0.386 97.2% 0.446
300 3.46 0.32 92.6% 0.225 0.71 87.0% 0.225 99.3% 0.348
1000 1.86 0.27 93.3% 0.137 1.21 86.3% 0.137 100% 0.307
2000 1.30 0.24 95.0% 0.108 2.19 90.7% 0.119 100% 0.294
4000 0.91 0.23 94.9% 0.089 3.61 91.2% 0.106 100% 0.288

Table 2.3: Results for the M/M/1 queue with arrival rate 0.9 and service rate 1.

mini ni
σI
σS

PSVB variance bootstrap percentile bootstrap
relative
rmse

coverage
estimate

CI width
(×10−4)

relative
rmse

coverage
estimate

CI width
(×10−4)

coverage
estimate

CI width
(×10−4)

30 12.60 0.74 92.0% 19.3 0.74 92.0% 19.3 95.2% 22.0
150 5.36 0.41 94.3% 8.85 0.53 91.3% 8.50 98.3% 11.2
750 2.35 0.32 94.2% 4.27 0.94 86.9% 3.88 100% 7.97
1800 1.53 0.28 95.3% 3.03 1.63 87.1% 3.01 100% 7.34

Table 2.4: Results for the computer network.

We compare the approaches based on Tables 2.2-2.4. Firstly, our subsampling approach signif-

icantly outperforms the variance bootstrap in terms of estimation accuracy of the input variance.

The estimates generated by our approach have a smaller relative error than those by the variance

bootstrap in all considered cases, and the gap becomes more significant as the data size grows

larger. In particular, as the data size grows from 30 to thousands, the estimation error keeps de-
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creasing from 0.7 to 0.25 in our approach, whereas in variance bootstrap it keeps increasing from

0.7 to larger than 1, a level that makes the estimate too crude to be useful. These demonstrate the

computational advantage and dictate the use of subsampling especially when the input data size

is relatively large. Note that the same budget of 1000 simulation runs are used in input variance

estimation for all considered data sizes and that the estimation accuracy seems much better for

large data sizes than for small sizes, and one may wonder whether more simulation runs should

be used for small data sizes to further improve the estimation accuracy. It turns out that the

estimation errors are mostly due to the inadequacy of the input data rather than the simulation

budget, hence a budget of 1000 is already large enough and further increasing the budget does not

bring much benefit. For instance, in the case of data size 30 in Table 2.2, the relative error of the

input variance estimate remains as large as 0.69 even if the simulation budget is increased by 10

times.

Secondly, thanks to the high accuracy in the input variance estimates, our subsampling approach

generates accurate CIs whose coverage probabilities quickly approach the nominal level 95% as the

input data size grows. In contrast, the CIs using the variance bootstrap exhibit under-coverage,

and the percentile bootstrap CIs significantly over-cover the truth. We see that the coverage of

the variance bootstrap is below 90% in most considered cases, and in the very few cases where

the CIs happen to have relatively good coverages, the intervals are much wider than those by

our subsampling approach. For example, in the case of data size 2000 in Table 2.2, the variance

bootstrap gives a fairly accurate coverage 92.8%, but on average the interval is 1.23 times as wide as

that by our method. This shows that the better estimates of the input variance using subsampling

translate to better CIs significantly compared to using the variance bootstrap, in terms of both

coverage accuracy and width. The percentile bootstrap CIs show an overly high coverage probability

close to 100% and are 2-3 times wider than those by subsampling for all considered input data

sizes except 30. The over-coverage issue of the percentile CIs arises because the order statistics

capture only the input noise but not the simulation noise in the resampled performance measures,

a phenomenon that has been discussed in Barton et al. (2007, 2018). When one can afford a

sufficiently large budget of simulation relative to the input data size, the simulation noise can be
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made negligible so that the CIs have the correct coverage. However, when simulation resources are

relatively limited (e.g., when data size≥ 100 in Tables 2.2-2.4), the CIs are unnecessarily widened by

the extra simulation noise that leads to over-coverage. We also notice that the percentile bootstrap

CIs do show more accurate coverage than the other two methods when the input data size is 30,

which may suggest that the percentile bootstrap is the preferred approach to constructing CIs in

small data cases. However, this outperformance is a result of optimally choosing the parameters

B,R in hindsight. In our experiments, this best parameter set varies from one case to another, and

the actual coverage under different configurations varies in a range of 8%.

Thirdly, results across different input data sizes show that, the advantages of subsampling in

both input variance estimation and CI construction are most significant in situations with relatively

large input data size. Note that one may argue in such situations input uncertainty is negligible.

However, whether this is indeed the case relates to the error tolerance of the decision-maker and the

magnitude of the target performance measure itself. For the large data sizes we consider, the input

noise appears still relatively substantial. For instance, when the input data size is 2000 in Table

2.3, the average width of the CIs as a measure of the input uncertainty and simulation uncertainty

combined amounts to as much as 57% of the target tail probability, and that the input uncertainty

serves as a major component of the total uncertainty (a ratio of 1.3 relative to the simulation

uncertainty).

Lastly, in situations with small input data size like 30 the CI coverage clearly falls below 95% in

Tables 2.2 and 2.3. This under-coverage phenomenon may appear to stem from the nonlinear effect

of the performance measure that is inadequately captured by the Gaussian-approximation-based

CI given in (2.3). The real reason, as our experiments suggest, turns out to be the insufficient

accuracy of the input variance estimates. In fact, if the true input variance σ2
I (which can be

accurately estimated by repeatedly generating independent input data sets) is plugged into (2.3)

to construct CIs, the coverage probability under the data size 30 rises to 94%-95% for both the

M/M/1 queue and the computer network. This indicates a positive impact of an accurate input

variance estimate on the CI quality, a point that we will discuss further momentarily.
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2.5.3 Constructing CI via Input Variance and Comparisons of the Splitting and

Nonsplitting Approaches

We study in more depth the relation between the input variance estimation accuracy and CI quality,

and compare the splitting approach for CI construction that has been used in previous subsections,

with the alternate nonsplitting approach described at the beginning of this section. Finally, we

provide practical budget allocation strategies for the splitting approach.

First, to see how the estimation accuracy of the input variance affects the coverage accuracy

of the CIs, we use the splitting approach to compute 95%-level CIs, with 1000 simulation runs

assigned to input variance estimation and another 500 runs to point estimator evaluation. Figure

2.4a plots the coverage probability versus the relative rmse when the subsample size θmini ni is

chosen 30 in the M/M/1 queue example, where each point corresponds to a particular combination

of the data size mini ni, the outer replication size B, and the inner replication size R. Figure 2.4b

plots the same for the computer network example with subsample size 30. Both figures clearly

show that, the more accurately the input variance is estimated, the closer to the nominal level 95%

the coverage probability will be. Accurate estimation of the input variance thus appears to play a

crucial role in the construction of accurate CIs.
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(b) Computer network, θmini ni = 30.

Figure 2.4: Monotonicity between coverage accuracy and input variance estimation accuracy.

Next we compare the splitting and nonsplitting approaches under the same total budget of

1500 simulation runs. Like in the splitting approach, we use a subsample size θmini ni = 30 for

our nonsplitting approach, but use B = 75, B = 20 to consume all the 1500 simulation runs. We
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find that the CIs generated from the two approaches have similar lengths, but the nonsplitting

approach underperforms in terms of coverage accuracy. Each plot in Figure 2.5 shows the coverage

probabilities of the nonsplitting CIs versus the splitting ones for each of the considered example

systems, as the input data size grows from 30 to thousands. We see that when the data size is

relatively small (e.g., below 500), the two approaches generate CIs with similar coverage accuracy.

When the data size grows larger, however, the coverage probability of the nonsplitting CIs keeps

dropping in all the three examples, especially in the M/M/1 queue with arrival rate 0.9 where

a drop towards 86% is observed, whereas the splitting CIs exhibit almost exact 95% coverage.

A possible cause of the undercoverage is the overly small subsample size compared to the input

data size, which leads to a high bias in the point estimator. With a subsample size s, the bias of

the nonsplitting point estimator E∗[ψ̄] with respect to the truth ψ(F1, . . . , Fm) can be as large as

O(1/s). Given that the input standard error is Θ(1/
√
n), E∗[ψ̄] has a negligible bias only when

the subsample size is large enough, namely when s = ω(
√
n), indicating that a small subsample

size relative to the data size can corrupt the CI. In our experiment, we find that the (supposedly

unobservable) bias can be as large as 25% of the CI width when the input data size is 2000 in the

M/M/1 queue with arrival rate 0.9, and that artificially removing the bias from the point estimator

can improve the coverage to a similar level achieved by the splitting approach. Because of the bias

and the consequent under-coverage issue, we caution the use of the non-splitting approach, that it

should only be used when a relatively large subsample size is adopted.

Since the splitting approach is recommended, next we explore strategies of splitting a given

budget. Our goal is to generate shortest possible CIs that have a sufficiently accurate coverage

probability. As in the beginning of the section, denote by Rv the number of simulation runs used to

estimate the input variance, and by Re to construct the point estimator. Under a fixed total budget

Rv +Re = 1500, we try four different splits Rv = 100, 250, 500, 1000 (accordingly Re = 1500−Rv),

and for each split the subsample size is fixed at θmini ni = 30 and several choices of B,R are tested

among which the one with the best coverage probability is reported. Figure 2.6 plots the coverage

probability versus the CI width for the four considered splits, where the M/M/1 queue with arrival

rate 0.9 is considered and input data size is 2000. We notice that the split controls a tradeoff
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(b) M/M/1 queue with arrival rate 0.9.
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Figure 2.5: Coverage comparison under the splitting and nonsplitting approaches.

between the coverage accuracy and the CI width. The more simulation runs one allocates to input

variance estimation, the more accurate but wider CIs one would obtain, because the input variance

is more accurately estimated while the point estimator becomes more noisy. The plot suggests

that allocating 500-1000 replications to variance estimation achieves a good balance of accuracy

and width, in the sense that the intervals from the split “500+1000” or “1000 + 500” are only

slightly wider than those by other splits and that allocating less (say 250) to variance estimation

results in a considerable drop in coverage probability from the nominal level 95%. The results

from Tables 2.2-2.4, where the split “1000 + 500” is used, also validates the effectiveness of such a

strategy. Therefore, for a given simulation budget, we recommend that the user allocate 500-1000

replications to input variance estimation with our subsampling approach and all the remaining

budget to the construction of the point estimator.



CHAPTER 2. SUBSAMPLING TO ENHANCE EFFICIENCY 49

0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12

average CI width

86

88

90

92

94

96

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

 (
%

)

100 + 1400

250 + 1250

500 + 1000

1000 + 500

Figure 2.6: Coverage probability versus CI width, under different budget splits in the form of
“Rv +Re”.

2.6 Conclusion

We have explained how estimating input variances in stochastic simulation can require large com-

putation effort when using conventional bootstrapping. This arises as the bootstrap involves a

two-layer sampling, which adds up to a total effort of larger order than the data size in order to

achieve relative consistency. To alleviate this issue, we have proposed a subsampling method that

leverages the relation between the structure of input variance and the estimation error from the

two-layer sampling, so that the resulting total effort can be reduced to being independent of the

data size. We have presented the theoretical results in this effort reduction, and the optimal choices

of the subsample ratio and simulation budget allocation in terms of the data size and the budget.

We have also demonstrated numerical results to support our theoretical findings, and provided

guidelines in using our proposed methods to estimate input variances and also construct output

CIs.
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Chapter 3

Optimization-Based Quantification of

Simulation Input Uncertainty via

Empirical Likelihood

3.1 Introduction

Following Chapter 2, we continue investigating input uncertainty quantification in this chapter,

but switch focus from input variance estimation to the construction of CIs for simulation outputs

that account for input uncertainty in addition to the noises in generating the random variates in

the simulation process. Again we focus particularly on the nonparametric regime. A common

approach is the bootstrap (e.g., Barton and Schruben 1993, 2001), which repeatedly generates

resampled distributions to drive simulation runs and uses the quantiles of the simulated outputs to

construct the CIs. Another approach is the delta method (e.g., Asmussen and Glynn 2007, Chapter

III) that estimates the asymptotic variance in the central limit theorem (CLT) directly. The latter

has been considered mostly in the parametric setting (e.g., Cheng and Holland 1997, 1998, 2004)

but bears a straightforward analog in our considered nonparametric scenario (as has been discussed

in Section 2.2.2). Estimating this variance can also be conducted by subsampling (i.e.,Chapter 2)

or bootstrapping (e.g., Cheng and Holland 1997, Song and Nelson 2015).
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Our focus in this chapter is a new approach to construct input-induced CIs by using optimization

as an underpinning tool. Our approach looks for a set of “maximal” and a set of “minimal”

probability weights on the input data, obtained by solving a pair of convex optimization problems

with constraints involving a suitably averaged statistical divergence. These weights can be viewed

as “worst-case” representations of the input distributions which are then used to generate the input

variates to drive the simulation, giving rise to upper and lower bounds that together form a CI on

the performance measure of interest.

We will illustrate how this optimization-based approach offers benefits relative to the bootstrap

and the delta method. The bootstrap typically involves nested simulation due to the resampling

step before simulation runs, which leads to a multiplicative computational requirement. Its perfor-

mance can be sensitive to the simulation budget size and allocation rule in the nested procedure. A

key element of our approach is to use convex optimization to replace the resampling step, which by-

passes the multiplicative budget allocation problem and gives more robust performances, especially

under small input data sizes. On the other hand, the overhead in setting up our optimization is more

substantial than the bootstrap when the input data size is large. It should be noted that the boot-

strap possesses more flexibility as the resampled simulation replications can be used to approximate

many statistics and to construct CIs at different confidence levels, without re-running the bootstrap

procedure again. On the contrary, our approach needs re-optimization and a re-evaluation step for

each new confidence level or statistic of interest. Nonetheless, the monotonicity structure of our

decision space in the target confidence level allows us to speed up the re-optimization by starting

the optimization for a high confidence level at the solution obtained for a low confidence level, while

the re-evaluation step only requires a sample size for standard output analysis that is free of input

uncertainty.

Our method is closer to the delta method than the bootstrap in that, like the former, we need to

estimate gradient information. While our approach and the delta method have similar asymptotic

behaviors, we will demonstrate how our approach tends to outperform in finite sample. Roughly

speaking, this outperformance arises since the delta method relies heavily on a linear approximation

in constructing CIs. When the standard error, which arises from this linear approximation, is noisily
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estimated, the resulting CI tends to exhibit under-coverage issues. In contrast, using the weighted

distributions to drive simulation runs in our approach is less sensitive to the quality of the standard

error estimation, and moreover can introduce nonlinearity that naturally follows the boundaries of

a given problem, which in turn alleviates the under-coverage issue experienced in the delta method.

As our main technical contributions, we design and analyze procedures to achieve tight statistical

coverage guarantees for the resulting optimization-based CIs. Our approach aligns with the recent

surge of robust optimization (Ben-Tal and Nemirovski 2002, Bertsimas et al. 2011) in handling

decision-making under uncertainty, where decisions are chosen to perform well under the worst-case

scenario among a so-called uncertainty or ambiguity set of possibilities. Our approach particularly

resembles distributionally robust optimization (DRO) (e.g., Ben-Tal et al. 2013, Delage and Ye

2010, Goh and Sim 2010, Wiesemann et al. 2014) where the uncertainty of the considered problem

lies in the probability distributions, as our involved optimization formulation contains decision

variables that are probability weights of the input distributions. However, contrary to the DRO

rationale that postulates the uncertainty sets to contain the truth (including those studied recently

in the simulation literature; Hu et al. 2012, Glasserman and Xu 2014, Lam 2016b, 2018, Ghosh

and Lam 2019), we will explain our procedures by viewing the constraints as log-likelihoods on the

input data, and develop the resulting statistical guarantees from a multi-sample generalization of the

empirical likelihood (EL) method (Owen 2001), a nonparametric analog of the celebrated maximum

likelihood method in parametric statistics. Consequently, the form of our proposed constraint (i.e.,

the averaged statistical divergence constraint) differs drastically from previous DRO suggestions,

and the guarantee is provably tight asymptotically. We mention that, though EL has appeared in

statistics for a long time, its use in operations research has appeared only recently and is limited

to optimization problems (e.g., Lam and Zhou 2017, Duchi et al. 2016, Lam 2019, Blanchet and

Kang 2020, Blanchet et al. 2019). We therefore contribute by showing that a judicious use of this

idea can offer new benefits in the equally important area of simulation analysis.

The rest of this chapter is as follows. Section 3.2 reviews some related literature. Section

3.3 presents our procedure and main results on statistical guarantees. Section 3.4 explains the

underlying theory giving rise to our approach and statistical results. Section 3.5 shows some
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numerical results and compares with previous approaches. All technical proofs are left to Appendix

B.

3.2 Related Literature

A review on the problem of input uncertainty has been given in Chapter 2, therefore here we

briefly survey two methodologically related areas. Our methodologies are related to several tools

in statistics. First is the EL method. Initially proposed by Owen (1988) as a nonparametric

counterpart of the maximum likelihood theory, the EL method has been widely studied in statistical

problems like regression and hypothesis testing etc. (e.g., Qin and Lawless 1994, Owen 2001, Hjort

et al. 2009). Its use in operations research is relatively recent and is limited to optimization.

Lam and Zhou (2017) investigates the use of EL in quantifying uncertainty in sample average

approximation. Lam (2019) uses EL to derive uncertainty sets for DRO that guarantees feasibility

for stochastic constraints. Duchi et al. (2016) generalizes the EL method to Hadamard differentiable

functions and obtains tight optimality bounds for stochastic optimization problems. Blanchet and

Kang (2020), Blanchet et al. (2019) generalize the EL method to inference using the Wasserstein

distance. In addition, our work also utilizes the influence function, which captures nonparametric

sensitivity information of a statistic, and is first proposed by Hampel (1974) in the context of robust

statistics (Huber and Ronchetti 2009, Hampel et al. 2011) as a heuristic tool to measure the effect

of data contamination. Influence function is also used in deriving asymptotic results for von Mises

differentiable functionals which have profound applications in U -statistics (Serfling 2009).

Our approach resembles DRO, which utilizes worst-case perspectives in stochastic decision-

making problems under ambiguous probability distributions. In particular, our optimization posited

over the space of input probability distributions has a similar spirit as the search for the worst-case

distribution in the inner optimization in DRO. The DRO framework has been applied in various

disciplines such as economics (Hansen and Sargent 2008), finance (Glasserman and Xu 2013, 2014),

stochastic control (Petersen et al. 2000, Iyengar 2005, Nilim and El Ghaoui 2005, Xu and Mannor

2012), queueing (Jain et al. 2010) and dynamic pricing (Lim and Shanthikumar 2007). Among
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them, constraints in terms of φ-divergences, which include the Burg-entropy divergence appearing

in our approach, have been considered in, e.g. Ben-Tal et al. (2013), Bayraksan and Love (2015),

Jiang and Guan (2016), so are other types of statistical distances such as Renyi divergence (e.g.,

Atar et al. 2015, Dey and Juneja 2012, Blanchet et al. 2020) and the Wasserstein distance (e.g.,

Esfahani and Kuhn 2018, Blanchet and Murthy 2019, Gao and Kleywegt 2016), and other constraint

types including moments and support (e.g., Delage and Ye 2010, Goh and Sim 2010, Hu et al. 2012,

Wiesemann et al. 2014). In simulation, the DRO idea has appeared in Glasserman and Xu (2014),

Lam (2016b, 2018), Ghosh and Lam (2019) in quantifying model risks. Nonetheless, although

our involved optimization looks similar to DRO, the underpinning statistical guarantees of our

approach stem from the EL method. As we will explain, our constraints possess properties that are

dramatically different from those studied in DRO, and their precise forms also deviate from any

known DRO suggestions.

3.3 Optimization-Based Confidence Intervals

This section presents our main procedure and statistical guarantees. We start with our problem

setting and some notations.

3.3.1 Problem Setting

We consider a performance measure in the form

Z∗ = Z(P1, . . . , Pm) = EP1,...,Pm [h(X1, . . . ,Xm)] , (3.1)

where P1, . . . , Pm are m independent input models, Xi = (Xi(1), . . . , Xi(Ti)) is a sequence of Ti

i.i.d. input variates each distributed under Pi, and Ti is a deterministic run length. The distribution

Pi has (possibly multivariate) domain Xi. The function h mapping from XT11 × · · · × XTmm to R is

assumed computable given the inputs Xi. In other words, given the sequence X1, . . . ,Xm, the value

of h(X1, . . . ,Xm) can be evaluated by the computer. The notation EP1,...,Pm [·] is a shorthand for

E
P
T1
1 ×···×P

Tm
m

[·], the expectation taken over all the independent i.i.d. sequences X1, . . . ,Xm, i.e.,
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under the product measure P T11 ×· · ·×P Tmm . We use Xi to denote a generic random variable/vector

distributed under Pi.

As a simple example, X1 and X2 can represent respectively the sequences of inter-arrival times

and service times in a queueing system. P1 and P2 represent the corresponding input distributions.

h denotes the indicator function of the exceedance of some waiting time above a threshold. Then

Z(P1, P2) becomes the waiting time tail probability.

Our premise is that there exists a true Pi that is unknown for each i, but a sample of ni

i.i.d. observations {Xi,1, . . . , Xi,ni} is available from each Pi. The true value of (3.1) is therefore

unknown even under abundant simulation runs. Our goal is to find an asymptotically accurate

(1−α)-level CI for the true performance measure Z∗. To be more precise, we call a CI asymptotically

exact if it consists of two numbers L ,U , derived from the data and the simulation, such that

lim
each ni andR→∞

P (L ≤ Z∗ ≤ U ) = 1− α

where R is the total number of simulation replications involved in generating the CI, and the

probability P is taken with respect to the joint randomness in the data and the simulation. The

asymptotic above is qualified by certain growth rates of ni and R that we will detail.

Along our development will also arise cases in which a coverage guarantee is provided as a lower

bound, i.e.,

lim inf
each ni andR→∞

P (L ≤ Z∗ ≤ U ) ≥ 1− α

We call [L ,U ] an asymptotically valid (1− α)-level CI. The CIs constructed from our procedures

will be either asymptotically exact or, asymptotically valid and accompanied with an associated

upper bound that quantities the tightness of the coverage. Lastly, our developments fix the number

of independent input models m and the run lengths Ti’s, i.e., we focus primarily on transient

performance measures with a moderate number of input models relative to the data and simulation

sizes.
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3.3.2 Main Procedure

Algorithm 4 gives a step-by-step description of our basic procedure for computing L and U . The

quantity ˆ̂Gi(Xi,j) for each i = 1, . . . ,m, j = 1, . . . , ni introduced in Step 1 is the sample estimate of

the so-called influence function of Z, which can be viewed as the gradient of Z taken with respect to

the input distributions (see Assumption 3.3.2 and the subsequent discussion). This sample estimate

of the influence function is obtained from R1 simulation runs. The same simulation replications are

also used to compute an estimate Ẑ(P̂1, . . . , P̂m) of the performance measure under the empirical

input models, that is, each P̂i(·) = 1
ni

∑ni
j=1 δXi,j (·) where δXi,j (·) denotes the delta measure on

Xi,j .

Step 2 in Algorithm 4 outputs a minimizer and a maximizer of the optimization (3.3) in which

“min /max” denotes a pair of minimization and maximization, and the calibrating constant X 2
1,1−α

is the 1−α quantile of the chi-square distribution with degree of freedom one. Optimization (3.3) can

be viewed as a sample average approximation (SAA) (Shapiro et al. 2014) on the influence function

(expressible as an expectation), with decision variables being the probability weights wi,j , i =

1, . . . ,m, j = 1, . . . , ni on the influence function evaluated at each observation Xi,j of input model

i. For convenience, we denote wi = (wi,j)j=1,...,ni as the weight vector associated with input model

i, and w = (wi)i=1,...,m be the aggregate weight vector.

Optimization (3.3) can be interpreted as two worst-case optimization problems over m indepen-

dent input distributions, each on support {Xi,1, . . . , Xi,ni}, subject to a weighted average of individ-

ual statistical divergences (Pardo 2005). To explain, the quantity Dni(wi) = − 1
ni

∑ni
j=1 log(niwi,j)

is the Burg-entropy divergence (Ben-Tal et al. 2013) (or the Kullback-Leibler (KL) divergence)

between the probability weights wi and the uniform weights. Thus, letting N =
∑m

i=1 ni be the

total number of observations from all input models, we have

− 1

N

m∑
i=1

ni∑
j=1

log(niwi,j) =
m∑
i=1

ni
N

− 1

ni

ni∑
j=1

log(niwi,j)

 =
m∑
i=1

ni
N
Dni(wi)

which is an average of the Burg-entropy divergences imposed on different input models, each

weighted by the proportion of the respective observations, ni/N . The first constraint in (3.3)
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Algorithm 4 Basic Empirical-Likelihood-Based Procedure (BEL)

Input: Data {Xi,1, . . . , Xi,ni} for each input model i = 1, . . . ,m. A target confidence level 1− α,

and numbers of simulation replications, R1, 2R2, to be used in Step 1 and Step 3 respectively.

Procedure:

1. Influence Function Estimation: For each i = 1, . . . ,m, j = 1, . . . , ni compute estimate of

the influence function evaluated at Xi,j

ˆ̂Gi(Xi,j) =
1

R1

R1∑
r=1

[
(h(Xr

1, . . . ,X
r
m)− Ẑ(P̂1, . . . , P̂m))(ni

Ti∑
t=1

1{Xr
i (t) = Xi,j} − Ti)

]
(3.2)

where for each r = 1, . . . , R1, Xr
i = (Xr

i (1), . . . , Xr
i (Ti)) are i.i.d. variates drawn independently

from the uniform distribution on {Xi,1, . . . , Xi,ni} for each i, 1{·} is the indicator function, and

Ẑ(P̂1, . . . , P̂m) =
∑R1

r=1 h(Xr
1, . . . ,X

r
m)/R1 is the sample mean of the outputs.

2. Optimization: Compute respective optimal solutions (wmin
1 , . . . ,wmin

m ) and

(wmax
1 , . . . ,wmax

m ) of the following pair of programs

min /max
m∑
i=1

ni∑
j=1

ˆ̂Gi(Xi,j)wi,j

subject to − 2
m∑
i=1

ni∑
j=1

log(niwi,j) ≤ X 2
1,1−α

ni∑
j=1

wi,j = 1, for all i = 1, . . . ,m

wi,j ≥ 0, for all i = 1, . . . ,m, j = 1, . . . , ni.

(3.3)

3. Evaluation: Compute

L BEL =
1

R2

R2∑
r=1

h(Xr,min
1 , . . . ,Xr,min

m ), U BEL =
1

R2

R2∑
r=1

h(Xr,max
1 , . . . ,Xr,max

m )

where for each r = 1, . . . , R2, Xr,min
i = (Xr,min

i (1), . . . , Xr,min
i (Ti)) and Xr,max

i =

(Xr,max
i (1), . . . , Xr,max

i (Ti)) are i.i.d. variates drawn independently from a weighted distribution

on {Xi,1, . . . , Xi,ni}, according to weights wmin
i and wmax

i , respectively for each i.

Output: The CI [L BEL,U BEL].
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can thus be written as
m∑
i=1

ni
N
Dni(wi) ≤

X 2
1,1−α
2N

which constitutes a neighborhood ball of size X 2
1,1−α/(2N) measured by the averaged Burg-entropy

divergence.

Finally, Step 3 in Algorithm 4 uses the obtained optimal probability weights wmin
i and wmax

i

to form two weighted empirical distributions on {Xi,j}j=1,...,ni for input model i, which are used

to drive two independent sets of simulation runs, each of size R2, in order to output the lower and

upper confidence bounds respectively.

An efficient method to solve optimization (3.3) is discussed in the following proposition:

Proposition 3.3.1 For each i and every β > 0 define λi(β) to be the unique solution of the

equation
ni∑
j=1

2β

ˆ̂Gi(Xi,j) + λi
= 1 (3.4)

on the interval (−minj
ˆ̂Gi(Xi,j),∞). Let β∗ > 0 solve the equation

2

m∑
i=1

ni∑
j=1

log
2niβ

ˆ̂Gi(Xi,j) + λi(β)
+ X 2

1,1−α = 0. (3.5)

If there exist some i0 ∈ {1, . . . ,m} and j1, j2 ∈ {1, . . . , ni0} such that ˆ̂Gi0(Xi0,j1) 6= ˆ̂Gi0(Xi0,j2),

then β∗ ∈
(
0, D/

(
2
(
1 − e−

X2
1,1−α
2N

)
mini ni

))
and is unique, where D = max{maxj

ˆ̂Gi(Xi,j) −

minj
ˆ̂Gi(Xi,j)|i = 1, . . . ,m}, N =

∑m
i=1 ni, and the minimizer (wmin

1 , . . . ,wmin
m ) of (3.3) can be

obtained by

wmin
i,j =

2β∗

ˆ̂Gi(Xi,j) + λi(β∗)
.

The maximizer (wmax
1 , . . . ,wmax

m ) can be computed in the same way except that each ˆ̂Gi(Xi,j) is

replaced by − ˆ̂Gi(Xi,j).

Otherwise, if for each i = 1, . . . ,m the coefficient ˆ̂Gi(Xi,j) takes the same value across all

j = 1, . . . , ni, then (3.3) has a constant objective hence becomes trivial. In this case, one can

output (wmin
1 , . . . ,wmin

m ) and (wmax
1 , . . . ,wmax

m ) as any solution in the feasible set (e.g., the uniform
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weights, i.e., wmax
i,j = wmin

i,j = 1/ni for all i, j).

The proof of Proposition 3.3.1 uses the Karush-Kuhn-Tucker (KKT) conditions of (3.3), and can

be found in Section B.7 of the Appendix. To implement what Proposition 3.3.1 suggests, we first

check whether ˆ̂Gi(Xi,j1) 6= ˆ̂Gi(Xi,j2) for some i = 1, . . . ,m and some 1 ≤ j1 < j2 ≤ ni, in which case

the maximizer (wmax
1 , . . . ,wmax

m ) and minimizer (wmin
1 , . . . ,wmin

m ) of (3.3) are unique. Here, given

a value of β we can efficiently evaluate each λi(β) by solving (3.4) with Newton’s method. Then, β∗

is obtained by running a bisection on (3.5) over the interval (0, D/
(
2
(
1−e−

X2
1,1−α
2N

)
mini ni

))
whose

convergence is guaranteed by the uniqueness of β∗ and the continuity of (3.5) in β, and finally each

wmin
i,j or wmax

i,j is computed from β∗, λi(β
∗)’s and ˆ̂Gi(Xi,j)’s. Note that for any β > 0 the left hand

side of (3.4) is monotonically decreasing and convex in λi, hence Newton’s method is guaranteed to

converge to λi(β) as long as it starts within (−minj
ˆ̂Gi(Xi,j), λi(β)), say at 2β−minj

ˆ̂Gi(Xi,j). The

advantage of this approach over directly solving the convex optimization (3.3) is that we reduce the

dimension of the decision space, from linear in the sample sizes to only solving univariate equations

in (3.4) and (3.5), which is much more favorable when the sample sizes are large. Finally, note that

if ˆ̂Gi(Xi,j1) = ˆ̂Gi(Xi,j2) for all i = 1, . . . ,m and all 1 ≤ j1 < j2 ≤ ni, then, as the objective function

of (3.3) becomes a constant, we can take any solution in the feasible set; for concreteness we can

take (wmin
1 , . . . ,wmin

m ) and (wmax
1 , . . . ,wmax

m ) to be the uniform weights.

Next we provide two variants of Algorithm 4, depicted as Algorithms 5 and 6, which differ only

by the last step. The motivation (with more details in Section 3.4.6) is that Algorithm 4 tends

to under-cover the true performance value because its last step only outputs the sample mean of

the simulation replications and does not take full account of the stochastic uncertainty. Algorithm

5 takes care of this uncertainty by outputting the standard normal lower and upper confidence

bounds in the last step. However, this simple adjustment does not account for the joint variances

from the input data and the stochasticity in a tight manner, and tends to generate conservative CIs

that over-cover the truth. This motivates the refined adjustment in Algorithm 6 that is designed to

match the CI inflation from combined input and stochastic uncertainties, by taking into account the

asymptotic form of the joint variance, and subsequently leads to accurate coverage performances.

To explain intuitively, with no simulation noise, an asymptotically exact CI under input uncertainty
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would output a point estimate of the target performance measure plus or minus a standard error of

magnitude z1−α/2σI , where σ2
I denotes the input-induced variance. As we will develop in Section

3.4, using the weights (wmin
1 , . . . ,wmin

m ) and (wmax
1 , . . . ,wmax

m ) on {Xi,1, . . . , Xi,ni}, i = 1, . . . ,m,

obtained in Step 2 of the algorithms, to evaluate the performance measure essentially matches this

CI as long as no simulation noise is present in the evaluation step. When R2 is finite, however,

the standard error should be inflated to z1−α/2

√
σ2
I + σ2/R2 where σ2 denotes the variance of one

simulation run. But as z1−α/2σI is already implicitly elicited by the optimal weights, it needs to

be removed from this standard error to avoid over-coverage. This leads to the adjustment in Step

3 of Algorithm 6, where σ̂2
I is an estimate of σ2

I and σ̂2
max and σ̂2

min are estimates of σ2. In the

expression of σ̂2
I , the sample variance

∑ni
j=1

( ˆ̂Gi(Xi,j)
)2
/ni for input model i is upward biased due

to the simulation noise in each ˆ̂Gi(Xi,j), which is removed by introducing the term niTiσ̂
2/R1. This

correction term is chosen to match the leading variance of the influence function estimate ˆ̂Gi(Xi,j).

To explain, the performance function h− Ẑ and the multiplier ni
∑Ti

t=1 1{Xr
i (t) = Xi,j} − Ti that

form the product term in (3.2) are nearly independent (see Proposition B.6.2 in Section B.6),

hence the variance of each product can be well approximated by the product of the variances of

the performance function and the multiplier which give rise to σ̂2 and niTi respectively, and the

1/R1 factor simply results from the averaging over R1 replications. The positive-part operation is

to handle small R1 situations where such a variance estimate could yield negative values due to the

bias correction, in which case we reset it to zero. Note that the latter occurs increasingly rarely as

R1 grows and would not affect asymptotic properties of the estimate.

3.3.3 Statistical Guarantees

We present statistical guarantees of Algorithms 4, 5 and 6. We assume the following:

Assumption 3.3.1 lim inf
mini=1,...,m ni
maxi=1,...,m ni

> 0 as all ni →∞.

Assumption 3.3.1 postulates that data sizes across different input models grow at the same rate.

For convenience, we shall use the averaged size n := 1
m

∑m
i=1 ni to represent the overall scale of the

data size throughout the chapter.
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Algorithm 5 Evaluation-Adjusted Empirical Likelihood (EEL)

Follow Algorithm 4 until Step 3. Replace Step 3 by

L EEL = Ẑmin − z1−α/2
σ̂min√
R2
, U EEL = Ẑmax + z1−α/2

σ̂max√
R2

where

Ẑmin =
1

R2

R2∑
r=1

h(Xr,min
1 , . . . ,Xr,min

m ), σ̂2
min =

1

R2 − 1

R2∑
r=1

(h(Xr,min
1 , . . . ,Xr,min

m )− Ẑmin)2

are the sample mean and variance of the R2 simulation runs driven by distributions on

{Xi,1, . . . , Xi,ni} with weights wmin
1 , . . . ,wmin

m , and Ẑmax, σ̂2
max are defined accordingly. z1−α/2 is

the 1− α/2 quantile of the standard normal.

Output: The CI [L EEL,U EEL].

Algorithm 6 Fully Adjusted Empirical Likelihood (FEL)

Follow Algorithm 4 until Step 3. Replace Step 3 by

L FEL = Ẑmin − z1−α/2

(√
σ̂2
I +

σ̂2
min

R2
− σ̂I

)
, U FEL = Ẑmax + z1−α/2

(√
σ̂2
I +

σ̂2
max

R2
− σ̂I

)

where z1−α/2, Ẑ
min, σ̂2

min, Ẑ
max, σ̂2

max are the same as in Algorithm 5, and

σ̂2
I = max

{ m∑
i=1

1

ni

[ ni∑
j=1

( ˆ̂Gi(Xi,j)
)2

ni
− niTiσ̂

2

R1

]
, 0
}
, with σ̂2 =

1

R1 − 1

R1∑
r=1

(h(Xr
1, . . . ,X

r
m)− Ẑ)2

(3.6)

is computed from the R1 replications generated in Step 1.

Output: The CI [L FEL,U FEL].
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Assumption 3.3.2 At least one of Var(Gi(Xi)), i = 1, . . . ,m is non-zero, where

Gi(x) =

Ti∑
t=1

EP1,...,Pm [h(X1, . . . ,Xm)|Xi(t) = x]− TiZ(P1, . . . , Pm).

Assumption 3.3.3 For each i let Ii = (Ii(1), . . . , Ii(Ti)) be a sequence of indices such that 1 ≤

Ii(t) ≤ Ti, and Xi,Ii = (Xi(Ii(1)), . . . , Xi(Ii(Ti))). Assume EP1,...,Pm [|h(X1,I1 , . . . ,Xm,Im)|8] is

finite for all such Ii’s.

The function Gi(x) in Assumption 3.3.2 is the influence function (Hampel 1974, Hampel et al.

2011) of the performance measure Z(P1, . . . , Pm) with respect to the input distribution Pi, which

measures the infinitesimal effect caused by perturbing Pi and represents the Gateaux derivative of

Z in the sense

d

dε
Z(P1, . . . , Pi−1, (1− ε)Pi + εQi, Pi+1, . . . , Pm)

∣∣∣
ε=0+

=

∫
Gi(x)dQi(x) (3.7)

for any distribution Qi on Xi. A rigorous treatment of the validity of (3.7) can be found in

Proposition 3.4.1 in Section 3.4.2. Assumption 3.3.2 entails that at least one of the influence

functions is non-degenerate at the true input distributions Pi’s, or in other words, at least one of

these distributions would exert a first-order effect on the performance measure. This assumption

is essential in ensuring a normality asymptotic for the output performance measure. In lack of

this assumption, the output performance measure will satisfy a χ2 or even higher-order asymptotic

behavior as the input data size grows, which has never been observed in the simulation literature to

our best knowledge (the parametric analog of this would be to say that the first-order sensitivities

to all input parameters are zero).

Note that the ˆ̂Gi(Xi,j) in Step 1 of Algorithm 4 is a sample version of Gi(Xi,j). Assumption

3.3.3 is a moment condition that, as we will see, controls the magnitude of the linearization error

in Step 2 and the simulation error in Steps 1 and 3 of our algorithms. It holds if, for instance, h is

bounded.

We have the following statistical guarantees in using the three proposed algorithms to construct
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input-induced CIs:

Theorem 3.3.2 Suppose Assumptions 3.3.1, 3.3.2 and 3.3.3 hold. If the simulation sizes R1, R2

are chosen such that R1
n →∞,

R2
n →∞, then the outputs L BEL,U BEL of Algorithm 4 constitute

an asymptotically exact (1− α)-level CI, i.e.,

lim
n,R1,R2→∞:

R1
n
→∞,R2

n
→∞

P
(
L BEL ≤ Z∗ ≤ U BEL

)
= 1− α. (3.8)

Theorem 3.3.3 Suppose Assumptions 3.3.1, 3.3.2 and 3.3.3 hold. If the simulation sizes R1, R2

are chosen such that R1
n →∞,

R2
n ≤ M for some constant M > 0, then the outputs L EEL,U EEL

of Algorithm 5 constitute an asymptotically valid (1− α)-level CI, i.e.,

lim inf
n,R1,R2→∞:

R1
n
→∞,R2

n
bounded

P
(
L EEL ≤ Z∗ ≤ U EEL

)
≥ 1− α

lim sup
n,R1,R2→∞:

R1
n
→∞,R2

n
bounded

P
(
L EEL ≤ Z∗ ≤ U EEL

)
≤ 1− α̃+

α̃2

4

where 1− α̃
2 = Φ(

√
2z1−α/2) with Φ being the distribution function of the standard normal. More-

over, if R2
n → ∞ like in Theorem 3.3.2, then the CI is asymptotically exact, i.e., (3.8) holds for

L EEL,U EEL.

Theorem 3.3.4 Suppose Assumptions 3.3.1, 3.3.2 and 3.3.3 hold. If the simulation sizes R1, R2

are chosen such that R1
n →∞,

R2
n ≤ M for some constant M > 0, then the outputs L FEL,U FEL

of Algorithm 6 constitute an asymptotically valid (1− α)-level CI, i.e.,

lim inf
n,R1,R2→∞:

R1
n
→∞,R2

n
bounded

P
(
L FEL ≤ Z∗ ≤ U FEL

)
≥ 1− α

lim sup
n,R1,R2→∞:

R1
n
→∞,R2

n
bounded

P
(
L FEL ≤ Z∗ ≤ U FEL

)
≤ 1− α+

α2

4
.

Moreover, if R2
n → ∞ like in Theorem 3.3.2, then the CI is asymptotically exact, i.e., (3.8) holds

for L FEL,U FEL.

Theorem 3.3.2 states that Algorithm 4 generates an asymptotically exact CI for the true per-
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formance measure, when the simulation budgets available to both Step 1 and Step 3 dominate the

data size. Theorems 3.3.3 and 3.3.4 show that in Algorithms 5 and 6 the simulation effort for Step

3 can be reduced to grow independent of the data size. This is thanks to the adjustment in the

evaluation of the confidence bounds that accounts for the stochastic uncertainty in Step 3. The CI

from Algorithm 5 tends to be conservative and can over-cover the truth with a level of 1− α̃+ α̃2/2.

To get a sense of this conservativeness, when the desired coverage level 1−α = 90%, the guaranteed

level can be as high as 1− α̃+ α̃2/2 ≈ 98%. On the other hand, the further refinement in Algorithm

6 is able to recover the exact coverage up to an error of α2/4, which is negligible for most purposes

(e.g., when α = 5%, α2/4 = 0.0625%).

3.4 Theory on Statistical Guarantees

This section further elaborates on Algorithms 4, 5 and 6, and explains the underlying theories

leading to Theorems 3.3.2, 3.3.3 and 3.3.4. Section 3.4.1 starts with an initial interpretation of our

approach from a distributionally robust optimization (DRO) perspective. The subsequent subsec-

tions then discuss the guarantees in several steps. Section 3.4.2 first presents a linear approximation

on the performance measures to bypass some statistical and computational bottlenecks. Sections

3.4.3 and 3.4.4 develop the EL method for the linearized problem and CI construction. Section

3.4.5 incorporates the simulation errors. Lastly, Section 3.4.6 discusses the last evaluation steps in

our procedures and links them to the conclusions of Theorems 3.3.2, 3.3.3 and 3.3.4.

3.4.1 An Initial Interpretation from DRO

On a high level, our algorithms in Section 3.3.2 can be interpreted as attempting to solve the

following problem. Given the observations {Xi,1, . . . , Xi,ni} for each input model i, we consider the

weighted empirical distribution
∑ni

j=1wi,jδXi,j (·). To ease the notation, these weighted distributions

will be superseded by their corresponding weight vector wi in expressing the performance measure

Z(w1, . . . ,wm) (and its linear approximations that will be introduced in later sections) evaluated
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at these distributions. We consider

L /U := min /max Z(w1, . . . ,wm)

subject to w ∈ Uα
(3.9)

where

Uα =

(w1, . . . ,wm) ∈ RN
∣∣∣∣∣
−2
∑m

i=1

∑ni
j=1 log(niwi,j) ≤ X 2

1,1−α∑ni
j=1wi,j = 1, for all i = 1, . . . ,m

wi,j ≥ 0, for all i, j

 (3.10)

This problem resembles DRO, which is a special class of robust optimization whose uncertainty is on

the probability distribution. More specifically, robust optimization considers decision-making under

uncertainty or ambiguity of the underlying parameters, and hinges on optimizing the objective

under the worst-case scenario, where the worst-case is over all parameters within the so-called

uncertainty set or ambiguity set. In DRO, the uncertain quantities are the probability distributions

that govern a stochastic optimization, so that the uncertainty set lies in the space of distributions.

From this view, optimization (3.9) calculates the worst-case performance measure subject to the

uncertainty set Uα. In particular, as discussed in Section 3.3.2, the constraint in (3.10) resembles

an averaged Burg-entropy divergence, comprising m terms each being the divergence between the

distribution weighted by wi and the uniform distribution, on the support generated by the empirical

data {Xi,1, . . . , Xi,ni}.

Despite this Burg-entropy divergence interpretation that ties the optimal weights in (3.9) to

“worst-case” distributions, the conceptual reasoning of Uα that we present below is fundamentally

different from DRO. The latter advocates the use of uncertainty sets that contain the true distri-

bution with a certain confidence. To this end, a divergence ball used as an uncertainty set must

use a “baseline” distribution that is absolutely continuous to the true distribution, in order to have

an overwhelming (or at least non-zero) probability of containing the truth (Jiang and Guan 2016,

Esfahani and Kuhn 2018). This condition is violated in formulation (3.9) when the true input

distribution is continuous. As the baseline distribution in our divergence (namely the empirical

distribution) is supported only on the data, the resulting ball does not contain any continuous



CHAPTER 3. OPTIMIZATION-BASED QUANTIFICATION 66

distributions. Moreover, the use of weighted average and its particular weights put on each of these

empirically defined divergences is also an unnatural choice from a DRO perspective. Therefore, a

key difference between DRO and our approach in terms of coverage guarantees is that, DRO pro-

vides simultaneous confidence bounds for all performance measures because of the inclusion of the

true distribution in the uncertainty set, whereas our uncertainty set, as we show in later sections, is

constructed just rich enough to correctly bound a particular performance measure. In particular,

our approach bypasses the inclusion of the truth in the uncertainty set by directly targeting at the

uncertainty in the performance measure incurred by the input data.

Thus, instead of arguing the statistical behaviors of (3.9) through the conventional reasoning of

DRO, we will explain them using a generalization of the empirical likelihood (EL) method, which is

a nonparametric analog of maximum likelihood and endows a tight statistical confidence guarantee

in using (3.9) that can be translated to our procedures. Moreover, we also note that, from a

computational viewpoint, (3.9) is non-convex and intractable in general. Our procedures as well as

statistical developments thus rely on a linearization of the objective function in (3.9). Furthermore,

estimating the objective (i.e., the performance measure) and its linearization involves running

simulation and incurs the associated errors. The next several subsections detail the linearization,

the EL method development, and the sampling error control.

3.4.2 Linearization of Performance Measure

We first state a property related to the influence function in (3.7) that shows up in Assumption

3.3.2:

Proposition 3.4.1 Let (Q1
1, . . . , Q

1
m), (Q2

1, . . . , Q
2
m) be two sets of distributions such that for any

si,t ∈ {1, 2} with i = 1, . . . ,m and t = 1, . . . , Ti

∫
|h(x1, . . . ,xm)|

m∏
i=1

Ti∏
t=1

dQ
si,t
i (xi,t) < +∞,
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where xi = (xi,t)t=1,...,Ti. Then

lim
ε→0+

1

ε

(
Z((1− ε)Q1

1 + εQ2
1, . . . , (1− ε)Q1

m + εQ2
m)− Z(Q1

1, . . . , Q
1
m)
)

=
m∑
i=1

EQ2
i
[G

Q1
1,...,Q

1
m

i (X)],

(3.11)

where EQ2
i
[·] denotes the expectation with respect to Q2

i that governs X, and G
Q1

1,...,Q
1
m

i is the influ-

ence function of Z(Q1
1, . . . , Q

1
m) with respect to the distribution Q1

i , given by

G
Q1

1,...,Q
1
m

i (x) =

Ti∑
t=1

EQ1
1,...,Q

1
m

[h(X1, . . . ,Xm)|Xi(t) = x]− TiZ(Q1
1, . . . , Q

1
m).

Moreover, EQ1
i
[G

Q1
1,...,Q

1
m

i (X)] = 0 for all i = 1, . . . ,m.

Proposition 3.4.1 can be shown by generalizing the techniques in the asymptotic analysis of von

Mises statistical functionals (e.g., Serfling 2009). It suggests the following linear approximation of

Z(Q2
1, . . . , Q

2
m) around (Q1

1, . . . , Q
1
m)

Z(Q1
1, . . . , Q

1
m) +

m∑
i=1

EQ2
i
[G

Q1
1,...,Q

1
m

i (X)] (3.12)

where the sum consists of expectations of influence functions under Q2
i and hence is linear in Q2

i .

In particular, when Q1
i = Pi, i.e., the true input distribution, and Q2

i = wi (like at the beginning of

Section 3.4.1, we abuse notations slightly here to denote wi as the weighted distribution supported

on the observations {Xi,j}j=1,...,ni), (3.12) suggests a linear approximation of Z(w1, . . . ,wm) given

by

ZL(w1, . . . ,wm) := Z∗ +
m∑
i=1

ni∑
j=1

Gi(Xi,j)wi,j (3.13)

where the Gi’s are defined in Assumption 3.3.2 and correspond to the influence functions of Z at

the true input distributions.

Furthermore, taking Q1
i = P̂i, i.e., the empirical input distribution, and Q2

i = wi in (3.12), we
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arrive at the linearization of Z(w1, . . . ,wm) around the uniform weights wi,j = 1/ni

ẐL(w1, . . . ,wm) := Z(P̂1, . . . , P̂m) +
m∑
i=1

ni∑
j=1

Ĝi(Xi,j)wi,j (3.14)

where the Ĝi’s are the influence functions of Z at the empirical input distributions, defined by

Ĝi(x) =

Ti∑
t=1

EP̂1,...,P̂m
[h(X1, . . . ,Xm)|Xi(t) = x]− TiZ(P̂1, . . . , P̂m). (3.15)

The following result characterizes the quality of the above two linear approximations:

Proposition 3.4.2 Under Assumptions 3.3.1 and 3.3.3, as the input data size n→∞ we have

E
[

sup
(w1,...,wm)∈Uα

∣∣Z(w1, . . . ,wm)− ZL(w1, . . . ,wm)
∣∣2] = O

( 1

n2

)
(3.16)

E
[

sup
(w1,...,wm)∈Uα

∣∣Z(w1, . . . ,wm)− ẐL(w1, . . . ,wm)
∣∣2] = O

( 1

n2

)
(3.17)

where Uα is defined in (3.10), and the expectation is with respect to the input data.

Proposition 3.4.2 suggests that, restricting to Uα, the maximum deviations of the linear approxima-

tions from the true performance measure vanish as fast as 1/n. Next we will build the theories and

explain our procedures for a linearized performance measure, and relate them back to the original

nonlinear performance measure Z through Proposition 3.4.2.

3.4.3 Empirical Likelihood Theory for Sums of Means

First proposed by Owen (1988), the EL method can be viewed as a nonparametric counterpart of

the maximum likelihood theory. Here we will develop this method for the linear approximation ZL.

Note that the second term in (3.13) can be viewed as the sum of the expected influence function

values under the weighted empirical distributions. Therefore, to ease notation and emphasize its

generality, we will present our EL method as a generic inference tool for estimating sums of means.

Suppose we are given m independent samples of i.i.d. observations {Yi,1, . . . , Yi,ni}, i = 1, . . . ,m,

with Yi,j , j = 1, . . . , ni distributed according to a common distribution Fi. For the i-th sample, we
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define its nonparametric likelihood, in terms of the probability weights wi over the support points

of the data, to be
∏ni
j=1wi,j . The multi-sample likelihood is

∏m
i=1

∏ni
j=1wi,j . By a simple convexity

argument, it can be shown that assigning uniform weights wi,j = 1/ni for each sample yields the

maximum value
∏m
i=1(1/ni)

ni . Moreover, uniform weights still maximize even if one allows putting

weights outside the support of data, in which case
∑ni

j=1wi,j < 1 for some i, making
∏ni
j=1wi,j

even smaller. Therefore, the uniform weights wi,j = 1/ni for all j = 1, . . . , ni can be viewed as the

nonparametric maximum likelihood estimate for the i-th distribution Fi, and wi,j = 1/ni for all i, j

is the multi-sample counterpart.

To proceed, we need to define a parameter of interest that is determined by the distributions

Fi’s. In our case, the parameter of interest is the sum of means µ0 :=
∑m

i=1 EYi where each Yi is

distributed under Fi.

The key of the EL method is to establish limit theorems analogous to the celebrated Wilks’

Theorem (Wilks (1938)) in the maximum likelihood theory, which stipulates that a suitably defined

logarithmic likelihood ratio converges to a X 2 random variable. In the EL setting, we use the so-

called profile nonparametric likelihood ratio to carry out inference on parameters. To explain

this, first, the nonparametric likelihood ratio is defined as the ratio between the nonparametric

likelihood of a given set of weights and the uniform weights (i.e., the nonparametric maximum

likelihood estimate). The profile nonparametric likelihood ratio is defined as the maximum ratio

among all probability weights giving rise to a particular value µ for the sum of means, i.e.,

R(µ) = max


m∏
i=1

ni∏
j=1

niwi,j

∣∣∣∣ m∑
i=1

ni∑
j=1

Yi,jwi,j = µ,

ni∑
j=1

wi,j = 1 for all i, wi,j ≥ 0 for all i, j

 ,

(3.18)

and is defined to be 0 if the optimization problem in (3.18) is infeasible. Profiling here refers to the

categorization of weights that lead to the same value µ.

The quantity R(µ) satisfies the following asymptotic property:

Theorem 3.4.3 Let Yi be a random variable distributed under Fi. Assume Var(Yi) < ∞ for all

i = 1, . . . ,m and at least one of them is non-zero, and that the sample sizes ni’s satisfy Assumption

3.3.1. Then −2 logR(µ0), where µ0 is the sum of the true means, converges in distribution to X 2
1 ,
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the chi-square distribution with degree of freedom one, as n→∞.

In other words, the logarithmic profile nonparametric likelihood ratio at the true value asymptot-

ically follows a chi-square distribution with degree of freedom one. This degree of freedom is the

effective number of parameters to be estimated which, in this case, is one since there is only a single

target parameter µ0. Note that this is independent of the number of input distributions m.

Theorem 3.4.3 is a sum-of-mean generalization of the well-known empirical likelihood theorem

(ELT) for single-sample mean:

Theorem 3.4.4 (Owen (2001) Theorem 2.2) Consider only the first sample {Y1,1, . . . , Y1,n1}.

Assume 0 < Var(Y1) <∞. Then −2 logR(EY1) converges in distribution to X 2
1 , as n1 →∞. The

function R(·) here is the same as that in (3.18) but with m = 1.

Extensions of this theorem have been studied in the literature (e.g., Owen 1990, 1991, Qin and

Lawless 1994, Hjort et al. 2009). The most relevant one is in the context of analysis-of-variance

(ANOVA), in which the logarithmic profile nonparametric likelihood ratio at the true means of

multiple independent samples are shown to converge to X 2
m, where m is the number of samples (or

groups). However, the argument for this result relies on viewing the multiple samples as a collection

of heteroscedastic data and applying the triangular array ELT (Owen 1991), which does not apply

obviously to our case. Another related extension is the plug-in EL (Hjort et al. 2009) which

entails that, under p estimating functions that possibly involve unknown nuisance parameters, the

associated logarithmic profile likelihood ratio converges to a weighted sum of p independent X 2
1 ’s,

if “good enough” estimators of the unknown nuisance parameters are used in evaluating the profile

likelihood ratio. However, Hjort et al. (2009) focuses on the single-sample case, thus is not directly

applicable. There have also been studies on applying EL to hypothesis testing of two-sample mean

differences (Liu et al. 2008, Wu and Yan 2012), but it appears that a fully rigorous proof is not

available for our general multi-sample sum-of-means setting. In view of these, we provide a detailed

proof of Theorem 3.4.3 in Section B.3 of the Appendix.

A sketch of the key idea is as follows. We first introduce the auxiliary variables µi that represent

the means of individual samples, so that the constraint
∑m

i=1

∑ni
j=1 Yi,jwi,j = µ in (3.18) is replaced
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by
∑ni

j=1 Yi,jwi,j = µi, i = 1, . . . ,m and
∑m

i=1 µi = µ. The KKT conditions then enforce the optimal

weights to be

w∗i,j =
1

ni + λ∗(Yi,j − µ∗i )

where λ∗ is the Lagrange multiplier for the constraint
∑m

i=1 µi = µ and µ∗i is the optimal solution

for µi. When µ is the true value µ0, an asymptotic analysis on the KKT conditions approximates

λ∗ as

λ∗ ≈
∑m

i=1(Ȳi − EYi)∑m
i=1

σ2
i
ni

where Ȳi = (1/ni)
∑ni

j=1 Yi,j is the sample mean and σ2
i is the variance of Yi. Moreover, we have the

approximation µ∗i ≈ EYi. By Taylor’s expansion, the logarithmic profile nonparametric likelihood

ratio can be approximated as

−2 logR(µ0) = 2
m∑
i=1

ni∑
j=1

log

(
1 +

λ∗

ni
(Yi,j − µ∗i )

)

≈ 2
m∑
i=1

ni∑
j=1

(
λ∗

ni
(Yi,j − µ∗i )−

λ∗2

2n2
i

(Yi,j − µ∗i )2

)

≈ 2
m∑
i=1

λ∗(Ȳi − µ∗i )−
m∑
i=1

λ∗2σ2
i

ni

≈

∑m
i=1(Ȳi − EYi)√∑m

i=1
σ2
i
ni

2

⇒ X 2
1

where “⇒” denotes convergence in distribution. This gives our result in Theorem 3.4.3.

3.4.4 Duality and Optimization-Based Confidence Intervals

From Theorem 3.4.3, a duality-type argument will give rise to a pair of optimization problems

whose optimal values will serve as confidence bounds for the sum of the true means. We have the

following:
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Theorem 3.4.5 Under the same conditions of Theorem 3.4.3, we have

lim
n→∞

P
(
µ ≤ µ0 ≤ µ

)
= 1− α

where

µ/µ := min /max
{ m∑
i=1

ni∑
j=1

Yi,jwi,j

∣∣∣(w1, . . . ,wm) ∈ Uα
}
. (3.19)

Theorem 3.4.5 thus translates the asymptotic convergence in Theorem 3.4.3 into an asymptotically

exact confidence bound. This is argued by a duality argument that turns the first constraint

in (3.18) into objective and vice versa. The concept is similar to Wilks’ Theorem for maximum

likelihood, but with the profiling that leads to the resulting optimization problems in (3.19).

Moreover, in terms of their positions, the optimization-based confidence bounds µ and µ are

equivalent to the standard normality-based confidence bounds up to negligible errors, as described

below:

Proposition 3.4.6 Under the same conditions of Theorem 3.4.3, the confidence bounds µ, µ from

Theorem 3.4.5 satisfy

µ =

m∑
i=1

Ȳi − z1−α/2

√√√√ m∑
i=1

σ2
i

ni
+ op

( 1√
n

)

µ =
m∑
i=1

Ȳi + z1−α/2

√√√√ m∑
i=1

σ2
i

ni
+ op

( 1√
n

)

where Ȳi =
∑ni

j=1 Yi,j/ni is the sample mean of {Yi,1, . . . , Yi,ni} and σ2
i is the true variance of Yi,

and z1−α/2 is the 1− α/2 quantile of the standard normal.

The errors between µ, µ and the normality-based bounds
∑m

i=1 Ȳi±z1−α/2

√∑m
i=1

σ2
i
ni

are negligible

in the sense that they are of smaller order than the width of the resulting CI, which is of order

1/
√
n.

Applying the above two results to the linear approximation ZL, we have the following:
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Corollary 3.4.7 Under Assumptions 3.3.1, 3.3.2 and 3.3.3, we have

lim
n→∞

P (LL ≤ Z∗ ≤ UL) = 1− α (3.20)

where

LL/UL := min /max
{
ZL(w1, . . . ,wm)

∣∣∣(w1, . . . ,wm) ∈ Uα
}
. (3.21)

Moreover

LL = Z∗ +
m∑
i=1

Ḡi − z1−α/2σI + op
( 1√

n

)
UL = Z∗ +

m∑
i=1

Ḡi + z1−α/2σI + op
( 1√

n

) (3.22)

where each Ḡi =
∑ni

j=1Gi(Xi,j)/ni is the sample mean of the influence function values Gi(Xi,j), j =

1, . . . , ni, σ
2
I =

∑m
i=1 Var(Gi(Xi))/ni, and z1−α/2 is the 1− α/2 quantile of the standard normal.

Note that the influence functions in (3.13) satisfy
∑m

i=1 E[Gi(Xi)] = 0 due to the last claim in

Proposition 3.4.1. Thus, letting Yi,j = Gi(Xi,j) in Theorem 3.4.5 and Proposition 3.4.6, and noting

that the Z∗ in (3.20) and (3.22) can be cancelled out, we arrive at the conclusion in Corollary 3.4.7.

Next, combining Corollary 3.4.7 and the linearization error (3.16), we can establish similar

results for L ,U that arise in (3.9):

Theorem 3.4.8 Under Assumptions 3.3.1, 3.3.2 and 3.3.3, the minimum and maximum values

L ,U of (3.9) satisfy

lim
n→∞

P (L ≤ Z∗ ≤ U ) = 1− α,

and the asymptotic equivalence (3.22) holds true with LL, UL replaced by L , U .

The proof of Theorem 3.4.8 consists of first approximating the discrepancies between the optimal

values, i.e., L = LL + Op(1/n) and U = UL + Op(1/n), using (3.16), and then showing that

any quantities that equal (3.22), up to a small order of discrepancies, deliver an interval with

asymptotically exact coverage probability by a standard application of Slutsky’s Theorem.



CHAPTER 3. OPTIMIZATION-BASED QUANTIFICATION 74

3.4.5 Estimating Influence Function

Our proposed CIs in Algorithms 4, 5 and 6 use a combination of the intervals suggested in Corollary

3.4.7 and Theorem 3.4.8. Before we explain this concretely, note that directly using the definition

of L ,U in (3.9) will encounter computational difficulties due to the general intractability of the

optimization. Thus, we consider using optimization (3.21) or expression (3.22) in obtaining our

confidence bounds. In either case, we need to estimate the influence function represented by

Gi(Xi,j)’s.

There are two sources of errors in estimating Gi(Xi,j). First, since we do not know the true

distribution Pi, we approximate it by the influence function evaluated at the empirical distribution,

namely Ĝi(Xi,j) defined in (3.15) (which in turn forms the coefficient in ẐL). Second, Ĝi(Xi,j),

like Gi(Xi,j), is a sum of conditional expectations, which needs to be estimated by simulation.

Ghosh and Lam (2019, 2015) propose an unbiased estimator for such quantities where the input

distributions have arbitrary weights wi,j on their support points. Here we use their scheme for the

special case of uniform weights. Similar approaches also arise in the so-called infinitesimal jackknife

for bagging estimators (e.g., Efron (2014), Wager et al. (2014)). Proposition 3.4.9 shows the scheme

(see Ghosh and Lam 2019 for the proof).

Proposition 3.4.9 Given input data {Xi,j}, the empirical influence function Ĝi evaluated at data

point Xi,j satisfies

Ĝi(Xi,j) = CovP̂1,...,P̂m
(h(X1, . . . ,Xm), Si,j(Xi)),

where CovP̂1,...,P̂m
denotes the covariance under the empirical input distributions, and

Si,j(Xi) =

Ti∑
t=1

ni1{Xi(t) = Xi,j} − Ti.

Such a covariance interpretation of the influence function leads us to the Monte Carlo estimate

(3.2) of Ĝi(Xi,j) in Step 1, denoted ˆ̂Gi(Xi,j), that takes the form of a sample covariance from R1
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simulation runs. Next, we introduce a sampled linear approximation for Z(w1, . . . ,wm) given by

̂̂ZL(w1, . . . ,wm) := Ẑ(P̂1, . . . , P̂m) +
m∑
i=1

ni∑
j=1

ˆ̂Gi(Xi,j)wi,j . (3.23)

where Ẑ(P̂1, . . . , P̂m) is the sample mean of the R1 replications. Optimization (3.3) in Step 2 of

the procedures uses ̂̂ZL(w1, . . . ,wm) as the objective function. But since Ẑ(P̂1, . . . , P̂m) does not

depend on the weights wi,j ’s, it is dropped from the expression.

The quality of the sample linear approximation (3.23) is quantified as:

Proposition 3.4.10 Under Assumptions 3.3.1 and 3.3.3, as the input data size n → ∞ and

simulation effort R1 → ∞ we have E
[

sup(w1,...,wm)∈Uα
∣∣ẐL(w1, . . . ,wm) − ̂̂ZL(w1, . . . ,wm)

∣∣2] =

O
(

1
R1

)
, hence together with (3.17) we have

E
[

sup
(w1,...,wm)∈Uα

∣∣Z(w1, . . . ,wm)− ̂̂ZL(w1, . . . ,wm)
∣∣2] = O

( 1

n2
+

1

R1

)
. (3.24)

Here both expectations are with respect to the input data and the simulation runs in Step 1 of

Algorithms 4-6.

The uniform error (3.24) of ̂̂ZL as an approximation to Z then implies the following guarantee on

the difference between the weights {wmin
i }mi=1, {wmax

i }mi=1 obtained in Step 2 of Algorithm 4, and

the optimal weights for the optimization pair (3.9), measured in terms of their evaluations of the

performance measure Z:

Theorem 3.4.11 Let Zmin := Z(wmin
1 , . . . ,wmin

m ) and Zmax := Z(wmax
1 , . . . ,wmax

m ). Under As-

sumptions 3.3.1 and 3.3.3, as the input data size n→∞ and simulation effort R1 →∞ we have

E[(Zmin −L )2] = O
( 1

n2
+

1

R1

)
, E[(Zmax −U )2] = O

( 1

n2
+

1

R1

)
where L ,U are defined in (3.9), and the expectation is with respect to the input data and the

simulation runs in Step 1 of Algorithms 4-6.

Theorem 3.4.11 justifies using {wmin
i }mi=1, {wmax

i }mi=1 to evaluate the performance measure, which
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give rise to the asymptotically exact confidence bounds L ,U up to a small-order error. Step 3 of

the algorithms utilizes this implication. However, we need to properly control the simulation error

in evaluating the performance measure, which is detailed in the next subsection.

As a side note, we can also use the linear approximation ̂̂ZL evaluated at the weights {wmin
i }mi=1

and {wmax
i }mi=1 directly as our confidence interval. This forms another asymptotically exact CI

(see Theorem B.5.3 in Appendix B.5). Moreover, this approach would require less simulation effort

than our procedures (R1 versus R1 + 2R2). However, like the delta method, this approach relies

heavily on the linear approximation to construct the CI. In contrast, the CIs in our procedures

are constructed from simulating the (nonlinear) performance measure, under the carefully chosen

empirical weights {wmin
i }mi=1, {wmax

i }mi=1. As a result, they conform more closely to the boundaries

of a given problem and in turn can lead to better coverages. For example, when the performance

measure is within a range (e.g., a probability that is between 0 and 1), using only the linear ap-

proximation frequently incurs under-coverage as the CIs can lie significantly outside the meaningful

range (note that truncating at the boundaries would not solve the issue, which is intrinsic in the

linear approximation), whereas our procedures would generate confidence bounds that much more

often lie within the range and consequently offer better coverages.

3.4.6 Evaluation of CI Bounds

This section explains and compares Step 3 in Algorithms 4, 5 and 6 to evaluate the final confidence

bounds, and relates these to the justification of Theorems 3.3.2, 3.3.3 and 3.3.4.

Algorithm 4 constructs CIs by taking averages of R2 independent simulation runs driven by

the weighted empirical input distributions, with weights being {wmin
i }mi=1, {wmax

i }mi=1, to evaluate

the lower and upper bounds respectively. Note that by Theorem 3.4.11, the performance measures

evaluated at the weighted empirical distributions, Zmin and Zmax, are close to L and U , which in

turn by Theorem 3.4.8 satisfy exact coverage guarantees. Step 3 of Algorithm 4 adds simulation

noises from the R2 simulation runs in estimating Zmin and Zmax. This results in the following

discrepancies between the outputs of Algorithm 4 and L , U :

Proposition 3.4.12 Under Assumptions 3.3.1 and 3.3.3, as the input data size n → ∞ and
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simulation effort R1 →∞, R2 →∞, the outputs L BEL,U BEL of Algorithm 4 satisfy

E[(L BEL −L )2] = O
( 1

n2
+

1

R1
+

1

R2

)
, E[(U BEL −U )2] = O

( 1

n2
+

1

R1
+

1

R2

)
where the expectation is with respect to the input data and the simulation runs in Steps 1 and 3 of

Algorithm 4.

Proposition 3.4.12 implies that, when the simulation sizes R1 and R2 both dominate the input data

size n, the root-mean-square discrepancies between the outputs from Algorithm 4, L BEL, U BEL,

and the asymptotically exact CIs formed by L , U , become o(1/
√
n), which is of smaller order

than the width of the CI that is of order 1/
√
n. This then leads to the asymptotic exactness of

[L BEL,U BEL] in Theorem 3.3.2.

Algorithm 4 requires both R1 and R2 to be large relative to n. Algorithms 5 and 6, on the other

hand, are designed to work well for smaller R2. To explain, note that the reason of needing R2 to

be large in Algorithm 4 is to wash away the simulation noises to a smaller magnitude than the CI

width in Step 3. Instead of simply washing them away, Algorithms 5 and 6 suitably enlarge the CI

to incorporate these errors in Step 3, so that R2 can now be chosen independent of n. In particular,

Algorithm 5 simply takes the upper or lower confidence bound for Zmax or Zmin respectively to

account for the simulation noises. Algorithm 6, on the other hand, uses a more delicate adjustment

reasoned from the representation (3.22). Consider the upper bound U FEL for instance. Theorem

3.4.11, the interchangeability between L ,U and LL,UL in Theorem 3.4.8, and the expressions in

(3.22) together stipulate that, with no simulation error in Step 3 of the algorithm, an asymptotically

exact upper bound can be expressed as Zmax = Z(wmax
1 , . . . ,wmax

m ) ≈ Z∗ +
∑m

i=1 Ḡi + z1−α/2σI .

This corresponds to a point estimate (using plain empirical distributions as the inputs) that is

approximated by Z∗+
∑m

i=1 Ḡi, and adding a standard error z1−α/2σI that captures its uncertainty.

When R2 is only moderate, Ẑmax becomes approximately Z∗+
∑m

i=1 Ḡi+(Ẑmax−Zmax)+z1−α/2σI ,

where Z∗+
∑m

i=1 Ḡi+(Ẑmax−Zmax) can be regarded as the more noisy point estimate that contains

the stochastic error (Ẑmax−Zmax). In order to capture the joint input and simulation uncertainties,

the standard error to this point estimate should be inflated to z1−α/2

√
σ2
I + σ2/R2 where σ2 is the
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variance of each simulation run, i.e., Z∗ +
∑m

i=1 Ḡi + (Ẑmax − Zmax) + z1−α/2

√
σ2
I + σ2/R2 is an

asymptotically exact upper bound. Comparing this with the approximate expression for Ẑmax, we

thus conclude a margin adjustment of z1−α/2

√
σ2
I + σ2/R2 − z1−α/2σI , which is estimated by the

adjustment in Step 3 of Algorithm 6.

To make the above arguments precise, we have the following decompositions:

Proposition 3.4.13 Let Zmin := Z(wmin
1 , . . . ,wmin

m ) and Zmax := Z(wmax
1 , . . . ,wmax

m ), and recall

Ẑmin and Ẑmax in Step 3 of Algorithms 5 and 6. Under Assumptions 3.3.1, 3.3.2 and 3.3.3, as

the input data size n → ∞ and simulation effort R1
n → ∞, R2 → ∞, the outputs L EEL,U EEL of

Algorithm 5 satisfy

L EEL = Z∗ +
m∑
i=1

Ḡi + (Ẑmin − Zmin)− z1−α/2

(
σI +

σ√
R2

)
+ op

( 1√
n

+
1√
R2

)
U EEL = Z∗ +

m∑
i=1

Ḡi + (Ẑmax − Zmax) + z1−α/2

(
σI +

σ√
R2

)
+ op

( 1√
n

+
1√
R2

)

whereas the outputs L FEL,U FEL of Algorithm 6 satisfy

L FEL = Z∗ +
m∑
i=1

Ḡi + (Ẑmin − Zmin)− z1−α/2

√
σ2
I +

σ2

R2
+ op

( 1√
n

+
1√
R2

)
U FEL = Z∗ +

m∑
i=1

Ḡi + (Ẑmax − Zmax) + z1−α/2

√
σ2
I +

σ2

R2
+ op

( 1√
n

+
1√
R2

)
where σ2

I =
∑m

i=1 Var(Gi(Xi))/ni is as defined in Corollary 3.4.7, σ2 = VarP1,...,Pm(h(X1, . . . ,Xm))

is the output variance, and the op is with respect to the input data and the simulation runs in Steps

1 and 3 of Algorithms 5-6.

To see how these decompositions arise, we can write the outputs of Algorithm 5 as (for the lower

bound, say) Ẑmin − z1−α/2σ̂min/
√
R2 = Zmin + (Ẑmin − Zmin)− z1−α/2σ̂min/

√
R2 , where Zmin, by

Theorem 3.4.11, is close to L that is in turn representable as Z∗+
∑m

i=1 Ḡi−z1−α/2σI up to a small

error by Theorem 3.4.8. Noting that σ̂min approximates σ, these together show the representation

for L EEL in Proposition 3.4.13. The other expressions for U EEL, and L FEL, U FEL, follow
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analogously using the adjustments shown in Algorithms 5 and 6.

From Proposition 3.4.13, we can arrive at Theorems 3.3.3 and 3.3.4. For FEL, like discussed

above, the two terms
∑m

i=1 Ḡi and Ẑmin −Zmin in the expression of L FEL contain the input error

and the simulation error in Step 3 respectively. They possess variances that are approximately σ2
I

and σ2/R2, and their asymptotic independence implies a standard error of z1−α/2

√
σ2
I + σ2/R2, so

that the representation of L FEL matches the lower bound of an asymptotically exact CI. Similar

conclusion holds for the upper bound U FEL. These almost put together the CI, except that

L FEL and U FEL contain some inter-dependence that slightly corrupts the coverage, which leads

to Theorem 3.3.4. The argument for EEL in Theorem 3.3.3 follows similarly, but with the standard

error term in L EEL or U EEL overestimating the uncertainty by a factor as large as
√

2 (because

1 ≤ σI+σ/
√
R2√

σ2
I+σ2/R2

≤
√

2, where
√

2 is attained when σ2
I = σ2/R2). In fact, under a coupling between

all the simulation runs in Algorithms 5 and 6, σ̂min/
√
R2 always upper bounds

√
σ̂2
I + σ̂2

min/R2− σ̂I

and hence Algorithm 5 always generates wider CIs than Algorithm 6.

3.5 Numerical Experiments

We present some numerical results for Algorithm 4 (BEL), Algorithm 5 (EEL) and Algorithm

6 (FEL). These include coverage probabilities and the statistical indicators, such as mean and

standard deviation, of the positions or widths of the resulting CIs. We conduct experiments on two

settings, a queueing model in Section 3.5.1 and stochastic activity networks in Section 3.5.2. We

consider various levels of simulation budgets, data sizes, and problem dimensions (i.e., number of

estimated input models). Throughout this section we set the target confidence level to 95%.

We also compare our procedures with three methods:

1. Percentile bootstrap resampling (“standard BT”): This scheme is suggested in Barton and

Schruben (1993, 2001). Given m input data sets {X1,1, . . . , X1,n1}, . . . , {Xm,1, . . . , Xm,nm}, it

proceeds as follows. First choose B, the number of bootstrap resamples of the input empirical

distributions, and Rb, the number of simulation replications for each bootstrap resample. For

each l = 1, 2, . . . , B, draw a simple random sample of size ni with replacement, denoted by
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{X l
i,1, . . . , X

l
i,ni
}, for each input model i, then generate Rb simulation replications driven by

the empirical distributions formed by {X l
i,1, . . . , X

l
i,ni
}, i = 1, . . . ,m, and take their average to

obtain Z l. Finally output the 0.025(B+ 1)-th and 0.975(B+ 1)-th order statistics of {Z l}Bl=1.

2. Adaptive percentile bootstrap (“adaptive BT”): Proposed by Yi and Xie (2017), this ap-

proach adaptively allocates simulation budget in order to obtain percentile bootstrap CIs

more efficiently than the standard percentile bootstrap. It aims to allocate more simulation

runs to the resamples whose corresponding performance measures are closer to the 0.025 or

0.975 quantiles. The procedure consists of two phases. The first phase uses simulation to

sequentially screen out bootstrap resamples that will less likely give the target quantiles. The

second phase allocates the remaining simulation budget to the surviving resamples to more

accurately estimate their performance measures. For a given simulation budget, the tuning

parameters B,n0, r,M (see Yi and Xie (2017)) are needed. In our subsequent comparisons we

offer it some advantages by randomly drawing 10 different combinations of these parameters

from a broad enough range of values, and reporting results on the top combinations ranked

by the closeness of the coverage level to the nominal level.

3. The nonparametric delta method: This method has not been explicitly suggested in the

simulation literature (in the nonparametric regime), and here we provide a heuristic version

inspired from our analyses. The CI takes the form

Ẑ ± z1−α
2

√
input-induced variance + stochastic variance

where Ẑ is an estimate of the performance measure under the empirical input distributions.

We estimate the stochastic variance using the sample variance of the generated simulation

replications, and estimate the input-induced variance using the σ̂I in Algorithm 6. To be

specific, we carry out Step 1 of Algorithm 4 with R1 = Rd, and then construct the CI

Ẑ ± z1−α
2

√√√√ m∑
i=1

1

ni

( 1

ni

ni∑
j=1

( ˆ̂Gi(Xi,j)
)2 − niTiσ̂2

Rd

)
+
σ̂2

Rd
(3.25)
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where Ẑ and σ̂2 are respectively the sample mean and variance of the Rd simulation replica-

tions.

We will detail our comparisons under various problem and algorithmic configurations in the two

experimental setups that follow. After that, in Section 3.5.3, we summarize some highlights and

provide further comparisons with the bootstrap.

3.5.1 Mean Waiting Time of an M/M/1 Queue

We first consider a canonical M/M/1 queue with arrival rate 0.95 and service rate 1. The system is

empty when the first customer comes in. We set our target performance measure as the expected

waiting time of the 10-th customer. To put it in the form of (3.1), let At be the inter-arrival time

between the t-th and (t+ 1)-th customers, St be the service time of the t-th customer, and

h(A1, A2, . . . , A9, S1, S2, . . . , S9) = W10,

where the waiting time W10 is calculated via the Lindley recursion

W1 = 0,Wt+1 = max{Wt + St −At, 0}, for t = 1, . . . , 9.

Both the inter-arrival time distribution and the service time distribution are assumed unknown.

Table 3.1 shows the results of all the methods under a simulation budget 2000 and input data

sizes n1 = 30, n2 = 25. Table 3.2 summarizes results under a budget 8000 and data sizes n1 =

120, n2 = 100. For each row of the tables, 1000 i.i.d. input data sets are drawn from the true input

distributions, and then a CI is constructed from each of them, from which the coverage probability,

mean CI length and standard deviation of CI length are estimated. The word “overshoot” means

that the CI limits exceed the natural bounds of the performance measure, i.e., the lower bound

being negative given that waiting time must be non-negative.

We test the coverage probabilities of the optimization-based CIs. For each of Tables 3.1 and

3.2, we compute a “benchmark” coverage of each method by generating 5000 CIs each of which
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consumes 5×104 simulation runs, to approximate the simulation-error-free coverage for comparison

(the bracketed number underneath the name of each method in the tables). We observe first that

the benchmark coverage of our optimization-based CIs are close to the nominal value 95% in both

tables (roughly 92% in Table 3.1 and 94% in Table 3.2), which provides a sanity check for the

validity of the EL method in our setting. Moreover, consistent with the asymptotic results, the

benchmark coverage is closer to 95% when the data size is bigger (Table 3.2). Second, under the

simulation budget of the experiments, Tables 3.1 and 3.2 show that in general BEL under-covers

compared to the benchmark, EEL over-covers, whereas FEL is accurate. For instance, in Table

3.2 where the benchmark coverage of the EL method is 93.7%, BEL varies from 90% to 92%,

EEL ranges from 96% to 99%, whereas FEL stays around 94%. This phenomenon is in line with

Theorems 3.3.2, 3.3.3 and 3.3.4 since, as we have discussed in Sections 3.3.3 and 3.4.6, BEL does

not take into account the stochastic uncertainty in the final evaluation, EEL captures the stochastic

uncertainty but in a conservative manner, while FEL is designed to tightly match the magnitude of

the uncertainty. The under-coverage issue of BEL and the over-coverage issue of EEL, especially for

the larger-data case (Table 3.2), become more severe when R2 is chosen small, while FEL delivers

accurate coverage for all considered parameter values. Thus FEL seems to be more reliable over

the other two procedures when the user has a limited simulation budget.

We compare our methods with the percentile bootstrap procedures in terms of coverage accuracy

and algorithmic configuration. The benchmark coverages of our methods and the bootstrap appear

to be quite similar in all considered cases (within 1% in both Tables 3.1 and 3.2). Moreover,

the bootstrap methods perform competitively in terms of the actual coverages, when the budget

allocation or tuning parameters are optimally chosen. Nonetheless, FEL appears to show more

robust performance with respect to these tuning needs. In the standard bootstrap, when Rb is

chosen large relative to the data size and B is set around 50, the coverages of the CIs are close

to the benchmark coverages in all cases. However, as Rb decreases, the coverage probabilities

of bootstrap CIs quickly rise towards 100%. This over-coverage issue can be attributed to the

higher variability caused by small Rb that is not properly accounted for, as discussed in Barton

et al. (2002) and Barton et al. (2007). The adaptive bootstrap appears to mitigate this issue
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methods &
parameters

coverage
estimate

mean CI
length

std. CI
length

% of
overshoot

BEL
(91.8%∗)

R1 = 1000, R2 = 500 89.6% 4.76 2.17 0%
R1 = 1500, R2 = 250 90.7% 4.72 1.99 0%
R1 = 1800, R2 = 100 88.7% 4.76 2.15 0%
R1 = 1900, R2 = 50 89.2% 4.79 2.24 0%

EEL
(91.8%∗)

R1 = 1000, R2 = 500 93.1% 5.21 2.19 0%
R1 = 1500, R2 = 250 94.1% 5.38 2.21 0%
R1 = 1800, R2 = 100 95.1% 5.67 2.42 0%
R1 = 1900, R2 = 50 96.0% 6.16 2.64 0.1%

FEL
(91.8%∗)

R1 = 1000, R2 = 500 90.5% 4.72 2.06 0%
R1 = 1500, R2 = 250 91.9% 4.83 2.07 0%
R1 = 1800, R2 = 100 91.9% 4.93 2.08 0%
R1 = 1900, R2 = 50 91.5% 5.06 2.20 0%

standard BT
(91.0%∗)

B = 50, Rb = 40 91.2% 4.90 2.23 0%
B = 100, Rb = 20 93.5% 4.98 2.02 0%
B = 400, Rb = 5 96.9% 6.09 2.28 0%
B = 1000, Rb = 2 99.2% 7.74 2.82 0%

adaptive BT
(4 best combinations)
(91.0%∗)

B = 100, n0 = 10, r = 1.2,M = 3 92.7% 5.01 2.18 0%
B = 100, n0 = 10, r = 1.2,M = 1 92.0% 5.02 2.22 0%
B = 100, n0 = 10, r = 1.4,M = 1 92.3% 4.93 2.08 0%
B = 100, n0 = 10, r = 1.8,M = 1 92.5% 5.00 2.24 0%

nonparametric delta
method
(86.6%∗)

Rd = 2000 84.9% 4.66 2.08 54%

∗ denotes the benchmark coverage with negligible simulation noise.

Table 3.1: M/M/1 queue. n1 = 30, n2 = 25. Total simulation budget 2000. Run times (second/CI):
three EL methods 1.1× 10−2, the bootstrap 1.2× 10−2, delta method 1.0× 10−2.

by more efficient allocation of the budget. It requires, however, a careful selection of the best

parameter configurations (while the tables show the top four configurations, the worst case among

our randomly selected 10 choices has a coverage of 80%). In practice these parameters needs to

be obtained via discrete simulation optimization (Yi and Xie 2017). In contrast, the coverage

probabilities of FEL stay almost unchanged under various budget allocations (including the case

that R2 is as small as 50). FEL thus seems easy to use in terms of algorithmic configuration; in

particular, merely setting R2 = 50 appears doing well.

To further illustrate the robustness of the proposed approach in terms of algorithmic configu-

rations, relative to the bootstrap, we show in Table 3.3 the coverages as we increase the simulation
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methods &
parameters

coverage
estimate

mean CI
length

std. CI
length

% of
overshoot

BEL
(93.7%∗)

R1 = 4000, R2 = 2000 92.6% 2.47 0.597 0%
R1 = 7000, R2 = 500 92.4% 2.46 0.606 0%
R1 = 7800, R2 = 100 91.9% 2.48 0.713 0%
R1 = 7900, R2 = 50 89.6% 2.45 0.787 0%

EEL
(93.7%∗)

R1 = 4000, R2 = 2000 95.7% 2.66 0.626 0%
R1 = 7000, R2 = 500 97.7% 2.90 0.678 0%
R1 = 7800, R2 = 100 98.0% 3.50 0.870 0%
R1 = 7900, R2 = 50 98.8% 3.94 1.04 0%

FEL
(93.7%∗)

R1 = 4000, R2 = 2000 93.6% 2.45 0.591 0%
R1 = 7000, R2 = 500 94.3% 2.45 0.594 0%
R1 = 7800, R2 = 100 94.1% 2.74 0.705 0%
R1 = 7900, R2 = 50 94.3% 2.90 0.865 0%

standard BT
(94.2%∗)

B = 50, Rb = 160 92.7% 2.56 0.675 0%
B = 100, Rb = 80 96.4% 2.64 0.613 0%
B = 400, Rb = 20 98.8% 3.19 0.658 0%
B = 1000, Rb = 8 100% 4.19 0.800 0%

adaptive BT
(4 best combinations)
(94.2%∗)

B = 200, n0 = 20, r = 1.6,M = 1 93.6% 2.64 0.657 0%
B = 200, n0 = 15, r = 2,M = 1 95.0% 2.68 0.687 0%
B = 200, n0 = 5, r = 1.6,M = 3 94.5% 2.71 0.688 0%
B = 400, n0 = 10, r = 1.8,M = 1 94.5% 2.72 0.654 0%

nonparametric delta
method
(91.5%∗)

Rd = 8000 92.0% 2.45 0.560 0%

∗ denotes the benchmark coverage with negligible simulation noise.

Table 3.2: M/M/1 queue. n1 = 120, n2 = 100. Total simulation budget 8000. Run times (sec-
ond/CI): three EL methods 4.0× 10−2, the bootstrap 3.4× 10−2, delta method 5.3× 10−2.

budget. The first row shows the coverage estimates of the bootstrap and FEL under allocations

that satisfy the same overall simulation budget. Both appear to be close to their respective bench-

mark coverages shown in Table 3.1. However, the coverages of the bootstrap could be illusory in

this case since, as the bootstrap size B increases with Rb fixed, the coverage rises from 91% to 95%

as shown in the following rows. These deviate from the benchmark coverages, and indicate that

neither B nor Rb is large enough for the bootstrap to work properly. In contrast, the coverage of

FEL appears quite stable and remains close to the benchmark when R1 or R2 increases.

Compared to the nonparametric delta method, our optimization-based CIs possess better cov-

erages, especially in the situation of limited input data size. When the data size is less than 30 for
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standard BT FEL

parameters
coverage
estimate

parameters
coverage
estimate

B = 40, Rb = 15 90.9% R1 = 500, R2 = 50 90.3%

B = 100, Rb = 15 92.4% R1 = 2000, R2 = 50 91.9%

B = 200, Rb = 15 93.6% R1 = 500, R2 = 200 90.2%

B = 500, Rb = 15 94.7% R1 = 2000, R2 = 200 90.8%

Table 3.3: M/M/1 queue. n1 = 30, n2 = 25.

each input model (Table 3.1), the coverage probabilities of the delta-method CIs are around 85%,

while our methods are around 90% to 96%, depending on the particular variants. The unsatisfac-

tory coverage of the delta-method CI could be attributed to the shrinkage of the interval caused by

two factors. The first is the overshoot issue. Table 3.1 shows that frequently the delta-method CI

exceeds the natural bounds of the target performance measure, which renders its effective length

shorter and hence an inferior coverage. The second factor that may shorten the interval is the

noise in estimating the input-induced variance. When only 30 input data are available, the esti-

mate of the input-induced variance used in constructing the CI (3.25) can be highly noisy, which

potentially makes the overall standard error estimate downward biased (hence shorter CIs) because

of the concavity of the square root operation. This may explain the smaller length of the delta-

method CI compared to CIs by other methods in Table 3.1. The coverage gets much better for the

delta-method CI when input data size rises above 100 (Table 3.2), which gets close to, but still falls

short of, our optimization-based counterparts especially FEL.

3.5.2 Stochastic Activity Networks

We consider a larger-scale problem and larger ranges of data sizes, in the setting of stochastic

activity networks shown in Figure 3.1. The first network Figure 3.1a is borrowed from Yi and Xie

(2017). Each edge i = 1, . . . , 5 of the network represents a task that can be completed in Xi units of

time. Assigning each Xi to edge i as its length, the total time to finish the project is the length of

the longest path from node 1 to node 4, i.e. h(X1, . . . , X5) = max{X1+X2+X5, X1+X4, X3+X5}.

Assume that the unknown distributions of theXi’s are exponential with rate 10, 5, 12, 11, 5 for i from
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(b) 10 nodes and m = 14 tasks.

Figure 3.1: Stochastic activity networks.

1 to 5, and we are interested in computing the expected time to finish the project E[h(X1, . . . , X5)].

methods &
parameters

coverage
estimate

mean CI
length

std. CI
length

% of
overshoot

BEL

R1 = 4000, R2 = 2000 92.7% 0.17 0.03 0%
R1 = 7000, R2 = 500 91.9% 0.17 0.04 0%
R1 = 7800, R2 = 100 84.9% 0.18 0.06 0%
R1 = 7900, R2 = 50 81.7% 0.18 0.07 0%

EEL

R1 = 4000, R2 = 2000 96.1% 0.20 0.03 0%
R1 = 7000, R2 = 500 97.7% 0.23 0.04 0%
R1 = 7800, R2 = 100 99.0% 0.30 0.07 0%
R1 = 7900, R2 = 50 99.4% 0.35 0.09 0%

FEL

R1 = 4000, R2 = 2000 92.2% 0.17 0.03 0%
R1 = 7000, R2 = 500 93.2% 0.18 0.04 0%
R1 = 7800, R2 = 100 94.6% 0.22 0.06 0%
R1 = 7900, R2 = 50 94.5% 0.25 0.08 0%

standard BT

B = 50, Rb = 160 94.0% 0.21 0.04 0%
B = 100, Rb = 80 97.1% 0.22 0.04 0%
B = 400, Rb = 20 99.7% 0.33 0.04 0%
B = 1000, Rb = 8 100% 0.47 0.05 0%

adaptive BT
(4 best combinations)

B = 300, n0 = 15, r = 1.2,M = 1 94.9% 0.22 0.04 0%
B = 100, n0 = 20, r = 1.2,M = 1 93.9% 0.22 0.05 0%
B = 400, n0 = 10, r = 1.2,M = 3 95.6% 0.24 0.04 0%
B = 100, n0 = 5, r = 1.2,M = 3 96.2% 0.22 0.04 0%

nonparametric delta
method

Rd = 8000 94.9% 0.18 0.03 0%

Table 3.4: Stochastic activity network in Figure 3.1a. n1 = n2 = 200, n3 = n4 = n5 = 30. Total
simulation budget 8000. Run times (second/CI): three EL methods 3.3 × 10−2, the bootstrap
1.7× 10−2, delta method 3.2× 10−2.

We test our method in cases where the data sizes for different input models vary significantly.
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Specifically we consider the case where n1 = n2 = 200 and n3 = n4 = n5 = 30, which produce

a ratio of roughly 7 between the maximum and minimum data sizes. Table 3.4 shows the results

under a simulation budget of 8000. All the methods seem to exhibit performances similar to the

cases with more balanced observations in Tables 3.1 and 3.2. For example, FEL and the adaptive

bootstrap generate CIs with similar coverage probabilities (around the nominal level 95%), EEL

and the standard bootstrap tend to over-cover, and BEL tends to under-cover especially for small

values of R2. In contrast to the last example, the nonparametric delta method in this case seems

to have a good performance that is similar to our FEL. This could be because the performance

function h here is piecewise linear with only three pieces, hence can be well approximated by a

single linear function and in turn leads to the better finite-sample performance of the delta method

that relies crucially on linearization.

Next we consider a bigger stochastic activity network, shown in Figure 3.1b, that is borrowed

from Chu et al. (2014) that consists of 14 tasks. The time to completion Xi of each task follows

exponential distribution with rate 10, 5, 12, 11, 5, 8, 4, 9, 13, 7, 6, 9, 10, 6 for i from 1 to 14. In addition

to computing the expected time to complete the project (Table 3.5), which is represented by the

length of the longest path from node 1 to 10, we also test our methods in estimating the tail

probability that the time to finish the project exceeds 1.5 units of time (Tables 3.6 and 3.7). The

true value of the probability is 0.0747 (estimated from abundunt simulation).

Table 3.5 shows that our FEL and the adaptive bootstrap consistently exhibit satisfactory

coverage levels when the number of input models is fairly big compared with the input data size

(per input model). Here we use a simulation budget of 4000, and a data size of 30 for the first

7 input models, and 25 for the other 7 inputs. The coverage probabilities and their trends in

each method are similar to our observations before (e.g., in Tables 3.2 and 3.4). For example,

the coverage of FEL stays around 94%, the standard bootstrap over-covers for small Rb, and BEL

under-covers for small R2.

Table 3.6 shows the tail probability estimation results, with a data size around 100 per input

model. Table 3.7 considers a bigger data size of 400-500. The simulation budgets are 16000 and

60000 respectively. FEL and the delta method seem to have accurate coverage probabilities (93%
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methods &
parameters

coverage
estimate

mean CI
length

std. CI
length

% of
overshoot

BEL

R1 = 3000, R2 = 500 91.6% 0.24 0.04 0%
R1 = 3500, R2 = 250 90.4% 0.24 0.05 0%
R1 = 3800, R2 = 100 89.1% 0.24 0.06 0%
R1 = 3900, R2 = 50 85.0% 0.24 0.09 0%

EEL

R1 = 3000, R2 = 500 97.3% 0.31 0.05 0%
R1 = 3500, R2 = 250 96.9% 0.33 0.06 0%
R1 = 3800, R2 = 100 98.3% 0.39 0.08 0%
R1 = 3900, R2 = 50 98.9% 0.45 0.11 0%

FEL

R1 = 3000, R2 = 500 93.3% 0.25 0.04 0%
R1 = 3500, R2 = 250 93.2% 0.26 0.05 0%
R1 = 3800, R2 = 100 93.3% 0.29 0.07 0%
R1 = 3900, R2 = 50 94.9% 0.32 0.09 0%

standard BT

B = 50, Rb = 80 94.9% 0.31 0.06 0%
B = 100, Rb = 40 98.4% 0.33 0.06 0%
B = 400, Rb = 10 99.9% 0.50 0.08 0%
B = 1000, Rb = 4 100% 0.73 0.10 0%

adaptive BT
(4 best combinations)

B = 100, n0 = 15, r = 1.8,M = 1 95.0% 0.30 0.06 0%
B = 100, n0 = 5, r = 1.2,M = 7 95.3% 0.31 0.06 0%
B = 100, n0 = 10, r = 1.8,M = 1 94.1% 0.31 0.06 0%
B = 100, n0 = 20, r = 1.2,M = 1 93.7% 0.30 0.06 0%

nonparametric delta
method

Rd = 2000 93.8% 0.26 0.04 0%

Table 3.5: Stochastic activity network in Figure 3.1b. ni = 30 for 1 ≤ i ≤ 7 and 25 for 8 ≤ i ≤ 14.
Total simulation budget 4000. Run times (second/CI): three EL methods 2.7×10−2, the bootstrap
2.7× 10−2, delta method 1.7× 10−2.

in Table 3.6 and 94% in Table 3.7). EEL continues to over-cover. Notably, BEL suffers from

severe under-coverage issues, while the standard bootstrap suffers from severe over-coverage issues.

Though FEL gives accurate CIs in most cases, the simple budget allocation strategy of setting

R2 = 50 and investing the remainder to R1 appears to perform less well than using a larger R2

such as 100, 250. This could be because of the highly skewed performance function, which requires

a larger R2 to invoke the central limit behavior needed in the CI construction. Our suggestion is to

use R2 in the range of hundreds in FEL for tail estimation problems. The adaptive bootstrap seems

to significantly under-cover the truth in this case, which could be because the relatively small input

uncertainty and the high skewness of the simulation output make it more difficult to differentiate

the bootstrap resamples in the screening stage.
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methods &
parameters

coverage
estimate

mean CI
length

std. CI
length

% of
overshoot

BEL

R1 = 15000, R2 = 500 86.0% 0.064 0.020 0%
R1 = 15500, R2 = 250 80.0% 0.064 0.026 0%
R1 = 15800, R2 = 100 70.3% 0.064 0.040 0%
R1 = 15900, R2 = 50 57.8% 0.062 0.055 0%

EEL

R1 = 15000, R2 = 500 98.5% 0.110 0.023 0%
R1 = 15500, R2 = 250 98.8% 0.130 0.031 1.2%
R1 = 15800, R2 = 100 98.7% 0.166 0.046 30%
R1 = 15900, R2 = 50 97.5% 0.205 0.067 65%

FEL

R1 = 15000, R2 = 500 93.2% 0.079 0.020 0%
R1 = 15500, R2 = 250 93.0% 0.090 0.027 0%
R1 = 15800, R2 = 100 93.2% 0.120 0.044 0%
R1 = 15900, R2 = 50 91.4% 0.155 0.062 3.8%

standard BT

B = 50, Rb = 320 97.1% 0.090 0.018 0%
B = 100, Rb = 160 99.2% 0.104 0.017 0%
B = 400, Rb = 40 100% 0.170 0.026 0%
B = 1000, Rb = 16 100% 0.230 0.038 0%

adaptive BT
(3 best combinations)

B = 100, n0 = 80, r = 1.1,M = 5 89.0% 0.093 0.026 0%
B = 100, n0 = 100, r = 1.1,M = 4 92.3% 0.089 0.023 0%
B = 100, n0 = 100, r = 1.2,M = 2 91.4% 0.091 0.024 0%

nonparametric delta
method

Rd = 16000 93.2% 0.070 0.011 0%

Table 3.6: Tail probability of stochastic activity network in Figure 3.1b. ni = 120 for 1 ≤ i ≤ 7
and 100 for 8 ≤ i ≤ 14. Total simulation budget 16000. Run times (second/CI): three EL methods
0.11, the bootstrap 0.03, delta method 0.10.

3.5.3 Summary and Comparisons with the Bootstrap

Based on the findings in Sections 3.5.1 and 3.5.2, we provide some general comparisons between

our optimization-based approach and the standard bootstrap in terms of the required simulation

burden, the ease of implementation and the computation cost.

Because of the nested simulation, the total simulation load of the standard bootstrap is BRb.

To ensure the stochastic noise is negligible relative to input uncertainty, one would need Rb � n

(where “�” means “of larger order than”). On the other hand, Theorems 3.3.3 and 3.3.4 suggest

that, in the optimization-based approach, one can choose R1 � n,R2 � 1. Thus, the bootstrap

requires BRb � Bn total simulation load, whereas ours requires R1 + 2R2 � n simulation load.

Since B is typically a big number (in the experiments we use B between 50 and 1000), our method
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methods &
parameters

coverage
estimate

mean CI
length

std. CI
length

% of
overshoot

BEL

R1 = 59000, R2 = 500 73.3% 0.032 0.017 0%
R1 = 59500, R2 = 250 63.1% 0.033 0.024 0%
R1 = 59800, R2 = 100 50.6% 0.032 0.038 0%
R1 = 59900, R2 = 50 43.0% 0.032 0.054 0%

EEL

R1 = 59000, R2 = 500 99.1% 0.078 0.018 0%
R1 = 59500, R2 = 250 98.6% 0.097 0.025 0%
R1 = 59800, R2 = 100 97.9% 0.132 0.040 15%
R1 = 59900, R2 = 50 94.9% 0.172 0.061 58%

FEL

R1 = 59000, R2 = 500 93.4% 0.055 0.017 0%
R1 = 59500, R2 = 250 94.1% 0.071 0.025 0%
R1 = 59800, R2 = 100 94.0% 0.104 0.041 0%
R1 = 59900, R2 = 50 93.2% 0.141 0.061 28%

standard BT

B = 50, Rb = 1200 97.6% 0.047 0.007 0%
B = 100, Rb = 600 99.3% 0.054 0.006 0%
B = 400, Rb = 150 100% 0.090 0.007 0%
B = 1000, Rb = 60 100% 0.134 0.012 0%

adaptive BT
(3 best combinations)

B = 100, n0 = 200, r = 1.2,M = 3 84.0% 0.048 0.011 0%
B = 200, n0 = 150, r = 1.2,M = 3 82.6% 0.050 0.013 0%
B = 100, n0 = 200, r = 1.2,M = 5 84.2% 0.048 0.010 0%

nonparametric delta
method

Rd = 60000 94.3% 0.035 0.003 0%

Table 3.7: Tail probability of stochastic activity network in Figure 3.1b. ni = 480 for 1 ≤ i ≤ 7
and 400 for 8 ≤ i ≤ 14. Total simulation budget 60000. Run times (second/CI): three EL methods
1.4, the bootstrap 0.08, delta method 1.3.

seems to be more efficient in terms of simulation cost. In Tables 3.1 and 3.2, we have observed that

under the same total simulation budget FEL consistently possess coverage probabilities close to the

benchmark coverage while the bootstrap very often significantly exceeds the benchmark level.

We also notice that our optimization-based approach is more robust with respect to the algo-

rithmic parameter configuration. Given a fixed total simulation budget, it could be challenging to

figure out a good choice of B and Rb for the bootstrap, as it can highly depend on the input data

sizes and the magnitude of the simulation error. Indeed, our experiments indicate that the coverage

of the bootstrap CIs is quite sensitive to the allocations of B and Rb. When B and Rb are not

appropriately chosen, the bootstrap CI tends to over-cover the truth. On the other hand, in the

optimization-based method, particularly FEL, setting R2 to be a fixed moderately large number

(say 50) and investing the remaining budget to R1 seems to be quite stable regardless of the data
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size. Nonetheless, we have seen that if the performance measure is a small probability, choosing a

larger R2 would improve the coverages.

Despite the simulation savings and stability, the optimization-based approach calls for a heav-

ier computation overhead than the bootstrap beyond the simulation effort. In the bootstrap, the

extra numerical computation other than simulation runs is negligible. In our approach, we need to

estimate gradient information (the influence function) in (3.2) in Step 1, and solve the optimization

pair in Step 2. Computation of the score function Si,j(X
r
i ) for all i, j and r = 1, . . . , R1 requires

O((
∑m

i=1 Ti)R1) time, by counting the occurrence of each Xi,j in the generated input variates. The

sample covariance between the output h and the score function is computed in O((
∑m

i=1 ni)R1)

time. Thus the total computation in Step 1 has a complexity O((
∑m

i=1 ni +
∑m

i=1 Ti)R1). Us-

ing the approach suggested by Proposition 3.3.1, the optimization pair (3.3) can be solved in

O(cbi(
∑m

i=1 nic
nt
i )) time, where cbi is the number of bisection iterations on β and cnti is the number

of Newton iterations to obtain each λi(β). The global linear convergence of bisection and Newton’s

method in our setting suggest that, to achieve a given tolerance level, typically cbi and each cnti

only need to be logarithmically large. Ignoring logarithmic factors, we see that the computation

cost of Step 2 is roughly O(
∑m

i=1 ni). Thus the cost of Step 1 dominates Step 2, leading to a total

overhead cost O((
∑m

i=1 ni +
∑m

i=1 Ti)R1). In the case of large data size, these overhead costs of

our method can be substantial, which is reflected by the significantly longer run times of the EL

methods compared to the bootstrap in Tables 3.6 and 3.7.

3.6 Conclusion

We have proposed an optimization-based approach to construct CIs for simulation output perfor-

mance measures that account for the input uncertainty from finite data. This approach relies on

solving a pair of optimization programs posited over distributions supported on the data, with a

constraint expressed in terms of the weighted average of empirically defined Burg-entropy diver-

gences. It then uses the solutions to define probability weights that subsequently drive simulation

runs. We present several related procedures under this approach and analyze their statistical per-
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formances using a generalization of the EL method. Compared to the bootstrap, our approach is

less sensitive to the allocation choices and achieves more stable coverages, especially under small

data sizes, as explained both theoretically and shown by our numerical experiments. The numerical

results also reveal that our approach tends to curb the under-coverage issues encountered in the

delta method. The last of our procedures, FEL, seems particularly attractive compared to both

the bootstrap and the delta method in terms of finite-data finite-simulation performance.
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Chapter 4

Bounding Optimality Gap in

Stochastic Optimization via Bagging

4.1 Introduction

Consider a stochastic optimization problem

Z∗ = min
x∈X
{Z(x) = EF [h(x, ξ)]} (4.1)

where ξ ∈ Ξ is generated under some distribution F , and EF [·] denotes its expectation. We

focus on the situations where F is not known, but instead a collection of i.i.d. data for ξ, say

ξ1:n = (ξ1, . . . , ξn), are available. Obtaining a good solution for (4.1) under this setting has been

under active investigation both from the stochastic and the optimization communities. Common

methods include the sample average approximation (SAA) (Shapiro et al. (2014), Kleywegt et al.

(2002)), stochastic approximation (SA) or gradient descent (Kushner and Yin (2003), Borkar (2009),

Nemirovski et al. (2009)), and (distributionally) robust optimization (Delage and Ye (2010), Bert-

simas et al. (2018b), Wiesemann et al. (2014), Ben-Tal et al. (2013)). These methods aim to find a

solution that is nearly optimal, or in some way provide a safe approximation. Applications of the

generic problem (4.1) and its data-driven solution techniques span from operations research, such
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as inventory control, revenue management, portfolio selection (see, e.g., Shapiro et al. (2014), Birge

and Louveaux (2011)) to risk minimization in machine learning (e.g., Friedman et al. (2001)).

This chapter concerns the estimation of Z∗ using limited data. Moreover, given a solution, say

x̂, a closely related problem is to estimate the optimality gap

G(x̂) = Z(x̂)− Z∗ (4.2)

This allows us to assess the quality of x̂, in the sense that the smaller G(x̂) is, the closer is the

solution x̂ to the true optimum in terms of achieved objective value. More precisely, we will focus

on inferring a lower confidence bound for Z∗, and, correspondingly, an upper bound for G(x̂) -

noting that its first term Z(x̂) can be treated as a standard population mean of h(x̂, ξ) that is

estimable using a sample independent of the given x̂, or that G(x̂) can be represented as the max

of the expectation of h(x̂, ξ)− h(x, ξ) whose estimation is structurally the same as Z∗.

This problem is motivated by the fact that many state-of-the-art solution methods mentioned

before are only amenable to crude, worst-case performance bounds. For instance, Shapiro and

Nemirovski (2005) and Kleywegt et al. (2002) provide large deviations bounds on the optimality

gap of SAA in terms of the diameter or cardinality of the decision space and the maximum variance

of the function h. Nemirovski et al. (2009) and Ghadimi and Lan (2013) provide bounds on the

expected value and deviation probabilities of the SA iterates in terms of the strong convexity

parameters, space diameter and maximum variance. These bounds can be refined under additional

structural information (e.g., Shapiro and Homem-de-Mello (2000)). While they are very useful in

understanding the behaviors of the optimization procedures, using them as a precise assessment on

the quality of an obtained solution may be conservative. Because of this, a stream of work study

approaches to validate solution performances by statistically bounding optimality gaps. Mak et al.

(1999), Bayraksan and Morton (2006), Love and Bayraksan (2015) and Shapiro (2003) investigate

the use of SAA to estimate these bounds. Lan et al. (2012) validate the performances of SA iterates

by using convexity conditions. Stockbridge and Bayraksan (2013) and Partani et al. (2006) study

approaches like the jackknife and probability metric minimization to reduce the bias in the resulting
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gap estimates. Bayraksan and Morton (2011) utilize gap estimates to guide sequential sampling.

Duchi et al. (2016), Blanchet et al. (2019) and Lam and Zhou (2017) investigate the use of empirical

and profile likelihoods to estimate optimal values. Our investigation in this chapter follows the above

line of work on solution validation, focusing on the situation when data are limited and hence the

statistical efficiency becomes utmost important. We also point out a related series of work that

validate feasibility under uncertain constraints (e.g., Luedtke and Ahmed (2008), Pagnoncelli et al.

(2009), Wang and Ahmed (2008), Carè et al. (2014), Calafiore (2017)), though their problem of

interest is beyond the scope of this chapter, as we focus on deterministically constrained problems

and objective value performances.

More precisely, we introduce a bootstrap aggregating, or commonly known as bagging (Breiman

(1996)), approach to estimate a lower confidence bound for Z∗. This comprises repeated resam-

pling of data to construct SAAs, and ultimately averaging the resampled optimal SAA values. We

demonstrate how this approach applies under very general conditions on the cost function h and de-

cision space X , while enjoys high statistical efficiency and stability. Compared to procedures based

on batching (e.g., Mak et al. (1999)), which also have documented benefits in wide applicability

and stability, the data recycling in our approach breaks free a tradeoff between the tightness of

the resulting bound and the statistical accuracy/correctness exhibited by batching. In cases where

sufficient smoothness is present and central limit theorem (CLT) for SAA (e.g., Shapiro et al.

(2014), Bayraksan and Morton (2006)) can be directly applied, we also see that our approach gains

stability regarding standard error estimation, thanks to the smoothing effect brought by bagging.

Nonetheless, our approach generally requires higher computational load than these previous meth-

ods due to the need to solve many resampled programs. While we focus primarily on statistical

performances, towards the end of this chapter we will discuss some computational implications.

The theoretical justification of our bagging scheme comes from viewing SAA as a kernel in

an infinite-order symmetric statistic (Frees (1989)), and an established optimistic bound for SAA

as its asymptotic limit. A symmetric statistic is a generalization of sample mean in which each

summand consists of a function (i.e., kernel) acting on more than one observation (Serfling (2009),

Lee (2019)). In particular, the size of the SAA program can be seen as precisely the kernel “order”
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(or “degree”), which depends on the data size and is consequently of an infinite-order nature. Our

bagging scheme serves as a Monte Carlo approximation for this symmetric statistic. As a main

methodological contribution, we analyze the asymptotic behaviors of the statistic and the resulting

bounds as the SAA size grows, and translate them into efficient performances of our bagging scheme.

Finally, we note that the notion of infinite-order symmetric statistics has been used in analyzing

ensemble machine learning predictors like random forests (Wager and Athey (2018)); our SAA

kernels are, from this view, in parallel to the base learners in the latter context.

Finally, we mention that Eichhorn and Römisch (2007) has also studied the resampling of SAA

programs to construct confidence intervals for the optimal values of stochastic programs. Our

approach connects with, but also differs substantially from Eichhorn and Römisch (2007) in several

regards. In terms of scope of applicability, Eichhorn and Römisch (2007) focuses on mixed-integer

linear programs, while we consider cost functions that can be generally non-Donsker. However, we

instead require an additional “non-degeneracy” condition that depends on the cost function and

the underlying probability distribution. In terms of methodology, Eichhorn and Römisch (2007)

utilizes the quantiles of the resampled distribution to generate confidence intervals, by observing

the same limiting distribution between an original CLT and the bootstrap CLT. The resampling

in Eichhorn and Römisch (2007) requires a “two-layer” extended bootstrap where each resample is

drawn from a new sample of the true distribution (as opposed to some bootstrap methods that allows

repeated resample from the same original sample, with the availability of a conditional bootstrap

CLT). Thus the approach requires substantial data size or otherwise resorting to subsampling.

Our bagging approach, in contrast, is based on a direct use of Gaussian limit and standard error

estimation in the CLT for the optimistic bound. Our burden lies on the bootstrap size requirement

to obtain consistent standard error estimate, and less on the data size requirement.

We summarize our contributions as follows:

1. Motivated from the challenges of existing techniques (Section 4.2), we introduce a bagging

procedure to estimate a lower confidence bound for Z∗, correspondingly an upper confidence

bound for G(x̂) (Section 4.3). We present the idea of our procedure that views SAA as a

kernel in a symmetric statistic, and an optimistic bound for SAA as its associated limiting



CHAPTER 4. BOUNDING OPTIMALITY GAP VIA BAGGING 97

quantity (Section 4.4).

2. We analyze the asymptotic behaviors of the infinite-order symmetric statistic generated from

the SAA kernel, under minimal smoothness requirements on the optimization problem. More-

over, when smoothness conditions are introduced, we demonstrate how these behaviors re-

cover the classical CLT on SAA. These results are presented in Section 4.5. The mathematical

developments without smoothness conditions utilize a combination of probabilistic coupling

arguments and a new hypergeometric representation associated with the Hajek projection

(Van der Vaart (2000)) (Appendices C.1 and C.2). The developments to recover the classical

CLT use another analysis-of-variance (ANOVA) decomposition and a maximum deviation

bound for empirical processes (Appendix C.3).

3. Building on the above results, we demonstrate how the bounds generated from our bagging

procedure exhibit asymptotically correct coverages, and improve a tradeoff between the bound

tightness and the statistical accuracy in existing batching schemes. This efficiency gain can

be seen by an asymptotic comparison of the standard error in our estimator and an interpre-

tation using conditional Monte Carlo. These developments are in Sections 4.6 and 4.7, with

mathematical details in Appendices C.4-C.8.

4. We explain the stability in our generated bounds brought by the smoothing effect of bagging

in estimating standard error. This compares favorably with the direct use of CLT in situa-

tions where the objective function is smooth. This property is supported by our numerical

experiments (Section 4.8).

4.2 Existing Challenges and Motivation

We discuss some existing methods and their challenges, to motivate our investigation. We start the

discussion with the direct use of asymptotics from sample average approximation (SAA).
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4.2.1 Using Asymptotics of Sample Average Approximation

When the cost function h in (4.1) is smooth enough, it is known classically that a central limit

theorem (CLT) governs the behavior of the estimated optimal value in SAA, namely

Ẑn = min
x∈X

1

n

n∑
i=1

h(x, ξi). (4.3)

We first introduce the following Lipschitz condition:

Assumption 4.2.1 (Lipschitz continuity) The cost function h(x, ξ) is Lipschitz continuous in

the decision x, in the sense that

|h(x1, ξ)− h(x2, ξ)| ≤M(ξ)‖x1 − x2‖

for any x1, x2 ∈ X , where M(ξ) satisfies E[M2(ξ)] <∞.

Denote “⇒” as convergence in distribution. The following result is taken from Shapiro et al.

(2014):

Theorem 4.2.1 (Extracted from Theorem 5.7 in Shapiro et al. (2014)) Suppose that As-

sumption 4.2.1 holds, E[h(x̃, ξ)2] <∞ for some point x̃ ∈ X , and X is compact. Given i.i.d. data

ξ1:n = (ξ1, . . . , ξn), consider the SAA problem (4.3). The SAA optimal value Ẑn satisfies

√
n(Ẑn − Z∗)⇒ inf

x∈X ∗
Y (x) (4.4)

where X ∗ is the set of optimal solutions for (4.1), and Y (x) is a centered Gaussian process on X ∗

that has a covariance structure defined by Cov(h(x1, ξ), h(x2, ξ)) between any x1, x2 ∈ X ∗.

Roughly speaking, Theorem 4.2.1 stipulates that, under the depicted conditions, one can use

(4.4) to obtain

Ẑn −
q̂√
n

(4.5)
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as a valid lower confidence bound for Z∗ (and analogously for G(x̂) given x̂), where q̂ is some

suitable error term that captures the quantile of the limiting distribution in (4.4). Indeed, in the

case of estimating G(x̂), Bayraksan and Morton (2006) provides an elegant argument that shows

that, to achieve 1−α confidence, one can take q̂ = z1−ασ̂ where z1−α is the standard normal critical

value and σ̂ is a standard deviation estimate, regardless of whether the limit in (4.4) is a Gaussian

distribution (or in other words the solution is unique). Bayraksan and Morton (2006) calls this the

single-replication procedure. More precisely, σ̂2 is obtained from

σ̂2 =
1

n− 1

n∑
i=1

(h(x̂, ξi)− h(x̂∗n, ξi)− (h̄(x̂)− h̄(x̂∗n)))2

where x̂∗n is the solution from (4.3), and h̄(x̂)− h̄(x̂∗n) = (1/n)
∑n

i=1(h(x̂, ξi)− h(x̂∗n, ξi)).

Though Theorem 4.2.1 (and other related work, e.g., Dentcheva et al. (2017), Kleywegt et al.

(2002)) is very useful, there are at least two reasons why one would need more general methods:

1. When the decision space contains discrete elements (e.g., combinatorial problems), Assump-

tion 4.2.1 does not hold anymore. There is no guarantee in using the bound (4.5), i.e., it may

still be correct but conservative, or it may simply possess incorrect coverages. We note, how-

ever, that for some class of problems (e.g., two-stage mixed-integer linear programs), exten-

sions to Theorem 4.2.1 and approaches such as quantile-based bootstrapping (e.g., Eichhorn

and Römisch (2007)) are useful alternatives.

2. If the SAA solutions have a “jumping” behavior, namely that program (4.1) has several

near-optimal solutions with hugely differing objective variances, then the standard deviation

estimate σ̂ needed in the bound (4.5) can be unreliable. This is because σ̂ depends heavily on

x̂∗n, which can fall close to any of the possible near-optimal solutions with substantial chance

and make the resulting estimation noisy. This issue is illustrated in, e.g., Examples 1 and 2

in Bayraksan and Morton (2006).

We should also mention that, as an additional issue, the bias in Ẑn relative to Z∗ can be quite

large in any given problem, i.e., arbitrarily close to order 1/
√
n described in the CLT, even if all the
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conditions in Theorem 4.2.1 hold (Partani (2007)). Note that this bias is in the optimistic direction

(i.e., the resulting bound is still correct, but conservative), and it also appears in the “optimistic

bound” approach that we discuss next. There have been techniques such as jackknife (Partani

(2007), Partani et al. (2006)) and probability metric minimization (Stockbridge and Bayraksan

(2013)) in reducing this bias effect.

4.2.2 Batching Procedures

An alternate approach is to use the optimistic bound (Mak et al. (1999), Shapiro (2003), Glasserman

(2013))

E[Ẑn] ≤ Z∗ (4.6)

where E[·] in (4.6) is taken with respect to the data in constructing the SAA value Ẑn. The

bound (4.6) holds for any n ≥ 1, as a direct consequence from exchanging the expectation and the

minimization operator in the SAA, and holds as long as ξ1:n are i.i.d.

The bound (4.6) offers a simple way to construct a lower bound for Z∗ under great generality.

Note that the left hand side of (4.6) is a mean of SAA. Thus, if one can “sample” a collection of

SAA values, then a lower confidence bound for Z∗ can be constructed readily by using a standard

estimate of population mean. To “sample” SAA values, an approach suggested by Mak et al. (1999)

is to batch the i.i.d. data set ξ1:n into say m batches, each batch consisting of k observations, so that

mk = n (we ignore rounding issues). For each j = 1, . . . ,m, solve an SAA using the k observations

in the j-th batch; call this value Ẑjk. Then use

Z̃k − z1−α
σ̃√
m

(4.7)

where Z̃k = (1/m)
∑m

j=1 Ẑ
j
k and σ̃2 = (1/(m−1))

∑m
j=1(Ẑjk−Z̃k)

2 are the sample mean and variance

from Ẑjk, j = 1, . . . ,m, and z1−α is the (1− α)-level standard normal quantile.

The bound (4.7) does not rely on any continuity of h, and σ̃/
√
m is simply the sample standard

deviation for a sample mean. In these regards, the bound largely circumvents the two concerns

described before.
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Nonetheless, there is an intrinsic tradeoff between tightness and statistical accuracy in this

batching approach. On one hand, m must be chosen big enough (e.g., roughly > 30) so that one

can use the CLT to justify the approximation (4.7). Moreover, the larger is m, typically the smaller

is the magnitude of the standard error in the second term of (4.7). On the other hand, the larger

is k, the closer is E[Ẑjk] to Z∗ in (4.6), leading to a tighter lower bound for Z∗. This is thanks

to a monotonicity property in that E[Ẑn] is non-decreasing in n Mak et al. (1999). Therefore,

there is a tradeoff between the statistical accuracy controlled by m (in terms of the validity of the

CLT and the magnitude of the standard error term) and the tightness controlled by k (in terms

of the position of E[Ẑjk] in (4.6)). In the batching or the so-called multiple-replication approach of

Mak et al. (1999), this tradeoff is confined to the relation mk = n. There have been suggestions

to improve this tradeoff, e.g., by using overlapping batches (Love and Bayraksan (2015, 2011)),

but their validity requires uniqueness or exponential convergence of the solution (e.g., in discrete

decision space).

4.2.3 Motivation and Overview of Our Approach

Thus, in general, when the sample size n is small, the batching approach appears to necessarily settle

for a conservative bound in order to retain statistical validity/accuracy. The starting motivation

for the bagging procedure that we propose next is to break free this tightness-accuracy tradeoff. In

particular, we offer a bound roughly in the form

Zbagk − qbag√
n

(4.8)

where Zbagk is a point estimate obtained from bagging many resampled SAA values, and k signifies

the size of the resampled SAA (i.e., the “bags”). The quantity qbag relies on a standard deviation

estimate of Zbagk . Our method operates at a similar level of generality as batching and handles

the two concerns Points 1 and 2 in Section 4.2.1: The estimate qbag does not succumb to the

“jumping” solution behavior, and the bound holds regardless of the continuity to the decision.

Moreover, compared to the batching bound (4.7), our bound has a standard error term shrunk to
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order 1/
√
n from 1/

√
m (and relies on an asymptotic on n, not m), thus gaining higher statistical

precision. In fact, this term regains the same order of precision level as the bound (4.5) that uses

SAA asymptotics directly.

On the other hand, we will show that the choice of k in (4.8), which affects the tightness, can be

taken as roughly o(
√
n) in general. Compared with the direct-CLT bound (4.5), our bound appears

less tight. However, we consider conditions more general than when (4.5) is applicable. We will see

that if we re-impose Lipschitz continuity on the decision (i.e., Assumption 4.2.1), then k can be set

arbitrarily close to the order of n. This means that our approach is almost as statistically efficient

as the bound (4.5), with the extra benefit of stability in estimating qbag.

Nonetheless, we point out that our approach requires solving resampled SAA programs many

times, and is thus computationally more costly than batching and direct-CLT methods. The higher

computation cost is the price to pay to elicit our benefits depicted above. Our approach is thus

most recommended when statistical performance is of higher concern than computation efficiency,

prominently in small-sample situations.

The next section will explain our procedure in more detail. A key insight is to view SAA as a

symmetric kernel and the optimistic bound (4.6) as a limiting quantity of an associated symmetric

statistic, which can be estimated by bagging. On a high level, the stability in estimating the

standard error qbag can be attributed to the nature of bagging as a smoother (Büchlmann and Yu

(2002), Efron (2014)).

4.3 Bagging Procedure to Estimate Optimal Values

This section presents our approach. Instead of batching the data, we uniformly resample k ob-

servations from ξ1:n for many, say B, times. We use each resample to form an SAA problem and

solve it. We then average all these resampled SAA optimal values. The resampling can be done

with or without replacement (we will discuss some differences between the two). We summarize

our procedure in Algorithm 7.

In the output of Algorithm 7, the first term Z̃bagk is the average of many bootstrap resampled
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Algorithm 7 Bagging Procedure for Bounding Optimal Values

Given n observations ξ1:n = {ξ1, . . . , ξn}, select a positive integer k

for b = 1 to B do

Randomly sample ξbk = (ξb1, . . . , ξ
b
k) uniformly from ξ1:n (with or without replacement), and

solve

Ẑbk = min
x∈X

1

k

k∑
i=1

h(x, ξbi )

end for

Compute Z̃bagk = 1
B

∑B
b=1 Ẑ

b
k and

σ̃2
IJ =


∑n

i=1 Ĉov∗(N
∗
i , Ẑ

∗
k)2, if resampling is with replacement(

n
n−k

)2∑n
i=1 Ĉov∗(N

∗
i , Ẑ

∗
k)2, if resampling is without replacement

(4.9)

where

Ĉov∗(N
∗
i , Ẑ

∗
k) =

1

B

B∑
b=1

(N b
i −

k

n
)(Ẑbk − Z̃

bag
k ) (4.10)

and N b
i is the number of ξi that shows up in the b-th resample

Output Z̃bagk − z1−ασ̃IJ
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SAA values, which resembles a bagging predictor by viewing each SAA as a “base learner” (Breiman

(1996)). The quantity Ĉov∗(N
∗
i , Ẑ

∗
k) in (4.10) is the covariance between the count of a specific

observation ξi in a bootstrap resample, denoted N∗i , and the resulting resampled SAA value Ẑ∗k . The

quantity σ̃2
IJ =

∑n
i=1 Ĉov∗(N

∗
i , Ẑ

∗
k)2 is an empirical version of the so-called infinitesimal jackknife

(IJ) estimator (Efron (2014)), which has been used to estimate the standard deviation of bagging

schemes, including in random forests or tree ensembles (Wager et al. (2014)). The additional

constant factor (n/(n − k))2 in the second line of (4.9) ensures the validity of the IJ estimator

under resampling without replacement in certain asymptotic regimes that we will consider.

4.4 SAA as Symmetric Kernel

We explain how Algorithm 7 arises. In short, the Z̃bagk in Algorithm 7 acts as a point estimator for

E[Ẑk] in the optimistic bound (4.6), whereas σ̃2
IJ captures the standard error in using this point

estimator.

To be more precise, let us introduce a functional viewpoint and write

Wk(F ) = EFk [Hk(ξ1, . . . , ξk)] (4.11)

where

Hk(ξ1, . . . , ξk) = min
x∈X

1

k

k∑
i=1

h(x, ξi)

is the SAA value, expressed more explicitly in terms of the underlying data used. Here, the

expectation EFk [·] is generated with respect to i.i.d. variables (ξ1, . . . , ξk), i.e., F k denotes the

product measure of k F ’s. For convenience, we denote E[·] as the expectation either with respect

to F or the product measure of F ’s when no confusion arises. Also, we denote Wk = Wk(F ).

With these notations, the optimistic bound (4.6) can be expressed as

Wk(F ) ≤ Z∗

with the best bound being W∞ = limk→∞Wk ≤ Z∗ thanks to the monotonicity property of the
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expected SAA value mentioned before.

Suppose that we have used sampling with replacement in Algorithm 7. Also say we use infinitely

many bootstrap replications, i.e., B = ∞. Then, the estimator Z̃bagk in Algorithm 7 becomes

precisely

Z̃bagk = Wk(F̂ )

where F̂ is the empirical distribution formed by ξ1:n, i.e., F̂ (·) = (1/n)
∑n

i=1 δξi(·) where δξi(·) is

the delta measure at ξi. If Wk(·) is “smooth” in some sense, then one would expect Wk(F̂ ) to be

close to Wk(F ). Indeed, when k is fixed, Wk(F ), which is expressible as the k-fold expectation

under F in (4.11), is multi-linear, i.e.,

Wk(F ) = EFk [Hk(ξ1, . . . , ξk)] =

∫
· · ·
∫
Hk(ξ1, . . . , ξk)

k∏
j=1

dF (ξj)

and is always differentiable with respect to F (in the Gateaux sense) from the theory of von Mises

statistical functionals (Serfling (2009)). This ensures that Wk(F̂ ) is close to Wk(F ) probabilistically,

as elicited by a CLT (Theorem 4.4.1 below).

Note that Wk(F̂ ) is exactly the average of Hk(ξi1 , . . . , ξik) over all possible combinations of

{ξi1 , . . . , ξik} drawn with replacement from ξ1:n. This is equivalent to

Vn,k =
1

nk

∑
ij∈{1,...,n},j=1,...,k

Hk(ξi1 , . . . , ξik) (4.12)

which is the so-called V -statistic. If we have used sampling without replacement in Algorithm 7,

we arrive at the estimator (assuming again B =∞)

Un,k =
1(
n
k

) ∑
(i1,...,ik)∈Ck

Hk(ξi1 , . . . , ξik) (4.13)

where Ck denotes the collection of all subsets of size k in {1, . . . , n}. The quantity (4.13) is known as

the U -statistic. The V and U estimators in (4.12) and (4.13) both belong to the class of symmetric

statistics (Serfling (2009), Van der Vaart (2000), De la Pena and Giné (2012)), since the estimator is
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unchanged against a shuffling of the ordering of the data ξ1:n. Correspondingly, the Hk(·) function

is known as the symmetric kernel. Symmetric statistics generalize the sample mean, the latter

corresponding to the case when k = 1.

When B < ∞, then Vn,k and Un,k above are approximated by a random sampling of the

summands on the right hand side of (4.12) and (4.13). These are known as incomplete V - and

U -statistics (Lee (2019), Blom (1976), Janson (1984)), and are precisely our Z̃bagk . As B is chosen

large enough, Z̃bagk will well approximate Vn,k and Un,k.

To discuss further, we make the following assumptions:

Assumption 4.4.1 (L2-boundedness) We have

E sup
x∈X
|h(x, ξ)|2 <∞

Denote gk(ξ) = E[Hk(ξ1, . . . , ξk)|ξ1 = ξ]. Denote V ar(·) = V arF (·) as the variance under F .

Assumption 4.4.2 (Finite non-zero variance) We have 0 < V ar(gk(ξ)) <∞.

We have the following asymptotics of Un,k and Vn,k :

Theorem 4.4.1 Suppose k ≥ 1 is fixed, and Assumptions 4.4.1 and 4.4.2 hold. Then

√
n(Un,k −Wk)⇒ N(0, k2V ar(gk(ξ))) (4.14)

and
√
n(Vn,k −Wk)⇒ N(0, k2V ar(gk(ξ))) (4.15)

as n → ∞, where N(0, k2V ar(gk(ξ))) is a normal distribution with mean zero and variance

k2V ar(gk(ξ)).

Proof. Assumption 4.4.1 implies that EHk(ξi1 , . . . , ξik)2 < ∞ for any (possibly identical) indices
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i1, . . . , ik, since

EHk(ξi1 , . . . , ξik)2 ≤ 1

k2
E sup
x∈X

 k∑
j=1

h(x, ξij )

2

≤ E sup
x∈X
|h(x, ξ)|2 <∞ (4.16)

by the Minkowski inequality. Then, under (4.16) and Assumption 4.4.2, (4.14) follows from Theorem

12.3 in Van der Vaart (2000), and (4.15) follows from Section 5.7.3 in Serfling (2009). �

Theorem 4.4.1 is a consequence of the classical CLT for symmetric statistics. The expression

kgk(ξ), as a function defined on the space X , is the so-called influence function of Wk(F ), which

can be viewed as its functional derivative with respect to F (Hampel (1974)). Alternately, for a

U -statistic Un,k, the expression is the so-called Hajek projection (Van der Vaart (2000)), which is

the projection of the statistic onto the subspace generated by the linear combinations of fi(ξi), i =

1, . . . , n and any measurable function fi. It turns out that these two views coincide, and the U -

and V -statistics (whose approximation uses the projection viewpoint and the functional derivative

viewpoint respectively) obey the same CLT as depicted in Theorem 4.4.1.

The output of Algorithm 7 is now evident given Theorem 4.4.1. When B =∞, Z̃bagk is precisely

Un,k under sampling without replacement or Vn,k under sampling with replacement. The quantity

σ̃2
IJ in Algorithm 7, an empirical IJ estimator, can be shown to approximate the asymptotic variance

k2V ar(gk(ξ))/n as n,B → ∞, by borrowing recent results in bagging (Efron (2014), Wager and

Athey (2018)) (Theorems 4.7.1 and 4.7.2 below show stronger results). Then the procedural output

is the standard CLT-based lower confidence bound for Wk.

The discussion above holds for a fixed k, the sample size used in the resampled SAA. It also

shows that, at least asymptotically, using with or without replacement does not matter. However,

using a fixed k regardless of the size of n is restrictive and leads to conservative bounds. The next

subsection will relax this requirement and present results on a growing k against n, which in turn

allows us to get a tighter Wk = E[Ẑk] in the optimistic bound (4.6).
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4.5 Asymptotic Behaviors with Growing Resample Size

We first make the following strengthened version of Assumption 4.4.1:

Assumption 4.5.1 (L2+δ-bounded modulus of continuity) We have

E sup
x∈X
|h(x, ξ)− h(x, ξ′)|2+δ <∞

where ξ, ξ′ are i.i.d. generated from F .

Assumption 4.5.1 holds quite generally, for instance under the following sufficient conditions:

Assumption 4.5.2 (Uniform boundedness) h(·, ·) is uniformly bounded over X × Ξ.

Assumption 4.5.3 (Uniform Lipschitz condition) h(x, ξ) is Lipschitz continuous with respect

to ξ, where the Lipschitz constant is uniformly bounded in x ∈ X , i.e.,

|h(x, ξ)− h(x, ξ′)| ≤ L‖ξ − ξ′‖

where ‖ · ‖ is some norm in Ξ. Moreover, E‖ξ‖2+δ <∞.

Assumption 4.5.4 (Majorization)

|h(x, ξ)− h(x, ξ′)| ≤ f(ξ) + f(ξ′)

where Ef(ξ)2+δ <∞.

That Assumption 4.5.2 implies Assumption 4.5.1 is straightforward. To see how Assumption

4.5.3 implies Assumption 4.5.1, note that, if the former is satisfied, we have

E sup
x∈X
|h(x, ξ)− h(x, ξ′)|2+δ ≤ L2+δE‖ξ − ξ′‖2+δ <∞

Similarly, Assumption 4.5.4 implies Assumption 4.5.1 because the former leads to

E sup
x∈X
|h(x, ξ)− h(x, ξ′)|2+δ ≤ E(f(ξ) + f(ξ′))2+δ <∞
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Next, we also make the following assumption:

Assumption 4.5.5 (Non-degeneracy) We have

P

(
min
x∈X
{h(x, ξ)− Z(x)} > 0

)
+ P

(
E

[
min
x∈X
{h(x, ξ)− h(x, ξ′)}

∣∣∣ξ′] > 0

)
> 0 (4.17)

where ξ, ξ′
i.i.d.∼ F .

Roughly speaking, Assumption 4.5.5 means that ξ is sufficiently mixed so that the optimal value

of a data-driven optimization problem with only one (or two) data point can deviate away from

its mean. This assumption holds, e.g., when X lies in a positive region in the real space that is

bounded away from the origin. The assumption can be further relaxed in practical problems. For

example, one can replace X in (4.17) by a smaller region that can possibly contain any candidates

of optimal solutions. Moreover, if the cost function is Lipschitz (i.e., Assumption 4.2.1 holds), it

suffices to replace the entire decision space X in (4.17) with the set of optimal solutions X ∗, namely:

Assumption 4.5.6 (A weaker non-degeneracy condition) We have

P

(
min
x∈X ∗

{h(x, ξ)− Z∗} > 0

)
+ P

(
E

[
min
x∈X ∗

{h(x, ξ)− h(x, ξ′)}
∣∣∣ξ′] > 0

)
> 0 (4.18)

where X ∗ is the set of optimal solutions for (4.1). In particular, when the optimal solution is

unique, i.e., X ∗ = {x∗}, this assumption is reduced to V ar(h(x∗, ξ)) > 0.

An important implication of the above two assumptions is to ensure that k2V ar(gk(ξ)) is

bounded away from 0 even as k grows, thus leading to a behavior similar to Assumption 4.4.2

for the finite k case.

Lemma 4.5.1 (Non-degenerate asymptotic variance) Suppose Assumption 4.4.1 holds. Also

suppose either Assumption 4.5.5 holds, or that Assumptions 4.2.1 and 4.5.6 hold jointly and X is

compact. Then k2V ar(gk(ξ)) > ε > 0 for some constant ε, when k is sufficiently large.

The proof of Lemma 4.5.1 uses a coupling argument between gk(ξ) = E[Hk(ξ1, . . . , ξk)|ξ1 = ξ],

which is a conditional expectation on Hk, and E[Hk(ξ1, . . . , ξk)], the full expectation on Hk, by
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assigning the same random variables ξ2, . . . , ξk. This coupling is used to bound the difference

gk(ξ) − E[Hk(ξ1, . . . , ξk)] used in calculating the variance V ar(gk(ξ)), which then combines with

the non-degeneracy condition (Assumption 4.5.5 or 4.5.6) to get a lower bound for V ar(gk(ξ)). See

Appendix C.1 for the detailed proof.

We have the following asymptotics:

Theorem 4.5.2 (CLT for growing resample size without replacement) Suppose Assump-

tions 4.4.1, 4.5.1 and 4.5.5 hold. If the resample size k = o(
√
n), then

√
n(Un,k −Wk)

k
√
V ar(gk(ξ))

⇒ N(0, 1)

where N(0, 1) is the standard normal variable.

Theorem 4.5.3 (CLT for growing resample size with replacement) Suppose Assumptions

4.4.1, 4.5.1 and 4.5.5 hold. If the resample size k = O(nγ) for some constant γ < 1
2 , then

√
n(Vn,k −Wk)

k
√
V ar(gk(ξ))

⇒ N(0, 1)

where N(0, 1) is the standard normal variable.

Theorems 4.5.2 and 4.5.3 are analogs of Theorem 4.4.1 when k →∞. In both theorems, we see

that there is a limit in how large k we can take relative to n, which is thresholded at roughly order

√
n. A symmetric statistic with a growing k is known as an infinite-order symmetric statistic (Frees

(1989)), and has been harnessed in analyzing random forests (Mentch and Hooker (2016), Wager

et al. (2014), Wager and Athey (2018)). Theorems 4.5.2 and 4.5.3 give the precise conditions under

which the SAA kernel results in an asymptotically converging infinite-order symmetric statistic.

The proof of Theorem 4.5.2 utilizes a general projection theorem, in which one can translate

the convergence of a projected statistic into convergence of the beginning statistic, if the ratio of

their variances tends to 1 (Theorem 11.2 in Van der Vaart (2000); restated in Theorem C.2.1 in

Appendix C.2). In our case, the considered projection is the Hajek projection of the infinite-order

U -statistic. To execute this theorem, we approximate the variance ratios between the projection
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and the remaining orthogonal component. This requires using a further coupling argument among

the higher-order conditional expectations, and combining with a representation of the variance

ratio in terms of moments of hypergeometric random variables. Then, the CLT for the U -statistic

follows by verifying the Lyapunov condition of the Hajek-projected U -statistic.

From Theorem 4.5.2, the conclusion of Theorem 4.5.3 follows by using a relation between U -

and V -statistics in the form

nk(Un,k − Vn,k) = (nk − nPk)(Un,k −Rn,k) (4.19)

where nPk = n(n − 1) · · · (n − k + 1) and Rn,k is the average of all Hk(ξi1 , . . . , ξik) with at least

two of i1, . . . , ik being the same (see, e.g., Section 5.7.3 in Serfling (2009)). By carefully controlling

the difference between Un,k and Vn,k, one can show an asymptotic for Vn,k under a similar growth

rate of k as that for Un,k. This leads to a slightly less general result for Vn,k in Theorem 4.5.3.

We mention that the growth rates of k in both Theorems 4.5.2 and 4.5.3 are sufficient conditions.

We will also see in the next section that, under further conditions, the growth of k can be allowed

bigger.

The proofs of Theorems 4.5.2 and 4.5.3 are both in Appendix C.2. These two theorems conclude

that Un,k and Vn,k continue to well approximate the optimistic bound Wk even as k → ∞, under

the depicted assumptions and bounds on the growth rate.

Taking one step further, the following shows that bagging under sampling without replacement

achieves almost the same efficiency as the direct use of CLT for SAA in (4.5).

Theorem 4.5.4 If Assumptions 4.2.1, 4.4.1, 4.5.1 and 4.5.6 hold, and the decision space X is

compact, then the conclusion of Theorem 4.5.2 holds by choosing k = o(n).

Theorem 4.5.4 implies that, asymptotically, we can use almost the full data set to construct

the resampled SAA in Un,k. This implies that its standard error is of order close to 1/
√
n, and

also the point estimate is approximately the SAA with full size n. Hence both the tightness and

statistical accuracy of the resulting bound reach the level of (4.5). Moreover, the standard error of

our bagging estimator is stabler than the one in (4.5), as it does not rely on the quality of only one
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particular SAA solution.

Next we show yet another refinement when, in addition to Lipschitzness, the optimal solution

is also unique. Under this additional assumption, our bagging scheme elicits essentially the same

CLT as Theorem 4.2.1, and thus recovers the direct-CLT bound in (4.5).

Theorem 4.5.5 (Recovery of the classical CLT for SAA under solution uniqueness) In

addition to the conditions in Theorem 4.5.4, if we further assume that (4.1) has a unique optimal

solution x∗ ∈ X , then the conclusion of Theorem 4.5.2 holds for any k ≤ n. Moreover we have

k2V ar(gk(ξ)) → V ar(h(x∗, ξ)) and Wk − Z∗ = o(1/
√
k) as k → ∞. In particular, if k ≥ εn for

some constant ε > 0, then

√
n(Un,k − Z∗)⇒ N(0, V ar(h(x∗, ξ)))

where N(0, V ar(h(x∗, ξ))) is the normal variable with mean zero and variance V ar(h(x∗, ξ)).

Note that, compared with Theorems 4.5.2 and 4.5.3, the centering quantity in Theorem 4.5.5

is changed from Wk to Z∗. The asymptotic distribution is Gaussian with variance precisely the

objective variance at x∗. This recovers Theorem 4.2.1 in the special case where X ∗ = {x∗}. If the

uniqueness condition does not hold, there could be a discrepancy between the optimistic bound

W∞ and Z∗ (This can be hinted by observing the different types of limits between Theorems 4.5.2,

4.5.3 and Theorem 4.2.1, namely Gaussian versus the minimum of a Gaussian process).

We obtain Theorems 4.5.4 and 4.5.5 from a different path than Theorem 4.5.2, in particular by

looking at the variance of Un,k via an analysis-of-variance (ANOVA) decomposition (Efron and Stein

(1981)) of the symmetric kernel Hk. Thanks to the uncorrelatedness among the ANOVA terms,

we can control the variance of Un,k by using a bound from Wager and Athey (2018), which can be

shown to depend on the maximum deviation of an empirical process generated by the centered cost

function indexed by the decision, i.e., F := {h(x, ·) − Z(x) : x ∈ X}. The Lipschitz assumption

allows us to estimate this maximum deviation using empirical process theory. Appendix C.3 shows

the proof details.
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4.6 Statistical Properties of Bagging Bounds and Comparisons

with Batching

We analyze the properties of our confidence bounds implied from Theorems 4.5.2 and 4.5.3, namely

consisting of a point estimator Un,k or Vn,k and a standard error k
√
V ar(gk(ξ))/n. We first show

that the latter is of order 1/
√
n, thus reconciling with our claim in (4.8) and demonstrating an

asymptotically higher statistical precision compared to the batching bound in (4.7).

Proposition 4.6.1 (Magnitude of the standard error) Under Assumption 4.4.1, it holds that

k2V ar(gk(ξ)) ≤ C for some constant C > 0, as k → ∞. Consequently, the asymptotic standard

deviation of Un,k or Vn,k, namely k
√
V ar(gk(ξ))/n, is of order O(1/

√
n).

Note that Proposition 4.6.1 is quite general in that it does not impose any growth rate restriction

on k. We also note that, under conditions that provide a CLT for the SAA (i.e., Theorem 4.2.1),

the σ̃ in the batching bound (4.7) can be of order O(1/
√
k) as the data size per batch k grows,

and thus the resulting error term there can be controlled to be O(1/
√
n) like ours (and also the

direct-CLT bound (4.5)). Nonetheless, Proposition 4.6.1 is free of such type of assumptions. Its

proof uses the coupling argument in bounding the variance that appears in the proof of Theorem

4.5.2. The proof details are in Appendix C.4.

The following shows a more revealing result on the higher statistical efficiency of our bagging

procedure compared to batching:

Theorem 4.6.2 (Asymptotic variance reduction) Recall that Z̃k is the point estimate in the

bound (4.7) given by the batching procedure. Assume the same conditions and resample sizes of

either Theorem 4.5.2 or 4.5.4 in the case of resampling without replacement, or Theorem 4.5.3 in

the case of resampling with replacement. With the same batch size and resample size, both denoted

by k, we define the asymptotic ratios of variance

rU := lim sup
n,k→∞

V ar(Un,k)

V ar(Z̃k)
, rV := lim sup

n,k→∞

V ar(Vn,k)

V ar(Z̃k)
. (4.20)

We have rU = rV = lim supk→∞
kV ar(gk(ξ))
V ar(Hk) ≤ 1, and in particular



CHAPTER 4. BOUNDING OPTIMALITY GAP VIA BAGGING 114

1. rU = rV = 0 when limk→∞ kV ar(Hk) =∞

2. rU = rV < 1 when the conditions of Theorem 4.5.4 hold and the weak limit infx∈X ∗ Y (x) in

(4.4) is non-Gaussian

3. rU = rV = 1 when the conditions of Theorem 4.5.4 hold and X ∗ is a singleton.

The second case rU = rV < 1 in Theorem 4.6.2 corresponds to the case of multiple optimal solutions

in X ∗, which induces a weak scaled limit of the SAA value Hk as the infimum of a Gaussian process

that is in general non-Gaussian. The following example shows that in such a setting the asymptotic

ratio of variance not only is strictly less than 1 but also can be arbitrarily close to 0.

Example 4.6.1 Consider the cost function

h(x, ξ) =



(2− x)ξ1 + (x− 1)ξ2 if 1 ≤ x ≤ 2

...
...

(j + 1− x)ξj + (x− j)ξj+1 if j < x ≤ j + 1

...
...

(d− x)ξd−1 + (x− (d− 1))ξd if d− 1 < x ≤ d

for x ∈ [1, d] and uncertain quantity ξ = (ξ1, . . . , ξd) where ξj , j = 1, . . . , d are independent standard

normal variables. In other words, at x = j the cost h(x, ξ) is set to ξj and everywhere else given

by a linear interpolation between the two neighboring integer points. In this case, the objective is

constantly zero over the entire decision space so X ∗ = [1, d]. The SAA value Hk = minj=1,...,d ξ̄j

where ξ̄j is the sample mean of the j-th component ξj, hence
√
kHk is the minimum of d inde-

pendent standard normal variables. A direct application of Corollary 1.9 in Ding et al. (2015)

leads to kV ar(Hk) ≥ C/ log d for some universal constant C > 0. In Appendix C.5 we show that

limk→∞ k
2V ar(gk(ξ)) = 1/d. Therefore rU = rV ≤ log d/(Cd).

Furthermore, the following shows that the point estimator under sampling without replacement

always has a smaller variance than the batching estimator, for any n and k:
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Theorem 4.6.3 (Variance reduction under any finite sample) Recall that Z̃k is the point

estimate in the bound (4.7) given by the batching procedure. Denote {ξ′1, . . . , ξ′n} as the (unordered)

collection of values of the data set ξ1, . . . , ξn. With the same batch size and resample size, both

denoted by k, we have

V ar(Z̃k) = V ar(Un,k) + E[V ar(Z̃k|{ξ1, . . . , ξn} = {ξ′1, . . . , ξ′n})]

and hence V ar(Z̃k) ≥ V ar(Un,k) for any k ≥ 1.

Proof. By the law of total variance we have

V ar(Z̃k) = E[V ar(Z̃k|{ξ1, . . . , ξn} = {ξ′1, . . . , ξ′n})] + V ar(E[Z̃k|{ξ1, . . . , ξn} = {ξ′1, . . . , ξ′n}]).

The desired conclusion follows from noticing that E[Z̃k|{ξ1, . . . , ξn} = {ξ′1, . . . , ξ′n}] = Un,k. �

Theorem 4.6.3 reinforces the smaller standard error in bagging compared to batching from

asymptotic to any finite sample, provided that we use sampling without replacement. The key

reasoning behind Theorem 4.6.3 is that the batching estimate depends on the ordering of the data;

if the data are reordered, then the batching estimate changes. Bagging eliminates the variability

due to the ordering of the data by averaging over all the possible combinations. Alternately, one

can also interpret bagging as a conditional Monte Carlo scheme applied on the batching estimator

given the unordered collection of values realized by the data.

Next, the following result concerns the biases of Un,k and Vn,k:

Theorem 4.6.4 (Bias) Under the same assumptions and resample sizes as Theorems 4.5.2 and

4.5.3, the bias of Un,k in estimating Wk is 0, whereas the bias of Vn,k in estimating Wk is O((k2/n)l+

k/n) where l is any fixed positive integer.

The zero-bias property of Un,k is trivial: Each summand in its definition is an SAA value with

distinct i.i.d. data, and thus has mean exactly Wk. On the other hand, the summands in Vn,k are

SAA values constructed from potentially repeated observations, which induces bias relative to Wk.

The proof of the latter again utilizes the relation (4.19), and is left to Appendix C.6.
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From Theorem 4.6.4, we see that Un,k outperforms Vn,k in terms of bias control. When k is

fixed, such an advantage for Un,k is relatively mild, since the bias of Vn,k in estimating the optimistic

bound Wk is of order 1/n. However, as k grows, this advantage becomes more significant, and the

bias of Vn,k can be arbitrarily close to O(1) (when k ≈
√
n).

Theorems 4.5.4, 4.6.3 and 4.6.4 together justify that, in terms of both standard error and bias,

sampling without replacement, i.e., Un,k, seems to be the more recommendable choice for our

bagging procedure. However, in our numerical experiments in Section 4.8, Un,k and Vn,k appear to

perform quite similarly.

Lastly, we should mention that the biases depicted in Theorem 4.6.4 concern the estimators of

Wk, but do not capture the discrepancy between Wk and Z∗. The latter quantity is of separate

interest. As discussed at the end of Section 4.2.1, it can be generally reduced by existing meth-

ods like the jackknife or probability metric minimization (Partani et al. (2006), Stockbridge and

Bayraksan (2013)).

4.7 Error Estimates and Coverages

Finally, we analyze the use of the IJ estimator in approximating the standard error and the error

coming from the Monte Carlo noise in running the bootstrap. Together with the results in Section

4.5 and 4.6, these will give us an overall CLT on the output from Algorithm 7. First, we have the

following consistency of the IJ variance estimator, relative to the magnitude of the target standard

error:

Theorem 4.7.1 (Consistency of IJ estimator without replacement) Consider the case of

resampling without replacement. In any of the following three settings:

1. Assumptions 4.4.1, 4.5.1 and 4.5.5 hold and k = o(
√
n)

2. Assumptions 4.2.1, 4.4.1, 4.5.1 and 4.5.6 hold, the decision space X is compact and k = o(n)

3. In addition to the assumptions in 2, further assume the problem (4.1) has a unique optimal

solution, and use resample size k ≤ θn for some constant θ < 1
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the IJ variance estimator is relatively consistent, i.e.

n2

(n− k)2

n∑
i=1

Cov2
∗(N

∗
i , H

∗
k)
/k2

n
V ar(gk(ξ))

p→ 1.

Theorem 4.7.2 (Consistency of IJ estimator with replacement) Consider resampling with

replacement. If Assumptions 4.4.1, 4.5.1 and 4.5.5 hold, and k = O(nγ) for some constant γ < 1
2 ,

the IJ variance estimator is relatively consistent, i.e.

n∑
i=1

Cov2
∗(N

∗
i , H

∗
k)
/k2

n
V ar(gk(ξ))

p→ 1.

The three sets of assumptions and resample size in Theorem 4.7.1 are precisely those of Theorem

4.5.2 (the general case), Theorem 4.5.4 (the Lipschitz case) and Theorem 4.5.5 (the Lipschitz and

unique solution case) respectively, except a slight tightening on the choice of k in the last case that

can only be arbitrarily close to but not exactly n. The assumptions in Theorem 4.7.2 are precisely

those of Theorem 4.5.3. Theorem 4.7.1 is justified by adopting the arguments for random forests

in Wager and Athey (2018) and a weak law of large numbers, and Theorem 4.7.2 follows from

analyzing the difference between U - and V -statistics as in the proof of Theorem 4.5.3. Appendix

C.7 shows the details.

When a large enough bootstrap size B is used in Algorithm 7, the Monte Carlo errors in

estimating the point estimator and its variance both vanish. This gives an overall CLT for the

output of our bagging procedure, as in the next theorem:

Theorem 4.7.3 (CLT for Algorithm 7) Under the same conditions and resample sizes of The-

orem 4.7.1 in the case of resampling without replacement, or those of Theorem 4.7.2 in the case of

resampling with replacement, if the bootstrap size B in Algorithm 7 is such that B/(kn)→∞, then

the output of Algorithm 7 satisfies

Z̃bagk −Wk

σ̃IJ
⇒ N(0, 1)

where N(0, 1) is the standard normal variable.
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An immediate consequence of Theorem 4.7.3 is the correct coverage of the true optimal value:

Corollary 4.7.4 (Correct coverage from Algorithm 7) Under the same assumptions, growth

rates of the resample size k and the bootstrap size B in Theorem 4.7.3, the output of Algorithm 7

satisfies

P
(
Z̃bagk − z1−ασ̃IJ ≤ Z∗

)
≥ P

(
Z̃bagk − z1−ασ̃IJ ≤Wk

)
→ 1− α

where P is generated under the data ξ1:n.

Theorem 4.7.3 and Corollary 4.7.4 thus close our analyses by showing an exact asymptotic

coverage of our bagging bound for the optimistic bound Wk, and a correct asymptotic coverage for

Z∗, where the exactness of the later depends on the discrepancy between Wk and Z∗. Additionally,

Theorem 4.5.5 stipulates that this discrepancy vanishes under the same setting as when the classical

SAA CLT has a normal limit, and thus hints that our bound for Z∗ is close to having exact coverage

in this case.

Lastly, note that B needs to be taken to have order greater than kn to wash away the Monte

Carlo error under the considered conditions. To achieve the best result regarding the tightness of

the bound, in the case of non-Lipschitzness (Theorems 4.5.2 and 4.5.3) we would choose k to be

close to
√
n, which means the need of roughly order n3/2 bootstrap size or optimization programs

to solve, whereas under Lipschitzness (Theorems 4.5.4 and 4.5.5) we would choose k to be close to

n, giving a bootstrap size of order n2. As discussed previously, because of the computational load,

our bagging scheme is most recommended for small-sample situation where n is relatively small. If

computation is a concern, one can always use a smaller k in our scheme to speed up computation,

with the price of generating a more conservative bound.

4.8 Numerical Experiments

In this section we provide numerical tests to demonstrate the validity of our bagging-based pro-

cedures and compare them to the batching procedure given in (4.7) and the single-replication

procedure given in (4.5).
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Four stochastic optimization problems are tested. The first problem we consider is the (1−α1)-

level conditional value at risk (CVaR) of a standard normal variable ξ

min
x∈R

x+
1

α1
E[(ξ − x)+] (4.21)

where (·)+ := max{·, 0} denotes the positive part. We set α1 = 0.1, namely, we are solving for the

90%-level CVaR of the standard normal, whose true value can be calculated to be 1.755.

The second one is a portfolio optimization problem where one seeks to minimize the (1− α2)-

level CVaR risk measure of an investment portfolio subject to that the expected return of the

investment exceeds some target level. Let ξ = (ξ1, . . . , ξ5)T be the vector of random returns of five

different assets whose joint distribution follows a multivariate normal, x = (x1, . . . , x5)T be the

holding proportions of the assets, and b be the target level of expected return. The optimization is

described by

min
c,x

c+
1

α2
E[(−ξTx− c)+]

s.t. E[ξTx] ≥ b
5∑
i=1

xi = 1

xi ≥ 0 for i = 1, . . . , 5.

(4.22)

In particular, the random return vector ξ follows N(µ,Σ) where the mean µ = (1, 2, 3, 4, 5)T and

the covariance Σ is randomly generated, α2 = 0.05 and b = 3. Note that the cost function here,

as well as that in (4.21), is piecewise linear hence Lipschitz continuous, and the optimal solution is

unique. Therefore we expect all the methods to perform well for these two problems. Note that, to

avoid feasibility complications that divert our focus, in (4.22) we assume knowledge of the expected

return µ so the constraint becomes µTx ≥ b.

To describe the third problem, suppose there are ten different items labeled as #1 through

#10 each of which incurs a random loss ξi, and one is required to pick at least one out of the ten

items and at most two items among #7,#8,#9,#10 in such a way that the total expected loss

is minimized. Mathematically, the problem can be formulated as the following stochastic linear
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integer program

min
x

E[ξTx]

s.t. Ax ≤ b

xi ∈ {0, 1} for i = 1, 2, . . . , 10

(4.23)

where ξ follows N(µ,Σ) with mean µ = (−1,−7/9,−5/9, . . . , 7/9, 1)T ∈ R10 and covariance Σ

randomly generated, b = (−1, 2)T and

A =

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1

0 0 0 0 0 0 1 1 1 1

 .
It is straightforward to see that picking the items with negative expected losses, i.e., #1 through #5,

gives the minimum total loss, hence the unique optimal solution is x∗ = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0)T

with a total loss−2.78. Because of the integrality requirement the single-replication procedure is not

theoretically justified and can exhibit incorrect coverage. When implementing the methods we solve

the SAA problems by a direct enumeration (feasible thanks to the relatively low dimensionality).

The fourth optimization problem is the following simple stochastic linear program

min
x

E[−0.05x+ (3− 2x)ξ]

s.t. − 1 ≤ x ≤ 1

(4.24)

where the uncertain quantity ξ is a standard normal and the decision x is a scalar. It is clear

that the optimal value is −0.05 at x∗ = 1. This problem serves to highlight that, although the

optimization is highly smooth, using past methods may give subpar finite-sample performances due

to a delicate interplay between the variance and jumping behavior of the estimated solution. It

then illustrates how bagging can be a resolution in such a scenario.

4.8.1 Lower Bounds of Optimal Values

In this subsection we use bagging without replacement, bagging with replacement, the batching

procedure (4.7) and the single-replication procedure (4.5) to compute lower confidence bounds for
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the optimal value Z∗ = minx∈X Z(x). Specifically, we first simulate an i.i.d. data set ξ1, . . . , ξn of

size n, and then compute a 95% lower bound of the optimal value using each of the four methods.

As suggested by Theorem 4.7.3, we set B, the number of resamples, in Algorithm 7 to be roughly

5nk to wash out the effect of Monte Carlo error in estimating the covariances. This is in accordance

with our focus on statistical efficiencies, under the presumed adequate resources in solving SAA

problems. In the batching procedure we use the quantile of t-distribution with m − 1 degrees

of freedom when there are less than 30 batches, so as to enhance finite-sample performances as

suggested in Mak et al. (1999), whereas in other procedures we use the normal quantile.

Tables 4.1 and 4.2 summarize the results for problem (4.21) when the data size n = 50 and

n = 300, whereas Table 4.3 shows those for problem (4.24). We compute 1000 confidence bounds

from 1000 independently generated data sets, and then average the results to estimate coverage

probability (c.p.(%)), mean of the lower bound (mean) and standard deviation of the lower bound

(std.). We use k to denote either batch size in the batching procedure or resample size in our

bagging procedures. The “NA” entries in the tables correspond to the cases where n/k < 2 hence

the batching procedure is not tested. The “Single-replication” column of each table has only one

row because all the n data are used to form the SAA in the single-replication procedure.

Batching Bagging w/o replacement Bagging w/ replacement Single-replication

k c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std.

10 99.4 1.00 0.29 99.4 1.16 0.22 99.7 1.16 0.20 95.7 1.33 0.24
25 97.1 0.36 0.96 98.9 1.23 0.22 99.6 1.23 0.21
40 NA NA NA 98.6 1.26 0.23 98.5 1.26 0.23

Table 4.1: Problem (4.21), n = 50. Lower bounds of optimal values.

Batching Bagging w/o replacement Bagging w/ replacement Single-replication

k c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std.

10 100 1.37 0.10 100 1.38 0.09 100 1.38 0.08 96.9 1.57 0.10
30 99.1 1.48 0.11 99.8 1.50 0.09 99.5 1.51 0.09
50 97.8 1.50 0.12 98.7 1.53 0.10 98.9 1.52 0.10
100 96.9 1.44 0.19 97.9 1.55 0.10 98.0 1.55 0.09
150 96.1 1.20 0.42 98.0 1.55 0.10 97.6 1.55 0.10
250 NA NA NA 96.9 1.55 0.10 98.1 1.56 0.10

Table 4.2: Problem (4.21), n = 300. Lower bounds of optimal values.
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Batching Bagging w/o replacement Bagging w/ replacement Single-replication

k c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std.

5 100 −1.23 0.38 100 −1.21 0.35 100 −1.23 0.37 95.5 −0.63 0.59
10 98.9 −1.08 0.48 99.8 −0.99 0.39 100 −1.01 0.37
25 94.0 −0.93 0.63 98.9 −0.79 0.44 99.0 −0.82 0.40
50 95.0 −1.57 1.55 97.1 −0.67 0.47 97.5 −0.72 0.44
70 NA NA NA 95.1 −0.62 0.51 97.5 −0.69 0.43

Table 4.3: Problem (4.24), n = 100. Lower bounds of optimal values.

Tables 4.1-4.3 show that for a wide range of resample sizes, namely from 10 to more than half

of the data size, our bagging procedures generate statistically valid lower bounds in the sense that

the coverage probabilities are equal to or above the nominal value 95%. The batching and single-

replication procedures also generate valid confidence bounds. The results across different values

of k verify the relation between the resample size and tightness of the optimistic bound (4.6). To

be specific, in all the tables, as the resample size k grows, the mean lower bound gets closer to

the true optimal value 1.755 in Tables 4.1 and 4.2 and −0.05 in Table 4.3. In particular, in the

case of problem (4.21) and n = 300 (Table 4.2) bagging (with or without replacement) provides

a lower bound as good as 1.55 with coverage probability 97%-98% by using k = 100, 150, 250. It

therefore appears that, with the bagging procedures, one can obtain a relatively tight bound for

the optimal value and in the meantime retain good statistical accuracy, by using a resample size k

that is roughly half the data size.

Although the bounds generated from all considered methods are statistically valid, they differ

in tightness and stability. We observe that our bagging procedures appear to output tighter and

stabler bounds on the optimal value than batching. In each of Tables 4.1-4.3, under the same batch

size or resample size k, the bounds given by bagging (with or without replacement) are always

larger in terms of the mean, and meanwhile less variable as measured by the standard deviation,

than those by batching. The difference in tightness and stability becomes more noticeable as k

increases. This is in accordance with benefit of reducing variance in using bagging procedures as

illustrated by Theorems 4.6.2 and 4.6.3.

The results also show the tradeoff between tightness and statistical accuracy in the batching

procedure. According to the monotonicity property of the optimistic bound, the confidence bound
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should exhibit a monotonic trend of becoming tighter as the batch size k increases. However, in all

the tables the mean lower bound first gets tighter for relatively small batch size but then becomes

looser again as the size further increases. For example, in Table 4.3 the tightest bound (in terms of

the mean) is −0.93 at k = 25 and in Table 4.2 the tightest is 1.50 at k = 50. This non-monotonic

behavior appears since, as the batch size gets large, too few batches are available for the procedure

to maintain the desired statistical accuracy (i.e. a coverage probability above 95%). To mitigate

this issue, we resort to using t-quantile in place of normal which loosens the bound in exchange

for correct coverages. In fact, if we change the t-quantile to normal the coverage probability drops

to 92% in Table 4.1 and 86% in Table 4.2 in our experiment. Note that such kind of tradeoff no

longer appears in our bagging procedures as the bound always gets tighter and at the same time

has the desired coverage level even for large k.

Batching Bagging w/o replacement Bagging w/ replacement Single-replication

k c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std.

2 99.7 3.94 1.79 99.8 3.82 1.79 99.9 3.79 1.76 93.0 1.89 1.65
5 99.5 3.17 1.79 99.4 3.01 1.78 99.3 3.07 1.88
10 99.5 3.10 1.96 98.7 2.53 1.75 97.6 2.50 1.74
20 99.0 6.94 5.36 97.1 2.09 1.71 97.6 2.02 1.69
27 NA NA NA 96.9 2.10 1.67 95.1 2.00 1.61

Table 4.4: Problem (4.22), n = 40, n1 = 20, n2 = 20. Upper bounds of optimality gaps by BC.

Batching Bagging w/o replacement Bagging w/ replacement Single-replication

k c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std.

2 99.9 4.32 2.41 100 4.36 2.41 100 4.24 2.35 91.4 1.20 1.31
5 99.3 3.66 2.71 99.1 3.18 2.14 99.5 3.24 2.28
10 99.3 4.92 4.59 97.1 2.43 2.02 98.7 2.73 2.21
15 NA NA NA 94.7 2.13 1.87 98.2 2.53 2.22
20 NA NA NA NA NA NA 96.7 2.09 1.81

Table 4.5: Problem (4.22), n = 40, n1 = 20, n2 = 20. Upper bounds of optimality gaps by CRN.

4.8.2 Upper Bounds of Optimality Gaps

Now we test our methods in bounding optimality gaps of solutions. In our experiments we first

solve the SAA formed by n1 data points ξ1, . . . , ξn1 to obtain a solution x̂. We then generate
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Batching Bagging w/o replacement Bagging w/ replacement Single-replication

k c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std.

5 100 5.77 1.84 100 5.60 1.69 100 5.58 1.74 100 4.31 1.67
10 100 5.44 1.94 100 4.93 1.61 100 5.10 1.74
25 100 5.57 2.16 100 4.61 1.69 100 4.78 1.67
50 100 11.04 6.76 100 4.49 1.64 100 4.45 1.60
70 NA NA NA 100 4.33 1.62 100 4.42 1.63
90 NA NA NA 100 4.25 1.63 100 4.47 1.64

Table 4.6: Problem (4.23), n = 100, n1 = 64, n2 = 36. Upper bounds of optimality gaps by BC.

Batching Bagging w/o replacement Bagging w/ replacement Single-replication

k c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std.

6 100 2.14 1.04 100 1.83 0.76 100 1.94 0.74 86.1 0.93 0.84
9 99.3 1.88 1.17 100 1.44 0.75 100 1.63 0.78
18 96.7 2.46 2.59 99.4 1.17 0.83 99.7 1.27 0.72
30 NA NA NA 94.0 0.97 0.84 99.6 1.23 0.82

Table 4.7: Problem (4.23), n = 100, n1 = 64, n2 = 36. Upper bounds of optimality gaps by CRN.

n2 independent data points ξn1+1, ..., ξn1+n2 . These (and possibly the first n1 data points) are

then used to compute an upper confidence bound for the optimality gap G(x̂) = Z(x̂) − Z∗. For

convenience we denote n = n1 + n2 as the total sample size in the experiments.

We consider two approaches to bounding the gap, one reusing the first n1 data points, and the

other not. The first approach is to use the Bonferroni Correction (BC). Specifically, we use the

second group of n2 data to compute U = h̄ + z0.975σ̂/
√
n2 as a 97.5% upper confidence bound of

Z(x̂), where h̄, σ̂2 are the sample mean and variance of h(x̂, ξn1+1), . . . , h(x̂, ξn), and compute a

97.5% lower confidence bound L of the true optimal value Z∗ using all the n data as in the previous

section. In the end we output U − L as a confidence bound for the gap G(x̂). By BC we know

P (U − L ≥ Z(x̂)− Z∗) ≥ P (U ≥ Z(x̂)) + P (L ≤ Z∗)− 1 ≈ 97.5% + 97.5%− 1 = 95%

hence U − L is an asymptotically valid 95% confidence bound for the gap.

The second approach is a Common Random Numbers (CRN) variance-reduction technique

proposed by Mak et al. (1999) in this context. Consider minimizing a different objective E[h(x, ξ)−

h(x̂, ξ)] as a whole, where x̂ is viewed as fixed, whose optimal value is exactly −G(x̂). We use the
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Batching Bagging w/o replacement Bagging w/ replacement Single-replication

k c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std.

5 100 2.25 1.06 100 2.14 1.03 100 2.22 1.05 100 1.57 1.17
10 100 2.06 1.11 100 1.95 1.06 100 2.01 1.06
25 100 2.02 1.30 100 1.72 1.07 100 1.75 1.06
50 100 3.75 3.15 100 1.59 1.07 100 1.70 1.09
70 NA NA NA 100 1.54 1.11 100 1.66 1.10

Table 4.8: Problem (4.24), n = 100, n1 = 64, n2 = 36. Upper bounds of optimality gaps by BC.

Batching Bagging w/o replacement Bagging w/ replacement Single-replication

k c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std. c.p.(%) mean std.

3 100 1.61 0.55 100 1.53 0.50 100 1.53 0.53 79.5 0.80 0.85
9 97.8 1.29 0.89 99.9 1.10 0.57 99.9 1.12 0.55
18 90.8 2.09 2.13 98.1 0.93 0.66 99.3 0.98 0.63
30 NA NA NA 92.1 0.87 0.79 97.7 0.91 0.67

Table 4.9: Problem (4.24), n = 100, n1 = 64, n2 = 36. Upper bounds of optimality gaps by CRN.

second group of n2 data to compute a 95% lower confidence bound for this new optimization

problem, and then negate the lower bound to obtain a valid upper bound for G(x̂).

Tables 4.4, 4.6 and 4.8 summarize the results for problems (4.22)(4.23)(4.24) using BC, while

Tables 4.5, 4.7 and 4.9 display those using CRN. Note that, in either approach, in order to guarantee

the statistical accuracy of the confidence bound a relatively small number of data (e.g., around 30)

would suffice. In view of this, we choose n2 around 30 in all the experiments.

We see a few similar observations as in Section 4.8.1 where we compute lower bounds for optimal

values. The two bagging procedures generate statistically valid upper bounds in almost all the cases

(mildly undercover in the case k = 30 of Table 4.9). The bounds by batching also possess the desired

coverage probability in most cases, but are looser (i.e., larger) than those given by bagging. It can

be seen that the tightest bound by batching can be twice that by bagging (e.g., in Tables 4.5

and 4.7). Like in Tables 4.1-4.3, the batching bounds are also more variable, as measured by the

standard deviation, than the bagging-based bounds under the same resample size k.

Some new observations are as follows. First, we see that the single-replication procedure suffers

from severe under-cover issues in problems (4.23) and (4.24) (86.1% in Tables 4.7 and 79.5% in

Table 4.9). In problem (4.23) this can be attributed to the integrality requirement on the decision.
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In problem (4.24) the optimization itself is smooth, and the issue lies in the delicate relation

between the variance and the jumping behavior of the estimated solution. We find that with high

probability the candidate solution x̂ is −1 (with optimality gap 0.1), and, given x̂ = −1, solving

the SAA associated with the new cost function h(x, ξ)− h(−1, ξ) gives the solution −1 again with

high probability. However this way the estimated variance σ̂2 will be zero (because the new cost

function is constantly 0 at x = −1) which causes the under-cover issue. Similar observations

have been discussed in Section 6 of Bayraksan and Morton (2006). On the contrary, our bagging

procedures mitigate this by estimating the variance using all the resampled SAA solutions.

Second, in general the CRN approach enjoys the benefit of generating tighter and stabler con-

fidence bounds than the BC approach thanks to variance reduction. By comparing Table 4.6 with

Table 4.7 or Table 4.8 with Table 4.9, we see that this benefit of CRN becomes more significant

when one invests more data in obtaining x̂, i.e. when n1 is chosen larger. This is because, the closer

the estimated solution x̂ gets to the true optimum x∗, the smaller is the variance of the gap function

h(x, ξ)− h(x̂, ξ) at the optimum (i.e., x∗) due to the continuity of its variance (as a function of x),

which in turn leads to a smaller standard error. We also observe that the BC approach tends to

over-cover the optimality gap, potentially because of the looseness of the union bound.

4.9 Conclusion

We have studied a bagging approach to estimate bounds for the optimal value, and consequently

the optimality gap for a given solution in stochastic optimization. We demonstrate how our ap-

proach works under minimal regularity conditions, including for non-smooth problems, and exhibits

competitive statistical efficiency and stability. Compared to batching, our approach generates a

new tradeoff between bound tightness and statistical accuracy that is especially beneficial in small-

sample situations. Compared to approaches based on direct SAA asymptotics, our approach re-

quires less smoothness conditions on the objectives and gives more stable estimates thanks to the

smoothing effect of bagging. These benefits, however, are offset by the price of more computation

in repeatedly solving SAA programs. We have developed the theoretical properties of our approach
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by viewing SAA as a kernel in infinite-order symmetric statistics, and have illustrated our findings

with numerical results.
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Chapter 5

Combating Conservativeness in

Optimization with Uncertain

Constraints

5.1 Introduction

In Chapter 4 we have studied a bagging-based approach to quantifying uncertainties in the objective,

whereas in this chapter we consider the case where the uncertainty lies in the constraint. We focus

on optimization with stochastic or probabilistic constraints that, on a high level, can be written in

the form

min
x
f(x) subject to H(x) ≥ γ (5.1)

where H(x) is an expectation of a random function of the decision variable x. Formulation (5.1) is

ubiquitous in decision-making problems under multiple tradeoffs, where the constraint H(x) ≥ γ

signifies a restriction on the risk level or resource capacity (e.g., Atlason et al. (2004), Krokhmal

et al. (2002)). Moreover, when the random function is an indicator of an event, formulation (5.1)

is a so-called probabilistically constrained or chance-constrained problem (CCP) (Prékopa (2003)).

This important formulation posits the decision to tolerate a small probability on catastrophic events
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such as system failures and big losses, and comprises a primary approach for safe decision-making

when facing uncertainty.

We are interested in the situation where the probability distribution governingH is unknown but

only observed through data. Finding good solutions under this setting has been studied prominently

in the data-driven optimization literature, harnessing various tools from (distributionally) robust

optimization (e.g., Bertsimas et al. (2011), Ben-Tal et al. (2009), Wiesemann et al. (2014)) to

sample average approximation (e.g., Shapiro et al. (2014)) and scenario optimization (e.g., Campi

and Garatti (2008)). From a statistical viewpoint, the problem challenge and the focus of these

studies can be cast as a balancing between feasibility and optimality. Due to data noise, feasibility

is at best guaranteed with a high statistical confidence, and accounting for this uncertainty incurs

a price on the achieved objective value – resulting in conservativeness. This impact on optimality

from ensuring feasibility depends heavily on the efficiency in assimilating statistical information

into the data-driven formulation. In the following, we first explain how the established estimation

frameworks can face severe “looseness” in this regard and lead to over-conservative solutions. This

motivates our study that, on a high level, aims to investigate a strategy to substantially tighten

the feasibility-optimality tradeoff compared to the previous methods.

5.1.1 Existing Frameworks and Motivation of Our Approach

To facilitate discussion, suppose for concreteness that the decision variable x lies in a d-dimensional

deterministic space X ⊂ Rd. Denote H(x) := EF [h(x, ξ)] where EF [·] is the expectation under

ξ ∼ F , and h(·, ·) : Rd × Rm → R is a function of x ∈ X controlled by the randomness ξ ∈ Rm.

Also, since our focus is on handling uncertain constraints, we assume that the objective function

f is deterministic (this can be relaxed with proper modifications of our subsequent discussion).

Suppose we have i.i.d. observations ξ1, . . . , ξn.

Let us first consider a natural idea to replace the unknown H(·) with some point estimate,

say the sample average Ĥ(·) = (1/n)
∑n

i=1 h(x, ξi), in the constraint. Though simple, this ap-

proach is typically inadequate to ensure feasibility in any statistical sense. To explain, suppose the

“true” optimal solution x∗ is at the boundary of the feasible region, i.e., H(x∗) = γ. If we use
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(1/n)
∑n

i=1 h(x, ξi) ≥ γ as the constraint, then, with significant probability an obtained solution

x̂∗ (conceivably also at the boundary of the data-driven constraint) can have H(x̂∗) below γ (when

(1/n)
∑n

i=1 h(x̂∗, ξi) > EF [h(x̂∗, ξ)]), which is infeasible for the original problem. This issue may

not arise if x∗ or x̂∗ is in the interior of the feasible region, but a priori we do not know our decision.

In other words, the nature of constrained optimization enforces us to put some “safety” margin in

addition to the point estimate, in order to achieve any reasonable confidence in feasibility. Here,

we can plausibly use a data-driven constraint Ĥ(x) − ε(x) ≥ γ, where ε(x) is a properly chosen

positive function such that H(x) ≥ Ĥ(x)− ε(x) for any x with high confidence (such as the scheme

in Wang and Ahmed (2008), among others).

We place the above discussion in a more general framework. Let F be the (unknown) feasible

region of (5.1). Given the data ξ1, . . . , ξn, by a valid procedure we mean one that is able to output

a solution x̂∗ that is truly feasible with a given high confidence level, say 1 − β (e.g., 95%). That

is,

Pdata(x̂
∗ ∈ F) ≥ 1− β (5.2)

where Pdata refers to the probability with respect to the data. By a data-driven reformulation, we

mean replacing F with F̂ that is constructed solely from the data ξ1, . . . , ξn. This gives

min
x∈X

f(x) subject to x ∈ F̂ (5.3)

which outputs solution x̂∗. If we can choose F̂ such that

Pdata(F̂ ⊂ F) ≥ 1− β (5.4)

then we clearly have (5.2) since Pdata(x̂
∗ ∈ F) ≥ Pdata(F̂ ⊂ F). In the example above, we have

used F̂ = {x ∈ X : Ĥ(x)− ε(x) ≥ γ}, in the hope that (5.4) holds in order to achieve (5.2).

We contend that most approaches in data-driven optimization rely on the above reasoning and

are based on (5.4). In particular, (5.4) provides a convenient way to certify feasibility, by requiring

that all solutions feasible for (5.3) are also feasible for (5.1) with high confidence. This set-level



CHAPTER 5. COMBATING CONSERVATIVENESS 131

guarantee generally hinges on a simultaneous estimation task across all x in the decision space X ,

for which a proper control of the statistical error can lead to a substantial shrinkage of the size of

F̂ that exacerbates with problem dimension (either of the decision space or the probability space).

We provide several examples to illustrate the phenomenon above. Some of these examples apply

most relevantly to CCP, where H(x) is in the form PF (G(x, ξ) ≤ b) with G(x, ξ) : Rd × Rm → R.

Example 5.1.1 (Sample average approximation (SAA)) In the case of CCP, the SAA ap-

proach sets F̂ = {x ∈ X : 1
n

∑n
i=1 1(G(x, ξi) + ε ≤ b) ≥ γ + δ}, where ε and δ are suitably tuned

parameters. For example, when G is Lipschitz continuous in x, selecting δ = Ω(
√

(d/n) log(1/ε))

can guarantee (5.4) (Luedtke and Ahmed (2008)), and similar relations also hold in discrete deci-

sion space (Luedtke and Ahmed (2008)) and expected value constraints (Wang and Ahmed (2008)).

These estimates come from concentration inequalities in which union bounds are needed and give

rise to the dependence on the dimension d. Note that the resulting margin δ scales in order
√
d,

and to get any reasonably small δ, n must be of higher order than d. �

Example 5.1.2 (Robust optimization (RO) and safe convex approximation (SCA)) For

the case of CCP, RO sets

F̂ = {x ∈ X : G(x, ξ) ≤ b, for all ξ ∈ U} (5.5)

where U is known as the uncertainty set, and ξ in (5.5) is viewed as a deterministic unknown

(Bertsimas et al. (2011), Ben-Tal et al. (2009)). A common example of U is an ellipsoidal set

{ξ : (ξ − µ̂)′Σ̂−1(ξ − µ̂) ≤ ρ} where µ̂ ∈ Rd, Σ̂ ∈ Rd×d a positive semidefinite matrix, and ρ ∈ R.

Here the center µ̂ and shape Σ̂ typically correspond to the mean and covariance of the data, and ρ

controls the set size. A duality argument shows that, in the case of linear chance constraint in the

form G(x, ξ) = x′ξ, (5.5) is equivalent to the quadratic constraint µ̂′x +
√
ρ‖Σ̂1/2x‖2 ≤ b. Using

such type of convex constraints as inner approximations for intractable chance constraints is also

known as SCA (e.g., Ben-Tal and Nemirovski (2000), Nemirovski (2003), Nemirovski and Shapiro

(2006)).

It is known that, if for instance the random variable ξ has a known bounded support, the above
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approach guarantees an obtained solution has a satisfaction probability of order 1−e−ρ/2 via Hoeffd-

ing’s inequality, and ρ is chosen by matching this expression with the tolerance level γ. Although ρ

calibrated this way may not explicitly depend on the problem dimension, its tightness varies heavily

based on problem instance (due to the worst-case nature of concentration bounds), and its validity

relies on a priori distributional information (e.g., support) rather than an efficient utilization of

data. Another viewpoint that has been taken recently in data-driven RO (Bertsimas et al. (2018a);

Tulabandhula and Rudin (2014); Goldfarb and Iyengar (2003); Hong et al. (2017)) is to select U to

be a set that contains γ-content of the distribution of ξ, i.e., PF (ξ ∈ U) ≥ γ, with a confidence level

1−β. In this case, any solution x̂ feasible for (5.5) would satisfy PF (G(x̂, ξ) ≤ b) ≥ PF (ξ ∈ U) ≥ γ

with at least 1−β confidence, thus achieving (5.4) as well. Such generated uncertainty set however

typically has a size that scales with the dimension of the probability space. For example, consider

G(x, ξ) = x′ξ with ξ ∈ Rm being standard multivariate Gaussian and the uncertainty set U is an

ellipsoid with µ̂ and Σ̂ being the true mean and covariance, i.e., U = {ξ ∈ Rm : ‖ξ‖22 ≤ ρ}. Then,

in order to make U a γ-content set the radius ρ has to be at least of order m since ‖ξ‖22 has a mean

m, resulting in the robust counterpart
√
ρ ‖x‖2 = Θ(

√
m) ‖x‖2 ≤ b. However, the exact chance

constraint in this case can be rewritten as zγ ‖x‖2 ≤ b, where zγ is the γ-quantile of the univariate

standard normal, which is independent of the dimension. �

Example 5.1.3 (Distributionally robust optimization (DRO)) DRO sets

F̂ = {x ∈ X : inf
Q∈U

EQ[h(x, ξ)] ≥ γ} (5.6)

where U is a set in the space of probability measures that is constructed from data, and is often

known as the ambiguity set or uncertainty set. The rationale here is similar to RO, but views

the uncertainty in terms of the distribution. If U is constructed such that it contains the true

distribution F with high confidence, i.e., Pdata(F ∈ U) ≥ 1− β, then any solution x̂ feasible for the

DRO constraint (5.6) would satisfy PF (G(x̂, ξ) ≤ b) ≥ γ with at least 1−β confidence so that (5.4)

holds.

Popular choices of U include moment sets, i.e., specifying the moments of Q (to be within a
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range for instance) (Ghaoui et al. (2003); Delage and Ye (2010); Xu et al. (2012); Wiesemann

et al. (2014); Goh and Sim (2010); Natarajan et al. (2008); Van Parys et al. (2016); Doan et al.

(2015); Hanasusanto et al. (2015)), and distance-based sets, i.e., specifying Q in the neighborhood

ball surrounding a baseline distribution, where the ball size is measured by a statistical distance such

as φ-divergence (Petersen et al. (2000); Ben-Tal et al. (2013); Glasserman and Xu (2014); Lam

(2016b); Lam (2018); Hu and Hong (2013); Jiang and Guan (2016); Gotoh et al. (2018); Dupuis

et al. (2016); Bayraksan and Love (2015)) or Wasserstein distance (Esfahani and Kuhn (2018);

Blanchet and Murthy (2019); Gao and Kleywegt (2016); Xie (2019)).

Ensuring Pdata(F ∈ U) ≥ 1 − β means that U is a confidence region for F . In the moment

set case, this boils down to finding confidence regions for the moments whose sizes in general scale

with the probability space dimension. To explain, when only the mean EF [ξ] is estimated, the

confidence region constructed from, say the delta method (Marandi et al. (2019)), takes the form

{µ̂ + Σ̂
1
2 v : v ∈ Rm, ‖v‖22 ≤ χ2

m,1−β}, where µ̂ and Σ̂ are the sample mean and covariance and

χ2
m,1−β (which is of order m) is the 1 − β quantile of the χ2 distribution with degree of freedom

m, therefore the diameter of the confidence region scales as
√
m. When the mean and covariance

are jointly estimated, the dimension dependence scales up further. In the distance-based set case,

one needs to estimate statistical distances. If the Wasserstein distance is used to construct the ball

surrounding the empirical distribution, results from measure concentration (Fournier and Guillin

(2015)) indicate that the ball size needs to be of order n−
1
m to ensure Pdata(F ∈ U) ≥ 1 − β.

Alternatively, if U is constructed as a φ-divergence ball surrounding some nonparametric kernel-

type density estimate, results from kernel density estimation (see Section 4.3 in Wand and Jones

(1994)) suggest that the estimation error is of order n−
4

m+4 . In either case, the required size of

the uncertainty set exhibits exponential dependence on the dimension. Recently, the empirical or

the profile likelihood method has also been proposed to calibrate the ball size such that U can be

(much) smaller than what is needed in being a confidence region for F , while at the same time (5.4)

still holds (Lam and Zhou (2017); Duchi et al. (2016); Lam (2019); Blanchet and Kang (2020)).

However, the ball size in this approach scales as the supremum of a so-called χ2-process over the

decision space (e.g., Lam (2019)). An analysis using metric entropy (e.g., Example 2 in Section



CHAPTER 5. COMBATING CONSERVATIVENESS 134

14 in Lifshits (2013)) shows that the χ2-process supremum can scale linearly in the decision space

dimension d, a much better but still considerable dependence on the dimension. �

Finally, we discuss the only two exceptional paradigms, to our best knowledge, in providing

guarantee (5.2) using (5.4). First, Gupta (2019) studies a Bayesian framework to define feasibility

guarantees for (stochastic) constraints with unknown parameters, focusing on DRO formulations.

The idea is to ensure the obtained data-driven solution satisfies the constraints with a high posterior

probability on the unknown parameters. This definition of feasibility does not utilize the concept

of experimental repetitions in the frequentist sense as we have considered, but views the unknown

parameters as random and considers the frequency of feasibility from the posterior belief, thus

bypassing the set-level guarantee in (5.4). Indeed, Gupta (2019) shows that under suitable convexity

assumption on the constraints (with respect to the unknown parameter) and discreteness of the

underlying distribution, the size of the uncertainty set in DRO can be chosen lightly dependent on

the problem dimension.

The second exceptional paradigm that we are aware of is scenario optimization (SO) (e.g.,

Calafiore and Campi (2005), Campi and Garatti (2008)), which applies to the case of CCP. In its

basic form, this approach sets

F̂ = {x ∈ X : G(x, ξi) ≤ b for all i = 1, . . . , n}

i.e., using sampled constraints formed from the data. As the number of constraints increases, F̂ is

postulated to populate the decision space in some sense and ensure the obtained solution x̂∗ lies

in F . While the sample size required in the basic SO is linear in the decision dimension d, recent

works reduce this dependence by an array of generalizations, including using regularization (Campi

and Carè (2013)), tighter support rank estimates (Schildbach et al. (2013), Campi and Garatti

(2018)) and sequential and validation-based schemes (Carè et al. (2014), Calafiore (2017)).

The approach that we propose in this chapter aims to avoid using the set-level guarantee in (5.4)

and the need to control its simultaneous estimation errors, which can cause over-conservativeness

as discussed. Our approach operates under a frequentist framework, nonparametric assumptions
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on the underlying distributions, and applies to all the exemplified methods mentioned above (SAA,

RO, DRO and SO). It is thus different from the Bayesian parametric framework in Gupta (2019).

Our idea is closest to some of the validation-type schemes suggested for SO, but more general as it

applies to stochastic constraints beyond CCP and to data-driven reformulations beyond SO. Akin

to these SO studies, our main results concern the power of our validation procedures in guaranteeing

feasibility, which informs the required sample size in relation to the problem dimension. Our results

also introduce a notion of optimality with respect to the chosen reformulation class, and deduce

joint optimality-feasibility guarantees. In these regards, one main contribution of our work can be

viewed as a rigorous construction of the first general-purpose validation framework for data-driven

constrained optimization to systematically reduce conservativeness.

5.2 Overview of Our Framework and Rationale

Our framework, as discussed, aims to bypass the set-level guarantee in (5.4) and the need to control

its simultaneous estimation errors. Our starting observation is the following. In all the described

approaches above, the data-driven reformulation involves a key parameter that controls the level

of conservativeness:

1. SAA: safety margin δ

2. RO and SCA: uncertainty set size ρ

3. DRO: divergence ball size or moment set size

4. SO: number of constraints

These parameters have the properties that setting it to one extreme (e.g., 0) would signal no un-

certainty in the formulation, leading to a solution very likely infeasible, while setting it to another

extreme (e.g., ∞) would cover the entire decision space, leading to a solution that is very conser-

vative. In the established approaches, the parameter value is chosen to ensure (5.4), which tend to

locate towards the latter extreme.
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On the other hand, given a specific data-driven reformulation, it is easy to see that no matter how

we choose this “conservativeness” parameter, the solution must lie in a low-dimensional manifold.

More precisely, denote a given data-driven reformulation as

min
x∈X

f(x) subject to x ∈ F̂(s) (5.7)

where s ∈ S denotes the conservativeness parameter, and we highlight the dependence of the data-

driven feasible region F̂(s) on s. We denote the obtained solution from (5.7) as x∗(s). The solution

path {x∗(s) : s ∈ S} contains all possible obtainable solutions from the data-driven reformulation

(5.7). Intuitively, any statement on feasibility suffices to focus on this solution path, instead of the

whole decision space.

Nonetheless, besides the conservativeness parameter, a data-driven reformulation could have

other parameters playing various roles (e.g., center and shape of an ellipsoidal uncertainty set in

RO, baseline distribution in distance-based DRO etc.). The flexibility of these parameter values can

enlarge the obtainable solution space and elevate its dimensionality. Suppose we want to contain

this enlargement, and at the same time be able to select the optimal candidate within the low-

dimensional manifold {x∗(s) : s ∈ S}. We propose the following two-phase framework to achieve

this rigorously.

Our procedure (Algorithm 8) splits the data into two groups. With the first group of data, we

construct a given data-driven reformulation parametrized by a conservativeness parameter s that

varies over a space S, which we call OPT (s). We obtain the optimal solution x∗(s) for a range

of values s = sj , j = 1, . . . , p. This step assumes the availability of an efficient solver for OPT (s).

Next, the second group of data is fed into a validator V that aims to identify the best feasible

solution x∗(ŝ∗) among {x∗(sj) : j = 1, . . . , p}. The number of points p required to validate depends

on the size of S, which is constructed to be low-dimensional. There are multiple ways to set up the

validator V , each with its own benefits and requirements. In the next two sections, we will introduce

two classes of validators, one we call Gaussian supremum validator (Section 5.3), and another one

we call univariate Gaussian validator (Section 5.4). We will present their rationales, theoretical
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Algorithm 8 The Two-Phase Framework

Input: data ξ1:n = {ξ1, . . . , ξn}; numbers of data n1, n2 allocated to each phase (n1 + n2 = n);

a confidence level 1− β; a given method to construct data-driven reformulation with a (possibly

multi-dimensional) parameter s ∈ S; a discrete mesh {s1, s2, . . . , sp} ⊆ S.

Phase one:

1. Use n1 observations, which we index as {ξn2+1, . . . , ξn} for convenience, to construct the

data-driven reformulation OPT (s) in the form (5.7) parameterized by s ∈ S.

2. For each j = 1, . . . , p, compute the optimal solution x∗(sj) of OPT (sj).

Phase two:

Use a validator V to select (ŝ∗, x∗(ŝ∗)) = V ({ξ1, . . . , ξn2}, {x∗(s1), . . . , x∗(sp)}, 1 − β), where

x∗(ŝ∗) is a solution and ŝ∗ is the associated parameter value.

Output: x∗(ŝ∗).

statistical guarantees, and implications on the feasibility and optimality of the obtained solution.

Section 5.5 will then tie back the applicability of these validators to the exemplified approaches in

Section 5.1.1.

5.3 Validation via Multivariate Gaussian Supremum

Our first validator uses a simultaneous estimation of H(x) in the constraint in (5.1) to assess

feasibility over the discretized solution path of x∗(s). More precisely, given the solution set

{x∗(sj) : j = 1, . . . , p}, we use a sample average with an appropriately calibrated safety margin,

i.e., 1
n2

∑n2
i=1 h(x, ξi)− ε, to replace the unknown H(·) in (5.1) and output the best solution among

the set. The margin ε is calibrated via the limiting distribution of ( 1
n2

∑n2
i=1 h(x∗(sj), ξi))j=1,...,p

which captures the estimation error of H(·) and is multivariate Gaussian. It contains a critical

value q1−β that is the quantile of a Gaussian supremum. Algorithms 9 and 10 describe two variants

of this validator, one unnormalized while another one normalized by the standard deviation at each

sj . In the following, we denote Np(0,Σ) as a p-dimensional Gaussian vector with mean zero and
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covariance Σ.

Algorithm 9 V : Unnormalized Gaussian Supremum Validator

Input: {ξ1, . . . , ξn2}, {x∗(s1), . . . , x∗(sp)}, 1− β

1. For each j = 1, . . . , p compute the sample mean Ĥj = (1/n2)
∑n2

i=1 h(x∗(sj), ξi) and sample

covariance matrix Σ̂ with Σ̂(j1, j2) = (1/n2)
∑n2

i=1(h(x∗(sj1), ξi)− Ĥj1)(h(x∗(sj2), ξi)− Ĥj2).

2. Compute q1−β, the (1 − β)-quantile of max{Z1, . . . , Zp} where (Z1, . . . , Zp) ∼ Np(0, Σ̂), and

let

ŝ∗ = argmin

{
f(x∗(sj)) : Ĥj ≥ γ +

q1−β√
n2
, 1 ≤ j ≤ p

}
. (5.8)

Output: ŝ∗, x∗(ŝ∗).

Algorithm 10 V : Normalized Gaussian Supremum Validator

Input: {ξ1, . . . , ξn2}, {x∗(s1), . . . , x∗(sp)}, 1− β

1. Same as in Algorithm 9.

2. Denote σ̂2
j = Σ̂(j, j). Compute q1−β, the (1 − β)-quantile of max{Zj/σ̂j : σ̂2

j > 0, 1 ≤ j ≤ p}

where (Z1, . . . , Zp) ∼ Np(0, Σ̂), and let

ŝ∗ = argmin

{
f(x∗(sj)) : Ĥj ≥ γ +

q1−βσ̂j√
n2

, 1 ≤ j ≤ p

}
. (5.9)

Output: ŝ∗, x∗(ŝ∗).

The first Gaussian supremum validator (Algorithm 9) is reasoned from a joint central limit the-

orem (CLT) that governs the convergence of
√
n2(Ĥ1−H(x∗(s1)), . . . , Ĥp−H(x∗(sp))) to Np(0,Σ),

where Σ(j1, j2) = CovF (h(x∗(sj1), ξ), h(x∗(sj2), ξ)). Using the sample covariance Σ̂ from Step 1 of

Algorithm 9 as an approximation of Σ, we have, by the continuous mapping theorem,

max
1≤j≤p

√
n2(Ĥj −H(x∗(sj))) ≈ max

1≤j≤p
Zj in distribution
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where (Z1, . . . , Zp) ∼ Np(0, Σ̂). Therefore using the 1− β quantile q1−β of the Gaussian supremum

in the margin leads to

H(x∗(sj)) ≥ Ĥj −
q1−β√
n2

for all j = 1, . . . , p, with probability ≈ 1− β.

The second validator (Algorithm 10) uses an alternate version of the CLT that is normalized by

the componentwise standard deviation σj , i.e.,
√
n2((Ĥ1−H(x∗(s1)))/σ1, . . . , (Ĥp−H(x∗(sp)))/σp)

converges to Np(0, DΣD), where D is a diagonal matrix of 1/σj , j = 1, . . . , p. Note that the quantile

q1−β in both validators can be computed to high accuracy via Monte Carlo.

Let us make the above reasoning precise. We present our results for two cases that need

separate treatments: When H(x) ≥ γ is a “light-tailed” stochastic constraint, and when it is a

chance constraint.

5.3.1 Performance Guarantees for General Stochastic Constraints

Recall that H(x) = EF [h(x, ξ)]. Denote

σ2(x) := VarF (h(x, ξ))

as the variance of h for each decision x ∈ X . We assume the following on optimization problem

(5.1):

Assumption 5.3.1 (Light-tailedness) There exists a constant D1 ≥ 1 such that for all x ∈ X

with σ2(x) > 0, we have

EF
[

exp
( |h(x, ξ)−H(x)|2

D2
1σ

2(x)

)]
≤ 2 and EF

[( |h(x, ξ)−H(x)|
σ(x)

)2+k]
≤ Dk

1 for k = 1, 2.

This assumption stipulates that the distribution of h(x, ξ) after being centered and normalized by

its standard deviation is sufficiently light-tailed at each x. Note that no other regularity property,

e.g., convexity or continuity, is assumed for the function h itself. We have the following finite-sample

feasibility guarantees for the solution output by Algorithm 9 or 10:
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Theorem 5.3.1 (Finite-sample feasibility guarantee for unnormalized validator) Denote

H = max1≤j≤pH(x∗(sj)) and σ̄2 = max1≤j≤p σ
2(x∗(sj)). Suppose Assumption 5.3.1 holds. For

every solution set {x∗(sj) : 1 ≤ j ≤ p}, every n2, and β ∈ (0, 1
2), the solution output by Algorithm

9 satisfies

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.1))

≥ 1− β − C
((D2

1 log7(pn2)

n2

) 1
6

+ exp
(
− cn2ε

2

D2
1σ̄

2

)
+ p exp

(
− cn2

D4
1

))

with

ε =

H − γ − Cσ̄√ log(p/β)

n2


+

(5.10)

where C and c are universal constants, and Pξ1:n2
denotes the probability with respect to Phase two

data {ξ1, . . . , ξn2} and conditional on Phase one data {ξn2+1, . . . , ξn}.

Theorem 5.3.2 (Finite-sample feasibility guarantee for normalized validator) Denote by

s ∈ argmax{H(x∗(sj)) : j = 1, . . . , p} the parameter giving rise to the highest constraint value, i.e.,

H(x∗(s)) = H. Under the same conditions of Theorem 5.3.1, the solution output by Algorithm 10

satisfies

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.1))

≥ 1− β − C

((D2
1 log7(pn2)

n2

) 1
6

+
D2

1 log2(pn2)√
n2

+ exp
(
− cn2ε

2

D2
1σ

2(x∗(s))

)
+ p exp

(
− cn

2/3
2

D
10/3
1

))

with

ε =

H − γ − Cσ(x∗(s))

√
log(p/β)

n2


+

(5.11)

where C and c are universal constants.

In both Theorems 5.3.1 and 5.3.2, the finite-sample coverage probability consists of two sources

of errors. The first source comes from the CLT approximation that decays polynomially in the

Phase 2 sample size n2. The second error arises from the possibility that none of the solutions
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{x∗(s1), . . . , x∗(sp)} satisfies the criterion in (5.8) or (5.9), which vanishes exponentially fast. When

ε in (5.10) or (5.11) is of constant order, the CLT error dominates. In this case the finite-sample

error depends logarithmically on p, the number of candidate parameter values, and the bounds

dictate a coverage tending to 1− β when p is as large as exp(o(n
1/7
2 )).

The derivation of the logarithmic dependence on p in Theorem 5.3.1 builds on a high-dimensional

CLT and an associated multiplier bootstrap approximation recently developed in Chernozhukov

et al. (2017) (Appendix D.2.1). The proof of Theorem 5.3.2 further requires a Hoeffding-type

inequality for U-statistics to control the errors of the sample variance estimates, as well as the so-

called Nazarov’s inequality, an anti-concentration inequality for multivariate Gaussian, to control

the coverage errors when using estimated standard deviations in the margin (Appendix D.2.2).

Appendices D.2.3 and D.2.4 detail the proofs of Theorems 5.3.1 and 5.3.2 that put together the

above mathematical developments.

We explain the implication on the dimensionality of the problem. Note that to sufficiently

cover the whole solution path, p is typically exponential in the dimension of S, denoted dim(S)

(this happens when we uniformly discretize the parameter space S). The discussion above thus

implies a requirement that n2 is of higher order than dim(S)7. Here the low dimensionality of S is

crucial; for instance, a one-dimensional conservativeness parameter s would mean dim(S) = 1, so

that a reasonably small n2 can already ensure adequate feasibility coverage. Moreover, the margin

adjustments in Algorithms 9 and 10 both depend only on dim(S). Thus, choosing ŝ∗ relies only

on dim(S), but not the dimension of the whole decision space. Note that Theorems 5.3.1 and

5.3.2 provide guarantee conditional on Phase one data. However, the universality of the involved

constants means that analogous unconditional feasibility guarantees also hold if Assumption 5.3.1

can be verified uniformly or with high probability with respect to Phase one data, an observation

that persists for other subsequent results.

Comparing between the two validators, we also see that the normalized one (Algorithm 10)

is statistically more efficient than the unnormalized one (Algorithm 9) when the variance σ2(x)

exhibits high variability across solutions. More specifically, in order to make the exponential error

non-dominant, one needs at least ε > 0. In the case of Algorithm 9, expression (5.10) suggests
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that, after ignoring the logarithmic factor log(p/β), this requires an n2 to be of order σ2/(H − γ)2.

In contrast, for Algorithm 10 this becomes σ2(x∗(s))/(H − γ)2, where the maximum variance is

replaced with the variance at the solution that optimizes the H-value, which in general does not

have the maximum variance.

Theorems 5.3.4 and 5.3.5 also give immediately the following asymptotic feasibility guarantee

(proof in Appendix D.2.4):

Corollary 5.3.3 (Asymptotic feasibility guarantee) Let H = max1≤j≤pH(x∗(sj)). Suppose

Assumption 5.3.1 holds. For every solution set {x∗(sj) : 1 ≤ j ≤ p} such that H > γ and every

β ∈ (0, 1
2), the solution output by Algorithm 9 or 10 satisfies

lim inf
n2→∞ and p exp(−n1/7

2 )→0

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.1)) ≥ 1− β.

5.3.2 Performance Guarantees for Chance Constraints

Underlying the finite-sample bounds in Theorems 5.3.1 and 5.3.2 is the light-tailedness condition

in Assumption 5.3.1. However, in a CCP that takes the form

min
x∈X

f(x) subject to P (x) := PF ((x, ξ) ∈ A) ≥ 1− α (5.12)

where A ⊆ Rd × Rm is a deterministic set and 1 − α is a tolerance level for the satisfaction

probability, the tail of the normalized indicator function 1((x, ξ) ∈ A) can be arbitrarily heavy as

the satisfaction probability approaches 0 or 1 and hence violates Assumption 5.3.1. Thus, instead,

we present different finite-sample error bounds for (5.12) than Theorems 5.3.1 and 5.3.2 whose

derivations rely on the Bernoulli nature of the underlying function:

Theorem 5.3.4 (Finite-sample CCP feasibility guarantee for unnormalized validator)

Let ᾱ = 1 − max1≤j≤p P (x∗(sj)). For every solution set {x∗(sj) : 1 ≤ j ≤ p}, every n2, and

β ∈ (0, 1
2), the solution output by Algorithm 9 satisfies

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.12)) ≥ 1− β − C

(( log7(pn2)

n2α

) 1
6

+ exp
(
− cn2 min{ε, ε

2

ᾱ
}
))
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with

ε =

α− ᾱ− C√ log(p/β)

n2


+

(5.13)

where C and c are universal constants.

Theorem 5.3.5 (Finite-sample CCP feasibility guarantee for the normalized validator)

Under the same conditions of Theorem 5.3.4, the solution output by Algorithm 10 satisfies

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.12))

≥ 1− β − C
(( log7(pn2)

n2α

) 1
6

+
log2(pn2)
√
n2α

+ exp
(
− cn2 min{ε, ε

2

ᾱ
}
))

with

ε =

α− ᾱ− C
√(

ᾱ+ log(n2α)/n2

)
log(p/β)

n2


+

(5.14)

where C and c are universal constants.

A comparison between Theorems 5.3.4 and 5.3.5 again reveals the higher statistical efficiency of

Algorithm 10 than Algorithm 9 which, in the CCP context, applies to the case when the satisfaction

probability is large (i.e., the common case). Suppose that 1 − α approaches 1. In order to make

ε > 0 in (5.13), we need a sample size n2 of order (α− ᾱ)−2 (after ignoring the logarithmic factor

log(p/β)), whereas in (5.14) it can be seen to need only an n2 of order α(α− ᾱ)−2, a much smaller

size when 1− α is close to 1.

Lastly, we have the following asymptotic feasibility guarantee in the case of CCP in parallel to

Corollary 5.3.3:

Corollary 5.3.6 (Asymptotic chance constraint feasibility guarantee) For every solution

set {x∗(sj) : 1 ≤ j ≤ p} such that α > 1 −max1≤j≤p P (x∗(sj)) and every β ∈ (0, 1
2), the solution

output by Algorithm 9 or 10 satisfies

lim inf
n2→∞ and p exp(−n1/7

2 )→0

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.12)) ≥ 1− β.
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Appendix D.2.4 details the proofs of Theorem 5.3.4, Theorem 5.3.5 and Corollary 5.3.6.

To close this section, we note that our Gaussian supremum validators also enjoy a notion of

asymptotic solution-path optimality under additional assumptions. To streamline our presentation,

we defer this discussion to the next section and combine it with the discussion of our next validator.

5.4 Validation via Univariate Gaussian Margin

We offer an alternate validator that can perform more efficiently than Algorithms 9 and 10, provided

that further regularity assumptions are in place. This is a scheme that simply uses a standard

univariate Gaussian critical value to calibrate the margin (Algorithm 11).

Algorithm 11 outputs a solution with objective value no worse than Algorithms 9 and 10.

Comparing the criteria to choose ŝ∗, we see that, due to the stochastic dominance of the maximum

among a multivariate Gaussian vector over each of its individual components, the margin in (5.8)

satisfies q1−β ≥ z1−βσ̂j for all j, and similarly the margin in (5.9) satisfies q1−βσ̂j ≥ z1−βσ̂j , so

that both are bounded from below by the margin in (5.15). Consequently the solution from (5.15)

achieves an objective value no worse than the other two.

Algorithm 11 V : Univariate Gaussian Validator

Input: {ξ1, . . . , ξn2}, {x∗(s1), . . . , x∗(sp)}, 1− β

1. For each j = 1, . . . , p compute the sample mean Ĥj = (1/n2)
∑n2

i=1 h(x∗(sj), ξi) and sample

variance σ̂2
j = (1/n2)

∑n2
i=1(h(x∗(sj), ξi)− Ĥj)

2.

2. Compute

ŝ∗ = argmin

{
f(x∗(sj))

∣∣∣Ĥj ≥ γ +
z1−βσ̂j√

n2
, 1 ≤ j ≤ p

}
(5.15)

where z1−β is the 1− β quantile of the standard Gaussian distribution.

Output: ŝ∗, x∗(ŝ∗).

The univariate Gaussian critical value used in the margin in Algorithm 11 hints that feasibility

needs to be validated at only one value of s instead of the solution path S. The validity of this

procedure is based on the statistical consistency of the obtained solution x∗(ŝ∗) to some limiting
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solution (correspondingly ŝ∗ to some limiting optimal parameter value) as n2 increases. Intuitively,

this implies that with sufficient sample size one can focus feasibility validation on a small neighbor-

hood of ŝ∗, which further suggests that we need to control only the statistical error at effectively one

solution parametrized at ŝ∗. For this argument to hold, however, we would need several additional

technical assumptions including a low functional complexity of h, and a different line of derivations.

5.4.1 Asymptotic Performance Guarantees

We present the statistical guarantees of Algorithm 11 as Phase two data size n2 →∞. We assume

continuity for the objective of (5.1):

Assumption 5.4.1 (Continuous objective) The objective function f(x) is continuous on X .

For the constraint, we assume the following:

Assumption 5.4.2 (Functional complexity) The function class F := {h(x, ·)|x ∈ X} is F -

Donsker.

Assumption 5.4.3 (L2-boundedness) EF
[

supx∈X |h(x, ξ)−H(x)|2
]
<∞.

Assumption 5.4.4 (L2-continuity) For every fixed x ∈ X and another x′ ∈ X , we have that

limx′→x EF [(h(x′, ξ)− h(x, ξ))2] = 0.

To give a sense of the generality of the above assumptions, we identify two general classes of

constraints for which these assumptions are guaranteed to hold, one suitable for general h, and

another one for CCPs:

Proposition 5.4.1 Assumptions 5.4.2-5.4.4 hold in each of the following two cases:

i. There exists some M(ξ) such that EF [M(ξ)2] <∞ and |h(x1, ξ)− h(x2, ξ)| ≤M(ξ) ‖x1 − x2‖

for all x1, x2 ∈ X , there exists some x̃ ∈ X such that EF [h(x̃, ξ)2] <∞, and the decision space

X is compact;
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ii. h(x, ξ) = 1(a′kAk(x) ≤ bk for k = 1, . . . ,K) for some K < ∞, where each Ak(·) : Rd → Rmk

is a continuous mapping and each ak ∈ Rmk , bk ∈ R satisfies either (i) ak has a density on

Rmk and bk is a non-zero constant or (ii) (ak, bk) has a density on Rmk+1.

Case (i) in Proposition 5.4.1 follows from standard results in empirical process theory, including in

particular the Jain-Marcus Theorem. The proof of Case (ii) involves checking the finite Vapnik-

Chervonenkis (VC) dimension and pointwise separability of the function class in order to verify

F -Donskerness. Appendix D.3 details the proof of Proposition 5.4.1.

We impose one more assumption on the constraint function regarding its variance:

Assumption 5.4.5 (Non-degeneracy of the variance on the boundary) σ2(x) > 0 for all

x ∈ X such that H(x) = γ.

In Assumption 5.4.5, non-zero variance is assumed only for those x’s at which the stochastic con-

straint is satisfied with equality, but not necessarily for other x. This is significant in the case

of CCP (5.12). While there could exist 100% or 0% safe solutions, i.e., x such that P (x) = 1 or

0, and hence non-degeneracy may not be satisfied over the whole X , it holds for those x’s with

P (x) = 1− α that have (the same) non-zero variance α(1− α).

Now we present our assumptions on the data-driven reformulation OPT (s), s ∈ S. We focus

on formulations with a single parameter (A separate set of results for formulations with multiple

parameters can be found in Appendix D.6). We first assume that the solution path is piecewise

continuous:

Assumption 5.4.6 (Piecewise continuous solution path) The parameter space S is a finite

interval [sl, su]. The optimal solution x∗(s) of OPT (s) exists and is unique except for a finite

number of parameter values s̃i, i = 1, . . . ,M−1 such that sl = s̃0 < s̃1 < · · · < s̃M−1 < s̃M = su, and

the parameter-to-solution mapping x∗(s) is uniformly continuous on each piece [s̃0, s̃1), (s̃M−1, s̃M ],

and (s̃i−1, s̃i) for i = 2, . . . ,M − 1.

Continuity of the solution path allows approximating the whole solution curve by discretizing the

parameter space S. Also note that under Assumption 5.4.6 the solution x∗(s) exists and is unique



CHAPTER 5. COMBATING CONSERVATIVENESS 147

for almost surely every s ∈ S with respect to the Lebesgue measure. Therefore, if one discretizes

the parameter space by randomizing via a continuous distribution over S, then with probability one

the solution x∗(s) is unique at all sampled parameter values. This provides an easy way to ensure

the assumption that none of the parameter values {s1, . . . , sp} used in Phase one of Algorithm 8

belongs to the discontinuity set {s̃1, . . . , s̃M−1}.

To explain the superior performance of Algorithm 11, we introduce a notion of optimality within

the solution path {x∗(s) : s ∈ S}. First, since the parameter-to-solution mapping x∗(s) is not

defined at the discontinuities under Assumption 5.4.6, we need to fill in these holes in the solution

path. Thanks to uniform continuity, the mapping x∗(s) on each piece (s̃i−1, s̃i) can be continuously

extended to the closure [s̃i−1, s̃i] by taking left and right limits. Specifically, we define:

Definition 5.4.1 Under Assumption 5.4.6, the parameter-to-solution mapping x∗(·) at each dis-

continuity s̃i, i = 1, . . . ,M − 1 is defined in an extended fashion as

x∗(s̃i) = {x∗(s̃i−), x∗(s̃i+)} where x∗(s̃i−) := lim
s→s̃i−

x∗(s) and x∗(s̃i+) := lim
s→s̃i+

x∗(s).

Note that the two solutions x∗(s̃i−) and x∗(s̃i+) are different if the i-th and (i + 1)-th pieces

are disconnected. With the extended parameter-to-solution mapping x∗(·), we now introduce the

notions of optimal solution and optimal parameter associated with the solution path:

Definition 5.4.2 Associated with the solution path {x∗(s) : s ∈ S}, the optimal solution set is

X ∗S := argmin
x

f(x) :

H(x) ≥ γ, where

x = x∗(s) for some s /∈ {s̃1, . . . , s̃M−1} or

x ∈ x∗(s̃i) for some i = 1, . . . ,M − 1

 (5.16)

and the optimal parameter set is

S∗ := {s /∈ {s̃1, . . . , s̃M−1} : x∗(s) ∈ X ∗S} ∪ {s̃i : x∗(s̃i) ∩ X ∗S 6= ∅, i = 1, . . . ,M − 1}. (5.17)

We need several additional technical assumptions. The first is that the stochastic constraint is not
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binding at the endpoints of each piece of the solution path:

Assumption 5.4.7 H(x∗(s̃i−)) 6= γ and H(x∗(s̃i+)) 6= γ for all i = 1, . . . ,M − 1, H(x∗(sl)) 6= γ,

H(x∗(su)) 6= γ, and sups/∈{s̃1,...,s̃M−1}H(x∗(s)) > γ.

Since the solution path {x∗(s) : s ∈ S} depends on Phase one data ξn2+1:n, the path and hence

the endpoints x∗(s̃i−), x∗(s̃i+) are random objects, and so the first part of Assumption 5.4.7 is

expected to hold almost surely provided that the set {x ∈ X : H(x) = γ} is a null set under the

Lebesgue measure on Rd. The second part states that the solution path contains a strictly feasible

solution which in turn ensures that the optimal solution set X ∗S is non-empty. Note that this can

typically be achieved by simply including very conservative parameter values in S.

Another property we assume regards the monotonicity of the feasible set size with respect to

the parameter s in the reformulation OPT (s):

Assumption 5.4.8 Denote by Sol(s) := X ∩ F̂(s) the feasible set of OPT (s). Assume Sol(s) is a

closed set for all s ∈ S and Sol(s2) ⊆ Sol(s1) for all s1, s2 ∈ S such that s1 < s2.

Assmption 5.4.8 holds for all common reformulations (all examples in the beginning of Section 5.2)

as s controls the conservativeness level. For instance, in RO with ellipsoidal uncertainty set, the RO

feasible region shrinks with the radius of the ellipsoid, and similar relations hold for DRO, SAA,

and SO. A straightforward consequence of Assumption 5.4.8 is the monotonicity of the parameter-

to-objective mapping

v(s) := inf{f(x) : x ∈ X ∪ F̂(s)}

as described in the following proposition (proof in Appendix D.3):

Proposition 5.4.2 Suppose Assumptions 5.4.6 and 5.4.8 hold. For all s1, s2 ∈ S such that s1 < s2

it holds v(s1) ≤ v(s2), and if additionally s1, s2 /∈ {s̃1, . . . , s̃M−1} then v(s1) < v(s2) if and only if

x∗(s1) 6= x∗(s2).

The assumptions we have made for the formulation OPT (s) give rise to the following uniqueness

characterization of the optimal solution set X ∗S and the optimal parameter set S∗ within the solution

path, which would be used to establish the feasibility guarantees for Algorithm 11.



CHAPTER 5. COMBATING CONSERVATIVENESS 149

Proposition 5.4.3 Under Assumptions 5.4.1, 5.4.4, and 5.4.6-5.4.8, the optimal solution set X ∗S

is a singleton {x∗S} and the optimal parameter set S∗ is a closed interval [s∗l , s
∗
u] for s∗l , s

∗
u ∈ S. In

addition, if v(s) is strictly increasing on S, then S∗ is a singleton {s∗}.

The proof of Proposition 5.4.3, which is in Appendix D.3, involves an exhaustion of all possible

structures of the set X ∗S that contain more than one solution, and showing each of them contradicts

with our assumptions (especially Assumption 5.4.8).

Lastly, we assume the following technical assumption for the set of optima:

Assumption 5.4.9 For any ε > 0 there exists an s /∈ {s̃1, . . . , s̃M−1} such that H(x∗(s)) > γ and

‖x∗(s)− x∗S‖2 < ε, where x∗S is the unique optimal solution from Proposition 5.4.3.

This assumption trivially holds if X ∗S = {x∗S} as described in Proposition 5.4.3 and H(x∗S) > γ.

Otherwise, if H(x∗S) = γ, it rules out the case that the solution path x∗(s) passes through x∗S

without entering the interior of the feasible set of (5.1). The latter exceptional case typically

happens with zero probability, in view of the fact that the solution path is itself random with

respect to Phase one data.

Now we are ready to present the asymptotic performance guarantee for Algorithm 11:

Theorem 5.4.4 (Asymptotic joint feasibility-optimality guarantee) Suppose Assumptions

5.4.1-5.4.5 hold for (5.1). Also suppose Assumptions 5.4.6-5.4.9 hold for the reformulation OPT (s)

constructed in Algorithm 8, and {s1, . . . , sp}∩{s̃1, . . . , s̃M−1} = ∅. Let εS = sups∈S inf1≤j≤p |s− sj |

be the mesh size, and x∗S be the unique optimal solution from Proposition 5.4.3. Then, with respect

to {ξ1, . . . , ξn2}, the solution and parameter output by Algorithm 11 satisfy

lim
n2→∞,εS→0

x∗(ŝ∗) = x∗S and lim
n2→∞,εS→0

d(ŝ∗, S∗) = 0 (5.18)

almost surely. Moreover, if H(x∗S) = γ we have

lim inf
n2→∞,εS→0

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.1)) ≥ 1− β, (5.19)
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otherwise if H(x∗S) > γ we have

lim
n2→∞,εS→0

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.1)) = 1. (5.20)

Theorem 5.4.4 states that as the mesh {s1, . . . , sp} gets increasingly fine and the data size grows,

the solution given by Algorithm 11 enjoys performance guarantees concerning both feasibility and

solution-path optimality. In particular, the estimated solution and the conservativeness param-

eter converge to the optimal solution x∗S and the optimal parameter set S∗ respectively, while

simultaneously the obtained solution is feasible with the desired confidence level 1− β.

The proof of Theorem 5.4.4 is in Appendix D.3. The consistency result in (5.18) is shown via

a dense approximation of the discrete parameter set {s1, . . . , sp} on the continuum S, through the

continuity of the solution path and a uniform law of large numbers. Then, based on this consistency,

the feasibility guarantee (5.19) is established by showing P
(
H(x∗(ŝ∗)) ≥ γ

)
≥ P

(
H(x∗(ŝ∗)) ≥

Ĥ(x∗(ŝ∗))− z1−βσ̂(x∗(ŝ∗))/
√
n2

)
≈ P

(
H(x∗S) ≥ Ĥ(x∗S)− z1−βσ̂(x∗S)/

√
n2

)
→ 1−β, where the “≥”

follows from our validation criterion (5.15) whereas the “≈” comes from the asymptotic tightness of

the empirical process {√n2(Ĥ(x∗(s))−H(x∗(s))) : s ∈ S} and the L2 continuity of the constraint

function h(x, ξ).

Furthermore, under additional smoothness conditions on the constraint function h and the

solution path {x∗(s) : s ∈ S}, we also establish the finite-sample counterparts for the optimality

guarantee (5.18) and feasibility guarantee (5.19) for Algorithm 11. These are presented in Appendix

D.5.

Note that the confidence level (5.19) at which Algorithm 11 outputs a feasible solution (and

also Algorithms 9 and 10, i.e., Corollaries 5.3.3 and 5.3.6) is generally not tight, i.e., a lower bound

instead of an equality is guaranteed. However, with a strict monotonicity condition on the refor-

mulation OPT (s) and a finer discretization mesh for the conservativeness parameter, Algorithm 11

can give a tight confidence guarantee:

Theorem 5.4.5 (Asymptotically tight feasibility guarantee) In addition to the conditions

of Theorem 5.4.4, further assume that the parameter-to-objective mapping v(s) is strictly increasing
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on S, and consider the case that H(x∗S) = γ. If the mesh {s1, . . . , sp} is fine enough so that

max
i=1,...,M

max
j=1,...,pi−1

∣∣H(x∗(sij))−H(x∗(sij+1))
∣∣ = o

( 1
√
n2

)
(5.21)

where si1 < · · · < sipi are the parameter values {sj : sj ∈ (s̃i−1, s̃i), j = 1, . . . , p} (so that
∑M

i=1 pi =

p), then we must have

lim
n2→∞ and εS→0 s.t. (5.21) holds

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.1)) = 1− β

for the solution output by Algorithm 11.

Roughly speaking, the loose confidence guarantee in (5.19) can be attributed to the one-sided nature

of the inequality criterion used in (5.15). The monotonicity of v(s) and the mesh condition (5.21)

give rise to a tight confidence guarantee by strengthening this inequality criterion to an equality

(with a negligible error) at the chosen parameter value ŝ∗. Note that, when the expected constraint

value H(x∗(s)) is Lipschitz continuous in the parameter, the mesh condition (5.21) is guaranteed

if εS = o
(

1√
n2

)
or if p√

n2
→ ∞ and the mesh is equispaced. The proof of Theorem 5.4.5 is in

Appendix D.3.

Relatedly, the following shows that, like Algorithm 11, the supremum-based validators in Algo-

rithms 9 and 10 also exhibit joint asymptotic feasibility and solution-path optimality guarantees.

However, their confidence guarantees for feasibility are not as tight. This result complements our

discussions at the end of Section 5.3 regarding the optimality property of the supremum-based

validators, and also at beginning of Section 5.4 regarding the better objective value of the solu-

tion obtained by Algorithm 11, which is consistent with its tighter achievement of the feasibility

confidence level.

Theorem 5.4.6 (Asymptotic joint guarantee for Gaussian supremum validators) Under

the same conditions as Theorem 5.4.4, the solution and parameter from Algorithm 9 satisfy the con-
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sistency guarantee (5.18). In the case H(x∗S) = γ it holds

lim inf
n2→∞,εS→0

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.1)) ≥ Φ

( q̄1−β
σ(x∗S)

)
≥ 1− β (5.22)

where q̄1−β is the 1−β quantile of the supremum of the Gaussian process indexed by the parameter

s ∈ S\{s̃1, . . . , s̃M−1} with the covariance structure Cov(s, s′) = CovF (h(x∗(s), ξ), h(x∗(s′), ξ)), and

Φ is the distribution function of the standard normal.

If it is further assumed that infx∈X σ
2(x) > 0, then (5.18) also holds for Algorithm 10, and in

the case H(x∗S) = γ we have

lim inf
n2→∞,εS→0

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.1)) ≥ Φ(q̃1−β) ≥ 1− β (5.23)

where q̃1−β is the 1−β quantile of the supremum of the Gaussian process on S\{s̃1, . . . , s̃M−1} with

covariance Cov(s, s′) = CovF (h(x∗(s), ξ), h(x∗(s′), ξ))/(σ(x∗(s))σ(x∗(s′))).

In general, when the Gaussian processes involved in (5.22) and (5.23) have non-constant covariance

structures, the asymptotic confidence levels rendered by Algorithms 9 and 10 are strictly higher

than the nominal level 1− β. This suggests that supremum-based margins tend to generate more

conservative solutions than the univariate Gaussian margin does, although they all approach the

same optimal solution x∗S in the limit.

The proof of Theorem 5.4.6 (in Appendix D.3) involves steps similar to that of Theorem 5.4.4,

but furthermore showing the statistical consistency of the critical value q1−β calibrated in Algorithm

9 or 10. The latter utilizes the separability of the limiting Gaussian process and a control of errors

coming from the associated multiplier bootstrap approximation.

5.5 Applying Our Framework in Data-Driven Reformulations

In this section we showcase various data-driven reformulations of (5.1) or (5.12) to which our

proposed framework can be applied. We first comment that our Gaussian supremum validators

(Algorithms 9 and 10) are applicable to all formulations considered here, as long as the constraint
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function h(x, ξ) is sufficiently light-tailed as described in Assumption 5.3.1 or the constraint is a

chance constraint. That is,

Theorem 5.5.1 (Applicability of Gaussian supremum validators) Consider the stochasti-

cally constrained problem (5.1) that satisfies Assumption 5.3.1, or CCP (5.12). All the data-driven

reformulations OPT (s) presented below, namely SAA, DRO with φ-divergence, Wasserstein and

moment-based uncertainty sets, RO with polyhedral and ellipsoidal uncertainty sets, and SO (the

last two approaches are for CCP only), can be validated by the Gaussian supremum validators in

Algorithms 9 and 10 and elicit the conclusions in all theorems and corollaries in Section 5.3.

The tighter univariate Gaussian validator (Algorithm 11) however requires some extra reg-

ularity conditions from the data-driven formulation OPT (s), but still works for many common

formulations. We consider decision space X that has the form:

Assumption 5.5.1 X = {x ∈ Rd : fr(x) ≤ 0 for r = 1, . . . , R and Wx ≤ z}, where each fr is

continuous and convex, and W = [w1, w2, . . . , wL]′ ∈ RL×d, z ∈ RL.

We consider optimization formulations that satisfy the following two assumptions:

Assumption 5.5.2 (Slater’s condition) Slater’s condition holds for OPT (su) := min{f(x) :

x ∈ X ∩ F̂(su)} where su is the maximum parameter value.

Assumption 5.5.3 (Non-empty and bounded level set) There exists a constant c such that

X ∩ F̂(sl)∩{x : f(x) ≤ c} is bounded and X ∩ F̂(su)∩{x : f(x) ≤ c} is non-empty where sl, su are

the minimum and maximum parameter values.

Slater’s condition (Assumption 5.5.2) is a common property that is expected to hold for most

optimization problems in practice. Dür et al. (2016) states that Slater’s condition is a generic

property for linear conic programs by showing that it holds for all problem data except in a null set

of Lebesgue measure. Assumption 5.5.3 also trivially holds in many settings, e.g., when X ∩ F̂(sl)

is compact or f(x) is coercive. Under these two assumptions, stability results from parametric

optimization (Proposition 4.4 in Bonnans and Shapiro (2013)) ensure that the solution path x∗(s)
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is continuous when the optimal solution is unique for each OPT (s), or piecewise continuous when

uniqueness fails at only a finite number of parameter values, leading to Assumption 5.4.6. Since

other assumptions from Section 5.4.1 regarding OPT (s) can be readily verified to hold in general,

for each considered formulation below we focus on identifying the conditions that guarantee the

validity of Assumption 5.4.6 in order to ensure the asymptotic feasibility and optimality guarantees.

The proofs of all results in this section are presented in Appendix D.4.

We introduce a condition that will appear in the following discussion. Consider the linear objec-

tive f(x) = c′x for some deterministic c ∈ Rd. We say a finite collection of vectors {v1, . . . , vk} ⊂ Rd

with k ≤ d− 1 satisfies the strict cone inclusion (SCI) condition if

SCI: v1, . . . , vk are linearly independent, and there exist λ1, . . . , λk > 0 such that

k∑
i=1

λivi = −c.

SAA: First consider the SAA reformulation for the general stochastic constraint in (5.1) in the form

min
x∈X

f(x) subject to
1

n

n∑
i=1

h(x, ξi) ≥ γ + s (5.24)

where s > 0 is the margin to be tuned (and for convenience, in this section only, we use n to

represent a generic sample size; in applications this typically refers to the Phase one data size). We

have the following result concerning the applicability of Algorithm 11:

Theorem 5.5.2 (Applying univariate Gaussian validator to SAA) Consider the reformu-

lation OPT (s) using (5.24). Suppose Assumptions 5.5.1-5.5.3 hold. In either of the following two

cases:

i. f(x) is continuous and strictly convex, h(x, ξ) is continuous and concave in x for every ξ.

ii. f(x) = c′x for some non-zero c ∈ Rd, the functions fr, r = 1, . . . , R in Assumption 5.5.1 are

strictly convex, any k ≤ d − 1 rows {wl(1), . . . , wl(k)} of W do not satisfy the SCI condition,

and h(x, ξ) either is continuous and strictly concave in x for every ξ or has the form h(x, ξ) =

A(ξ)′x+ b(ξ) where A(ξ) ∈ Rd has a density on Rd.
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Assumption 5.4.6 holds with M = 1 almost surely in the data {ξ1, . . . , ξn}.

The proof of Theorem 5.5.2 (and theorems for other formulations below) mainly consists of estab-

lishing the joint continuity of the data-driven constraint (5.24) in x and s, and the uniqueness of

x∗(s), two main ingredients that enable us to apply the stability theory from Bonnans and Shapiro

(2013) to conclude the continuity of x∗(s). The former is shown by direct verification, whereas

the latter is established from either strict convexity or the SCI condition when the formulation has

linear objectives and constraints.

In the case of chance constraint (5.12), the SAA formulation has the form

min
x∈X

f(x) subject to
1

n

n∑
i=1

1((x, ξi) ∈ A) ≥ 1− α+ s. (5.25)

Note that the left hand side can only take values j
n , j = 0, 1, . . . , n, therefore all s such that

1−α+s ∈ ( j−1
n , jn ] lead to the same feasible region and hence the same solution x∗(s). As a result,

the solution path {x∗(s) : s ∈ S} consists of at most n constant pieces and Assumption 5.4.6 holds

automatically. Thus we have:

Theorem 5.5.3 (Applying univariate Gaussian validator to SAA for CCP) Consider the

reformulation OPT (s) using (5.25). Assumption 5.4.6 holds for some M ≤ n.

φ-divergence DRO: Given a convex function φ on [0,+∞) such that φ(1) = 0, consider the φ-

divergence DRO formulation for (5.1) in the form

min
x∈X

f(x) subject to inf
{ n∑
i=1

wih(x, ξi) :
n∑
i=1

1

n
φ(nwi) ≤ s,

n∑
i=1

wi = 1, wi ≥ 0 for all i
}
≥ γ.

(5.26)

We have the following result:

Theorem 5.5.4 (Applying univariate Gaussian validator to φ-divergence-based DRO)

Consider OPT (s) using (5.26). Suppose Assumptions 5.5.1-5.5.3 hold, and φ is continuous and

convex on (0,+∞) with φ(1) = 0. In either of the following three cases:

i. f(x) is continuous and strictly convex, h(x, ξ) is continuous and concave in x for every ξ.
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ii. f(x) = c′x for some non-zero c ∈ Rd, the functions fr, r = 1, . . . , R in Assumption 5.5.1 are

strictly convex, any k ≤ d − 1 rows {wl(1), . . . , wl(k)} of W do not satisfy the SCI condition,

and h(x, ξ) is continuous and strictly concave in x for every ξ.

iii. Assume the same conditions as in (ii) except that h(x, ξ) is only concave (instead of strictly

concave) in x for every ξ. In addition, φ is differentiable and strictly convex on (0,+∞)

with limx→0+ φ(x) = +∞. Let Ĉorr(x1, x2) = Ĉov(h(x1, ξ), h(x2, ξ))/(σ̂(x1)σ̂(x2)) be the

empirical correlation coefficient between h(x1, ξ) and h(x2, ξ) based on data {ξ1, . . . , ξn} for

any x1, x2 ∈ X . σ̂2(x) > 0 for all x ∈ X , and there exist no distinct x1, x2 such that

Ĉorr(λx1 + (1− λ)x2, x1) = 1 for all λ ∈ [0, 1].

Assumption 5.4.6 holds with M = 1 for the φ-divergence DRO conditioned on the data {ξ1, . . . , ξn}.

Wasserstein DRO: Consider the Wasserstein DRO reformulation for the constraint in (5.1) given

by

min
x∈X

f(x) subject to inf
{
EG[h(x, ξ)] : dp(G,Fn) ≤ s

}
≥ γ (5.27)

where Fn = 1
n

∑n
i=1 δξi is the empirical distribution and dp(G,Fn) is the Wasserstein distance

between an arbitrary probability measure G and Fn which is defined as

dpp(G,Fn) = inf
{
Eπ[
∥∥ξ − ξ′∥∥p] : π is a probability measure on Ξ2 with marginals G and Fn

}

where Ξ is the known domain of ξ and ‖·‖ is an arbitrary norm.

The following theorem gives conditions under which Wasserstein DRO satisfies Assumption

5.4.6:

Theorem 5.5.5 (Applying univariate Gaussian validator to Wasserstein-metric DRO)

Consider OPT (s) using (5.27). Suppose Assumptions 5.5.1-5.5.3 hold, the domain Ξ of ξ is com-

pact, and 1 ≤ p <∞. In either of the following two cases:

i. f(x) is continuous and strictly convex, h(x, ξ) is jointly continuous in x, ξ and concave in x

for every ξ.
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ii. f(x) = c′x for some non-zero c ∈ Rd, the functions fr, r = 1, . . . , R in Assumption 5.5.1 are

strictly convex, any k ≤ d − 1 rows {wl(1), . . . , wl(k)} of W do not satisfy the SCI condition,

and h(x, ξ) is jointly continuous in x, ξ and strictly concave in x for every ξ.

Assumption 5.4.6 holds with M = 1.

Proving Theorem 5.5.5 requires utilizing the recently developed strong duality theory for Wasser-

stein DRO to show the joint continuity of the constraint (5.27) and the existence of a worst-case

distribution (e.g., Blanchet and Murthy (2019); Gao and Kleywegt (2016)) to establish its strict

convexity.

Moment-based DRO: We restrict our discussion in this case to individual linear chance constraints

PF (a′ix ≤ bi) ≥ 1− αi, for i = 1, . . . ,K (5.28)

where each ai is random and bi is a deterministic constant, and αi is an individual tolerance level.

This setup also applies to the case of joint linear chance constraint, say, PF (a′ix ≤ bi for i =

1, . . . ,K) ≥ 1− αi, where one uses the Bonferroni correction to safely approximate with K single

chance constraints PF (a′ix ≤ bi) ≥ 1 − α
K , i = 1, . . . ,K. We restrict our discussion to (5.28) as

it enables the tractable use of moment-based DRO; other settings are possible, but would lead to

much more elaborate technicality that we do not pursue here.

We consider for each single constraint the following moment-based distributionally robust coun-

terpart

inf
ai∼Q s.t. (EQ[ai],CovQ[ai])∈Ui(s)

PQ(a′ix ≤ bi) ≥ 1− αi for i = 1, . . . ,K

where each Ui(s) is a joint uncertainty set for the mean and covariance of the uncertain quantity

ai, all parametrized by the same s. For a fixed mean µ and covariance Σ, the robust constraint

infai∼Q s.t. EQ[ai]=µ,CovQ(ai)=Σ PQ(a′ix ≤ bi) ≥ 1−αi has an analytic expression µ′x+
√

1−αi
αi

√
x′Σx ≤
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bi (Ghaoui et al. (2003)), therefore this moment-based DRO takes the form

min
x∈X

f(x)

subject to sup
(µ,Σ)∈Ui(s)

µ′x+

√
1− αi
αi

√
x′Σx ≤ bi for i = 1, . . . ,K.

(5.29)

Theorem 5.5.6 (Application of univariate Gaussian validator to moment-based DRO)

Consider OPT (s) given by (5.29). Suppose Assumptions 5.5.1-5.5.3 hold, and that for each i the

uncertainty set Ui(s) satisfies either (1)(2)(3) or (1)(2)(4) among: (1) Ui(s) is compact for all s;

(ii) Ui(s) ⊆ Ui(s′) whenever s < s′ and ∪s′<sUi(s′) = ∩s′>sUi(s′) = Ui(s) for all s; (3) for every

s and every (µ,Σ) ∈ Ui(s), Σ is positive definite; (4) Ui(s) = U1
i (s) × U2

i (s), where U1
i (s) and

U2
i (s) are uncertainty sets for the mean and covariance respectively, and there is a positive definite

Σs ∈ U2
i (s) such that Σ � Σs for all Σ ∈ U2

i (s) where � is the ordering with respect to the positive

semi-definite cone. Then, in either of the following two cases:

i. f(x) is continuous and strictly convex.

ii. f(x) = c′x for some non-zero c ∈ Rd, the functions fr, r = 1, . . . , R in Assumption 5.5.1 are

strictly convex, any k ≤ d − 1 rows {wl(1), . . . , wl(k)} of W do not satisfy the SCI condition,

and each bi 6= 0.

Assumption 5.4.6 holds with M = 1.

Conditions (1) and (2) in Theorem 5.5.6 hold for common choices of moment-based uncertainty

sets. We discuss some examples where (3) and (4) arise. (3) holds when Ui(s) is constructed to be

a joint confidence region from, e.g., the delta method (Marandi et al. (2019)), for the mean and

covariance of ai whose covariance component converges to the true positive definite covariance as

data size grows. (4) happens if the mean and covariance are treated separately and the uncertainty

set for covariance takes the form U2
i (s) = {Σ : Σl(s) � Σ � Σu(s)} (e.g., Delage and Ye (2010)).

RO with polyhedral uncertainty set: Consider the same linear chance constraint (5.28), and for
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each i we use the robust counterpart supai∈Ui(s) a
′
ix ≤ bi where

Ui(s) = {ai :Wiai ≤ zi + sei}

for some Wi ∈ Rli×d, zi ∈ Rli and ei ∈ Rli+ := [0,∞)li . This robust counterpart can be expressed as

a set of linear constraints, leading to the following formulation

min
x∈X

f(x)

subject to (zi + sei)
′yi ≤ bi

W ′iyi = x

yi ≥ 0 for all i = 1, . . . ,K

(5.30)

where each yi ∈ Rli is an auxiliary variable.

Theorem 5.5.7 (Applying univariate Gaussian validator to polyhedral RO) Let the for-

mulation OPT (s) be given by (5.30). Suppose Assumptions 5.5.1-5.5.3 hold. If f(x) is continuous

and strictly convex, then Assumption 5.4.6 holds with M = 1. Otherwise, if f(x) = c′x for some

non-zero c ∈ Rd, R = 0 in Assumption 5.5.1, the uncertainty set Ui(su) of maximum size is

bounded for each i, and every k ≤ d− 1 element in {w1, . . . , wL} ∪
(
∪Ki=1 {W̃

−1
i zi + sW̃−1

i ei : W̃i ∈

Rd×d is an invertible submatrix of Wi}
)

satisfies the SCI condition at only finitely many s values,

then Assumption 5.4.6 holds with some finite M .

The proof of Theorem 5.5.7 involves some technical developments to show that x∗(s) has left

and right limits at each discontinuity. This consists of transforming (5.30) into an equivalent

parametric linear program whose constraints correspond to the vertices of the uncertainty sets, and

then showing that its optimal basis stays constant in a neighborhood of each discontinuity. Lastly,

we use the Jordan decomposition of the optimal basis matrix to establish the existence of left and

right limits.

RO with ellipsoidal uncertainty set: Consider (5.28) again, and now for each constraint we consider
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using supai∈Ui(s) a
′
ix ≤ bi with

Ui(s) = {ai : ai = µi + Σiv, ‖v‖2 ≤ s}

for some positive definite Σi ∈ Rd×d, and µi ∈ Rd. This robust formulation has the following

second-order cone representation

min
x∈X

f(x)

subject to µ′ix+ s ‖Σix‖2 ≤ bi for all i = 1, . . . ,K.

(5.31)

Theorem 5.5.8 (Applying univariate Gaussian validator to ellipsoidal RO) Consider the

formulation OPT (s) given by (5.31). Suppose Assumptions 5.5.1-5.5.3 hold, and each Σi is positive

definite. In either of the following two cases:

i. f(x) is continuous and strictly convex.

ii. f(x) = c′x for some non-zero c ∈ Rd, the functions fr, r = 1, . . . , R in Assumption 5.5.1 are

strictly convex, any k ≤ d − 1 rows {wl(1), . . . , wl(k)} of W do not satisfy the SCI condition,

and each bi 6= 0.

Assumption 5.4.6 holds with M = 1.

SO: Consider the CCP (5.12). Given the data {ξ1, . . . , ξn}, consider the following sequence OPT (s)

of programs

min
x∈X

f(x)

subject to (x, ξi) ∈ A for all i = 1, . . . , s

(5.32)

for 1 ≤ s ≤ n, i.e., each OPT (s) uses only the first s sampled constraints. Although s takes integer

values only, we can artificially extend the solution path to the continuum [1, n] without introducing

new solutions, by letting x∗(s) = x∗(i) for all s ∈ [i, i + 1). Like the SAA formulation for chance

constraints, the solution path x∗(s) can now be viewed as piecewise constant in s ∈ [1, n] hence

Assumption 5.4.6 holds. Therefore we have:
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Theorem 5.5.9 (Applying univariate Gaussian validator to SO) Consider the formulation

OPT (s) given by (5.32). Assumption 5.4.6 holds for some M ≤ n.

Lastly, our univariate Gaussian validator also works on a variant of SO called FAST (Carè et al.

(2014)), in a sense that we will detail in Section 5.6.3. FAST differs from the formulations we have

discussed so far in that its solution path does not come as solutions of a parametrized optimization

problem, but from a line segment connecting two suitably chosen solutions. Nonetheless, the notion

of solution-path optimality still applies. In particular, the solution-path optimum is unique if the

objective is strictly convex or linear, and all the statistical guarantees in Theorem 5.4.4 can be

established using the same proof.

5.6 Numerical Experiments

We present numerical results to demonstrate the performances of our framework in several data-

driven reformulations. We consider the following linear CCP

min c′x subject to PF (ξ′x ≤ b) ≥ 1− α (5.33)

where c ∈ Rd, b ∈ R are deterministic, the distribution F of the randomness ξ ∈ Rd is multivariate

Gaussian with mean µ and covariance Σ, and the tolerance level 1− α is set to 90%.

We consider a range of data-driven reformulations, including RO (or relatedly SCA), DRO

(moment-based), and SO (including its variant FAST). In our experiments, we generate i.i.d. data

ξ1, . . . , ξn from the underlying true distribution F . Then, using a chosen reformulation, we compute

a solution x̂ of (5.33) that attempts to satisfy the chance constraint with a 95% confidence level,

while attain an objective value c′x̂ as low as possible. For each reformulation, we compare the

performance of an existing benchmark with unnormalized and normalized Gaussian supremum

validators (Algorithms 9 and 10) and univariate Gaussian validator (Algorithm 11), in terms of both

feasibility and optimality. Moreover, we also test a naive validator that directly compares the sample

mean to γ when checking feasibility, i.e., without the Gaussian margin
z1−β σ̂j√

n2
in (5.15), in addition to

the three proposed validators, which serves to demonstrate the necessity of the proposed Gaussian
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margins in the validation procedure. The “plain average” column of each table displays results

of this extra validator. “unnorm. GS” denotes the unnormalized Gaussian supremum validator

(Algorithm 9), “norm. GS” denotes the normalized Gaussian supremum validator (Algorithm 10),

and “uni. Gaussian” denotes the univariate Gaussian validator (Algorithm 11). When applying

these validators in all experiments, we use the simple allocation rule of dividing the overall data

size into Phases 1 and 2 equally, except only in the case of basic SO where a too small Phase 1

data size is provably subpar in guaranteeing feasibility.

To collect statistically meaningful estimates, for each formulation we repeat the experiments

1000 times each with an independently generated data set and a data-driven solution output. We

take down the average objective value achieved by these solutions (the “mean obj. val.” row of each

table) and the proportion of feasible solutions as the empirical feasibility coverage (the “feasibility

level” row of each table). Therefore, the smaller the “mean obj. val.” is, the better is the solution

in terms of optimality, and “feasibility level” ≥ 95% indicates that the desired feasibility confidence

level is achieved and otherwise not.

5.6.1 RO and SCA

We first test the proposed framework on RO. We use the ellipsoid uncertainty set that leads to a

robust counterpart in the form described in Example 5.1.2, i.e., µ̂′x +
√
s‖Σ̂1/2x‖2 ≤ b where µ̂

and Σ̂ are the sample mean and covariance for ξ computed from Phase one data. The benchmark

(“SCA” in the tables) is set to an SCA (equation 2.4.11 of Ben-Tal et al. (2009)) for unbounded ξ,

which in our case can be expressed as

µ′x+

√
2 log

1

α

√√√√ d∑
k=1

(zk
′
x)2 = µ′x+

√
2 log

1

α
‖Σ1/2x‖2 ≤ b (5.34)

where µ is the true mean, and zk is the k-th column of the square root Σ1/2 of the true covariance

matrix Σ. Note that (5.34) is equivalent to the RO formulation with true mean and covariance

and parameter value s = 2 log 1
α . Here, we give this SCA or RO the advantage of knowing the true

mean and covariance of the randomness.
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To implement our validator, we need to provide a set of parameter values {s1, . . . , sp} at which

the RO is solved. We take the (1−α)n1-th order statistic ŝ1−α of {(ξn2+i− µ̂)′Σ̂−1(ξn2+i− µ̂) : i =

1, . . . , n1}, where ξn2+i, i = 1, . . . , n1 are the Phase one data, so that {ξ : (ξ−µ̂)′Σ̂−1(ξ−µ̂) ≤ ŝ1−α}

is roughly a (1− α)-content set for ξ (such type of quantile-based selection has been used in Hong

et al. (2017)). We then set the values sj = (ŝ1−α + 20) j
50 for j = 1, . . . , 50 (p = 50). Tables 5.1, 5.2

and 5.3 summarize the results under different problem dimensions and data sizes.

SCA unnorm. GS norm. GS uni. Gaussian plain average

mean obj. val. −3.57 −3.68 −4.20 −4.43 −5.15

feasibility level 100% 99.9% 98.5% 97.5% 76.9%

Table 5.1: RO with ellipsoidal uncertainty set. d = 10, n = 200. Data are split to n1 = 100, n2 =
100.

SCA unnorm. GS norm. GS uni. Gaussian plain average

mean obj. val. −3.57 −4.42 −4.58 −4.80 −5.34

feasibility level 100% 99.8% 99.6% 98.8% 77.9%

Table 5.2: RO with ellipsoidal uncertainty set. d = 10, n = 500. Data are split to n1 = 250, n2 =
250.

SCA unnorm. GS norm. GS uni. Gaussian plain average

mean obj. val. −16.70 −17.59 −17.33 −17.71 −20.31

feasibility level 100% 98.4% 99.6% 98.4% 82.7%

Table 5.3: RO with ellipsoidal uncertainty set. d = 50, n = 500. Data are split to n1 = 250, n2 =
250.

We highlight a few observations. First, our framework with the three proposed validators

outperforms the SCA benchmark. In terms of the objective performance, both our unnormalized

and normalized Gaussian supremum validators, and univariate Gaussian validators, achieve lower

objective value than SCA (with a difference ≥ 0.6), while at the same time retain the feasibility

confidence to above 95% in all the three tables. In particular, as the dimension grows from 10

(Tables 5.1 and 5.2) to 50 (Table 5.3), the feasibility confidence level remains above 95%, consistent

with the dimension-free feasibility guarantee of our methods. Second, among the three proposed
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validators, the univariate Gaussian validator appears less conservative than the Gaussian supremum

counterparts in achieving better objective values, and relatedly tighter feasibility confidence levels

(i.e., closer to 95%). Specifically, the univariate Gaussian validator gives a feasibility confidence

level around 98% in all the three tables, whereas the Gaussian supremum validators give a level

between 99%-100% (and also 0.1-0.4 higher mean objective values). Finally, we comment that the

“plain average” scheme does not have the desired feasibility confidence level even when the data

size is as large as 500 (Table 5.2), which shows that margin adjustments to the naive sample average

in the validators is necessary to ensure feasibility.

5.6.2 Moment-Based DRO

The second formulation we consider is a moment-based DRO. We use the formulation

inf
ξ∼Q s.t. (EQ[ξ],CovQ(ξ))∈Us

PQ(ξ′x ≤ b) ≥ 1− α (5.35)

where Us is a confidence region for the true mean and covariance of ξ obtained via the delta method

described in Example 5.1.3 (see Section 6 of Marandi et al. (2019) for details). According to (5.29),

(5.35) can be expressed as sup(µ,Σ)∈Us µ
′x+

√
1−α
α

∥∥Σ1/2x
∥∥

2
≤ b, which can be further reformulated

as a conic constraint (see Theorem 1 of Marandi et al. (2019)). In the benchmark case “DRO

(χ2 quantile)” we choose s to be the 95% quantile of the limiting χ2 distribution as suggested in

Marandi et al. (2019) so that Us is a valid 95% confidence region. In our framework, we solve

the DRO formulation at parameter values sj = 1.5ŝ0.95
j
50 for j = 1, . . . , 50 where ŝ0.95 is the χ2

quantile used in the benchmark. Tables 5.4 and 5.5 show the experimental results under different

data sizes.

DRO (χ2 quantile) unnorm. GS norm. GS uni. Gaussian plain average

mean obj. val. −1.83 −2.73 −2.73 −2.73 −2.73

feasibility level 100% 100% 100% 100% 100%

Table 5.4: Moment-based DRO. d = 10, n = 200. Data are split to n1 = 100, n2 = 100.

The comparisons between the benchmark and our framework here share similarities with the
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DRO (χ2 quantile) unnorm. GS norm. GS uni. Gaussian plain average

mean obj. val. −2.00 −2.62 −2.62 −2.62 −2.62

feasibility level 100% 100% 100% 100% 100%

Table 5.5: Moment-based DRO. d = 10, n = 500. Data are split to n1 = 250, n2 = 250.

RO setting. The solutions output from our validators possess superior objective performance (with

a difference of 0.6-0.9) than simply setting s to be the 95%-level χ2 quantile, while still attain the

desired feasibility confidence level. Note that all validators (including the “plain average”) give

the same objective value (−2.73 in Table 5.4 and −2.62 in Table 5.5), and have a 100% feasibility

confidence. This is because the chosen parameter s turns out to be 0 for all of them. In other words,

setting the moment constraints as equalities (to the estimated moments from Phase one data) is

statistically feasible and achieves the best objective value, and any relaxation from this would lead

to a deterioration of solution quality. This hints that the conventional choices of moment set size

suggested in the literature could be very conservative.

5.6.3 SO

Given the Phase one data {ξn2+1, . . . , ξn}, we consider the data-driven feasible region specified

by the first s sampled constraints, ξ′n2+ix ≤ b for i = 1, . . . , s, and tune the number of satisfied

constraints s ∈ {1, 2, . . . , n1}. The benchmark “SO” in this case is to impose all the constraints

given by the whole data set {ξ1, . . . , ξn}. Tables 5.6 and 5.7 summarize the results for data size

n = 200, 500 respectively.

SO unnorm. GS norm. GS uni. Gaussian plain average

mean obj. val. −3.90 −4.24 −4.31 −4.46 −4.91

feasibility level 99.7% 95.2% 94.0% 85.1% 44.7%

Table 5.6: SO. d = 10, n = 200. Data are split to n1 = 150, n2 = 50.

We observe the gain in objective performance of our validators compared to SO (a difference of

0.3-0.6 in Table 5.6 and 0.6-1.0 in Table 5.7). We also note the drastic failure of “plain average”

in rendering the desired 95% feasibility confidence, thus showing that a margin adjustment to the
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SO unnorm. GS norm. GS uni. Gaussian plain average

mean obj. val. −3.28 −3.86 −4.10 −4.30 −4.69

feasibility level 100% 99.7% 98.7% 95.6% 62.0%

Table 5.7: SO. d = 10, n = 500. Data are split to n1 = 250, n2 = 250.

validators is necessary. Our validators maintain feasibility in all cases, except the univariate Gaus-

sian validator for n = 200. This deficiency is attributed to two potential reasons. First is that with

n1 = 150 there is a non-negligible chance that none of the n1 solutions x∗(s), s = 1, . . . , n1, pro-

duced in Phase one is feasible, thus violating Assumption 5.4.7. In fact, the infeasibility probability

of the solution derived by an SO using all the n1 constraints can be computed to be 6% (Campi

and Garatti (2008)), leaving the actual confidence of obtaining a feasible solution at most 94%.

The second possible cause is the finite-sample coverage error of the univariate Gaussian validator,

seeing that the validation data size n2 = 50 is relatively small. When both n1 and n2 increase to

250 in Table 5.7, the desired feasibility confidence level is recovered for the univariate Gaussian

validator as the chance of all solution candidates being infeasible decreases to < 0.2% and the

finite-sample error is reduced due to a larger validation data size. Finally, although we do not

pursue here, we should mention that the performances of the basic SO considered in the tables

can plausibly be boosted by using techniques such as sampling-and-discarding (Campi and Garatti

(2011)) and wait-and-judge (Campi and Garatti (2018)). Comprehensive comparisons with these

enhanced techniques would be left as important future work.

Lastly, we consider a variant of SO called FAST (Carè et al. (2014)), designed originally to tone

down the sample size requirement in basic SO. Our comparison with FAST here is motivated by its

similarity with our framework in that it also splits the data into two portions and uses a validation-

based idea. With the first portion of data {ξn2+i, i = 1, . . . , n1}, FAST computes a solution x̂ by

imposing all the n1 constraints ξ′n2+ix ≤ b as in the basic SO, and then uses the second portion to

obtain the final solution x̂∗ by solving the following program

min c′((1− s)xo + sx̂) subject to ξ′i((1− s)xo + sx̂) ≤ b for all i = 1, . . . , n2 and 0 ≤ s ≤ 1
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where xo is a feasible solution of (5.33) with PF (ξ′xo ≤ b) = 1. One particular choice of xo for

problem (5.33) is the vector of all zeros and is used in the experiment. When applying our framework

to FAST, we search for the best feasible solution along the line segment {x∗(s) = (1− s)xo + sx̂ :

s ∈ [0, 1]} by validating solutions x∗(sj) at parameter values sj = j−1
10 for j = 1, . . . , 11 (p = 11).

Tables 5.8 and 5.9 show the results under different dimensions and data sizes.

FAST unnorm. GS norm. GS uni. Gaussian plain average

mean obj. val. −2.54 −3.55 −3.68 −3.87 −4.44

feasibility level 100% 98.9% 98.9% 97.3% 79.6%

Table 5.8: FAST. d = 10, n = 200. Data are split to n1 = 100, n2 = 100.

FAST unnorm. GS norm. GS uni. Gaussian plain average

mean obj. val. −8.92 −14.11 −15.06 −15.80 −18.14

feasibility level 100% 99.8% 99.3% 98.0% 76.7%

Table 5.9: FAST. d = 50, n = 500. Data are split to n1 = 250, n2 = 250.

Similar phenomena persist from our previous settings. Our three validators give tighter fea-

sibility confidence levels and better objective performances (with a difference of ≥ 1 in Table 5.8

and ≥ 5 in Table 5.9) compared to FAST. Among them, univariate Gaussian validator gives the

tightest feasibility confidence level and best objective value. The naive “plain average” validator

fails in attaining the desired feasibility confidence. Here we have used a rather coarse mesh with

only 11 parameter values, and expect a sharper improvement should a finer mesh be used.

5.7 Conclusion

We have studied a validation-based framework to combat the conservativeness in data-driven op-

timization with uncertain constraints. We have demonstrated how the conventional approaches in

several optimization paradigms, including SAA, RO and DRO, implicitly estimate the whole feasible

region. This in turn leads to over-conservativeness caused by the need to control huge simultane-

ous estimation errors, especially for high-dimensional problems. On the other hand, we have also
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demonstrated that the solution output from these reformulation classes can often be represented

in a low-dimensional manifold parametrized by key conservativeness parameters. Our framework

leverages this low dimensionality by extracting the parametrized solution path and selecting the

best parameter value. We have proposed two types of validators for this parameter selection, one

utilizing a multivariate Gaussian supremum (unnormalized or normalized) and another utilizing a

univariate Gaussian, to set the margin in a sample average constraint when optimizing over the

solution path. We have shown that the obtained solutions enjoy asymptotic and finite-sample

performance guarantees on feasibility that scale lightly with the problem dimension, and asymp-

totic optimality within the reformulation class. The Gaussian supremum validator requires less

regularity conditions and is applicable more generally, whereas the univariate Gaussian validator

provides tighter guarantees when applicable. Our numerical results support these findings and

show that our framework and validators consistently provide better solutions compared to sev-

eral benchmarks in terms of better objective values and tighter feasibility confidence. Our study

provides a first rigorous validation-based framework to tackle over-conservativeness in data-driven

constrained optimization, and is foreseen to open up follow-up investigations on more powerful

validation strategies and refined statistical guarantees regarding joint feasibility and optimality.
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Appendix A

Technical Proofs for Chapter 2

This chapter presents proofs for results in Chapter 2. We first verify the proposed assumptions

for the special case of finite-horizon performance measures in Section A.1. Section A.2 then proves

results on the validity of the input variance decomposition (2.2). Section A.3 proves the consistency

of the proposed input variance estimate and analyzes its Monte Carlo error in relation to the

parameters B,R. Lastly, Section A.4 further analyzes the statistical error to obtain the overall

error of the input variance estimate, and derives the optimal choices for θ,B,R that minimizes the

overall error. In all the proofs, we write a ≈ b to mean a/b
p→ 1.

A.1 Finite-Horizon Performance Measures

In this section, we show that Assumptions 2.4.2-2.4.7 and 2.4.10-2.4.12 hold for the finite-horizon

performance measure (2.16), thereby proving Theorems 2.4.2 and 2.4.7. We first prove Assumptions

2.4.2 and 2.4.10, then present the useful Lemma A.1.1 which will later be used to prove all other

assumptions.

Proof of Assumptions 2.4.2 and 2.4.10. The finite horizon structure allows the following ex-
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pansion of the performance measure ψ(P ν11 , . . . , P νmm ) around the input models P1, . . . , Pm

ψ(P ν11 , . . . , P νmm )

=

∫
h(x1, . . . ,xm)

m∏
i=1

Ti∏
t=1

d(νi(Qi − Pi) + Pi)(xi,t)

=ψ(P1, . . . , Pm) +
T∑
d=1

∑
∑m
i=1|Ti|=d

m∏
i=1

ν
|Ti|
i

∫
h(x1, . . . ,xm)

m∏
i=1

∏
t/∈Ti

dPi(xi,t)
m∏
i=1

∏
t∈Ti

d(Qi − Pi)(xi,t)

=ψ(P1, . . . , Pm) +

T∑
d=1

∑
∑m
i=1|Ti|=d

m∏
i=1

ν
|Ti|
i

∫
hT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

d(Qi − Pi)(xi,t)

where T =
∑m

i=1 Ti is the total run length, each Ti = {Ti(1), . . . , Ti(|Ti|)} is an ordered subset of

{1, 2, . . . , Ti}, and

hT1,...,Tm(x1,T1 , . . . ,xm,Tm) = EP1,...,Pm [h(X1, . . . ,Xm)|Xi(t) = xi,t for i, t ∈ Ti]. (A.1)

Here each xi,Ti := (xi,t)t∈Ti . Expressing terms with d = 1, 2, 3 in a more explicit form gives

ψ(P ν11 , . . . , P νmm )

=ψ(P1, . . . , Pm) +

m∑
i=1

νi

∫
g̃i(x)d(Qi − Pi)(x)

+
∑
i1≤i2

νi1νi2

∫
g̃i1i2(x, y)d(Qi1 − Pi1)(x)d(Qi2 − Pi2)(y)

+
∑

i1≤i2≤i3

νi1νi2νi3

∫
g̃i1i2i3(x, y, z)d(Qi1 − Pi1)(x)d(Qi2 − Pi2)(y)d(Qi3 − Pi3)(z)

+

T∑
d=4

∑
∑m
i=1|Ti|=d

m∏
i=1

ν
|Ti|
i

∫
hT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

d(Qi − Pi)(xi,t). (A.2)
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where

g̃i(x) =
∑

1≤t≤Ti

EP1,...,Pm [h(X1, . . . ,Xm)|Xi(t) = x]

g̃i1i2(x, y) =


∑

1≤t1<t2≤Ti EP1,...,Pm [h(X1, . . . ,Xm)|Xi(t1) = x,Xi(t2) = y], if i1 = i2 = i∑Ti1
t1=1

∑Ti2
t2=1 EP1,...,Pm [h(X1, . . . ,Xm)|Xi1(t1) = x,Xi2(t2) = y], if i1 < i2

g̃i1i2i3(x, y, z)

=



∑
1≤t1<t2<t3≤Ti EP1,...,Pm [h|Xi(t1) = x,Xi(t2) = y,Xi(t3) = z], if i1 = i2 = i3 = i∑
1≤t1<t2≤Ti

∑Ti3
t3=1 EP1,...,Pm [h|Xi(t1) = x,Xi(t2) = y,Xi3(t3) = z], if i1 = i2 = i < i3∑Ti1

t1=1

∑
1≤t2<t3≤Ti EP1,...,Pm [h|Xi1(t1) = x,Xi(t2) = y,Xi(t3) = z], if i1 < i2 = i3 = i∑Ti1

t1=1

∑Ti2
t2=1

∑Ti3
t3=1 EP1,...,Pm [h|Xi1(t1) = x,Xi2(t2) = y,Xi3(t3) = z], if i1 < i2 < i3

.

Since each signed measure Qi − Pi in the product measure in (A.2) has zero total measure, adding

to the integrand a function that is independent of at least one of the integration variables does

not change the integral value. Hence one can replace g̃’s by the following centered versions for

i1 ≤ i2 ≤ i3

g̃ci (x) = g̃i(x)− E[g̃i(Xi)]

g̃ci1i2(x, y) = g̃i1i2(x, y)− E[g̃i1i2(Xi1 , y)]− E[g̃i1i2(x,Xi2)] + E[g̃i1i2(Xi1 , X
′
i2)]

g̃ci1i2i3(x, y, z) = g̃i1i2i3(x, y, z)− E[g̃i1i2i3(Xi1 , y, z)]− E[g̃i1i2i3(x,Xi2 , z)]− E[g̃i1i2i3(x, y,Xi3)]

+ E[g̃i1i2i3(Xi1 , X
′
i2 , z)] + E[g̃i1i2i3(Xi1 , y,X

′
i3)] + E[g̃i1i2i3(x,Xi2 , X

′
i3)]

− E[g̃i1i2i3(Xi1 , X
′
i2 , X

′′
i3)]

where Xi, X
′
i, X

′′
i denote independent variables distributed under Fi, and replace the function
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hT1,...,Tm by

hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

=hT1,...,Tm −
∑
i,t∈Ti

∫
hT1,...,TmdPi(xi,t) +

∑
(i1,t1)<(i2,t2),t1∈Ti1 ,t2∈Ti2

∫
hT1,...,TmdPi1(xi1,t1)dPi2(xi2,t2)+

· · ·+ (−1)
∑m
i=1|Ti|

∫
hT1,...,Tm

m∏
i=1

∏
t∈Ti

dPi(xi,t) (A.3)

where the order (i1, t1) < (i2, t2) is defined as either i1 < i2, or i1 = i2 but t1 < t2. This leads to

the new Taylor expansion

ψ(P ν11 , . . . , P νmm )

=ψ(P1, . . . , Pm) +
m∑
i=1

νi

∫
g̃ci (x)d(Qi − Pi)(x)

+
∑
i1≤i2

νi1νi2

∫
g̃ci1i2(x, y)d(Qi1 − Pi1)(x)d(Qi2 − Pi2)(y)

+
∑

i1≤i2≤i3

νi1νi2νi3

∫
g̃ci1i2i3(x, y, z)d(Qi1 − Pi1)(x)d(Qi2 − Pi2)(y)d(Qi3 − Pi3)(z)

+
T∑
d=4

∑
∑m
i=1|Ti|=d

m∏
i=1

ν
|Ti|
i

∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

d(Qi − Pi)(xi,t). (A.4)

Note that now all the integrands above have zero marginal means due to centering, e.g.

∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)dPi(xi,t) = 0 for all i and t ∈ Ti. (A.5)

However, the functions g̃ci , g̃
c
i1i2

, g̃ci1i2i3 are not necessarily symmetric under permutations as required
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in Assumption 2.4.10, so we perform the following symmetrization to find the influence functions

gi(x) := g̃ci (x),

gii(x1, x2) := g̃cii(x1, x2) + g̃cii(x2, x1),

gi1i2(x1, x2) = gi2i1(x2, x1) := g̃ci1i2(x1, x2) for i1 < i2,

giii(x1, x2, x3) :=
∑
π

g̃ciii(xπ(1), xπ(2), xπ(3)),

gi1i1i2(x1, x2, x3) = gi1i2i1(x1, x3, x2) = gi2i1i1(x3, x1, x2)

:= g̃ci1i1i2(x1, x2, x3) + g̃ci1i1i2(x2, x1, x3) for i1 < i2,

gi1i2i2(x1, x2, x3) = gi2i1i2(x2, x1, x3) = gi2i2i1(x2, x3, x1)

:= g̃ci1i2i2(x1, x2, x3) + g̃ci1i2i2(x1, x3, x2) for i1 < i2,

for all π let giπ(1)iπ(2)iπ(3)(xπ(1), xπ(2), xπ(3)) := g̃ci1i2i3(x1, x2, x3) for i1 < i2 < i3,

where the dependence on P1, . . . , Pm is suppressed and π denotes any permutation of (1, 2, 3). Then

one can check that gi1i2 and gi1i2i3 not only retain the property of zero marginal means, but also

satisfy the symmetry condition in Assumption 2.4.10. Permutation symmetry implies that

ψ(P ν11 , . . . , P νmm )

=ψ(P1, . . . , Pm) +
m∑
i=1

νi

∫
gi(x)d(Qi − Pi)(x)

+
1

2

∑
i1,i2

νi1νi2

∫
gi1i2(x, y)d(Qi1 − Pi1)(x)d(Qi2 − Pi2)(y)

+
1

6

∑
i1,i2,i3

νi1νi2νi3

∫
gi1i2i3(x, y, z)d(Qi1 − Pi1)(x)d(Qi2 − Pi2)(y)d(Qi3 − Pi3)(z)

+

T∑
d=4

∑
∑m
i=1|Ti|=d

m∏
i=1

ν
|Ti|
i

∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

d(Qi − Pi)(xi,t). (A.6)

Since the integrals are all finite under Assumption 2.4.9, the first-order and third-order remain-

ders of the above expansion are respectively of order O
(∑m

i=1 ν
2
i

)
and O

((∑m
i=1 ν

2
i

)2)
, leading to

Assumptions 2.4.2 and 2.4.10. �
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We continue to verify other assumptions, for which we use the following lemma.

Lemma A.1.1 Suppose Assumption 2.4.9 holds with positive and even k. For each i let F̃i ∈

{Fi, F̂i} be either the i-th true or empirical input model. Then the following bounds hold uniformly

for every (F̃1, . . . , F̃m) ∈
∏m
i=1{Fi, F̂i} and arbitrary input data size ni

max
I1,...,Im

E
F̂1,...,F̂m

[hk(X1,I1 , . . . ,Xm,Im)] = Op(1) (A.7)

EF1,...,Fm

[(
ψ(F̃1, . . . , F̃m)− ψ(F1, . . . , Fm)

)k] ≤ C1M
( m∑
i=1

1
√
ni

)k
(A.8)

EF1,...,Fm

[(
ψ(F̃1, . . . , F̃m)− ψ(F1, . . . , Fm)−

m∑
i=1

∫
gi(x)d(F̃i − Fi)(x)

)k] ≤ C2M
( m∑
i=1

1
√
ni

)2k
(A.9)

where the influence functions gi’s are now under the true input models F1, . . . , Fm. Each empirical

influence function ĝi satisfies

EF1,...,Fm [(gi(Xi,1)− ĝi(Xi,1))k] ≤ C3M
( m∑
i=1

1
√
ni

)k
(A.10)

EF1,...,Fm [(ĝi(Xi,1)− gi(Xi,1)−
m∑
i′=1

∫
gii′(Xi,1, x)d(F̂i′ − Fi′)(x) +

∫
gi(x)d(F̂i − Fi)(x))k]

≤C4M
( m∑
i=1

1
√
ni

)2k
(A.11)

Here C1, C2, C3, C4 are constants that only depend on k,m and T :=
∑m

i=1 Ti, and

M := max
I1,...,Im

EF1,...,Fm [hk(X1,I1 , . . . ,Xm,Im)] <∞.

Proof. The first bound is the most straightforward. By rewriting the expectation E
F̂1,...,F̂m

[·] as a

sum, one can see that for a particular choice of I1, . . . , Im

EF1,...,Fm

[
E
F̂1,...,F̂m

[hk(X1,I1 , . . . ,Xm,Im)]
]
≤M.

Therefore E
F̂1,...,F̂m

[hk(X1,I1 , . . . ,Xm,Im)] = Op(1) for each I1, . . . , Im. Since there are finitely many
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of them, the maximum is also bounded in probability. This proves the first bound.

To explain the other bounds, we put ψ(F̃1, . . . , F̃m) in the form of the expansion (A.4) with

νi = 1, Pi = Fi, Qi = F̃i to get

ψ(F̃1, . . . , F̃m)

=ψ(F1, . . . , Fm) +
T∑
d=1

∑
∑m
i=1|Ti|=d

∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

dF̃i(xi,t)

=ψ(F1, . . . , Fm) +
m∑
i=1

∫ ( Ti∑
t=1

EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) = x]− Tiψ(F1, . . . , Fm)
)
d(F̃i − Fi)(x)

+
T∑
d=2

∑
∑m
i=1|Ti|=d

∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

dF̃i(xi,t)

where
∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)dFi(xi,t) = 0 for all i and t ∈ Ti, according to the property of

zero marginal means (A.5). To obtain a moment bound for hcT1,...,Tm , observe that by Assumption

2.4.9 and Jensen’s inequality any conditional expectation of the performance function h has a k-th

moment at most M. Since hcT1,...,Tm is the sum of several conditional expectations of h, one can

apply Minkowski inequality to establish that for any Ii = (Ii(1), . . . , Ii(|Ti|)) ∈ {1, 2, . . . , |Ti|}|Ti|,

i = 1, . . . ,m

EF1,...,Fm [(hcT1,...,Tm(X1,T1(I1), . . . ,Xm,Tm(Im)))
k] ≤ 2k

∑m
i=1|Ti|M. (A.12)
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Again by Minkowski inequality

EF1,...,Fm

[(
ψ(F̃1, . . . , F̃m)− ψ(F1, . . . , Fm)

)k]
≤
( T∑
d=1

∑
∑m
i=1|Ti|=d

(
EF1,...,Fm

[( ∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

dF̃i(xi,t)
)k]) 1

k
)k

=
( T∑
d=1

∑
∑m
i=1|Ti|=d

m∏
i=1

∏
t∈Ti

1(F̃i,t = F̂i)·

(
EF1,...,Fm

[( 1∏m
i=1 n

|Ti|
i

∑
J1,...,Jm

hcT1,...,Tm(X1,J1 , . . . ,Xm,Jm)
)k]) 1

k
)k

≤
( T∑
d=1

∑
∑m
i=1|Ti|=d

(
EF1,...,Fm

[( 1∏m
i=1 n

|Ti|
i

∑
J1,...,Jm

hcT1,...,Tm(X1,J1 , . . . ,Xm,Jm)
)k]) 1

k
)k

where each Ji = (Ji(1), . . . , Ji(|Ti|)) ∈ {1, 2, . . . , ni}|Ti| and Xi,Ji = (Xi,Ji(1), . . . , Xi,Ji(|Ti|)). Note

that

EF1,...,Fm

[( 1∏m
i=1 n

|Ti|
i

∑
J1,...,Jm

hcT1,...,Tm(X1,J1 , . . . ,Xm,Jm)
)k]

=
1∏m

i=1 n
k|Ti|
i

∑
J1
1 ,...,J

1
m

· · ·
∑

Jk1 ,...,J
k
m

EF1,...,Fm [hcT1,...,Tm(X1,J1
1
, . . . ,Xm,J1

m
) · · ·hcT1,...,Tm(X1,Jk1

, . . . ,Xm,Jkm
)].

By (A.5) the expectation on the right hand side is zero if some data point Xi,j appears only once.

Therefore the number of non-zero expectations is bounded above by C(k,m,
∑m

i=1|Ti|)
∏m
i=1 n

k|Ti|/2
i ,

where C(k,m,
∑m

i=1|Ti|) is some constant that only depends on k,m,
∑m

i=1|Ti|. Moreover, from

(A.12) each expectation satisfies the following by generalized Hölder’s inequality

|EF1,...,Fm [hcT1,...,Tm(X1,J1
1
, . . . ,Xm,J1

m
) · · ·hcT1,...,Tm(X1,Jk1

, . . . ,Xm,Jkm
)]| ≤ 2k

∑m
i=1|Ti|M.
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Hence

EF1,...,Fm

[(
ψ(F̂1, . . . , F̂m)− ψ(F1, . . . , Fm)

)k]
≤
( T∑
d=1

∑
∑m
i=1|Ti|=d

(
C(k,m,

m∑
i=1

|Ti|)
m∏
i=1

n
−k|Ti|/2
i 2k

∑m
i=1|Ti|M

) 1
k
)k

=
( T∑
d=1

∑
∑m
i=1|Ti|=d

C ′(k,m, d)

m∏
i=1

n
−|Ti|/2
i M

1
k

)k

≤
( T∑
d=1

C ′(k,m, d)
( m∑
i=1

Ti√
ni

)d)kM≤ C1(k,m, T )M
( m∑
i=1

1
√
ni

)k
.

This gives the second bound.

The third bound can be established by the same argument, but considering only the remainders

for which d ≥ 2.

We then prove the bounds on influence functions. According to the expression of gi(P1, . . . , Pm; ·)

in the proof of Assumptions 2.4.2 and 2.4.10, the empirical influence function ĝi is

ĝi(x) =

Ti∑
t=1

E
F̂1,...,F̂m

[h(X1, . . . ,Xm)|Xi(t) = x]− Tiψ(F̂1, . . . , F̂m).
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First we derive the following Taylor expansion for each conditional expectation

E
F̂1,...,F̂m

[h(X1, . . . ,Xm)|Xi(t) = Xi,1]

=

∫
h(x1, . . . ,xm)

∏
t′ 6=t

dF̂i(xi,t′)
∏
i′ 6=i

Ti′∏
t′=1

dF̂i′(xi′,t′)
∣∣∣
xi,t=Xi,1

=EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) = Xi,1]

+
T−1∑
d=1

∑
∑m
i′=1|Ti′ |=d,t/∈Ti

∫
h(x1, . . . ,xm)

∏
t′ /∈Ti,t′ 6=t

dFi(xi,t′)
∏
i′ 6=i

∏
t′ /∈Ti′

dFi′(xi′,t′)

m∏
i′=1

∏
t′∈Ti′

d(F̂i′ − Fi′)(xi′,t′)
∣∣∣
xi,t=Xi,1

=EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) = Xi,1]

+

T−1∑
d=1

∑
∑m
i′=1|Ti′ |=d,t/∈Ti

∫
h(i,t),T1,...,Tm(x1,T1 , . . . ,xi,Ti∪{t}, . . . ,xm,Tm)

m∏
i′=1

∏
t′∈Ti′

d(F̂i′ − Fi′)(xi′,t′)
∣∣∣
xi,t=Xi,1

=EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) = Xi,1]

+

Ti∑
t′=1,t′ 6=t

∫
EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) = Xi,1, Xi(t

′) = xi,t′ ]d(F̂i − Fi)(xi,t′) (A.13)

+
∑
i′ 6=i

Ti′∑
t′=1

∫
EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) = Xi,1, Xi′(t

′) = xi′,t′ ]d(F̂i′ − Fi′)(xi′,t′) (A.14)

+
T−1∑
d=2

∑
∑m
i′=1|Ti′ |=d,t/∈Ti

∫
h(i,t),T1,...,Tm(x1,T1 , . . . ,xi,Ti∪{t}, . . . ,xm,Tm)

m∏
i′=1

∏
t′∈Ti′

d(F̂i′ − Fi′)(xi′,t′)
∣∣∣
xi,t=Xi,1

where each Ti′ = {Ti′(1), . . . , Ti′(|Ti′ |)} is still an ordered subset of {1, 2, . . . , Ti′} but t /∈ Ti, and

the function h(i,t),T1,...,Tm resembles (A.1) except that the expectation is now further conditioned
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on Xi(t) = xi,t. Introduce the counterpart of (A.3)

hc(i,t),T1,...,Tm(x1,T1 , . . . ,xi,Ti∪{t}, . . . ,xm,Tm)

=h(i,t),T1,...,Tm −
∑

i′,t′∈Ti′

∫
h(i,t),T1,...,TmdFi′(xi′,t′)

+
∑

(i′1,t
′
1)<(i′2,t

′
2),t′1∈Ti′1

,t′2∈Ti′2

∫
h(i,t),T1,...,TmdFi′1(xi′1,t′1)dFi′2(xi′2,t′2)

+ · · ·+ (−1)
∑m
i′=1|Ti′ |

∫
h(i,t),T1,...,Tm

m∏
i′=1

∏
t′∈Ti′

dFi′(xi′,t′)

then we have the following parallel property of (A.5)

∫
hc(i,t),T1,...,Tm(x1,T1 , . . . ,xi,Ti∪{t}, . . . ,xm,Tm)dFi′(xi′,t′) = 0 for all i′ and t′ ∈ Ti′

and by comparing the first order remainders (A.13) and (A.14) of ĝi with the second order influence

functions gi1i2 it is easy to establish that

ĝi(Xi,1)− gi(Xi,1)

=

Ti∑
t=1

(
E
F̂1,...,F̂m

[h(X1, . . . ,Xm)|Xi(t) = Xi,1]− EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) = Xi,1]
)

− Ti(ψ(F̂1, . . . , F̂m)− ψ(F1, . . . , Fm))

=
m∑
i′=1

∫
gii′(Xi,1, x)d(F̂i′ − Fi′)(x)−

∫
gi(x)d(F̂i − Fi)(x) (A.15)

+

Ti∑
t=1

T−1∑
d=2

∑
∑m
i′=1|Ti′ |=d

∫
hc(i,t),T1,...,Tm(x1,T1 , . . . ,xi,Ti∪{t}, . . . ,xm,Tm)

m∏
i′=1

∏
t′∈Ti′

dF̂i′(xi′,t′)
∣∣∣
xi,t=Xi,1

− Ti
T∑
d=2

∑
∑m
i′=1|Ti′ |=d

∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i′=1

∏
t′∈Ti′

dF̂i′(xi′,t′) (A.16)

By a similar technique used to bound the remainder of ψ(F̃1, . . . , F̃m), we can establish that the

remainder (A.16) has a k-th moment of order O
(
M
(∑m

i=1
1√
ni

)2k)
, and the first order term (A.15)

has a k-th moment of order O
(
M
(∑m

i=1
1√
ni

)k)
. This completes the proof. �



APPENDIX A. TECHNICAL PROOFS FOR CHAPTER 2 192

With Lemma A.1.1 we now prove the other assumptions:

Proof of Assumption 2.4.3. The moment bound on the remainder, i.e. E[ε2] = o(n−1), comes

from the bound (A.9) in Lemma A.1.1 with F̃i = F̂i for all i and k = 2. The non-degeneracy

condition on the influence functions is exactly Assumption 2.4.8, whereas the finiteness of fourth

order moments of gi easily follows because gi is simply a sum of Ti conditional expectations of the

performance function h and each of the conditional expectations has finite fourth order moment by

Assumption 2.4.9 and Jensen’s inequality. �

Proof of Assumption 2.4.4. The convergence of ĝi to gi in fourth order moment is a direct

consequence of the bound (A.10) in Lemma A.1.1 with k = 4. The moment condition on the

remainder ε∗ can be argued as follows. We treat the empirical distributions F̂1, . . . , F̂m as the

truth, and the resampled distributions F̂ ∗s1,1, . . . , F̂
∗
sm,m as the input data, then apply the third

bound (A.9) in Lemma A.1.1 with k = 4 to get E∗[(ε∗)4] ≤ C2M̂
(∑m

i=1
1√
si

)8
, where M̂ =

maxI1,...,Im E
F̂1,...,F̂m

[h4(X1,I1 , . . . ,Xm,Im)] is Op(1) by the first bound (A.7) in Lemma A.1.1 with

k = 4. Therefore E∗[(ε∗)4] = Op((
∑m

i=1
1
si

)4) = op(s
−2). �

Proof of Assumption 2.4.5. It suffices to show that E
F̂1,...,F̂m

[h2]
p→ EF1,...,Fm [h2] and that

E
F̂1,...,F̂m

[h]
p→ EF1,...,Fm [h]. The latter convergence follows from the second bound (A.8) of Lemma

A.1.1 with k = 2 and F̃i = F̂i for all i. Since Assumption 2.4.9 holds with k = 4 for the function h,

it also holds with k = 2 for the squared function h2. One can apply the same bound from Lemma

A.1.1 with k = 2 to h2 and then conclude the former convergence. �

Proof of Assumption 2.4.6. We write τ̄2 = τ2(F 1, . . . , Fm) for short. First rewrite

(τ̄2 − τ̂2)2 =
(
EF 1,...,Fm

[h2]− E
F̂1,...,F̂m

[h2]−
(
(EF 1,...,Fm

[h])2 − (E
F̂1,...,F̂m

[h])2
))2

≤ 2
(
EF 1,...,Fm

[h2]− E
F̂1,...,F̂m

[h2]
)2

+ 2
(
(EF 1,...,Fm

[h])2 − (E
F̂1,...,F̂m

[h])2
)2

≤ 2
(
EF 1,...,Fm

[h2]− E
F̂1,...,F̂m

[h2]
)2

+ 4
(
EF 1,...,Fm

[h]− E
F̂1,...,F̂m

[h]
)4

+ 16(E
F̂1,...,F̂m

[h])2
(
EF 1,...,Fm

[h]− E
F̂1,...,F̂m

[h]
)2
.
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Applying Lemma A.1.1 to h2 (k = 2) with the true distributions being F̂1, . . . , F̂m we get

E∗[
(
EF 1,...,Fm

[h2]− E
F̂1,...,F̂m

[h2]
)2

] ≤ C1M̂
( m∑
i=1

1
√
si

)2
= Op

( m∑
i=1

1

si

)

where M̂ = maxI1,...,Im E
F̂1,...,F̂m

[h4(X1,I1 , . . . ,Xm,Im)] = Op(1). Another application of Lemma

A.1.1 to h with k = 4 gives

E∗[
(
EF 1,...,Fm

[h]− E
F̂1,...,F̂m

[h]
)4

] ≤ C1M̂
( m∑
i=1

1
√
si

)4
= Op

( m∑
i=1

1

s2
i

)

which implies that E∗[
(
EF 1,...,Fm

[h] − E
F̂1,...,F̂m

[h]
)2

] = Op
(∑m

i=1
1
si

)
as a consequence of Cauchy

Schwartz inequality. Therefore in sum E∗[(τ̄2 − τ̂2)2] = Op
(∑m

i=1
1
si

)
= op(1). �

Proof of Assumption 2.4.7. Note that µ4(F 1, . . . , Fm) ≤ CEF 1,...,Fm
[h4] for some absolute

constant C > 0, therefore

E∗[µ4(F 1, . . . , Fm)] ≤ CE∗[EF 1,...,Fm
[h4]] ≤ C max

I1,...,Im
E
F̂1,...,F̂m

[h4(X1,I1 , . . . ,Xm,Im)] = Op(1)

where the last equality is due to the first bound (A.7) in Lemma A.1.1. �

Proof of Assumption 2.4.11. The third order remainder ε3, or equivalently the sum over d ≥ 4

in (A.6) with each νi = 1, consists of integrals under the product of at least four signed measures

of the form F̂i − Fi. Therefore, by employing the technique used in proving the second and third

bounds (A.8)(A.9) in Lemma A.1.1, one can show that E[ε23] = O(n−4). The details are omitted

since they highly resemble those of Lemma A.1.1. The fourth moments of gi1i2 and gi1i2i3 are finite,

because each of them is a finite sum of conditional expectations of h which have finite fourth order

moments due to Assumption 2.4.9 with k = 4 and Jensen’s inequality. �

Proof of Assumption 2.4.12. For the third order remainder of the resampled performance

measure, one can derive the bound E∗[(ε∗3)2] = Op(s
−4) in a similar way as in showing the bound

(A.9) in Lemma A.1.1. The details are omitted to avoid repetition. Moreover, some straightforward

modifications of the proof for the bound (A.10) in Lemma A.1.1 lead to O(n−1) upper bounds for

the the mean squared errors of second and third order influence functions. The remainder in the
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Taylor expansion of the first order empirical influence function satisfies E[ε2g] = O(n−2) due to the

bound (A.11) in Lemma A.1.1 with k = 2. �

A.2 Proofs of Propositions 2.4.1 and 2.4.6

This section proves results concerning the validity of the additive decomposition 2.2 of the input

variance. We first prove Proposition 2.4.1, and then provide the key Lemma A.2.1 that will be

used in the proof of Proposition 2.4.6 as well as many results in Section A.4. Proof of Proposition

2.4.1. Following the expansion (2.14) we can write

Var[ψ(F̂1, . . . , F̂m)] = Var[

m∑
i=1

1

ni

ni∑
j=1

gi(Xi,j)] + Var[ε] + 2Cov(

m∑
i=1

1

ni

ni∑
j=1

gi(Xi,j), ε)

=
m∑
i=1

σ2
i

ni
+ o(n−1) +O

(√√√√Var[
m∑
i=1

1

ni

ni∑
j=1

gi(Xi,j)]Var[ε]
)

=

m∑
i=1

σ2
i

ni
+ o(n−1).

This completes the proof. �

The following important lemma on variance decomposition plays a crucial role in our analysis.

Lemma A.2.1 (Adapted from Efron and Stein (1981)) Let Yi, i = 1, . . . , n be independent

but not necessarily identically distributed random variables, and φ(y1, . . . , yn) be a function such

that E[φ2(Y1, . . . , Yn)] <∞, then there exist functions φi1,...,ik for 1 ≤ i1 < · · · < ik ≤ n and k ≤ n

such that

φ(Y1, . . . , Yn)

=µ+

n∑
i=1

φi(Yi) +
∑
i1<i2

φi1,i2(Yi1 , Yi2) + · · ·+
∑

i1<···<ik

φi1,...,ik(Yi1 , . . . , Yik) + · · ·+ φ1,...,n(Y1, . . . , Yn)
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where

µ = E[φ(Y1, . . . , Yn)]

φi(y) = E[φ(Y1, . . . , Yn)|Yi = y]− µ

φi1,i2(y1, y2) = E[φ(Y1, . . . , Yn)|Yi1 = y1, Yi2 = y2]− φi1(y1)− φi2(y2)− µ
...

Moreover, the 2n − 1 random variables in the decomposition have mean zero and are mutually

uncorrelated.

With this lemma, we can prove Proposition 2.4.6: Proof of Proposition 2.4.6. The proof of

Proposition 2.1 derives the following expression for input variance

Var[ψ(F̂1, . . . , F̂m)] = Var[
m∑
i=1

1

ni

ni∑
j=1

gi(Xi,j)] + Var[ε] + 2Cov(
m∑
i=1

1

ni

ni∑
j=1

gi(Xi,j), ε)

where the covariances can be simplified to

Cov(

m∑
i=1

1

ni

ni∑
j=1

gi(Xi,j), ε) =

m∑
i=1

1

ni

ni∑
k=1

E[gi(Xi,j)(ε− E[ε])]

=
m∑
i=1

1

ni

ni∑
j=1

E[gi(Xi,j)(E[ε|Xi,j ]− E[ε])]

=

m∑
i=1

E[gi(Xi,1)(E[ε|Xi,1]− E[ε])].

Using the cubic expansion in Assumption 2.4.11 and the vanishing marginal expectations of influ-

ence functions we have

E[ε|Xi,1]− E[ε] =
1

2n2
i

(gii(Xi,1, Xi,1)− E[gii(Xi, Xi)]) +
1

6n3
i

(giii(Xi,1, Xi,1, Xi,1)− E[giii(Xi, Xi, Xi)])

+
ni − 1

2n3
i

EXi [giii(Xi,1, Xi, Xi)] +
∑
i′ 6=i

1

2nini′
EXi′ [gii′i′(Xi,1, Xi′ , Xi′)]

+ E[ε3|Xi,1]− E[ε3]. (A.17)
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Each term except the last in (A.17) has a second moment of order O(n−4). To argue the last term

E[ε3|Xi,1] − E[ε3] also has a second moment of order at most O(n−4), note that ε3 is a symmetric

statistic hence by Lemma A.2.1 Var[E[ε3|Xi,1]] ≤ Var[ε3]/ni and Var[ε3] = o(n−3) by assumption,

hence Var[E[ε3|Xi,1]] = o(n−4). This leads to

Var[E[ε|Xi,1]] = O(n−4).

Using Cauchy Schwartz inequality we conclude Cov(
∑m

i=1
1
ni

∑ni
j=1 gi(Xi,j), ε) = O(n−2). On the

other hand, one can easily show Var[ε] = O(n−2) by using the same technique in the proof of

Lemma A.1.1 to bound each term in the cubic expansion. This leads to the desired conclusion. �

A.3 Proofs for Results in Section 2.4.2 and Section 2.3.2

We now prove the consistency of our proportionate subsampled bootstrap variance σ2
SV B (Theorem

2.4.3), and derive the mean square error of the Monte Carlo estimate σ̂2
SV B relative to σ2

SV B (Lemma

2.4.4). These results will then be used to prove Theorems 2.3.1 and 2.4.5. Theorem 2.3.4, Corollaries

2.3.2-2.3.3 are consequences of Theorem 2.3.1. Theorem 2.3.5 is a consequence of Theorem 2.4.5.

Recall that σ2
i = VarFi [gi(Xi)] is the variance of the i-th influence function. For its empirical

counterpart ĝi we denote by σ̂2
i := Var

F̂i
[ĝi(Xi)] its variance under the empirical input models.

Under the convergence condition E[(ĝi − gi)4(Xi,1)] → 0 in Assumption 2.4.4, the convergence of

σ̂2
i to σ2

i follows from

∣∣∣σ̂2
i −

1

ni

ni∑
j=1

g2
i (Xi,j)

∣∣∣ =
∣∣∣ 1

ni

ni∑
j=1

ĝ2
i (Xi,j)−

1

ni

ni∑
j=1

g2
i (Xi,j)

∣∣∣
≤ 2

ni

√√√√ ni∑
j=1

g2
i (Xi,j)

ni∑
j=1

(ĝi − gi)2(Xi,j) +
1

ni

ni∑
j=1

(ĝi − gi)2(Xi,j) = op(1)

and that
∑ni

j=1 g
2
i (Xi,j)/ni

p→ σ2
i . For convenience we denote by

ψ∗ = ψ(F̂ ∗s1,1, . . . , F̂
∗
sm,m), ψ̂∗ = ψ̂(F̂ ∗s1,1, . . . , F̂

∗
sm,m)
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the expected value and a single simulation replication, respectively, of the performance measure

under the resampled input models, and by

τ̂2
∗ = τ2(F̂ ∗s1,1, . . . , F̂

∗
sm,m), µ̂∗4 = µ4(F̂ ∗s1,1, . . . , F̂

∗
sm,m)

the variance and central fourth moment of a single Monte Carlo replication ψ̂∗ conditioned on the

resampled input models.

Proof of Theorem 2.4.3. Let si = bθnic. Following the expansion (2.15) with each F i = F̂ ∗si,i

we have

Var∗[ψ
∗] = Var∗[

m∑
i=1

1

si

si∑
k=1

ĝi(X
∗
i,k) + ε∗]

= Var∗[
m∑
i=1

1

si

si∑
k=1

ĝi(X
∗
i,k)] + Var∗[ε

∗] + 2Cov∗(

m∑
i=1

1

si

si∑
k=1

ĝi(X
∗
i,k), ε

∗)

=

m∑
i=1

σ̂2
i

si
+ Var∗[ε

∗] +O
(√√√√ m∑

i=1

σ̂2
i

si
Var∗[ε∗]

)

=
m∑
i=1

σ̂2
i

dθnie
+ Var∗[ε

∗] +O
(√√√√ m∑

i=1

σ̂2
i

dθnie
Var∗[ε∗]

)
.

Hence

σ2
SV B = θVar∗[ψ

∗] =
m∑
i=1

σ̂2
i

dθnie/θ
+ θVar∗[ε

∗] +O
(√√√√ m∑

i=1

σ̂2
i

dθnie/θ
θVar∗[ε∗]

)

=

m∑
i=1

(
σ̂2
i

ni
+O(

σ̂2
i

n2
i θ

)) + θVar∗[ε
∗] +O

(√√√√ m∑
i=1

(
σ̂2
i

ni
+O(

σ̂2
i

n2
i θ

))θVar∗[ε∗]
)
. (A.18)

The convergence σ̂2
i

p→ σ2
i and that θ = ω(1/n) allow us to conclude

1

θ

m∑
i=1

σ̂2
i

n2
i

= op(
m∑
i=1

σ2
i

ni
), θVar∗[ε

∗] = θop(
m∑
i=1

1

dθnie
) = op(

m∑
i=1

1

ni
)

therefore σ2
SV B =

∑m
i=1

σ2
i
ni

+ op(
∑m

i=1
σ2
i
ni

). �
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Proof of Lemma 2.4.4: Define w := ψ̂∗−ψ∗ and δ := ψ∗−E∗[ψ∗]. Unbiasedness is well known,

see e.g. Searle et al. (2009). The variance of σ̂2
SV B/θ has been derived in Sun et al. (2011) as

1

θ2
Var∗[σ̂

2
SV B] =

1

B
(E∗[δ4]− (E∗[δ2])2) +

2

B(B − 1)
(E∗[δ2])2 +

2

B2R2(B − 1)
(E∗[w2])2

+
2(B + 1)

B2R(B − 1)
E∗[δ2]E∗[w2] +

2

B2R3
E∗[w4] +

4B + 2

B2R
E∗[δ2w2]

+
2(BR2 +R2 − 4R+ 3)

B2R3(R− 1)
E∗[(E[w2|F̂ ∗s1,1, . . . , F̂

∗
sm,m])2] +

4

B2R2
E∗[δw3].

Applying Jensen’s inequality (or generalized Holder’s inequality) gives

E∗[(E[w2|F̂ ∗1 , . . . , F̂ ∗m])2] ≤ E∗[w4]

E∗[δ2w2] ≤ (E∗[δ4]E∗[w4])1/2, |E∗[δw3]| ≤ (E∗[δ4](E∗[w4])3)1/4

The convergence condition E[(ĝi−gi)4(Xi,1)]→ 0 implies that 1
ni

∑ni
j=1 ĝ

4
i (Xi,j) = 1

ni

∑ni
j=1 g

4
i (Xi,j)+

op(1) = Op(1). Together with the moment condition E∗[(ε∗ − E∗[ε∗])4] = op(s
−2), we get

E∗[δ4] = 3
( m∑
i=1

σ̂2
i

si

)2
+ op

(( m∑
i=1

1

si

)2)
,E∗[δ2] =

m∑
i=1

σ̂2
i

si
+ op

( m∑
i=1

1

si

)
,E∗[w4] = E∗[µ∗4] = Op(1).

Hence the leading terms of the mean squared error can be identified as

1

θ2
Var∗[σ̂

2
SV B] ≈ 1

B
(E∗[δ4]− (E∗[δ2])2) +

4

BR
E∗[δ2w2] +

2

BR2
E∗[(E[w2|F̂ ∗s1,1, . . . , F̂

∗
sm,m])2]

≈ 2

B

( m∑
i=1

σ̂2
i

si

)2
+

4τ̂2

BR

m∑
i=1

σ̂2
i

si
+

2τ̂4

BR2
=

2

B

( m∑
i=1

σ̂2
i

si
+
τ̂2

R

)2
.

Here a ≈ b means a/b
p→ 1 as aforementioned. Therefore the variance can be expressed as

Var∗[σ̂
2
SV B] =

2

B

( m∑
i=1

σ̂2
i

ni
+
τ̂2θ

R

)2
(1 + op(1)) =

2

B

( m∑
i=1

σ2
i

ni
+
τ2θ

R

)2
(1 + op(1))

where the second equality holds because of the convergence of σ̂2
i , τ̂

2 to σ2
i , τ

2. �

Proof of Theorem 2.3.1. Under the choice of B,R, θ stated in the theorem, we have that
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Var∗[σ̂
2
SV B] = op(1/n

2) hence σ̂2
SV B − σ2

SV B = op(1/n) on one hand. On the other hand we know

the subsampling bootstrap variance estimate σ2
SV B is consistent for σ2

I and σ2
I = Θ(1/n) hence

σ2
SV B − σ2

I = op(1/n). Now σ̂2
SV B − σ2

I = σ̂2
SV B − σ2

SV B + σ2
SV B − σ2

I = op(1/n) from which

consistency immediately follows. �

Proof of Theorem 2.4.5. One can easily verify that such B∗ and R∗ minimize the mean squared

error (2.18) under the constraint that BR = N and B = ω(1). The mean square error (2.19) then

follows from evaluating (2.18) at B∗, R∗. �

Proof of Corollary 2.3.2. It is obvious that when B = ω(1) and R = Ω(θn) the configuration

(2.7) is satisfied hence the estimate σ̂2
SV B is relatively consistent under such allocation. To show

that a simulation budget N = ω(θn) is necessary for (2.7) to hold, note that multiplying the first

two requirements in (2.7) gives that B2R2 = ω((θn)2), hence BR = ω(θn) must hold true. �

Proof of Corollary 2.3.3. This follows from letting θ = ω(1/n) in Corollary 2.3.2 so that the

require simulation budget N = ω(θn) = ω(ω(1)) = ω(1). �

Proof of Theorem 2.3.4. The requirement ω(1/n) ≤ θ is stipulated by (2.7). If θ ≤ o(N/n)∧1,

then we have θn = o(N), or equivalently N/(θn) = ω(1), so that we can afford a B = ω(1) when

R = Ω(θn) to satisfy the first two requirements of (2.7). Theorem 2.3.1 then guarantees consistent

variance estimation. �

Proof of Theorem 2.3.5. It follows from Theorem 2.4.5 by observing that τ2 = Θ(1) and∑m
i=1 σ

2
i /ni = Θ(1/n). �

A.4 Proofs for Results in Section 2.4.3 and Theorem 2.3.6

In this section we analyze the statistical error of σ2
SV B relative to the true input variance σ2

I ,

therefore, combined with the Monte Carlo error σ̂2
SV B − σ2

SV B given in Lemma 2.4.4, provide the

overall error of the estimate σ̂2
SV B, and then minimize the overall error to obtain the optimal choices

for the parameters θ,B,R. We first prove Lemma 2.4.8 using Lemma A.1.1 and Proposition 2.4.6

which have been presented in Section A.2, then use Lemma 2.4.8 to conclude Theorem 2.4.9. Lastly,

Theorem 2.3.6 is derived from Theorem 2.4.9.
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Proof of Lemma 2.4.8. The proof of Theorem 2.4.3 derives the following expression for the

proportionate subsampled bootstrap variance

σ2
SV B

θ
=

m∑
i=1

σ̂2
i

si
+ Var∗[ε

∗] + 2Cov∗(
m∑
i=1

1

si

si∑
k=1

ĝi(X
∗
i,k), ε

∗).

As is the case in the proof of Proposition 2.4.6, the covariances can be simplified to

Cov∗(
m∑
i=1

1

si

si∑
k=1

ĝi(X
∗
i,k), ε

∗) =
m∑
i=1

E∗[ĝi(X∗i,1)(E∗[ε∗|X∗i,1]− E∗[ε∗])].

This leads to

σ2
SV B =

m∑
i=1

θσ̂2
i

bθnic
+ θE∗[(ε∗ − E∗[ε∗])2] + 2θ

m∑
i=1

E∗[ĝi(X∗i,1)(E∗[ε∗|X∗i,1]− E∗[ε∗])].

From the above expression of the variance estimator one can verify that it suffices to show the

following three results

m∑
i=1

σ̂2
i

ni
= σ2

I + Z + op(
1

n3/2
) (A.19)

E∗[(ε∗ − E∗[ε∗])2] =
m∑

i,i′=1

1

4sisi′
Var[gii′(Xi, X

′
i′)] + op(

1

s2
) (A.20)

E∗[ĝi(X∗i,1)(E∗[ε∗|X∗i,1]− E∗[ε∗])] (A.21)

=
1

2s2
i

Cov(gi(Xi), gii(Xi, Xi)) +
m∑
i′=1

1

2sisi′
Cov(gi(Xi),EX′

i′
[gii′i′(Xi, X

′
i′ , X

′
i′)]) + op(

1

s2
).
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To see this, if the three equations hold then

σ2
SV B =

m∑
i=1

θσ̂2
i

θni − frac(θni)
+

m∑
i,i′=1

1

4nisi′
Var[gii′(Xi, X

′
i′)] + op(

θ

s2
)

+
m∑
i=1

1

nisi
Cov(gi(Xi), gii(Xi, Xi)) +

m∑
i,i′=1

1

nisi′
Cov(gi(Xi),EX′

i′
[gii′i′(Xi, X

′
i′ , X

′
i′)])

+ op(
θ

s2
)

=
m∑
i=1

σ̂2
i

ni
+

m∑
i=1

frac(θni)σ
2
i

nisi
+ op(

1

ns
) +

m∑
i,i′=1

1

4nisi′
Var[gii′(Xi, X

′
i′)]

+
m∑
i=1

1

nisi
Cov(gi(Xi), gii(Xi, Xi)) +

m∑
i,i′=1

1

nisi′
Cov(gi(Xi),EX′

i′
[gii′i′(Xi, X

′
i′ , X

′
i′)])

+ op(
1

ns
)

=
m∑
i=1

σ̂2
i

ni
+R+ op(

1

ns
)

= σ2
I + Z +R+ op(

1

ns
) + op(

1

n3/2
)

where (A.20) and (A.21) are used in the first equality and (A.19) used in the last equality.

Now we prove the above three equations (A.19)-(A.21). By the expansion of ĝi from Assumption

2.4.12 and the vanishing moment condition on the remainder εg, we write

σ̂2
i =

1

ni

ni∑
j=1

g2
i (Xi,j) +

2

ni

ni∑
j=1

gi(Xi,j)
( m∑
i′=1

1

ni′

ni′∑
j′=1

gii′(Xi,j , Xi′,j′) +
1

ni

ni∑
j′=1

gi(Xi,j′)
)

+
1

ni

ni∑
j=1

( m∑
i′=1

1

ni′

ni′∑
j′=1

gii′(Xi,j , Xi′,j′) +
1

ni

ni∑
j′=1

gi(Xi,j′)
)2

+ op(
1√
n

) (A.22)

=
1

ni

ni∑
j=1

g2
i (Xi,j) +

2

ni

ni∑
j=1

gi(Xi,j)

m∑
i′=1

1

ni′

ni′∑
j′=1

gii′(Xi,j , Xi′,j′) + 2
( 1

ni

ni∑
j=1

gi(Xi,j)
)2

+ op(
1√
n

)

=
1

ni

ni∑
j=1

g2
i (Xi,j) + 2

m∑
i′=1

1

nini′

ni∑
j=1

ni′∑
j′=1

gi(Xi,j)gii′(Xi,j , Xi′,j′) + op(
1√
n

). (A.23)

Note that the first term in line (A.22) has an expectation of order O(1/n) hence can be absorbed

into the op(1/
√
n) term. Similarly the fourth line (A.23) holds because (

∑ni
j=1 gi(Xi,j)/ni)

2 has an
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expectation of order O(1/n). The second term in (A.23) is a sum of m V-statistics, each of which

by standard results is well approximated by the Hajek projection

1

nini′

ni∑
j=1

ni′∑
j′=1

gi(Xi,j)gii′(Xi,j , Xi′,j′) =
1

ni′

ni′∑
j′=1

EXi [gi(Xi)gii′(Xi, Xi′,j′)] +Op(
1

n
).

The finite fourth moment condition of gi and gi1i2 are used to ensure that gi(Xi,j)gii′(Xi,j , Xi′,j′)

has a finite second moment so that the above approximation holds. Denoting

µi1 =
1

ni

ni∑
j=1

g2
i (Xi,j), µ

ii′
2 =

1

ni′

ni′∑
j′=1

EXi [gi(Xi)gii′(Xi, Xi′,j′)]

we have

m∑
i=1

σ̂2
i

ni
=

m∑
i=1

µi1
ni

+ 2

m∑
i=1

m∑
i′=1

µii
′

2

ni
+ op(

1

n3/2
).

Because of independence among input models the variance of the leading term takes the additive

form
∑m

i=1 λ
T
i Σiλi/ni as described in the theorem. By Proposition 2.4.6 σ2

I =
∑m

i=1 σ
2
i /ni+O(n−2)

hence equation (A.19) follows. To show (A.20), we note that in the cubic expansion of Assumption

2.4.12 the cubic term and the remainder ε∗3 both have a second moment of order Op(s
−3). Therefore

it suffices to consider the quadratic term. Since the second order influence function ĝi1i2 has

vanishing marginal expected value, one can verify that

Var∗
[ m∑
i,i′=1

1

sisi′

si∑
j=1

si′∑
j′=1

ĝii′(X
∗
i,j , X

∗
i′,j′)

]
=

m∑
i,i′=1

1

sisi′nini′

ni∑
j=1

ni′∑
j′=1

ĝ2
ii′(Xi,j , Xi′,j′) +Op(

1

s3
)

=

m∑
i,i′=1

1

sisi′nini′

ni∑
j=1

ni′∑
j′=1

g2
ii′(Xi,j , Xi′,j′) + op(

1

s2
)

where the second equality follows from the convergence of ĝii′ to gii′ as imposed in Assumption

2.4.12. Equation (A.20) then follows from the fact that 1
nini′

∑ni
j=1

∑ni′
j′=1 g

2
ii′(Xi,j , Xi′,j′) is consis-

tent as a V-statistic.

Let’s continue to prove equation (A.21). Denote by X∗i a generic resampled data point from
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the i-th input data set. Then one can check that

E∗[ε∗|X∗i,1 = Xi,j ]− E∗[ε∗]

=
1

2s2
i

(ĝii(Xi,j , Xi,j)− E∗[ĝii(X∗i , X∗i )]) +
1

6s3
i

(ĝiii(Xi,j , Xi,j , Xi,j)− E∗[ĝiii(X∗i , X∗i , X∗i )])

+
si − 1

2s3
i

E∗[ĝiii(Xi,j , X
∗
i , X

∗
i )] +

∑
i′ 6=i

1

2sisi′
E∗[ĝii′i′(Xi,j , X

∗
i′ , X

∗
i′)] + E∗[ε∗3|X∗i,1 = Xi,j ]− E∗[ε∗3].

Note that Var∗[ε
∗
3|X∗i,1] = op(s

−4) because of Assumption 2.4.12 and Lemma A.2.1. Hence

E∗[ĝi(X∗i,1)(E∗[ε∗|X∗i,1]− E∗[ε∗])]

=
1

ni

ni∑
j=1

ĝi(Xi,j)(
1

2s2
i

(ĝii(Xi,j , Xi,j)− E∗[ĝii(X∗i , X∗i )]) +
m∑
i′=1

1

2sisi′
E∗[ĝii′i′(Xi,j , X

∗
i′ , X

∗
i′)]) + op(

1

s2
)

=
1

2s2
i

Cov∗(ĝi(X
∗
i ), ĝii(X

∗
i , X

∗
i )) +

m∑
i′=1

1

2sisi′
Cov∗(ĝi(X

∗
i ),EX∗′

i′
[ĝii′i′(X

∗
i , X

∗′
i′ , X

∗′
i′ )]) + op(

1

s2
)

=
1

2s2
i

Cov(gi(Xi), gii(Xi, Xi)) +
m∑
i′=1

1

2sisi′
Cov(gi(Xi),EX′

i′
[gii′i′(Xi, X

′
i′ , X

′
i′)]) + op(

1

s2
)

where the op(1/s
2) term in the first equality comes from applying Cauchy Schwartz inequality, and

the last equality holds since convergence of ĝi, ĝi1i2 , ĝi1i2i3 to gi, gi1i2 , gi1i2i3 in mean squared error

implies

Cov∗(ĝi(X
∗
i ), ĝii(X

∗
i , X

∗
i ))

p→ Cov(gi(Xi), gii(Xi, Xi))

Cov∗(ĝi(X
∗
i ),EX∗′

i′
[ĝii′i′(X

∗
i , X

∗′
i′ , X

∗′
i′ )])

p→ Cov(gi(Xi),EX′
i′

[gii′i′(Xi, X
′
i′ , X

′
i′)]).

This gives rise to the equation (A.21). �

Proof of Theorems 2.3.6 and 2.4.9. We first show Theorem 2.4.9. Under a given subsampling

ratio θ, we know from Lemma 2.4.8 and Theorem 2.3.5 that under the optimal allocation B∗ =
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N/R∗ and R∗ = Θ(θn)

σ̂2
SV B − σ2

SV B = E1 + op
(√ θ

Nn

)
σ2
SV B − σ2

I = E2 + op
( 1

n3/2
+

1

θn2

)
where the errors E1, E2 satisfy E∗[E1] = 0,E[E2

1 ] = Θ(θ/(Nn)) and E[E2
2 ] = R2 +

∑m
i=1 λ

T
i Σiλi/ni.

Letting E = E1 + E2, we have E[E2] = E[E2
1 ] + E[E2

2 ] because

E[E1E2] = Edata[E∗[E1E2]] = Edata[E2E∗[E1]] = 0.

This gives Theorem 2.4.9.

To prove Theorem 2.3.6, note that if R = Θ((ns)−1), and at least one of the Σi’s are positive

definite, then
∑m

i=1 λ
T
i Σiλi/ni = Θ(1/n3) hence E[E2

2 ] = Θ(1/n3 + 1/(θ2n4)). We have

σ̂2
SV B − σ2

I = E + op
(√ θ

Nn
+

1

n3/2
+

1

θn2

)
where E[E2] = Θ(θ/(Nn) + 1/n3 + 1/(θ2n4)). To minimize the leading term E , just note that

θ/(Nn) + 1/(θ2n4) is minimized at θ∗ = (2N)1/3/n resulting in E[E2] = Θ(1/(N2/3n2) + 1/n3).

When N > n3/2, we have 1/(N2/3n2) < 1/n3, hence as long as θ∗ is chosen such that θ∗/(Nn) ≤

1/n3 and 1/(θ∗2n4) ≤ 1/n3, or equivalently 1/
√
n ≤ θ∗ ≤ N/n2∧1, then the error E[E2] = Θ(1/n3).

This leads to the optimal subsample size (2.10). If the depicted conditions do not hold, we have

E[E2
2 ] ≤ Θ(1/n3 + 1/(θ2n4)) in general, hence all upper bounds we just obtained for E[E2] could be

loose in order, leading to (2.12). �
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Appendix B

Technical Proofs for Chapter 3

This chapter contains technical proofs of results in Chapter 3.

B.1 Notation and Outline

We introduce some notations to be used throughout this chapter. Quantities that appear in our

analysis can involve up to three sources of randomness: The input data {Xi,j : i = 1, . . . ,m, j =

1, . . . , ni}, the simulation runs in Step 1, and the simulation runs in Step 3 of our algorithms. We

denote the three sources of randomness by D, ξ1 and ξ2 respectively.

In order to highlight the dependence of each quantity on different types of randomness, ex-

pectation operators in this chapter are accompanied by subscripts indicating relevant sources of

randomness. For example, the simulation-based performance estimate Ẑ(P̂1, . . . , P̂m) from Step 1

of Algorithm 4 depends on the input data and the simulation runs in Step 1 but not on Step 3 so its

(total) expectation is written as ED,ξ1 [Ẑ(P̂1, . . . , P̂m)], whereas the empirical performance measure

Z(P̂1, . . . , P̂m) depends on input data only hence its expectation is denoted by ED[Z(P̂1, . . . , P̂m)].

However, if a quantity depends on all the three sources, we write its expectation in the plain format

E[·] in place of ED,ξ1,ξ2 [·] for simplicity.

If conditioning on one or two sources of randomness is needed, we use the notation E·|· for

conditional expectation and Var·|· for conditional variance where in the subscript the conditioned
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randomness is placed after the vertical bar and the randomness to be integrated out placed before.

For instance, it holds for the performance estimate Ẑ(P̂1, . . . , P̂m) from Step 1 of Algorithm 4 that

Eξ1|D[Ẑ(P̂1, . . . , P̂m)] = Z(P̂1, . . . , P̂m) and that Varξ1|D(Ẑ(P̂1, . . . , P̂m)) = 1
R1
·VarP̂1,...,P̂m

(h) where

VarP̂1,...,P̂m
(h) is the variance of a single simulation replication for h driven by the empirical input

models (see the detailed definition in the next paragraph).

We also need to deal with various simulation outputs where the underlying input models are

weighted distributions supported on the input data. For any performance function g(X1, . . . ,Xm) :

XT11 × · · · × XTmm → R and any probability weight (w1, . . . ,wm) ∈ Uα we define

Ew1,...,wm [g(X1, . . . ,Xm)] := E∑n1
j=1 w1,jδX1,j

,...,
∑nm
j=1 wm,jδXm,j

[g(X1, . . . ,Xm)]

where each δXi,j is the delta measure at Xi,j and the expectation on the right hand side shall be

interpreted as under the product measure
(∑n1

j=1w1,jδX1,j

)T1 × · · · × (∑nm
j=1wm,jδXm,j

)Tm like in

(3.1). In particular, if g = h then Ew1,...,wm [h(X1, . . . ,Xm)] is the same as Z(w1, . . . ,wm), and if

furthermore the weight wi,j = 1/ni for each i, j it is essentially Z(P̂1, . . . , P̂m). Similarly

Varw1,...,wm(g(X1, . . . ,Xm)) := Var∑n1
j=1 w1,jδX1,j

,...,
∑nm
j=1 wm,jδXm,j

(g(X1, . . . ,Xm))

represents the variance of g when each input variate Xi(t) is generated from the weighted in-

put distribution
∑ni

j=1wi,jδXi,j . Particularly, VarP̂1,...,P̂m
(h) is the output variance under the

uniformly weighted input distributions. When the probability weights are (wmin
1 , . . . ,wmin

m ) or

(wmax
1 , . . . ,wmax

m ) from Step 2 of our algorithms, we write the corresponding output variances as

σ2
min := Varwmin

1 ,...,wmin
m

(h(X1, . . . ,Xm))

σ2
max := Varwmax

1 ,...,wmax
m

(h(X1, . . . ,Xm))

where each wmin
i should be understood as the probability measure

∑ni
j=1w

min
i,j δXi,j . Note that

Ew1,...,wm [·] and Varw1,...,wm [·] are conditional expectations/variances of one simulation replication

given both the input data and the weights, but to make the notations compact we choose to suppress
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the data dependence.

Xi is used as a generic random variable distributed under the true input model Pi for each

i. Given a positive semi-definite matrix Σ ∈ Rd×d, N (0,Σ) denotes the multivariate normal

distribution on Rd with mean zero and covariance matrix Σ. In particular, N (0, 1) denotes the

univariate standard normal. Φ(·) is the cumulative distribution function of N (0, 1). We use ⇒ to

denote weak convergence of probability measures.

We present our proofs as follows. We first prove all the results in Section 3.4, organized via

the subsections. Given these developments, we then prove the main results in Section 3.3 including

Theorems 3.3.2, 3.3.3, 3.3.4, and also Proposition 3.3.1.

B.2 Proofs of Results in Section 3.4.2

Proof of Proposition 3.4.1. Let xi = (xi,1, . . . , xi,Ti). First we rewrite the performance measure as

an integral

Z((1− ε)Q1
1 + εQ2

1, . . . , (1− ε)Q1
m + εQ2

m)

=

∫
h(x1, . . . ,xm)

m∏
i=1

Ti∏
t=1

d(Q1
i + ε(Q2

i −Q1
i ))(xi,t)

=Z(Q1
1, . . . , Q

1
m) +

m∑
i=1

Ti∑
t=1

ε

∫
h(x1, . . . ,xm)

∏
r 6=i or s 6=t

dQ1
r(xr,s) · d(Q2

i −Q1
i )(xi,t) +R (B.1)

by expanding out all the Q1
i and ε(Q2

i −Q1
i ) in the product measure, and the remainder R includes

all the terms that have an εk with k ≥ 2. The integrability condition guarantees that all the integral
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terms above, including those in R, are finite. Note that

m∑
i=1

Ti∑
t=1

∫
h(x1, . . . ,xm)

∏
r 6=i or s 6=t

dQ1
r(xr,s) · d(Q2

i −Q1
i )(xi,t)

=

m∑
i=1

Ti∑
t=1

∫ h(x1, . . . ,xm)
∏

r 6=i or s6=t
dQ1

r(xr,s) · dQ2
i (xi,t)− Z(Q1

1, . . . , Q
1
m)


=

m∑
i=1

Ti∑
t=1

∫ ∫ h(x1, . . . ,xm)
∏

r 6=i or s 6=t
dQ1

r(xr,s)− Z(Q1
1, . . . , Q

1
m)

 dQ2
i (xi,t)

=
m∑
i=1

Ti∑
t=1

∫ ∫ h(x1, . . . ,x
(t)
i , . . . ,xm)

∏
r 6=i or s 6=t

dQ1
r(xr,s)− Z(Q1

1, . . . , Q
1
m)

 dQ2
i (xi)

=
m∑
i=1

∫ Ti∑
t=1

∫ h(x1, . . . ,x
(t)
i , . . . ,xm)

∏
r 6=i or s 6=t

dQ1
r(xr,s)− Z(Q1

1, . . . , Q
1
m)

 dQ2
i (xi)

=

m∑
i=1

∫
G
Q1

1,...,Q
1
m

i (xi)dQ
2
i (xi) =

m∑
i=1

EQ2
i
[G

Q1
1,...,Q

1
m

i (X)],

where the second equality holds because dQ2
i is a probability measure, and the third equality is a

notational replacement of xi,t by xi, with x
(t)
i defined as xi but with xi,t replaced by xi. This and

(B.1) together show the derivative expression (3.11). The mean zero property of G
Q1

1,...,Q
1
m

i follows

from the tower property

EQ1
i

[
EQ1

1,...,Q
1
m

[h(X1, . . . ,Xm)|Xi(t)]
]

= Z(Q1
1, . . . , Q

1
m)

for all t = 1, . . . , Ti. �

Proof of Proposition 3.4.2. We first provide two lemmas.

Lemma B.2.1 Every feasible solution (w1, . . . ,wm) ∈ Uα satisfies

l(α)

ni
≤ wi,j ≤

u(α)

ni
,∀ i = 1, . . . ,m, j = 1, . . . , ni

where 0 < l(α) < 1 < u(α) < +∞ are the two solutions of the equation xe1+
X2
1,1−α
2
−x = 1.
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Proof of Lemma B.2.1. Consider (w1, . . . ,wm) ∈ Uα. By Jensen’s inequality, for each i we have

−
ni∑
j=1

log(niwi,j) ≥ −ni log

ni∑
j=1

wi,j = 0,

and thus

−2

ni∑
j=1

log(niwi,j) ≤ −2
m∑
i=1

ni∑
j=1

log(niwi,j) ≤ X 2
1,1−α.

This implies for each i = 1, . . . ,m

ni∏
j=1

niwi,j ≥ e−
X2
1,1−α
2 . (B.2)

For any s = 1, . . . , ni, we shall show that l(α) ≤ niwi,s ≤ u(α). Taking niwi,s out of the product in

(B.2) and noticing the inequality
∏
j 6=s niwi,j ≤

(
ni
ni−1

∑
j 6=swi,j

)ni−1
=
(ni(1−wi,s)

ni−1

)ni−1
gives

niwi,s

(
1 +

1− niwi,s
ni − 1

)ni−1

≥ niwi,s
∏
j 6=s

niwi,j ≥ e−
X2
1,1−α
2 .

Applying ex ≥ 1 + x to 1 +
1−niwi,s
ni−1 gives

niwi,se
1−niwi,s ≥ e−

X2
1,1−α
2 . (B.3)

Simple calculations show that the function xe1−x strictly increases from 0 to 1 for x ∈ (0, 1) and

decreases from 1 to 0 for x ∈ (1,+∞). So it follows from (B.3) that niwi,s must fall between the

two solutions of xe1−x = e−
X2
1,1−α
2 . �

Lemma B.2.2 Let u(α) be the constant from Lemma B.2.1. Every feasible solution (w1, . . . ,wm) ∈

Uα satisfies
m∑
i=1

n2
i

ni∑
j=1

(wi,j −
1

ni
)2 ≤ u(α)2X 2

1,1−α.

Proof of Lemma B.2.2. Taylor expand each summand in the left hand side of the first constraint
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in Uα, around the uniform weights, and use the mean value theorem to get

−2
m∑
i=1

ni∑
j=1

log(niwi,j) =
m∑
i=1

ni∑
j=1

(
0− 2ni(wi,j −

1

ni
) + (θi,jwi,j + (1− θi,j)

1

ni
)−2(wi,j −

1

ni
)2

)

=

m∑
i=1

ni∑
j=1

(θi,jwi,j + (1− θi,j)
1

ni
)−2(wi,j −

1

ni
)2

where θi,j is some constant such that 0 ≤ θi,j ≤ 1, for each i, j. Lemma B.2.1 implies θi,jwi,j + (1−

θi,j)
1
ni
≤ u(α)

ni
. Hence

m∑
i=1

ni∑
j=1

n2
i

u(α)2
(wi,j −

1

ni
)2 ≤ −2

m∑
i=1

ni∑
j=1

log(niwi,j) ≤ X 2
1,1−α.

Multiplying u(α)2 on both sides completes the proof. �

Now we are ready to prove Proposition 3.4.2. Let xi = (xi,1, . . . , xi,Ti). We will first show

the uniform error bound of the linear approximation ZL, and then ẐL. We start the analysis by

expressing Z(w1, . . . ,wm) as

Z(w1, . . . ,wm) =

∫
h(x1, . . . ,xm)

m∏
i=1

Ti∏
t=1

dwi(xi,t) (B.4)

where we abuse notation to write wi as a probability measure over the observations {Xi,j}j=1,...,ni .

Rewrite dwi as d(wi− P̂i + P̂i−Pi +Pi), where P̂i is the empirical distribution of the i-th sample,

and expand out wi − P̂i, P̂i − Pi and Pi in the product measure in (B.4) to get

Z(w1, . . . ,wm)

=
∑
T 1
i ,T 2

i

∫
h(X1, . . . ,Xm)

m∏
i=1

∏
t/∈T 1

i ∪T 2
i

dPi(xi,t)

m∏
i=1

∏
t∈T 1

i

d(P̂i − Pi)(xi,t)
m∏
i=1

∏
t∈T 2

i

d(wi − P̂i)(xi,t)

=
T∑
d=0

∑
∑
i(|T 1

i |+|T 2
i |)=d

∫
h

m∏
i=1

∏
t/∈T 1

i ∪T 2
i

dPi(xi,t)
m∏
i=1

∏
t∈T 1

i

d(P̂i − Pi)(xi,t)
m∏
i=1

∏
t∈T 2

i

d(wi − P̂i)(xi,t)

(B.5)

where for each i, T 1
i , T 2

i are two disjoint and ordered (possibly empty) subsets of {1, 2, . . . , Ti}
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that specifies the second subscript t of the argument xi,t, |·| denotes the cardinality of a set, and

T =
∑m

i=1 Ti.

The desired conclusion can be achieved upon completing the following two tasks: (1) show that

the terms with d = 0, 1 above give the linear approximation; (2) each term with d ≥ 2 is of order

O(1/nd) in terms of its mean square.

Task one: d = 0, 1

The only summand with d = 0 is

∫
h(x1, . . . ,xm)

m∏
i=1

Ti∏
t=1

dPi(xi,t) = Z(P1, . . . , Pm) = Z∗,

and each summand with d = 1 is one of the following two types

∫
h(x1, . . . ,xm)

∏
i 6=r or t6=s

dPi(xi,t)d(P̂r − Pr)(xr,s), for r = 1, . . . ,m, s = 1, . . . , Ti

or ∫
h(x1, . . . ,xm)

∏
i 6=r or t6=s

dPi(xi,t)d(wr − P̂r)(xr,s), for r = 1, . . . ,m, s = 1, . . . , Ti.

For each r and s the two types sum up to

∫
h(x1, . . . ,xm)

∏
i 6=r or t6=s

dPi(xi,t)d(wr − Pr)(xr,s).
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Summing over all r, s gives

m∑
r=1

Tr∑
s=1

∫
h(x1, . . . ,xm)

∏
i 6=r or t6=s

dPi(xi,t)d(wr − Pr)(xr,s)

=
m∑
r=1

Tr∑
s=1

∫
h(x1, . . . ,x

(s)
r , . . .xm)

∏
i 6=r or t6=s

dPi(xi,t)d(wr − Pr)(xr)

by replacing xr,s with xr, and denoting x(s)
r as xr but with xr,s replaced by xr

=

m∑
r=1

∫ ( Tr∑
s=1

∫
h(x1, . . . ,x

(s)
r , . . . ,xm)

∏
i 6=r or t6=s

dPi(xi,t)
)
d(wr − Pr)(xr)

=

m∑
r=1

∫ Tr∑
s=1

(∫
h(x1, . . . ,x

(s)
r , . . . ,xm)

∏
i 6=r or t6=s

dPi(xi,t)− Z(P1, . . . , Pm)
)
dwr(xr)

=

m∑
r=1

ni∑
j=1

wr,jGr(Xr,j).

This concludes that the summands with d = 0, 1 sum up to the linear approximation ZL = Z∗ +∑m
i=1

∑ni
j=1wi,jGi(Xi,j).

Task two: d ≥ 2

Now we deal with the terms in (B.5) with d ≥ 2. Define

M := max
I1,...,Im

EP1,...,Pm [|h(X1,I1 , . . . ,Xm,Im)|2], (B.6)

where each Ii ∈ {1, 2, . . . , Ti}Ti . Note that M is finite under Assumption 3.3.3 due to Jensen’s

inequality. Consider a generic summand from (B.5)

Rd(T 1, T 2) =

∫
h(X1, . . . ,Xm)

m∏
i=1

∏
t/∈T 1

i ∪T 2
i

dPi(xi,t)

m∏
i=1

∏
t∈T 1

i

d(P̂i−Pi)(xi,t)
m∏
i=1

∏
t∈T 2

i

d(wi− P̂i)(xi,t)

where we denote T 1 = (T 1
1 , . . . , T 1

m), T 2 = (T 2
1 , . . . , T 2

m). Note that
∑m

i=1(|T 1
i | + |T 2

i |) = d, and

the subscript d in Rd(T 1, T 2) is used to emphasize this dependence. Let T 1
i (t) (or T 2

i (t)) be the
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t-th element of T 1
i (or T 2

i ). Our goal is to show that

ED
[

sup
(w1,...,wm)∈Uα

|Rd(T 1, T 2)|2
]

= O
( m∏
i=1

n
−(|T 1

i |+|T 2
i |)

i

)
= O(n−d), (B.7)

where ED is used for the expectation because sup(w1,...,wm)∈Uα |Rd(T
1, T 2)|2 is a theoretical quantity

that depends on the input data only and can not be exactly computed from simulation runs.

First, we rewrite Rd(T 1, T 2) as a sum and from there derive an upper bound (B.10) of its

supremum. Define the conditional expectation of h for given subscripts T 1 = (T 1
1 , . . . , T 1

m), T 2 =

(T 2
1 , . . . , T 2

m)

hT 1,T 2(x1,T 1
1
,x1,T 2

1
, . . . ,xm,T 1

m
,xm,T 2

m
) = EP1,...,Pm [h(X1, . . . ,Xm)|Xi,t = xi,t,∀i and t ∈ T 1

i ∪ T 2
i ]

where each xi,T 1
i

= (xi,t)t∈T 1
i

and xi,T 2
i

= (xi,t)t∈T 2
i

. Considering all possible subsets T̃ 1
i of T 1

i for

each i and denoting T̃ 1 = (T̃ 1
1 , . . . , T̃ 1

m), we define a centered conditional expectation (its property

will be discussed momentarily)

h̃T 1,T 2(x1,T 1
1
,x1,T 2

1
, . . . ,xm,T 1

m
,xm,T 2

m
)

=
∑

T̃ 1
i ⊂T 1

i ,∀i

(−1)
∑
i(|T 1

i |−|T̃ 1
i |)hT̃ 1,T 2(x1,T̃ 1

1
,x1,T 2

1
, . . . ,xm,T̃ 1

m
,xm,T 2

m
). (B.8)

By expanding out the product measure
∏m
i=1

∏
t/∈T 1

i ∪T 2
i
dPi(xi,t)

∏m
i=1

∏
t∈T 1

i
d(P̂i − Pi)(xi,t) and

noticing that each P̂i is a probability measure, Rd(T 1, T 2) can be expressed as

∫
h̃T 1,T 2(x1,T 1

1
,x1,T 2

1
, . . . ,xm,T 1

m
,xm,T 2

m
)
m∏
i=1

∏
t∈T 1

i

dP̂i(xi,t)
m∏
i=1

∏
t∈T 2

i

d(wi − P̂i)(xi,t). (B.9)

From now on, we denote Xi,j , i = 1, . . . ,m, j = 1, . . . , nias the observations, and for each i let

J1
i = (J1

i (1), . . . , J1
i (|T 1

i |)) ∈ {1, 2, . . . , ni}
|T 1
i |

J2
i = (J2

i (1), . . . , J2
i (|T 2

i |)) ∈ {1, 2, . . . , ni}
|T 2
i |
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be two sequences of indices (if T 1
i or T 2

i is empty, then J1
i or J2

i is empty accordingly) that specify

the second subscript of data Xi,j . Then (B.9) can be written more explicitly as

Rd(T 1, T 2) =
∑

J2
1 ,...,J

2
m

[∏
i,t

(
wi,J2

i (t) −
1

ni
)
] ∑
J1
1 ,...,J

1
m

1∏
i n
|T 1
i |

i

h̃T 1,T 2(X1,J1
1
,X1,J2

1
, . . . ,Xm,J1

m
,Xm,J2

m
)

where each Xi,J1
i

= (Xi,J1
i (1), . . . , Xi,J1

i (|T 1
i |)

) contains the input data specified by J1
i , and similarly

Xi,J2
i

= (Xi,J2
i (1), . . . , Xi,J2

i (|T 2
i |)

). We bound the supremum as follows

|Rd(T 1, T 2)|2 ≤
[ ∑
J2
1 ,...,J

2
m

∏
i,t

(
wi,J2

i (t) −
1

ni

)2][ ∑
J2
1 ,...,J

2
m

( 1∏
i n
|T 1
i |

i

∑
J1
1 ,...,J

1
m

h̃T 1,T 2

)2]

=

m∏
i=1

 ni∑
j=1

(
wi,j −

1

ni

)2
|T 2

i | [ ∑
J2
1 ,...,J

2
m

( 1∏
i n
|T 1
i |

i

∑
J1
1 ,...,J

1
m

h̃T 1,T 2

)2]

where we suppress the arguments of h̃T 1,T 2 , and use the Cauchy-Schwartz inequality. The upper

bound from Lemma B.2.2 then implies that
∑ni

j=1

(
wi,j − 1

ni

)2
≤ u(α)2X 2

1,1−α/n
2
i , and hence for

some constant C1 depending on α and d

sup
(w1,...,wm)∈Uα

|Rd(T 1, T 2)|2 ≤ C1

m∏
i=1

n
−2|T 2

i |
i ·

[ ∑
J2
1 ,...,J

2
m

( 1∏
i n
|T 1
i |

i

∑
J1
1 ,...,J

1
m

h̃T 1,T 2

)2]
. (B.10)

From (B.10), the proof now boils down to bounding the expectation of

( 1∏
i n
|T 1
i |

i

∑
J1
1 ,...,J

1
m

h̃T 1,T 2(X1,J1
1
,X1,J2

1
, . . . ,Xm,J1

m
,Xm,J2

m
)
)2

for each fixed J2
1 , . . . , J

2
m. We need a few properties of h̃T 1,T 2 . The first property, which follows

from its definition, is that, for any i and t ∈ T 1
i , the marginal expectation under the true input

distributions is zero, i.e.

∫
h̃T 1,T 2(x1,T 1

1
,x1,T 2

1
, . . . ,xm,T 1

m
,xm,T 2

m
)dPi(xi,t) = 0. (B.11)
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The second property is a bound of the second moment that is uniform in T 1, T 2. By Jensen’s

inequality, one can show that for any m sequences of indices Ii = (Ii(1), . . . , Ii(|T 1
i | + |T 2

i |)) ∈{
1, 2, . . . , |T 1

i |+ |T 2
i |
}|T 1

i |+|T 2
i | the conditional expectation hT 1,T 2 satisfies

EP1,...,Pm [h2
T 1,T 2(X1,I1 , . . . ,Xm,Im)] ≤M

where Xi,Ii = (Xi(Ii(1)), . . . , Xi(Ii(|T 1
i | + |T 2

i |))) and M is the second moment bound defined in

(B.6). (B.8) tells us that h̃T 1,T 2 is the sum of 2|T
1| conditional expectations of such type. By the

Minkowski inequality we have

EP1,...,Pm [h̃2
T 1,T 2(X1,I1 , . . . ,Xm,Im)] ≤ 4|T

1|M. (B.12)

Now we are able to proceed with

ED
( 1∏

i n
|T 1
i |

i

∑
J1
1 ,...,J

1
m

h̃T 1,T 2(X1,J1
1
,X1,J2

1
, . . . ,Xm,J1

m
,Xm,J2

m
)
)2

=
1∏

i n
2|T 1

i |
i

∑
J1
1 ,...,J

1
m

∑
J̃1
1 ,...,J̃

1
m

ED[h̃T 1,T 2(X1,J1
1
,X1,J2

1
, . . . ,Xm,J1

m
,Xm,J2

m
)·

h̃T 1,T 2(X1,J̃1
1
,X1,J2

1
, . . . ,Xm,J̃1

m
,Xm,J2

m
)]. (B.13)

Note that because of property (B.11), the expectation in (B.13) is zero if there is some index

i∗ ∈ {1, . . . ,m} and j∗ ∈ {1, . . . , ni} such that Xi∗,j∗ does not appear in Xi∗,J2
i∗

and shows up

exactly once among Xi∗,J1
i∗
,Xi∗,J̃1

i∗
. Note that, for each fixed i = 1, . . . ,m, the number of choices of

J1
i , J̃

1
i that avoid this occurrence is no more than C2n

|T 1
i |

i , where C2 is some constant depending on

d only. So the total number of choices of J1
i , J̃

1
i , i = 1, . . . ,m that can possibly produce a nonzero

expectation in (B.13) is at most

Cm2

( m∏
i=1

n
|T 1
i |

i

)
. (B.14)

On the other hand, applying the Cauchy-Schwartz inequality and the upper bound (B.12) to the
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expectation in (B.13) gives

∣∣∣ED[h̃T 1,T 2(X1,J1
1
,X1,J2

1
, . . . ,Xm,J1

m
,Xm,J2

m
)h̃T 1,T 2(X1,J̃1

1
,X1,J2

1
, . . . ,Xm,J̃1

m
,Xm,J2

m
)]
∣∣∣ ≤ 4|T

1|M

for any J1
i , J̃

1
i , J

2
i , i = 1, . . . ,m. We conclude from (B.13), (B.14) and the above bound that

ED
( 1∏

i n
|T 1
i |

i

∑
J1
1 ,...,J

1
m

h̃T 1,T 2(X1,J1
1
,X1,J2

1
, . . . ,Xm,J1

m
,Xm,J2

m
)
)2
≤ 4|T

1|Cm2 M∏
i n
|T 1
i |

i

(B.15)

uniformly for all choices of J2
i , i = 1, . . . ,m.

Finally, we go back to the inequality (B.10) to arrive at

ED
[

sup
(w1,...,wm)∈Uα

|Rd(T 1, T 2)|2
]
≤ C1

m∏
i=1

n
−2|T 2

i |
i ·

[ ∑
J2
1 ,...,J

2
m

ED
(∏

i

1

n
|T 1
i |

i

∑
J1
1 ,...,J

1
m

h̃T 1,T 2

)2]

≤ C1

m∏
i=1

n
−2|T 2

i |
i ·

[ ∑
J2
1 ,...,J

2
m

4|T
1|Cm2 M∏
i n
|T 1
i |

i

]

≤ 4|T
1|C1C

m
2 M

m∏
i=1

n
−(|T 1

i |+|T 2
i |)

i . (B.16)

This proves (B.7). Note that, since T is fixed, from (B.5),

sup
(w1,...,wm)∈Uα

∣∣ ∑
T 1,T 2,d≥2

Rd(T 1, T 2)
∣∣ ≤ ∑

T 1,T 2,d≥2

sup
(w1,...,wm)∈Uα

|Rd(T 1, T 2)|

and the Minkowski inequality we conclude that ED
[

sup(w1,...,wm)∈Uα |
∑
T 1,T 2,d≥2Rd(T 1, T 2)|2

]
=

O(n−2). This therefore shows that ED
[

sup(w1,...,wm)∈Uα |Z − ZL|2
]

= O(n−2) as the data size

n→∞.

Now we prove the uniform approximation error of ẐL. The approach is to expand the integral

form of Z(w1, . . . ,wm) in a similar way to (B.5), but around P̂i’s instead of Pi’s

Z(w1, . . . ,wm) =

T∑
d=0

∑
∑
i |T 2

i |=d

∫
h(x1, . . . ,xm)

m∏
i=1

∏
t/∈T 2

i

dP̂i(xi,t)

m∏
i=1

∏
t∈T 2

i

d(wi − P̂i)(xi,t) (B.17)
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where each T 2
i is again an ordered subset of {1, 2, . . . , Ti} that contains the second subscript t of

the argument xi,t. Similar to above, summands with d = 0, 1 gives the linear approximation at the

empirical distributions, i.e. ẐL(w1, . . . ,wm), and all summands with d ≥ 2 will be the associated

approximation error. To bound each summand with d ≥ 2, we rewrite P̂i as P̂i − Pi + Pi, and

suitably expand out the product measure
∏m
i=1

∏
t/∈T 2

i
dP̂i(xi,t) in (B.17) to get

∫
h(x1, . . . ,xm)

m∏
i=1

∏
t/∈T 2

i

dP̂i(xi,t)
m∏
i=1

∏
t∈T 2

i

d(wi − P̂i)(xi,t)

=
∑

T 1
i , s.t.T 1

i ∩T 2
i =∅

∫
h(x1, . . . ,xm)

m∏
i=1

∏
t/∈T 1

i ∪T 2
i

dPi(xi,t)

m∏
i=1

∏
t∈T 1

i

d(P̂i − Pi)(xi,t)
m∏
i=1

∏
t∈T 2

i

d(wi − P̂i)(xi,t)

=
∑

T 1
i , s.t.T 1

i ∩T 2
i =∅

R|T 1|+d(T 1, T 2)

where each T 1
i is the ordered set consisting of the second subscripts t of all xi,t’s to which P̂i − Pi

is distributed, and R|T 1|+d(T 1, T 2) is the remainder term defined before. The desired conclusion

then follows from (B.7) and an argument analogous to the first part of the theorem. �

B.3 Proof of Results in Section 3.4.3

Proof of Theorem 3.4.3. To simplify the proof, we first argue that one can assume Var(Yi) > 0 and

EYi = 0 for all i = 1, . . . ,m without loss of generality. Let I = {i : Var(Yi) > 0, i = 1, . . . ,m} be

the set of indices whose corresponding Yi’s have non-zero variances. Then for i /∈ I each Yi,j = EYi



APPENDIX B. TECHNICAL PROOFS FOR CHAPTER 3 218

almost surely, hence

R(µ0)

= max


m∏
i=1

ni∏
j=1

niwi,j

∣∣∣∣ m∑
i=1

ni∑
j=1

Yi,jwi,j = µ0,

ni∑
j=1

wi,j = 1 for all i, wi,j ≥ 0 for all i, j


= max


m∏
i=1

ni∏
j=1

niwi,j

∣∣∣∣∑
i∈I

ni∑
j=1

Yi,jwi,j = µ0 −
∑
i/∈I

EYi,
ni∑
j=1

wi,j = 1 for all i, wi,j ≥ 0 for all i, j


= max

∏
i∈I

ni∏
j=1

niwi,j

∣∣∣∣∑
i∈I

ni∑
j=1

Yi,jwi,j =
∑
i∈I

EYi,
ni∑
j=1

wi,j = 1 for i ∈ I, wi,j ≥ 0 for all i ∈ I, j


= max

∏
i∈I

ni∏
j=1

niwi,j

∣∣∣∣∑
i∈I

ni∑
j=1

(Yi,j − EYi)wi,j = 0,

ni∑
j=1

wi,j = 1 for i ∈ I, wi,j ≥ 0 for all i ∈ I, j


=RI(0)

where RI(0) is the analog of R(µ0) defined for the translated observations {Yi,1 − EYi, . . . , Yi,ni −

EYi}, i ∈ I, and in the third equality we put wi,j = 1/ni for i /∈ I into the objective, which can

be easily seen to be the maximizing weights for i /∈ I. Therefore, to prove the theorem for R(µ0),

one can work with RI(0) instead, and note that the change of m, the number of independent

distributions, does not affect the limit chi-square distribution.

In view of the above, we shall assume Var(Yi) > 0 and EYi = 0 for each i, hence R(µ0) is just

R(0). Introducing a slack variable µi for each
∑ni

j=1 Yi,jwi,j and taking the negative logarithm of

the objective convert the defining maximization of R(0) to the following convex program

min
w1,...,wm,µ

−
m∑
i=1

ni∑
j=1

log(niwi,j)

subject to

ni∑
j=1

Yi,jwi,j = µi, i = 1, . . . ,m

ni∑
j=1

wi,j = 1, i = 1, . . . ,m

m∑
i=1

µi = 0

(B.18)
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where µ = (µ1, . . . , µm). The non-negativity constraints wi,j ≥ 0 are dropped since they are

implicitly imposed in the objective function.

Step one: We prove that, with probability tending to one, Slater’s condition holds for (B.18).

In other words, consider the event

S =

 (B.18) has at least one feasible solution

(w1, . . . ,wm,µ) such that wi,j > 0 for all i, j


and we prove P (S)→ 1 as n→∞. To this end, consider the following events indexed by i

S̃i =

{
min

j=1,...,ni
Yi,j < 0 < max

j=1,...,ni
Yi,j

}
.

We shall prove that P (S̃i)→ 1 for all i and that ∩mi=1S̃i ⊆ S, which imply that P (S)→ 1 because

P (Sc) ≤ P ((∩mi=1S̃i)c) = P (∪mi=1S̃ci ) ≤
m∑
i=1

P (S̃ci ) =
m∑
i=1

(1− P (S̃i))→ 0.

Note that Var(Yi) > 0 and EYi = 0 imply P (Yi ≥ 0) < 1, P (Yi ≤ 0) < 1. Hence as n→∞

P
(

min
j=1,...,ni

Yi,j ≥ 0
)

=

ni∏
j=1

P (Yi,j ≥ 0) = (P (Yi ≥ 0))ni → 0

which is equivalently P
(

minj Yi,j < 0
)
→ 1. Similarly, P

(
maxj Yi,j > 0

)
→ 1 holds. Combining

these two limits gives P (S̃i) → 1. To show ∩mi=1S̃i ⊆ S, note that if S̃i happens then there must

exist convex-combination weights wi,j > 0,
∑ni

j=1wi,j = 1 such that
∑ni

j=1 Yi,jwi,j = 0. When all

S̃i’s happen, one can take such weights and µi = 0 for each i to see that S also happens.

Step two: We derive the KKT conditions for (B.18), conditioned on Slater’s condition S.

Notice that each − log(niwi,j) is bounded below by − log ni, and when wi,j → 0 for some i, j the

corresponding − log(niwi,j)→ +∞, hence the objective −
∑

i,j log(niwi,j)→ +∞ as mini,j wi,j →

0. Therefore, the optimal solution, if it exists, must lie in the region where mini,j wi,j ≥ ε for some

small ε > 0 that depends on ni’s. Since the set {(w1, . . . ,wm) :
∑m

i=1

∑ni
j=1 Yi,jwi,j = 0,

∑ni
j=1wi,j =

1, wi,j ≥ ε for all i, j} is compact, an optimal solution (w∗1, . . . ,w
∗
m,µ

∗) exists for (B.18). Moreover,
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strict convexity of the objective forces the optimal solution to be unique. By Corollary 28.3.1 of

Rockafellar (1970), there must exist Lagrange multipliers (λ∗1,λ
∗
2, λ
∗), where λ∗1 = (λ1,1, . . . , λ1,m)

is associated with the first m constraints, λ∗2 = (λ2,1, . . . , λ2,m) with the second m constraints, and

λ∗ with the last constraint in (B.18), that together with the optimal solution (w∗1, . . . ,w
∗
m,µ

∗)

satisfy the following KKT conditions

ni∑
j=1

Yi,jw
∗
i,j = µ∗i , for i = 1, . . . ,m

ni∑
j=1

w∗i,j = 1, for i = 1, . . . ,m

m∑
i=1

µ∗i = 0

− 1

w∗i,j
+ Yi,jλ

∗
1,i + λ∗2,i = 0, for all i, j (B.19)

−λ∗1,i + λ∗ = 0, for i = 1, . . . ,m.

Some basic algebra shows λ∗2,i = ni − λ∗1,iµ∗i , λ∗ = λ∗1,i for all i, hence it follows from (B.19) that

w∗i,j =
1

ni + λ∗(Yi,j − µ∗i )
(B.20)

and λ∗, µ∗i satisfy

ni∑
j=1

Yi,j − µ∗i
ni + λ∗(Yi,j − µ∗i )

= 0, for i = 1, . . . ,m (B.21)

m∑
i=1

µ∗i = 0. (B.22)

A note on Slater’s condition: Note that λ∗, µ∗i , i = 1, . . . ,m are guaranteed to exist and

defined by (B.21) and (B.22) only when Slater’s condition S holds. To make these variables well

defined regardless of the Slater’s condition, we simply let λ∗, µ∗i , i = 1, . . . ,m all be 0 when S

does not hold in the rest of the proof. Every intermediate inequality/equality below related to

λ∗, µ∗i , i = 1, . . . ,m is interpreted as restricted to the event of S. For example, a ≤ b and a = b
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should be interpreted as a · 1{S} ≤ b · 1{S} and a · 1{S} = b · 1{S}. All asymptotic statements

or quantities that rely on stochastic orders op, Op and convergence in distribution, remain valid via

a decomposition of the involved probability into S and Sc and using P (S) → 1. To demonstrate

this argument concretely, we will show as an example in (B.43) how it works. But to avoid adding

overwhelming complexities to our proof, we will keep this aspect silent until then.

Step three: We show that the Lagrange multiplier λ∗ has a magnitude of Op(n
1/2). Write

(B.20) as

1

ni + λ∗(Yi,j − µ∗i )
=

1

ni

(
1−

λ∗

ni
(Yi,j − µ∗i )

1 + λ∗

ni
(Yi,j − µ∗i )

)
(B.23)

and substituting (B.23) into (B.21) gives

Ȳi − µ∗i =
1

ni

ni∑
j=1

λ∗

ni
(Yi,j − µ∗i )2

1 + λ∗

ni
(Yi,j − µ∗i )

, (B.24)

where Ȳi = 1
ni

∑ni
j=1 Yi,j . Multiply both sides by sign(λ∗) to make the right hand side positive

sign(λ∗)(Ȳi − µ∗i ) =
1

ni

ni∑
j=1

|λ∗|
ni

(Yi,j − µ∗i )2

1 + λ∗

ni
(Yi,j − µ∗i )

. (B.25)

This is because, since each w∗i,j is strictly positive, from (B.20) we must have 1 + λ∗

ni
(Yi,j − µ∗i ) >

0, ∀i, j. Also note that |µ∗i | =
∣∣∣∑ni

j=1 Yi,jw
∗
i,j

∣∣∣ ≤ ∑ni
j=1w

∗
i,j |Yi,j | ≤ maxj=1,...,ni |Yi,j |. Let ZN =

maxi=1,...,m,j=1,...,ni |Yi,j |, and 0 < c ≤ c < ∞ be constants such that c ≤ ni/n ≤ c for all i. The

existence of c and c is guaranteed under Assumption 3.3.1. A lower bound of the right hand side
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of (B.25) can be derived as follows

1

ni

ni∑
j=1

|λ∗|
ni

(Yi,j − µ∗i )2

1 + λ∗

ni
(Yi,j − µ∗i )

≥ 1

ni

ni∑
j=1

|λ∗|
ni

(Yi,j − µ∗i )2

1 + |λ∗|
ni
|Yi,j − µ∗i |

≥ 1

ni

ni∑
j=1

|λ∗|
ni

(Yi,j − µ∗i )2

1 + |λ∗|
ni
· 2 maxj′=1,...,ni

∣∣Yi,j′∣∣
≥ 1

ni

ni∑
j=1

|λ∗|
n·c/c(Yi,j − µ

∗
i )

2

1 + |λ∗|
n·c/c · 2ZN

=

|λ∗|
n·c/c

1 + |λ∗|
n·c/c · 2ZN

(
σ̂2
i − 2Ȳiµ

∗
i + µ∗i

2
)

where σ̂2
i =

1

ni

ni∑
j=1

Y 2
i,j

≥
|λ∗|
n·c/c

1 + |λ∗|
n·c/c · 2ZN

(
σ̂2
i − 2Ȳiµ

∗
i

)
(B.26)

Applying Lemma 11.2 in Owen (2001) to {Yi,1, . . . , Yi,ni} reveals that, almost surely, we have

maxj=1,...,ni |Yi,j | = o(n
1
2
i ) as ni →∞ for each i, hence ZN = o(n

1
2 ) and µ∗i = o(n

1
2 ) almost surely.

By the central limit theorem, each Ȳi = Op(n
− 1

2
i ) = Op(n

− 1
2 ). Substituting the lower bound (B.26)

into (B.25) and multiplying each side by 1 + |λ∗|
n·c/c · 2ZN give

(
1 +

|λ∗|
n · c/c

· 2ZN
)

sign(λ∗)
(
Ȳi − µ∗i

)
≥ |λ∗|

n · c/c
(
σ̂2
i − 2Ȳiµ

∗
i

)
≥ |λ∗|

n · c/c
(σ̂2
i +Op(n

− 1
2 )o(n

1
2 )) (B.27)

=
|λ∗|
n · c/c

(σ̂2
i + op(1)). (B.28)

Summing up both sides of (B.28) over i = 1, . . . ,m, and using (B.22) and ZN = o(n
1
2 ) we have

(
1 +
|λ∗|
n
o(n

1
2 )

)
sign(λ∗)

m∑
i=1

Ȳi ≥
|λ∗|
n · c/c

(
m∑
i=1

σ̂2
i + op(1)

)
. (B.29)

Rearranging the terms gives

|λ∗|
n

(
c

c

m∑
i=1

σ̂2
i + op(1) + o(n

1
2 )

m∑
i=1

Ȳi

)
≤

∣∣∣∣∣
m∑
i=1

Ȳi

∣∣∣∣∣ . (B.30)
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Note that σ̂2
i → σ2

i := V ar(Yi) almost surely by the strong law of large numbers, and
∑m

i=1 Ȳi =∑m
i=1Op(n

− 1
2

i ) = Op(n
− 1

2 ). By the assumption
∑m

i=1 σ
2
i > 0, (B.30) implies

|λ∗|
n
≤ Op(n

− 1
2 )

c
c

∑m
i=1 σ

2
i + op(1)

.

That is, |λ
∗|
n = Op(n

− 1
2 ).

Step four: We show the convergence of µ∗i to the true mean 0, i.e., µ∗i = op(1). From (B.23)

it follows that

Ȳi − µ∗i =

ni∑
j=1

(
1

ni
− w∗i,j

)
Yi,j

=
1

ni

ni∑
j=1

λ∗

ni
(Yi,j − µ∗i )

1 + λ∗

ni
(Yi,j − µ∗i )

Yi,j . (B.31)

We have shown in the Step three that ZN = o(n
1
2 ), |µ∗i | ≤ ZN and |λ∗|

n = Op(n
− 1

2 ). Hence

maxj
∣∣λ∗
ni

(Yi,j − µ∗i )
∣∣ = O

( |2λ∗|
n ZN

)
= Op(n

− 1
2 )o(n

1
2 ) = op(1). Therefore

∣∣Ȳi − µ∗i ∣∣ ≤ 1

ni

ni∑
j=1

∣∣∣∣∣
λ∗

ni
(Yi,j − µ∗i )

1 + λ∗

ni
(Yi,j − µ∗i )

∣∣∣∣∣ |Yi,j |
≤ 1

ni

ni∑
j=1

∣∣∣∣∣ maxj′
∣∣λ∗
ni

(Yi,j′ − µ∗i )
∣∣

1−maxj′
∣∣λ∗
ni

(Yi,j′ − µ∗i )
∣∣
∣∣∣∣∣ |Yi,j |1

{
max
j′

∣∣∣λ∗
ni

(Yi,j′ − µ∗i )
∣∣∣ < 1

}

+
1

ni

ni∑
j=1

∣∣∣∣∣
λ∗

ni
(Yi,j − µ∗i )

1 + λ∗

ni
(Yi,j − µ∗i )

∣∣∣∣∣ |Yi,j | · 1
{

max
j′

∣∣∣λ∗
ni

(Yi,j′ − µ∗i )
∣∣∣ ≥ 1

}

=

∣∣∣∣∣ maxj′
∣∣λ∗
ni

(Yi,j′ − µ∗i )
∣∣

1−maxj′
∣∣λ∗
ni

(Yi,j′ − µ∗i )
∣∣
∣∣∣∣∣1
{

max
j′

∣∣∣∣λ∗ni (Yi,j′ − µ∗i )
∣∣∣∣ < 1

}
1

ni

ni∑
j=1

|Yi,j |+ op(1)(B.32)

≤
∣∣∣∣ op(1)

1− op(1)

∣∣∣∣ · 1

ni

ni∑
j=1

|Yi,j |+ op(1)

= op(1).

We explain the op(1) term in line (B.32) through a general statement:

Lemma B.3.1 Let ξn1,...,nm ∈ [−∞,+∞] be a sequence of random variables indexed by n1, . . . , nm,
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and En1,...,nm be a sequence of events such that P (En1,...,nm) → 0 as all ni → ∞. Suppose further

that ξn1,...,nm = −∞ or +∞ only when En1,...,nm occurs, so that ξn1,...,nm · 1{En1,...,nm} does not

involve the indeterminate operation ∞ · 0. Then for every sequence of constants an1,...,nm > 0, we

have ξn1,...,nm · 1{En1,...,nm} = op(an1,...,nm) as all ni →∞.

Proof of Lemma B.3.1. For any ε > 0 we write P (|ξn1,...,nm | · 1{En1,...,nm} > εan1,...,nm) ≤

P (|ξn1,...,nm | · 1{En1,...,nm} 6= 0) ≤ P (En1,...,nm) → 0. The desired conclusion follows from the

definition of op(·). �

The op(1) in (B.32) follows from Lemma B.3.1 by taking ξn1,...,nm = 1
ni

∑ni
j=1

∣∣∣∣ λ∗
ni

(Yi,j−µ∗i )

1+λ∗
ni

(Yi,j−µ∗i )

∣∣∣∣ |Yi,j |
and an1,...,nm = 1, and noting that P

(
maxj′

∣∣∣λ∗ni (Yi,j′−µ∗i )∣∣∣ ≥ 1
)
→ 0 because maxj′

∣∣∣λ∗ni (Yi,j′−µ∗i )∣∣∣ =

op(1).

On the other hand, Ȳi = op(1) by the law of large numbers. Hence µ∗i = op(1).

Step five: We derive formula (B.39) for the Lagrange multiplier λ∗ in terms of the data.

Rewrite (B.24) as

Ȳi − µ∗i =
1

ni

ni∑
j=1

[
λ∗

ni
(Yi,j − µ∗i )2 −

(λ
∗

ni
)2(Yi,j − µ∗i )3

1 + λ∗

ni
(Yi,j − µ∗i )

]
,

=
λ∗

ni

 1

ni

ni∑
j=1

(Yi,j − µ∗i )2

− ∣∣∣∣λ∗ni
∣∣∣∣2 1

ni

ni∑
j=1

(Yi,j − µ∗i )3

1 + λ∗

ni
(Yi,j − µ∗i )

. (B.33)
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The second term in (B.33) can be bounded as

≤
∣∣∣∣λ∗ni
∣∣∣∣2 1

ni

ni∑
j=1

|Yi,j − µ∗i |
3∣∣1 + λ∗

ni
(Yi,j − µ∗i )

∣∣
≤

∣∣∣∣λ∗ni
∣∣∣∣2 · 2ZN

1−maxj′
∣∣λ∗
ni

(Yi,j′ − µ∗i )
∣∣ · 1

ni

ni∑
j=1

|Yi,j − µ∗i |
2 1

{
max
j′

∣∣∣λ∗
ni

(Yi,j′ − µ∗i )
∣∣∣ < 1

}

+

∣∣∣∣λ∗ni
∣∣∣∣2 1

ni

ni∑
j=1

|Yi,j − µ∗i |
3∣∣1 + λ∗

ni
(Yi,j − µ∗i )

∣∣ · 1
{

max
j′

∣∣∣λ∗
ni

(Yi,j′ − µ∗i )
∣∣∣ ≥ 1

}

≤
∣∣∣∣λ∗ni
∣∣∣∣2 · 2ZN

1−maxj′
∣∣λ∗
ni

(Yi,j′ − µ∗i )
∣∣ · 1

ni

ni∑
j=1

|Yi,j − µ∗i |
2 + op(n

− 1
2 ) (B.34)

= Op(n
−1)

o(n1/2)

1− op(1)
Op(1) + op(n

− 1
2 ) (B.35)

= op(n
− 1

2 )

where in passing from line (B.34) to line (B.35), we use 1
ni

∑ni
j=1 |Yi,j − µ∗i |

2 = Op(1) which holds

because

1

ni

ni∑
j=1

|Yi,j − µ∗i |
2 =

1

ni

ni∑
j=1

Y 2
i,j − 2Ȳiµ

∗
i + µ∗i

2 = σ2
i +Op

(
n−

1
2
)
op(1) + op(1) = σ2

i + op(1), (B.36)

and the op(n
−1/2) term in (B.34) follows from Lemma B.3.1 with an1,...,nm = n−

1
2 . (B.36) also

implies that the first term in (B.33) is λ∗

ni
(σ2
i + op(1)). Hence (B.33) can be written as

Ȳi − µ∗i =
λ∗

ni
σ2
i + op(n

− 1
2 ). (B.37)

Summing (B.37) over i = 1, . . . ,m and using (B.22) give

m∑
i=1

Ȳi = λ∗
m∑
i=1

σ2
i

ni
+ op(n

− 1
2 ). (B.38)

Therefore the expression for λ∗ is

λ∗ =

∑m
i=1 Ȳi + op(n

− 1
2 )∑m

i=1
σ2
i
ni

. (B.39)
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Step six: We substitute µ∗i = op(1) and (B.39) into (B.20) to derive a formula for w∗i,j , and

from there we analyze the Taylor expansion of −2 logR(0) to conclude the desired result. Each

− log(niw
∗
i,j) = log(1 +

λ∗

ni
(Yi,j − µ∗i )) =

λ∗

ni
(Yi,j − µ∗i )−

λ∗2

2n2
i

(Yi,j − µ∗i )2 + ηi,j ,

where ηi,j = 1

3(1+θi,j
λ∗
ni

(Yi,j−µ∗i ))3

(
λ∗

ni
(Yi,j − µ∗i )

)3
for some θi,j ∈ (0, 1), so the log profile likelihood

ratio can be expressed as

−2 logR(0) = 2

m∑
i=1

ni∑
j=1

log(1 +
λ∗

ni
(Yi,j − µ∗i ))

= 2
m∑
i=1

ni∑
j=1

(
λ∗

ni
(Yi,j − µ∗i )−

λ∗2

2n2
i

(Yi,j − µ∗i )2 + ηi,j

)

= 2
m∑
i=1

λ∗(Ȳi − µ∗i )−
m∑
i=1

λ∗2

ni
· 1

ni

ni∑
j=1

(Yi,j − µ∗i )2 +
m∑
i=1

ni∑
j=1

2ηi,j (B.40)

= 2λ∗
m∑
i=1

Ȳi −
m∑
i=1

λ∗2

ni
(σ2
i + op(1)) +

m∑
i=1

ni∑
j=1

2ηi,j (B.41)

The equality between (B.40) and (B.41) follows from (B.22) and (B.36). To bound the last term
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in (B.41) we write

∣∣∣∣∣∣
∑
i,j

2ηij

∣∣∣∣∣∣
≤ 2

3(1−maxi′,j′
∣∣ λ∗
ni′

(Yi′,j′ − µ∗i′)
∣∣)3

∣∣∣∣ λ∗

mini′ ni′

∣∣∣∣3∑
i,j

|Yi,j − µ∗i |
3 · 1

{
max
i′,j′

∣∣ λ∗
ni′

(Yi′,j′ − µ∗i′)
∣∣ < 1

}

+

∣∣∣∣∣∣
∑
i,j

2ηij

∣∣∣∣∣∣ · 1
{

max
i′,j′

∣∣ λ∗
ni′

(Yi′,j′ − µ∗i′)
∣∣ ≥ 1

}

=
2

3(1− op(1))3
Op
(
n−

3
2
) m∑
i=1

2niZN

ni∑
j=1

1

ni
|Yi,j − µ∗i |

2 + op(1)

where the second op(1) term follows from Lemma B.3.1 with an1,...,nm = 1

= Op
(
n−

3
2
) m∑
i=1

2niZNOp(1) + op(1)

= Op(n
− 3

2 )no(n
1
2 )Op(1) + op(1)

= op(1).

Hence using the above bound and (B.39), the log profile likelihood ratio (B.41) becomes

−2 logR(0) = 2λ∗
m∑
i=1

Ȳi − λ∗2
m∑
i=1

σ2
i

ni
+ op(1)

=

(∑m
i=1 Ȳi

)2∑m
i=1

σ2
i
ni

+ op(1). (B.42)

To resolve the issue caused by the possible absence of Slater’s condition (recall the note on Slater’s

condition at the end of Step two), note that the above result holds only in the event of S, namely

−2 logR(0) =

(∑m
i=1 Ȳi

)2∑m
i=1

σ2
i
ni

+ op(1) when 1{S} = 1.

Also note that by the definition of S the optimization problem in (B.18) is feasible when S occurs.

Equivalently, −2 logR(0) can take infinity values only when S does not occur. Thus Lemma B.3.1
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is applicable to −2 logR(0) · 1{Sc}. Now, regardless of the occurrence of S, we have

−2 logR(0) =
((∑m

i=1 Ȳi
)2∑m

i=1
σ2
i
ni

+ op(1)
)
· 1{S} − 2 logR(0) · 1{Sc}

=

(∑m
i=1 Ȳi

)2∑m
i=1

σ2
i
ni

+ op(1)−
((∑m

i=1 Ȳi
)2∑m

i=1
σ2
i
ni

+ op(1)
)
· 1{Sc} − 2 logR(0) · 1{Sc}

=

(∑m
i=1 Ȳi

)2∑m
i=1

σ2
i
ni

+ op(1). (B.43)

Here we apply Lemma B.3.1 with an1,...,nm = 1 to both
(
(
∑m

i=1 Ȳi)
2/
∑m

i=1
σ2
i
ni

+ op(1)
)
· 1{Sc} and

2 logR(0) · 1{Sc} to derive the last equality. This brings us back to (B.42).

By Slutsky’s theorem, it remains to show that the leading term in (B.42) ⇒ X 2
1 . The leading

term can be written as  m∑
i=1

ni∑
j=1

Yi,j

ni

√∑m
i=1

σ2
i
ni

2

. (B.44)

By the continuous mapping theorem it suffices to show that the sum in (B.44) ⇒ N (0, 1). We

check the Lindeberg condition for the triangular array

(WN,1, . . . ,WN,N ) :=
(
Y1,1, . . . , Y1,n1 , . . . , Ym,1, . . . , Ym,nm

)/(
ni

√√√√ m∑
i=1

σ2
i

ni

)

where N =
∑m

i=1 ni. The independence and mean zero conditions are obviously met, and

N∑
k=1

EW 2
N,k =

m∑
i=1

ni∑
j=1

E

 Y 2
i,j

n2
i

∑m
i=1

σ2
i
ni

 =
m∑
i=1

ni∑
j=1

σ2
i∑m

i=1 niσ
2
i

= 1.
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For any ε > 0

m∑
i=1

ni∑
j=1

E

 Yi,j

ni

√∑m
i=1

σ2
i
ni

2

· 1


∣∣∣∣∣∣ Yi,j

ni

√∑m
i=1

σ2
i
ni

∣∣∣∣∣∣ > ε




=

m∑
i=1

niE

 Yi,1

ni

√∑m
i=1

σ2
i
ni

2

· 1


∣∣∣∣∣∣ Yi,1

ni

√∑m
i=1

σ2
i
ni

∣∣∣∣∣∣ > ε




≤
m∑
i=1

C1E
[
Y 2
i,1 · 1

{
|Yi,1| > εC2

√
n
}]

for some constants C1, C2

→ 0 by the dominated convergence theorem.

Therefore the Lindeberg condition holds for WN,k. By the Lindeberg-Feller theorem (e.g., Theorem

3.4.5 in Durrett 2010), the sum in (B.44) ⇒ N (0, 1) hence (B.44) itself ⇒ X 2
1 . �

B.4 Proofs of Results in Section 3.4.4

Proof of Theorem 3.4.5. From Theorem 3.4.3 we know P (−2 logR(µ0) ≤ X 2
1,1−α) → 1 − α as

n→∞. That is, the set {µ ∈ R|−2 logR(µ) ≤ X 2
1,1−α} contains the true value µ0 with probability

1− α asymptotically. Note that this set can be identified as

V =


m∑
i=1

ni∑
j=1

Yi,jwi,j

∣∣∣∣− 2
m∑
i=1

ni∑
j=1

log(niwi,j) ≤ X 2
1,1−α,

ni∑
j=1

wi,j = 1 for all i, wi,j ≥ 0 for all i, j

 .

It is obvious that µ/µ = min /max{µ : µ ∈ V}, and they are attained because the feasible set

Uα is compact and the objective is linear hence continuous in wi,j ’s. So if the set V is convex,

then V = [µ, µ] which concludes the theorem. To show convexity, it is enough to notice that Uα is

convex, and the objective is linear in wi,j . �

Proof of Proposition 3.4.6. We need the following corollary of Theorem 3.4.3:

Corollary B.4.1 Let Ȳi =
∑ni

j=1 Yi,j/ni be the sample mean of the i-th sample, σ2
i = Var(Yi)

be the true variance, and z be a fixed constant. Under the same conditions of Theorem 3.4.3,

−2 logR(
∑m

i=1 Ȳi + z
√∑m

i=1 σ
2
i /ni)→ z2 in probability as n→∞.
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Proof of Corollary B.4.1. The proof closely follows that of Theorem 3.4.3, and we only point out

how each step should be modified in order to prove this corollary. Assuming Var(Yi) > 0 and

EYi = 0 is still without loss of generality because, with I = {i : Var(Yi) > 0},

R
( m∑
i=1

Ȳi + z

√√√√ m∑
i=1

σ2
i

ni

)

= max

{
m∏
i=1

ni∏
j=1

niwi,j

∣∣∣∣ m∑
i=1

ni∑
j=1

Yi,jwi,j =

m∑
i=1

Ȳi + z

√√√√ m∑
i=1

σ2
i

ni
,

ni∑
j=1

wi,j = 1 for all i, wi,j ≥ 0 for all i, j

}

= max

{
m∏
i=1

ni∏
j=1

niwi,j

∣∣∣∣∑
i∈I

ni∑
j=1

Yi,jwi,j =
∑
i∈I

Ȳi + z

√√√√∑
i∈I

σ2
i

ni
,

ni∑
j=1

wi,j = 1 for all i, wi,j ≥ 0 for all i, j

}

= max

{∏
i∈I

ni∏
j=1

niwi,j

∣∣∣∣∑
i∈I

ni∑
j=1

Yi,jwi,j =
∑
i∈I

Ȳi + z

√√√√∑
i∈I

σ2
i

ni
,

ni∑
j=1

wi,j = 1 for i ∈ I, wi,j ≥ 0 for all i ∈ I, j

}

= max

{∏
i∈I

ni∏
j=1

niwi,j

∣∣∣∣∑
i∈I

ni∑
j=1

(Yi,j − EYi)wi,j =
∑
i∈I

(Ȳi − EYi) + z

√√√√∑
i∈I

σ2
i

ni
,

ni∑
j=1

wi,j = 1 for i ∈ I, wi,j ≥ 0 for all i ∈ I, j

}

and the limit distribution, i.e., the point mass at z2, does not depend on the number of distributions
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m. Next we consider the following counterpart of (B.18)

min
w1,...,wm,µ

−
m∑
i=1

ni∑
j=1

log(niwi,j)

subject to

ni∑
j=1

Yi,jwi,j = µi, i = 1, . . . ,m

ni∑
j=1

wi,j = 1, i = 1, . . . ,m

m∑
i=1

µi =

m∑
i=1

Ȳi + z

√√√√ m∑
i=1

σ2
i

ni
.

(B.45)

Step one: We show Slater’s condition holds for (B.45) with a probability tending to one.

Instead of S̃i, consider the event indexed by i

min
j=1,...,ni

Yi,j < Ȳi +
z

m

√√√√ m∑
i=1

σ2
i

ni
< max

j=1,...,ni
Yi,j . (B.46)

We need to show the probability that (B.46) happens goes to one. Note that Ȳi+
z
m ·
√∑m

i=1 σ
2
i /ni =

op(1), and for a small enough ε > 0 it holds P (Yi ≥ −ε) < 1, P (Yi ≤ ε) < 1. Hence

P
(

min
j=1,...,ni

Yi,j ≥ Ȳi +
z

m

√√√√ m∑
i=1

σ2
i

ni

)
≤ P

(
min

j=1,...,ni
Yi,j ≥ −ε

)
+ P

(
Ȳi +

z

m

√√√√ m∑
i=1

σ2
i

ni
< −ε

)
= (P (Yi ≥ −ε))ni + P (op(1) < −ε)→ 0.

This justifies the first inequality of (B.46), and the second inequality can be treated in the same

way. Applying the union bound shows that the probability of (B.46) approaches one. The rest of

this step remains the same.

Step two: The only change is that one of the KKT conditions, (B.22), is replaced by

m∑
i=1

µ∗i =

m∑
i=1

Ȳi + z

√√√√ m∑
i=1

σ2
i

ni
.
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Step three: (B.29) is replaced by

−
(

1 +
|λ∗|
n
o(n

1
2 )

)
sign(λ∗) · z

√√√√ m∑
i=1

σ2
i

ni
≥ |λ∗|
n · c/c

(
m∑
i=1

σ̂2
i + op(1)

)

and (B.30) becomes

|λ∗|
n

c
c

m∑
i=1

σ̂2
i + op(1) + o(n

1
2 ) · z

√√√√ m∑
i=1

σ2
i

ni

 ≤ |z|
√√√√ m∑

i=1

σ2
i

ni
.

The final bound λ∗ = Op(n
1/2) still holds by observing that z

√∑m
i=1 σ

2
i /ni = O(n−1/2) just like∑m

i=1 Ȳi.

Step four: No changes needed.

Step five: (B.38) needs to be replaced by

−z

√√√√ m∑
i=1

σ2
i

ni
= λ∗

m∑
i=1

σ2
i

ni
+ op(n

− 1
2 ).

Hence (B.39) becomes

λ∗ =
−z + op(1)√∑m

i=1
σ2
i
ni

.

Step six: (B.41) and (B.42) are replaced by

−2 logR
( m∑
i=1

Ȳi + z

√√√√ m∑
i=1

σ2
i

ni

)
= −2λ∗z

√√√√ m∑
i=1

σ2
i

ni
−

m∑
i=1

λ∗2

ni
(σ2
i + op(1)) +

m∑
i=1

ni∑
j=1

2ηi,j

= z2 + op(1)

and the desired conclusion follows. �

Now we are ready to prove Proposition 3.4.6. Recall the definition of profile likelihood ratio
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R(µ) in (3.18). Since z2
1−α/2 = X 2

1,1−α, Corollary B.4.1 entails that for any fixed small ε > 0

P
(
− 2 logR

( m∑
i=1

Ȳi − (z1−α/2 − ε)

√√√√ m∑
i=1

σ2
i

ni

)
< X 2

1,1−α

)
→ 1, (B.47)

P
(
− 2 logR

( m∑
i=1

Ȳi − (z1−α/2 + ε)

√√√√ m∑
i=1

σ2
i

ni

)
> X 2

1,1−α

)
→ 1. (B.48)

In the proof of Theorem 3.4.5 it is shown that {µ ∈ R| − 2 logR(µ) ≤ X 2
1,1−α} = [µ, µ]. Therefore

conditioned on the event in (B.47) we must have
∑m

i=1 Ȳi− (z1−α/2− ε)
√∑m

i=1 σ
2
i /ni ∈ [µ, µ]. Con-

ditioned on the event in (B.48) we have
∑m

i=1 Ȳi−(z1−α/2+ε)
√∑m

i=1 σ
2
i /ni /∈ [µ, µ]. Moreover, since

the sum of sample means
∑m

i=1 Ȳi ∈ [µ, µ] almost surely and
∑m

i=1 Ȳi− (z1−α/2 + ε)
√∑m

i=1 σ
2
i /ni <∑m

i=1 Ȳi, it must be the case that
∑m

i=1 Ȳi − (z1−α/2 + ε)
√∑m

i=1 σ
2
i /ni < µ. Applying the union

bound we get

P
(∣∣∣µ− ( m∑

i=1

Ȳi − z1−α/2

√√√√ m∑
i=1

σ2
i

ni

)∣∣∣ ≤ ε
√√√√ m∑

i=1

σ2
i

ni

)
→ 1.

Sending ε to 0 gives the desired conclusion for µ. The proof for µ is similar. �

Proof of Corollary 3.4.7. If we can show that Var(Gi(Xi)) <∞ for all i = 1, . . . ,m, then this is

a direct consequence of Theorem 3.4.5 and Proposition 3.4.6 with Yi,j = Z∗

m +Gi(Xi,j) and the fact

that E[Gi(Xi)] = 0. Since Assumption 3.3.3 implies EP1,...,Pm [h2(X1, . . . ,Xm)] < ∞, by Jensen’s

inequality every conditional expectation of h(X1, . . . ,Xm) also has a finite second moment. Note

that Gi(Xi) is the sum of Ti conditional expectations of h(X1, . . . ,Xm). Therefore it has a finite

second moment, hence a finite variance, by the Minkowski inequality. �

Proof of Theorem 3.4.8. We have

L = inf
(w1,...,wm)∈Uα

Z(w1, . . . ,wm)

= inf
(w1,...,wm)∈Uα

[
ZL(w1, . . . ,wm) +

(
Z(w1, . . . ,wm)− ZL(w1, . . . ,wm)

)]
≥ inf

(w1,...,wm)∈Uα
ZL(w1, . . . ,wm) + inf

(w1,...,wm)∈Uα

(
Z(w1, . . . ,wm)− ZL(w1, . . . ,wm)

)
≥ LL − sup

(w1,...,wm)∈Uα

∣∣Z(w1, . . . ,wm)− ZL(w1, . . . ,wm)
∣∣.



APPENDIX B. TECHNICAL PROOFS FOR CHAPTER 3 234

Similarly it can be shown that LL ≥ L − sup(w1,...,wm)∈Uα
∣∣Z(w1, . . . ,wm) − ZL(w1, . . . ,wm)

∣∣.
Therefore

|L −LL| ≤ sup
(w1,...,wm)∈Uα

∣∣Z(w1, . . . ,wm)− ZL(w1, . . . ,wm)
∣∣. (B.49)

By the bound (3.16) in Proposition 3.4.2, sup(w1,...,wm)∈Uα
∣∣Z(w1, . . . ,wm) − ZL(w1, . . . ,wm)

∣∣ =

Op(1/n) hence |L −LL| = Op(1/n) = op(1/
√
n). Analogously |U −UL| = op(1/

√
n). In particu-

lar, the representation (3.22) holds for L ,U as well, i.e.

L = Z∗ +

m∑
i=1

Ḡi − z1−α/2σI + op
( 1√

n

)
U = Z∗ +

m∑
i=1

Ḡi + z1−α/2σI + op
( 1√

n

)
.

(B.50)

Now we show that (B.50) guarantees the asymptotic exactness of [L ,U ] as a CI for Z∗. For

convenience, assume Var(Gi(Xi)) > 0 for all i without loss of generality. The standard central

limit theorem entails that Ḡi√
Var(Gi(Xi))/ni

⇒ N (0, 1). Since the data across different input models

are independent, we have the joint convergence

( Ḡ1√
Var(G1(X1))/n1

, . . . ,
Ḡm√

Var(Gm(Xm))/nm

)
⇒ N (0, Im),

where Im is the m×m identity matrix. To proceed, we need the following result:

Lemma B.4.2 (Uniform convergence of measures, Theorem 4.2 in Rao 1962) Let µ∗ and

{µn}∞n=1 be probability measures on Rd. If µ∗ is absolutely continuous with respect to the Lebesgue

measure on Rd, then µn ⇒ µ∗ if and only if

lim
n→∞

sup
C∈C
|µn(C)− µ∗(C)| = 0,

where C denotes the set of all measurable convex sets.

Let (W1, . . . ,Wm) be an m dimensional standard normal vector, then
∑m

i=1
1
σI

√
Var(Gi(Xi))/niWi
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follows N (0, 1). Hence

∣∣∣∣P(∑m
i=1 Ḡi
σI

≤ z
)
− Φ(z)

∣∣∣∣
=

∣∣∣∣∣P(
m∑
i=1

√
Var(Gi(Xi))/ni

σI
· Ḡi√

Var(Gi(Xi))/ni
≤ z
)
− P

( m∑
i=1

√
Var(Gi(Xi))/ni

σI
Wi ≤ z

)∣∣∣∣∣
=

∣∣∣∣∣P(( Ḡ1√
Var(G1(X1))/n1

, . . . ,
Ḡm√

Var(Gm(Xm))/nm

)
∈ C̃

)
− P

(
(W1, . . . ,Wm) ∈ C̃

)∣∣∣∣∣
where C̃ =

{
(x1, . . . , xm) ∈ Rm

∣∣∣ m∑
i=1

√
Var(Gi(Xi))/ni

σI
xi ≤ z

}
. (B.51)

Since the set C̃ is a half-space and in particular a convex set, Lemma B.4.2 implies

∣∣∣∣P(∑m
i=1 Ḡi
σI

≤ z
)
− Φ(z)

∣∣∣∣
≤ sup

C∈C

∣∣∣∣∣P(( Ḡ1√
Var(G1(X1))/n1

, . . . ,
Ḡm√

Var(Gm(Xm))/nm

)
∈ C

)
− P

(
(W1, . . . ,Wm) ∈ C

)∣∣∣∣∣→ 0.

Therefore ∑m
i=1 Ḡi
σI

⇒ N (0, 1). (B.52)

Now (B.50) forces

P (L ≤ Z∗) = P (

m∑
i=1

Ḡi + op
( 1√

n

)
≤ z1−α/2σI)

= P
(∑m

i=1 Ḡi
σI

+ op(1) ≤ z1−α/2

)
→ P (N (0, 1) ≤ z1−α/2) = 1− α

2
by Slutsky’s theorem.

Similarly we have P (U ≥ Z∗)→ 1− α/2. Moreover, U −L = 2z1−α/2σI + op(1/
√
n) hence

P (U < Z∗ < L ) ≤ P (U < L ) = P (2z1−α/2σI + op(1/
√
n) < 0) = P (2z1−α/2 < op(1))→ 0.
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Combining the limit probabilities gives

P (L ≤ Z∗ ≤ U ) = P (L ≤ Z∗) + P (U ≥ Z∗)− P (L ≤ Z∗ or U ≥ Z∗)

= P (L ≤ Z∗) + P (U ≥ Z∗)− 1 + P (U < Z∗ < L )

→ 1− α

2
+ 1− α

2
− 1 + 0 = 1− α.

This completes the proof. �

B.5 Proofs of Results in Section 3.4.5

Proof of Proposition 3.4.10. It suffices to show the first part

ED,ξ1
[

sup
(w1,...,wm)∈Uα

∣∣ẐL(w1, . . . ,wm)− ̂̂ZL(w1, . . . ,wm)
∣∣2] = O

( 1

R1

)
,

because the second part then follows from (3.17) and the simple inequality sup|Z − ̂̂ZL| ≤ sup|Z −

ẐL|+ sup|ẐL − ̂̂ZL|. First we present two lemmas.

Lemma B.5.1 Under Assumptions 3.3.1 and 3.3.3, as n→∞ for k = 1, 2, 3, 4 we have

ED
[

sup
(w1,...,wm)∈Uα

∣∣∣Ew1,...,wm [hk(X1, . . . ,Xm)]− EP1,...,Pm [hk(X1, . . . ,Xm)]
∣∣∣2 ] = O

( 1

n

)
. (B.53)

In particular for k = 1, 2, 3, 4 it holds

ED
[

sup
(w1,...,wm)∈Uα

∣∣∣Ew1,...,wm [hk(X1, . . . ,Xm)]
∣∣∣2 ] = O(1). (B.54)

Proof of Lemma B.5.1. (B.53) is argued using the proof of Proposition 3.4.2. Note that the proof

for Proposition 3.4.2 goes through as long as the maximum second moment M defined in (B.6) is

finite, a weaker condition than Assumption 3.3.3. In particular, Assumption 3.3.3 remains valid

if the target performance measure is changed to EP1,...,Pm [hk(X1, . . . ,Xm)] for k = 2, 3, 4, except

that the maximum second moment M has to be replaced by the 4-th, 6-th and 8-th moments
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respectively. Below we will argue for the case k = 1 only, and the cases k = 2, 3, 4 follow from the

same reasoning. Recall the expansion (B.5). The term with d = 0 is simply Z∗. The argument

leading to the bound (B.16) works for all d ≥ 1, and hence (B.16) is valid for all d ≥ 1. The leading

remainders with d = 1 then give rise to the order O(1/n) in (B.53), as opposed to d = 2 giving the

order O(1/n2) in (3.16).

To prove (B.54), use the inequality

sup
(w1,...,wm)∈Uα

∣∣∣Ew1,...,wm [hk(X1, . . . ,Xm)]
∣∣∣

≤ sup
(w1,...,wm)∈Uα

∣∣∣Ew1,...,wm [hk(X1, . . . ,Xm)]− EP1,...,Pm [hk(X1, . . . ,Xm)]
∣∣∣

+EP1,...,Pm [hk(X1, . . . ,Xm)]

and the Minkowski inequality. �

Lemma B.5.2 Under Assumptions 3.3.1 and 3.3.3, as the input data size n → ∞, the gradient

estimator ˆ̂Gi(Xi,j) in (3.2) satisfies

ED,ξ1
[ m∑
i=1

1

n2
i

ni∑
j=1

( ˆ̂Gi(Xi,j)− Ĝi(Xi,j))
2
]

= O
( 1

R1

)
.

Proof of Lemma B.5.2. We first note that due to the symmetry between the i.i.d. data

ED,ξ1
[ m∑
i=1

1

n2
i

ni∑
j=1

( ˆ̂Gi(Xi,j)− Ĝi(Xi,j))
2
]

=
m∑
i=1

1

ni
ED,ξ1

[
( ˆ̂Gi(Xi,1)− Ĝi(Xi,1))2

]
,

and therefore it suffices to bound each E
[
( ˆ̂Gi(Xi,1) − Ĝi(Xi,1))2

]
. Since ˆ̂Gi(Xi,1) differs from the

unbiased sample covariance by only a factor of R1−1
R1

, its bias (conditioned on the input data) can

be easily identified as Ĝi(Xi,1)/R1. By the variance formula for the unbiased sample covariance,
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and suppressing the arguments in h for notational simplicity, we have

Varξ1|D
( ˆ̂Gi(Xi,1)

)
=

(R1 − 1)2

R3
1

(
EP̂1,...,P̂m

[
(h(X1, . . . ,Xm)− Z(P̂1, . . . , P̂m))2(Si,1(Xi))

2
]

+

1

R1 − 1
VarP̂1,...,P̂m

(h)VarP̂1,...,P̂m
(Si,1(Xi))−

R1 − 2

R1 − 1
(Ĝi(Xi,1))2

)
.

Hence the mean squared error

Eξ1|D[( ˆ̂Gi(Xi,1)− Ĝi(Xi,1))2]

= Varξ1|D
( ˆ̂Gi(Xi,j)

)
+
(Ĝi(Xi,1)

R1

)2
≤ 1

R1
EP̂1,...,P̂m

[
(h(X1, . . . ,Xm)− Z(P̂1, . . . , P̂m))2(Si,1(Xi))

2
]

+

1

R2
1

VarP̂1,...,P̂m
(h)VarP̂1,...,P̂m

(Si,1(Xi)) (B.55)

≤ 1

R1
EP̂1,...,P̂m

[
(h(X1, . . . ,Xm)− Z(P̂1, . . . , P̂m))2(Si,1(Xi))

2
]

+
niTi
R2

1

VarP̂1,...,P̂m
(h).(B.56)
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To tackle the first term in (B.56)

EP̂1,...,P̂m

[
(h(X1, . . . ,Xm)− Z(P̂1, . . . , P̂m))2(Si,1(Xi))

2
]

= EP̂1,...,P̂m

[
(h− Z(P̂1, . . . , P̂m))2

(
T 2
i + n2

i

(
Ti∑
t=1

1{Xi(t) = Xi,1}

)2

−2Tini

Ti∑
t=1

1{Xi(t) = Xi,1}
)]

≤ T 2
i VarP̂1,...,P̂m

(h) + EP̂1,...,P̂m

(h− Z(P̂1, . . . , P̂m))2n2
i

(
Ti∑
t=1

1{Xi(t) = Xi,1}

)2


≤ T 2
i VarP̂1,...,P̂m

(h) + EP̂1,...,P̂m

2h2n2
i

(
Ti∑
t=1

1{Xi(t) = Xi,1}

)2
+

EP̂1,...,P̂m

2(Z(P̂1, . . . , P̂m))2n2
i

(
Ti∑
t=1

1{Xi(t) = Xi,1}

)2


= T 2
i VarP̂1,...,P̂m

(h) + 2n2
iEP̂1,...,P̂m

h2

 Ti∑
s,t=1

1{Xi(t) = Xi(s) = Xi,1}

+

2(Tini + Ti(Ti − 1))(Z(P̂1, . . . , P̂m))2

≤ T 2
i VarP̂1,...,P̂m

(h) + 2n2
i

Ti∑
s,t=1

EP̂1,...,P̂m
[h2 · 1{Xi(t) = Xi(s) = Xi,1}]

+2(Tini + T 2
i )(Z(P̂1, . . . , P̂m))2

= T 2
i VarP̂1,...,P̂m

(h) + 2(Tini + T 2
i )(Z(P̂1, . . . , P̂m))2 + 2ni

Ti∑
t=1

EP̂1,...,P̂m
[h2|Xi(t) = Xi,1] +

2
∑
s 6=t

EP̂1,...,P̂m
[h2|Xi(t) = Xi(s) = Xi,1].

Like in Assumption 3.3.3, denoting by Ji = (Ji(1), . . . , Ji(Ti)) ∈ {1, 2, . . . , ni}Ti the second sub-

scripts of the input data points we can rewrite each conditional expectation EP̂1,...,P̂m
[h2|Xi(t) =

Xi,1] as

EP̂1,...,P̂m
[h2|Xi(t) = Xi,1] =

1

nTi−1
i

∏
i′ 6=i n

Ti′
i′

∑
J1,...,Jm such that Ji(t)=1

h2(X1,J1 , . . . ,Xm,Jm).
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Therefore under Assumption 3.3.3 we have

ED
[
EP̂1,...,P̂m

[h2|Xi(t) = Xi,1]
]
≤M

where M is the maximum second moment defined in (B.6). The same argument also gives that

ED
[
EP̂1,...,P̂m

[h2|Xi(t) = Xi(s) = Xi,1]
]
≤ M. Also note that VarP̂1,...,P̂m

(h) ≤ EP̂1,...,P̂m
[h2] and

(Z(P̂1, . . . , P̂m))2 ≤ EP̂1,...,P̂m
[h2] by Jensen’s inequality. Hence by (B.54) with k = 2 from Lemma

(B.5.1) it holds that ED
[
VarP̂1,...,P̂m

(h)
]

= O(1) and ED
[
(Z(P̂1, . . . , P̂m))2

]
= O(1).

Now we take expectation of (B.56) with respect to the input data and use the upper bounds

derived above to get

ED,ξ1
[
( ˆ̂Gi(Xi,1)− Ĝi(Xi,1))2

]
= ED

[
Eξ1|D

[
( ˆ̂Gi(Xi,1)− Ĝi(Xi,1))2

]]
=

1

R1
ED
[
EP̂1,...,P̂m

[
(h(X1, . . . ,Xm)− Z(P̂1, . . . , P̂m))2(Si,1(Xi))

2
]]

+
niTi
R2

1

O(1)

=
1

R1
(T 2
i O(1) + (Tini + T 2

i )O(1) +O(niTi) +O(T 2
i )) +O

(niTi
R2

1

)
= O

(T 2
i

R1
+
niTi
R1

+
niTi
R2

1

)
= O

( ni
R1

)
since each Ti is treated as constant.

Dividing each side by ni and summing up over i = 1, . . . ,m gives the bound O(1/R1). �

Now we can prove Proposition 3.4.10. We bound the maximum deviation as follows

sup
(w1,...,wm)∈Uα

∣∣∣ẐL(w1, . . . ,wm)− ̂̂ZL(w1, . . . ,wm)
∣∣∣

≤ sup
(w1,...,wm)∈Uα

∣∣∣∣∣∣
m∑
i=1

ni∑
j=1

( ˆ̂Gi(Xi,j)− Ĝi(Xi,j))wi,j

∣∣∣∣∣∣+
∣∣∣Z(P̂1, . . . , P̂m)− Ẑ(P̂1, . . . , P̂m)

∣∣∣ .(B.57)

On one hand, using conditioning and the moment bound (B.54) with k = 2 from Lemma B.5.1, we
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bound the second moment of the second term in (B.57) as

ED,ξ1
[∣∣Z(P̂1, . . . , P̂m)− Ẑ(P̂1, . . . , P̂m)

∣∣2]
= ED

[
Eξ1|D

[∣∣Z(P̂1, . . . , P̂m)− Ẑ(P̂1, . . . , P̂m)
∣∣2]]

=
1

R1
ED
[
VarP̂1,...,P̂m

(h)
]

= O
( 1

R1

)
by (B.54) in Lemma B.5.1.

On the other hand, letting Q1
i = P̂i in Proposition 3.4.1 reveals that

∑ni
j=1 Ĝi(Xi,j) = 0 for all i.

Note that the estimator (3.2) also has this property, i.e.
∑ni

j=1
ˆ̂Gi(Xi,j) = 0 for all i. Hence the first

term in (B.57) can be bounded as

sup
(w1,...,wm)∈Uα

∣∣∣∣∣∣
m∑
i=1

ni∑
j=1

( ˆ̂Gi(Xi,j)− Ĝi(Xi,j))wi,j

∣∣∣∣∣∣
= sup

(w1,...,wm)∈Uα

∣∣∣∣∣∣
m∑
i=1

ni∑
j=1

( ˆ̂Gi(Xi,j)− Ĝi(Xi,j))(wi,j −
1

ni
)

∣∣∣∣∣∣ by

ni∑
j=1

Ĝi(Xi,j) =

ni∑
j=1

ˆ̂Gi(Xi,j) = 0

= sup
(w1,...,wm)∈Uα

∣∣∣∣∣∣
m∑
i=1

ni∑
j=1

1

ni
( ˆ̂Gi(Xi,j)− Ĝi(Xi,j)) · ni(wi,j −

1

ni
)

∣∣∣∣∣∣
≤ sup

(w1,...,wm)∈Uα

√√√√ m∑
i=1

ni∑
j=1

1

n2
i

( ˆ̂Gi(Xi,j)− Ĝi(Xi,j))2

m∑
i=1

ni∑
j=1

n2
i (wi,j −

1

ni
)2

≤

√√√√u(α)2X 2
1,1−α

m∑
i=1

ni∑
j=1

1

n2
i

( ˆ̂Gi(Xi,j)− Ĝi(Xi,j))2 by Lemma B.2.2.

After combining the above bounds, the desired conclusion follows from an application of the

Minkowski inequality to (B.57) and using Lemma B.5.2. �

Proof of Theorem 3.4.11. In the proof of Theorem 3.4.8, if we replace the linear approximation

ZL by ̂̂ZL then by the exactly same argument we have the following counterpart of (B.49) where

on one hand

∣∣L − ̂̂ZL(wmin
1 , . . . ,wmin

m )
∣∣ ≤ sup

(w1,...,wm)∈Uα

∣∣Z(w1, . . . ,wm)− ̂̂ZL(w1, . . . ,wm)
∣∣. (B.58)
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On the other hand the following bound trivially holds

|Zmin − ̂̂ZL(wmin
1 , . . . ,wmin

m )| ≤ sup
(w1,...,wm)∈Uα

∣∣Z(w1, . . . ,wm)− ̂̂ZL(w1, . . . ,wm)
∣∣.

Therefore ∣∣L − Zmin
∣∣ ≤ 2 sup

(w1,...,wm)∈Uα

∣∣Z(w1, . . . ,wm)− ̂̂ZL(w1, . . . ,wm)
∣∣.

The desired conclusion for Zmin then immediately follows from the maximum deviation result (3.24)

in Proposition 3.4.10. The conclusion for Zmax can be established similarly. �

The following result presents an alternate CI constructed directly from a linear approximation

that is discussed at the end of Section 3.4.5.

Theorem B.5.3 Suppose Assumptions 3.3.1, 3.3.2 and 3.3.3 hold. Replace the outputs in Step 3

of Algorithm 4 by

L = Ẑ(P̂1, . . . , P̂m) +
m∑
i=1

ni∑
j=1

ˆ̂Gi(Xi,j)w
min
i,j , U = Ẑ(P̂1, . . . , P̂m) +

m∑
i=1

ni∑
j=1

ˆ̂Gi(Xi,j)w
max
i,j ,

where Ẑ(P̂1, . . . , P̂m) is the same sample mean from Step 1. Then as n→∞ and R1 →∞

ED,ξ1 [(L−L )2] = O
( 1

n2
+

1

R1

)
, ED,ξ1 [(U −U )2] = O

( 1

n2
+

1

R1

)
where L ,U are the ideal confidence bounds defined in (3.9). Moreover, if R1 satisfies R1

n → ∞

then

lim
n→∞,R1

n
→∞

P (L ≤ Z∗ ≤ U) = 1− α.

Proof of Theorem B.5.3. The bound (B.58) derived in the proof of Theorem 3.4.11 is exactly

|L − L | ≤ sup(w1,...,wm)∈Uα
∣∣Z(w1, . . . ,wm) − ̂̂ZL(w1, . . . ,wm)

∣∣. A direct application of result

(3.24) from Proposition 3.4.10 then gives ED,ξ1 [(L−L )2] = O(1/n2 + 1/R1). The error bound of

U with respect to U can be obtained similarly. To establish the asymptotic exactness of [L,U ]

when R1 grows at a faster rate than n, note that when R1/n → ∞ we have 1/R1 = o(1/n) hence
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L−L = op(1/
√
n) and U −U = op(1/

√
n). In this case the representation (B.50) holds for L,U

as well. The rest of the proof is the same as that of Theorem 3.4.8. �

B.6 Proofs of Results in Section 3.4.6

Proof of Proposition 3.4.12. Recall that σ2
min and σ2

max are the output variances under the extreme

weighted input models. We have

E[(L BEL −L )2]

= E[(L BEL − Zmin)2] + 2E[(L BEL − Zmin)(Zmin −L )] + ED,ξ1 [(Zmin −L )2]

= ED,ξ1 [Eξ2|D,ξ1 [(L BEL − Zmin)2]] + 2ED,ξ1
[
Eξ2|D,ξ1 [(L BEL − Zmin)(Zmin −L )]

]
+

O
( 1

n2
+

1

R1

)
by Theorem 3.4.11

= ED,ξ1
[ 1

R2
σ2

min

]
+ ED,ξ1

[
(Zmin −L )Eξ2|D,ξ1 [(L BEL − Zmin)]

]
+O

( 1

n2
+

1

R1

)
≤ 1

R2
ED,ξ1

[
Ewmin

1 ,...,wmin
m

[h2(X1, . . . ,Xm)]
]

+ 0 +O
( 1

n2
+

1

R1

)
= O

( 1

R2

)
+O

( 1

n2
+

1

R1

)
by (B.54) with k = 2 from Lemma B.5.1

= O
( 1

n2
+

1

R1
+

1

R2

)
.

The bound for E[(U BEL −U )2] can be obtained by the same argument. �

Proof of Proposition 3.4.13. We first establish the representations for L EEL,U EEL. The

uniform moment convergence result (B.53) from Lemma B.5.1 implies that σ2
min = σ2 +Op(1/

√
n).

By calculating the variance of sample variance, one can show that the σ̂2
min in Algorithm 5 satisfies

Eξ2|D,ξ1 [(σ̂2
min−σ2

min)2] ≤ CEwmin
1 ,...,wmin

m
[h4(X1, . . . ,Xm)]/R2 for some universal constant C. Using

the result (B.54) with k = 4 we have ED,ξ1
[
Ewmin

1 ,...,wmin
m

[h4(X1, . . . ,Xm)]
]

= O(1). Therefore we

have E[(σ̂2
min − σ2

min)2] = ED,ξ1
[
Eξ2|D,ξ1 [(σ̂2

min − σ2
min)2]

]
= O(1/R2), whereby

σ̂2
min = σ2

min +Op
( 1√

R2

)
= σ2 +Op

( 1√
n

)
+Op

( 1√
R2

)
= σ2 + op(1). (B.59)
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Now the lower confidence bound L EEL from Algorithm 5 can be expressed as

L EEL = Ẑmin − z1−α/2
σ̂min√
R2

= L + (Zmin −L ) + Ẑmin − Zmin − z1−α/2
σ̂min√
R2

= L +Op
( 1

n
+

1√
R1

)
+ Ẑmin − Zmin − z1−α/2

σ√
R2

+ op
( 1√

R2

)
by (B.59) and Theorem 3.4.11

= L + Ẑmin − Zmin − z1−α/2
σ√
R2

+ op
( 1√

n
+

1√
R2

)
because

R1

n
→∞

= Z∗ +
m∑
i=1

Ḡi − z1−α/2σI + Ẑmin − Zmin − z1−α/2
σ√
R2

+ op
( 1√

n
+

1√
R2

)
because of (B.50).

Rearranging the above gives the desired conclusion for L EEL. The representation for U EEL can

be obtained via a similar way.

To justify the representation for L FEL and U FEL, we first need to establish the consistency

of our input-induced variance estimate (3.6). Specifically, we have:

Lemma B.6.1 Under Assumptions 3.3.1, 3.3.2 and 3.3.3, as n → ∞ and R1/n → ∞ the input-

induced variance estimate (3.6) is relatively consistent, i.e., σ̂2
I/σ

2
I → 1 in probability with respect

to the joint randomness of both input data and simulation.

Proof of Lemma B.6.1. Since the input-induced variance σ2
I is of order 1/n and the strong law of

large numbers ensures that
(∑m

i=1

∑ni
j=1

(
Gi(Xi,j)

)2
/n2

i

)
/σ2

I → 1 almost surely, it suffices to show

m∑
i=1

1

n2
i

ni∑
j=1

(
Ĝi(Xi,j)

)2 − m∑
i=1

1

n2
i

ni∑
j=1

(
Gi(Xi,j)

)2
= op

( 1

n

)
, (B.60)

σ̂2
I −

m∑
i=1

1

n2
i

ni∑
j=1

(
Ĝi(Xi,j)

)2
= op

( 1

n

)
. (B.61)
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We bound the left hand side of (B.60) as

∣∣left hand side of (B.60)
∣∣

=
∣∣∣ m∑
i=1

1

n2
i

ni∑
j=1

(2Gi(Xi,j)(Ĝi(Xi,j)−Gi(Xi,j)) + (Ĝi(Xi,j)−Gi(Xi,j))
2)
∣∣∣

≤
m∑
i=1

1

n2
i

ni∑
j=1

(Ĝi(Xi,j)−Gi(Xi,j))
2 + 2

√√√√ m∑
i=1

1

n2
i

ni∑
j=1

(Gi(Xi,j))2

m∑
i=1

1

n2
i

ni∑
j=1

(Ĝi(Xi,j)−Gi(Xi,j))2.

Hence it suffices to bound the error (Ĝi(Xi,j)−Gi(Xi,j))
2 for each i, j. Seeing that both Gi and Ĝi

take the form of a sum of conditional expectations, we can control this error via a similar analysis

in proving Proposition 3.4.2. In particular, for all i, j we have ED[(Ĝi(Xi,j) − Gi(Xi,j))
2] ≤ C/n

for some constant C depending on h (a similar observation has been proved in equation (EC.10)

in Lemma EC.1 of Lam and Qian (2018d)). Therefore
∣∣left hand side of (B.60)

∣∣ = Op(1/n
2) +

2
√
Op(1/n)Op(1/n2) = Op(1/n

3
2 ) = op(1/n). Thus (B.60) follows.

(B.61) can be established in two steps. First we show that the bias correction term
∑m

i=1
Tiσ̂

2

R1
=

op(1/n). Note that σ̂2 = σ2 + op(1) = Op(1) can be proved via the same argument used to prove

(B.59) but with the minimal weights wmin
i , i = 1, . . . ,m replaced by the uniform weights. When

R1/n→∞, we have each Tiσ̂
2

R1
= Op(1/R1) = op(1/n). Second, we examine the error

∣∣∣ m∑
i=1

1

n2
i

ni∑
j=1

( ˆ̂Gi(Xi,j)
)2 − m∑

i=1

1

n2
i

ni∑
j=1

(
Ĝi(Xi,j)

)2∣∣∣
≤

m∑
i=1

1

n2
i

ni∑
j=1

( ˆ̂Gi(Xi,j)− Ĝi(Xi,j))
2 + 2

√√√√ m∑
i=1

1

n2
i

ni∑
j=1

(
Ĝi(Xi,j)

)2 m∑
i=1

1

n2
i

ni∑
j=1

( ˆ̂Gi(Xi,j)− Ĝi(Xi,j))2

= Op
( 1

R1

)
+ 2

√
Op
( 1

n

)
Op
( 1

R1

)
by Lemma B.5.2

= op
( 1

n

)
+ 2

√
Op
( 1

n

)
op
( 1

n

)
= op

( 1

n

)
.

This concludes (B.61). �

Given the relative consistency of the input-induced variance estimate σ̂2
I in estimating σ2

I , if we
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couple the simulation runs of Algorithms 5 and 6, then

L FEL = L EEL + z1−α/2
σ̂min√
R2
− z1−α/2

(√
σ̂2
I +

σ̂2
min

R2
− σ̂I

)
= L EEL + z1−α/2

σ√
R2

+ op
( 1√

R2

)
− z1−α/2

(√
σ2
I +

σ2

R2
− σI

)
+ op

( 1√
n

+
1√
R2

)
= L EEL − z1−α/2

(√
σ2
I +

σ2

R2
− σI −

σ√
R2

)
+ op

( 1√
n

+
1√
R2

)
= Z∗ +

m∑
i=1

Ḡi + Ẑmin − Zmin − z1−α/2

√
σ2
I +

σ2

R2
+ op

( 1√
n

+
1√
R2

)

where in the last equality we use the representation for L EEL. The representation for the upper

bound U FEL can be similarly obtained. �

Note that the analysis in Lemma B.6.1 treats each niTiσ̂
2

R1
in the estimator (3.6) as an asymp-

totically diminishing quantity instead of a bias correction term. The following proposition shows

their effectiveness in correcting the bias of
∑m

i=1
1
n2
i

∑ni
j=1

( ˆ̂Gi(Xi,j)
)2

as a Monte Carlo estimator

of
∑m

i=1
1
n2
i

∑ni
j=1

(
Ĝi(Xi,j)

)2
:

Proposition B.6.2 Under Assumptions 3.3.1 and 3.3.3, as n → ∞ and R1 → ∞, we have for

each input model i that

Eξ1|D
[ 1

ni

ni∑
j=1

( ˆ̂Gi(Xi,j)
)2]− 1

ni

ni∑
j=1

(
Ĝi(Xi,j)

)2
=
niTiVarP̂1,...,P̂m

(h)

R1
+ op

( ni
R1

)
.

where the op is with respect to the randomness in the input data.

Our input variance estimator σ̂2
I in (3.6) results from a direct use of Proposition B.6.2 to correct the

bias of each 1
ni

∑ni
j=1

( ˆ̂Gi(Xi,j)
)2

with niTiσ̂
2/R1, a simulation estimate of niTiVarP̂1,...,P̂m

(h)/R1.

Here we provide the proof of Proposition B.6.2: Proof of Proposition B.6.2. We have analyzed the

bias and variance of each gradient component ˆ̂Gi(Xi,j) in the proof of Lemma B.5.2. The expected

value is

Eξ1|D[ ˆ̂Gi(Xi,j)] =
R1 − 1

R1
Ĝi(Xi,j)
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and the variance is

Varξ1|D
( ˆ̂Gi(Xi,j)

)
=

(R1 − 1)2

R3
1

(
EP̂1,...,P̂m

[
(h(X1, . . . ,Xm)− Z(P̂1, . . . , P̂m))2(Si,j(Xi))

2
]

+

niTi(1− 1/ni)

R1 − 1
VarP̂1,...,P̂m

(h)− R1 − 2

R1 − 1
(Ĝi(Xi,j))

2
)
.

Therefore the overall bias is

Eξ1|D
[ 1

ni

ni∑
j=1

( ˆ̂Gi(Xi,j)
)2]− 1

ni

ni∑
j=1

(
Ĝi(Xi,j)

)2
=

1

ni

ni∑
j=1

[(R1 − 1

R1
Ĝi(Xi,j)

)2
+ Varξ1|D

( ˆ̂Gi(Xi,j)
)]
− 1

ni

ni∑
j=1

(
Ĝi(Xi,j)

)2
=

(R1 − 1)2

R3
1ni

EP̂1,...,P̂m

[
(h(X1, . . . ,Xm)− Z(P̂1, . . . , P̂m))2

ni∑
j=1

(Si,j(Xi))
2
]

+

R1 − 1

R3
1

niTi(1−
1

ni
)VarP̂1,...,P̂m

(h)− 3R2
1 − 4R1 + 2

R3
1

1

ni

ni∑
j=1

(
Ĝi(Xi,j)

)2
=

(R1 − 1)2

R3
1ni

EP̂1,...,P̂m

[
(h(X1, . . . ,Xm)− Z(P̂1, . . . , P̂m))2

ni∑
j=1

(Si,j(Xi))
2
]

+Op
( ni
R2

1

+
1

R1

)
(B.62)

where the last equality holds because VarP̂1,...,P̂m
(h) = Op(1), 1

ni

∑ni
j=1

(
Ĝi(Xi,j)

)2
= Op(1) and Ti

is a constant. We deal with the first term by expanding the score function Si,j(Xi) as in the proof
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of Lemma B.5.2, arriving at

EP̂1,...,P̂m

[
(h(X1, . . . ,Xm)− Z(P̂1, . . . , P̂m))2

ni∑
j=1

(Si,j(Xi))
2
]

= EP̂1,...,P̂m

[
(h(X1, . . . ,Xm)− Z(P̂1, . . . , P̂m))2

ni∑
j=1

(
T 2
i + n2

i

∑
s 6=t

1{Xi(t) = Xi(s) = Xi,j}+

(n2
i − 2Tini)

Ti∑
t=1

1{Xi(t) = Xi,j}

)]

= EP̂1,...,P̂m

[
(h(X1, . . . ,Xm)

−Z(P̂1, . . . , P̂m))2

T 2
i ni + n2

i

∑
s 6=t

1{Xi(t) = Xi(s)}+ (ni − 2Ti)niTi

]

= niTi(ni − Ti)VarP̂1,...,P̂m
(h) + n2

i

∑
s 6=t

EP̂1,...,P̂m
[(h− Z(P̂1, . . . , P̂m))2|Xi(t) = Xi(s)] ·

1

ni

= n2
iTiVarP̂1,...,P̂m

(h) +Op(ni)

where the last equality follows because each EP̂1,...,P̂m
[(h−Z(P̂1, . . . , P̂m))2|Xi(t) = Xi(s)] = Op(1)

and VarP̂1,...,P̂m
(h) = Op(1). Substituting the above bound into (B.62), we get the leading term of

the bias

Eξ1|D
[ 1

ni

ni∑
j=1

( ˆ̂Gi(Xi,j)
)2]− 1

ni

ni∑
j=1

(
Ĝi(Xi,j)

)2
=

(R1 − 1)2

R3
1ni

(
n2
iTiVarP̂1,...,P̂m

(h) +Op(ni)
)

+Op
( ni
R2

1

+
1

R1

)
=

niTi
R1

VarP̂1,...,P̂m
(h) +Op

( ni
R2

1

+
1

R1

)
.

Noting that the Op term is op(ni/R1) as ni, R1 →∞ concludes the proposition. �

B.7 Proofs of Proposition 3.3.1 and Theorems 3.3.2, 3.3.3, 3.3.4

Proof of Proposition 3.3.1. It suffices to prove the theorem for the minimization problem. Since

wi,j = 1
ni

for each i, j is a solution in the (relative) interior of the feasible set, Slater’s conditions
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holds for (3.3). It is also clear, by a compactness argument, that the optimal value of the program

is finite and attainable. By Corollary 28.3.1 of Rockafellar (1970), (wmin
1 , . . . ,wmin

m ) is a minimizer

if and only if there exist Lagrange multipliers β∗, λ∗i ∈ R, i = 1, . . . ,m such that the following KKT

conditions are satisfied

2
m∑
i=1

ni∑
j=1

log(niw
min
i,j ) + X 2

1,1−α ≥ 0, β∗ ≥ 0

β∗
(

2
m∑
i=1

ni∑
j=1

log(niw
min
i,j ) + X 2

1,1−α

)
= 0

ni∑
j=1

wmin
i,j = 1 for all i = 1, . . . ,m

ˆ̂Gi(Xi,j) + λ∗i −
2β∗

wmin
i,j

= 0 for all i, j.

When ˆ̂Gi0(Xi0,j1) 6= ˆ̂Gi0(Xi0,j2) for some 1 ≤ i0 ≤ m and 1 ≤ j1 < j2 ≤ ni0 , the objective is a non-

constant linear function and thus any minimizer must lie on the (relative) boundary of the feasible

set, i.e. 2
∑m

i=1

∑ni
j=1 log(niw

min
i,j ) + X 2

1,1−α = 0. Since the constraint −2
∑m

i=1

∑ni
j=1 log(niwi,j) ≤

X 2
1,1−α is strictly convex, the minimizer must be unique. Moreover, we show that β∗ must be

strictly positive in this case. Suppose β∗ = 0 then the last equation of KKT conditions requires

ˆ̂Gi(Xi,j) = −λ∗i for all i, j, which is a contradiction. Note that the minimizer must have positive

components wmin
i,j > 0 due to the logarithm in the constraint, hence

wmin
i,j =

2β∗

ˆ̂Gi(Xi,j) + λ∗i

, β∗ > 0, ˆ̂Gi(Xi,j) + λ∗i > 0 for all i, j, (B.63)

2

m∑
i=1

ni∑
j=1

log
2niβ

∗

ˆ̂Gi(Xi,j) + λ∗i

+ X 2
1,1−α = 0,

ni∑
j=1

2β∗

ˆ̂Gi(Xi,j) + λ∗i

= 1 for all i. (B.64)

To show that such (β∗, λ∗1, . . . , λ
∗
m) is also unique, let i0, j1, j2 be the indices mentioned in the

theorem. Then (B.63) stipulates wmin
i0,j1

/wmin
i0,j2

= ( ˆ̂Gi0,j2 + λ∗i0)/( ˆ̂Gi0,j1 + λ∗i0). Since the right hand

side is strictly monotone in λ∗i0 , the uniqueness of wmin
i,j implies the uniqueness of λ∗i0 , which in turn

implies the uniqueness of β∗ and other λ∗i ’s due to the second equation of line (B.64).

We further show that β∗ must lie in the interval given in the proposition. We first argue that
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there is at least one i ∈ {1, . . . ,m} such that

minj
ˆ̂Gi(Xi,j) + λ∗i

maxj
ˆ̂Gi(Xi,j) + λ∗i

< e−
X2
1,1−α
2N . (B.65)

Suppose (minj
ˆ̂Gi(Xi,j) +λ∗i )/(maxj

ˆ̂Gi(Xi,j) +λ∗i ) ≥ e−
X2
1,1−α
2N for all i, then

∑ni
j=1 2β∗/( ˆ̂Gi(Xi,j) +

λ∗i ) = 1 implies that 2β∗/( ˆ̂Gi(Xi,j) + λ∗i ) ≥ 1
ni
e−
X2
1,1−α
2N for all i, j and the inequality must be strict

for some i, j because e−
X2
1,1−α
2N < 1. Therefore

2

m∑
i=1

ni∑
j=1

log
2niβ

∗

ˆ̂Gi(Xi,j) + λ∗i

+ X 2
1,1−α > −2

m∑
i=1

ni∑
j=1

X 2
1,1−α
2N

+ X 2
1,1−α = 0

which contradicts (B.64). Now let λ∗i′ be a multiplier that satisfies (B.65). Rearranging (B.65) gives

λ∗i′ <
e−
X2
1,1−α
2N maxj

ˆ̂Gi′(Xi′,j)−minj
ˆ̂Gi′(Xi′,j)

1− e−
X2
1,1−α
2N

. (B.66)

Hence

1 =

ni′∑
j=1

2β∗

ˆ̂Gi′(Xi′,j) + λ∗i′
≥ 2ni′β

∗

maxj
ˆ̂Gi′(Xi′,j) + λ∗i′

>
2ni′β

∗(1− e−
X2
1,1−α
2N )

maxj
ˆ̂Gi′(Xi′,j)−minj

ˆ̂Gi′(Xi′,j)
by using the upper bound (B.66)

≥ 2 mini niβ
∗(1− e−

X2
1,1−α
2N )

max{maxj
ˆ̂Gi(Xi,j)−minj

ˆ̂Gi(Xi,j)|i = 1, . . . ,m}
.

Rearranging the above inequality gives the desired upper bound for β∗.

If ˆ̂Gi(Xi,j) = ci for some constant ci, then the objective is the constant function
∑m

i=1 ci, hence

every feasible solution is optimal. �

Proof of Theorem 3.3.2. When R1/n → ∞ and R2/n → ∞, Proposition 3.4.12 stipulates

that L BEL = L + op(1/
√
n) and U BEL = U + op(1/

√
n). Theorem 3.4.8 then implies that the

asymptotic representation (B.50) holds for L BEL and U BEL. The rest of the proof is the same as
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that of Theorem 3.4.8 from (B.50) onwards. �

Proof of Theorems 3.3.3 and 3.3.4. For convenience, all limit statements are understood to be

for n,R1, R2 → ∞ such that R1
n → ∞,

R2
n ≤ M (e.g., (B.67) and (B.68)), unless stated otherwise.

We need the Berry-Esseen Theorem stated as:

Lemma B.7.1 (Theorem 3.4.9 in Durrett 2010) Let {ηi}∞i=1 be a sequence of i.i.d. random

variables such that E[η1] = 0,E[η2
1] = σ2

η,E[|η1|3] = ρη < ∞, and Sn =
∑n

i=1 ηi/(ση
√
n). Let Fn(·)

be the cumulative distribution function of Sn. Then

sup
x∈R
|Fn(x)− Φ(x)| ≤ 3ρη

σ3
η

√
n
.

We first show the following weak convergence to the joint standard normal

(∑m
i=1 Ḡi
σI

,

√
R2(Ẑmin − Zmin)

σ
,

√
R2(Ẑmax − Zmax)

σ

)
⇒ N (0, I3). (B.67)

Since σ2
min = σ2 + op(1) and σ2

max = σ2 + op(1) as argued in (B.59), to show (B.67) it suffices to

show (∑m
i=1 Ḡi
σI

,

√
R2(Ẑmin − Zmin)

σmin
,

√
R2(Ẑmax − Zmax)

σmax

)
⇒ N (0, I3) (B.68)
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and then apply Slutsky’s theorem. For any (x, y, z) ∈ R3, we compute the joint probability

P
(∑m

i=1 Ḡi
σI

≤ x,
√
R2(Ẑmin − Zmin)

σmin
≤ y,

√
R2(Ẑmax − Zmax)

σmax
≤ z
)

= E

[
1

{∑m
i=1 Ḡi
σI

≤ x
}
· 1

{√
R2(Ẑmin − Zmin)

σmin
≤ y

}
· 1

{√
R2(Ẑmax − Zmax)

σmax
≤ z

}]

= ED,ξ1

[
1

{∑m
i=1 Ḡi
σI

≤ x
}
Eξ2|D,ξ1

[
1

{√
R2(Ẑmin − Zmin)

σmin
≤ y

}]

·Eξ2|D,ξ1

[
1

{√
R2(Ẑmax − Zmax)

σmax
≤ z

}]]
by conditional independence of Ẑmin and Ẑmax given input data and Step 1

= ED,ξ1
[
1

{∑m
i=1 Ḡi
σI

≤ x
}

(Φ(y) + εmin)(Φ(z) + εmax)

]
for some error terms εmin and εmax

= P
(∑m

i=1 Ḡi
σI

≤ x
)

Φ(y)Φ(z) + ED,ξ1
[
1

{∑m
i=1 Ḡi
σI

≤ x
}

(Φ(y)εmax + Φ(z)εmin + εminεmax)

]
.(B.69)

We need to show that the second term in (B.69) vanishes. Denoting by

ρmin := Ewmin
1 ,...,wmin

m
[|h(X1, . . . ,Xm)− Zmin|3]

ρmax := Ewmax
1 ,...,wmax

m
[|h(X1, . . . ,Xm)− Zmax|3]

the third order central moments of the output h driven by the extreme weighted inputs. The errors

εmin, εmax then satisfy |εmin| ≤ min
{

1, 3ρmin

σ3
min

√
R2

}
, |εmax| ≤ min

{
1, 3ρmax

σ3
max

√
R2

}
. On one hand (B.54)

entails that ρmin = Op(1) and ρmax = Op(1). On the other hand, σ2
min = σ2 + op(1) and σ2

max =

σ2 + op(1) as mentioned before. These two facts together lead to εmin = Op(1/
√
R2) and εmax =

Op(1/
√
R2). Since both errors do not exceed 1, by the dominated convergence theorem, the second

term in (B.69) converges to zero asymptotically. Moreover, the probability P
(∑m

i=1 Ḡi ≤ xσI
)
→

Φ(x) which has been shown in (B.52). Therefore the joint probability converges to Φ(x)Φ(y)Φ(z),

hence weak convergence (B.68) holds by definition.

Secondly, we prove that [L FEL,U FEL] is asymptotically valid, i.e., the lim inf part in Theorem

3.3.4. The lim inf result for [L EEL,U EEL] is then a direct consequence of [L FEL,U FEL] by a

coupling argument as follows. If Algorithms 5 and 6 use the same R1 + 2R2 simulation runs, then
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the two different adjustments in Step 3 satisfy σ̂min√
R2
≥
√
σ̂2
I +

σ̂2
min
R2
− σ̂I almost surely, therefore

L EEL ≤ L FEL and U EEL ≥ U FEL almost surely. We proceed to prove the lim inf statement for

[L FEL,U FEL]. We write

P (L FEL ≤ Z∗ ≤ U FEL)

= P (L FEL ≤ Z∗) + P (Z∗ ≤ U FEL)− P (L FEL ≤ Z∗ or Z∗ ≤ U FEL)

= P (L FEL ≤ Z∗) + P (Z∗ ≤ U FEL)− 1 + P (U FEL < Z∗ < L FEL). (B.70)

To compute the probabilities in (B.70), we use the representation from Proposition 3.4.13 to get

P (L FEL ≤ Z∗)

= P
( m∑
i=1

Ḡi + Ẑmin − Zmin − z1−α/2

√
σ2
I +

σ2

R2
+ op

( 1√
n

+
1√
R2

)
≤ 0
)

= P
( 1√

σ2
I + σ2/R2

( m∑
i=1

Ḡi + Ẑmin − Zmin
)

+ op(1) ≤ z1−α/2

)

= P
( σI√

σ2
I + σ2/R2

∑m
i=1 Ḡi
σI

+
σ/
√
R2√

σ2
I + σ2/R2

√
R2(Ẑmin − Zmin)

σ
+ op(1) ≤ z1−α/2

)
→ 1− α

2
.

The limit here is valid because, by rewriting the last probability above as the probability of a

half-space of R3 like in (B.51), we can conclude from (B.67) and Lemma B.4.2 that

σI√
σ2
I + σ2/R2

∑m
i=1 Ḡi
σI

+
σ/
√
R2√

σ2
I + σ2/R2

√
R2(Ẑmin − Zmin)

σ
⇒ N (0, 1)

which continues to hold with an additional op(1) term on the left hand side by Slutsky’s Theorem.

Similary, one can show that P (U FEL ≥ Z∗)→ 1− α/2. Neglecting the last probability in (B.70)

gives

P (L FEL ≤ Z∗ ≤ U FEL) ≥ P (L FEL ≤ Z∗) + P (Z∗ ≤ U FEL)− 1→ 2
(
1− α

2

)
− 1 = 1− α
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from which the lim inf result follows.

Thirdly, we prove the lim sup results by further analyzing the last probability in (B.70). Using

the representation from Proposition 3.4.13 again we have

P (U FEL < Z∗ < L FEL)

= P
( σI√

σ2
I + σ2/R2

∑m
i=1 Ḡi
σI

+
σ/
√
R2√

σ2
I + σ2/R2

√
R2(Ẑmin − Zmin)

σ
+ op(1) > z1−α/2 and

− σI√
σ2
I + σ2/R2

∑m
i=1 Ḡi
σI

− σ/
√
R2√

σ2
I + σ2/R2

√
R2(Ẑmax − Zmax)

σ
+ op(1) > z1−α/2

)

= P
( σI√

σ2
I + σ2/R2

∑m
i=1 Ḡi
σI

+
σ/
√
R2√

σ2
I + σ2/R2

(√R2(Ẑmin − Zmin)

σ
+ op(1)

)
> z1−α/2 and

− σI√
σ2
I + σ2/R2

∑m
i=1 Ḡi
σI

− σ/
√
R2√

σ2
I + σ2/R2

(√R2(Ẑmax − Zmax)

σ
+ op(1)

)
> z1−α/2

)

where the second equality is valid because R2
n ≤M <∞ implies σ/

√
R2√

σ2
I+σ2/R2

≥ ε > 0 for some fixed

constant ε. By Slutsky’s theorem, if the three-dimensional random vector in (B.67) is contaminated

by a negligible noise of size op(1) in each component, it still converges weakly to the joint standard

normal. This convergence, together with Lemma B.4.2, leads to the following limit

P (U FEL < Z∗ < L FEL)− P (W̃1 > z1−α/2, W̃2 > z1−α/2)→ 0

where (W̃1, W̃2) is the joint normal N
(
0,
[ 1 −ρ

−ρ 1

])
and ρ = σ2

I/(σ
2
I + σ2/R2) > 0. To compute

the limit probability, note that the conditional distribution W̃2|W̃1 is N (−ρW̃1, 1− ρ2), therefore

P (W̃1 > z1−α/2, W̃2 > z1−α/2)

=

∫ ∞
z1−α/2

φ(x)P (N (−ρx, 1− ρ2) > z1−α/2)dx ≤ α

2

∫ ∞
z1−α/2

φ(x)dx =
α2

4
.

Here φ denotes the density of the standard normal, and the inequality follows since −ρx < 0 and
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1− ρ2 < 1 and hence P (N (−ρx, 1− ρ2) > z1−α/2) ≤ P (N (0, 1) > z1−α/2) = α/2. This establishes

lim supP (U FEL < Z∗ < L FEL) ≤ α2

4
.

Substituting it into (B.70) gives the lim sup statement of Theorem 3.3.4.

Following the above line of analysis, the lim sup statement of Theorem 3.3.3 can be derived.

We use the representation from Proposition 3.4.13. Since σI + σ√
R2
≤
√

2
√
σ2
I + σ2

R2
, we have

L EEL ≥ L̃ := Z∗ +

m∑
i=1

Ḡi + (Ẑmin − Zmin)−
√

2z1−α/2

√
σ2
I +

σ2

R2
+ op

( 1√
n

+
1√
R2

)
U EEL ≤ Ũ := Z∗ +

m∑
i=1

Ḡi + (Ẑmax − Zmax) +
√

2z1−α/2

√
σ2
I +

σ2

R2
+ op

( 1√
n

+
1√
R2

)

almost surely, where the op
(

1√
n

+ 1√
R2

)
terms are those from Proposition 3.4.13. Repeating the

above analysis for L̃ , Ũ reveals that

lim supP
(
L̃ ≤ Z∗ ≤ Ũ

)
≤ 1− α̃+

α̃2

4
.

The same lim sup bound then holds for L EEL,U EEL because L EEL ≥ L̃ and U EEL ≤ Ũ .

Lastly, when R2 also grows at a faster rate than n, the adjustments in Algorithms 5 and 6

relative to Algorithm 4 are of order op(1/
√
n), i.e., σ̂min/

√
R2 = op(1/

√
n), σ̂max/

√
R2 = op(1/

√
n)

and
√
σ̂2
I + σ̂2

min/R2 − σ̂I = op(1/
√
n),
√
σ̂2
I + σ̂2

max/R2 − σ̂I = op(1/
√
n). Therefore, by coupling

the simulation runs in Step 3 with Algorithm 4, the confidence bounds from Algorithms 5 and 6

differ from those from Algorithm 4 by op(1/
√
n). Using the proof for Theorem 3.3.2 concludes

asymptotic exactness. �
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Appendix C

Technical Proofs for Chapter 4

This chapter presents proofs for results in Chapter 4.

C.1 Proof of Lemma 4.5.1

We show the lemma under the two alternate sets of listed assumptions. First is under Assump-

tions 4.4.1 and 4.5.5. Second is under Assumptions 4.2.1, 4.4.1, 4.5.6 and that X is compact.

Proof of Lemma 4.5.1 (using Assumption 4.5.5). Under Assumption 4.4.1, by (4.16) we have

EHk(ξ1, . . . , ξk)
2 <∞ and hence V ar(gk(ξ)) = V ar(E[Hk(ξ1, . . . , ξk)|ξ1]) ≤ V ar(Hk(ξ1, . . . , ξk)) is
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well-defined and finite. By the Chebyshev inequality, we have

k2V ar(gk(ξ))

= k2V ar(E[Hk(ξ1, . . . , ξk)|ξ1])

= V ar

(
E

[
min
x∈X

k∑
i=1

h(x, ξi)
∣∣∣ξ1

])

≥ η2P

(∣∣∣∣∣E
[

min
x∈X

k∑
i=1

h(x, ξi)
∣∣∣ξ1

]
− E

[
min
x∈X

k∑
i=1

h(x, ξi)

]∣∣∣∣∣ > η

)

since E

[
E

[
min
x∈X

k∑
i=1

h(x, ξi)
∣∣∣ξ1

]]
= E

[
min
x∈X

k∑
i=1

h(x, ξi)

]

= η2

[
P

(
E

[
min
x∈X

k∑
i=1

h(x, ξi)
∣∣∣ξ1

]
− E

[
min
x∈X

k∑
i=1

h(x, ξi)

]
> η

)

+ P

(
E

[
min
x∈X

k∑
i=1

h(x, ξi)
∣∣∣ξ1

]
− E

[
min
x∈X

k∑
i=1

h(x, ξi)

]
< −η

)]
(C.1)

Consider the two terms in (C.1). We use a coupling argument to bound them and show that

they lead to the two terms in (4.17) that are independent of k. For the first term in (C.1),

P

(
E

[
min
x∈X

k∑
i=1

h(x, ξi)
∣∣∣ξ1

]
− E

[
min
x∈X

k∑
i=1

h(x, ξi)

]
> η

)

= P

E
min
x∈X

h(x, ξ′1) +
∑
i 6=1

h(x, ξi)


∣∣∣∣∣ξ′1
− E [min

x∈X

k∑
i=1

h(x, ξi)

]
> η


where ξ1, ξ

′
1, ξ2, . . . , ξk are all independent

= P

E
min
x∈X

h(x, ξ′1) +
∑
i 6=1

h(x, ξi)

−min
x∈X

k∑
i=1

h(x, ξi)

∣∣∣∣∣ξ′1
 > η


≥ P

E
h(xε(ξ

′), ξ′1) +
∑
i 6=1

h(xε(ξ
′), ξi)−

k∑
i=1

h(xε(ξ
′), ξi)

∣∣∣∣∣ξ′1
 > η + ε

 (C.2)

where xε(ξ
′) is an ε-optimal solution for the optimization minx∈X

{
h(x, ξ′1) +

∑
i 6=1 h(x, ξi)

}
that

only depends on ξ′ = {ξ′1, ξ2, . . . , ξk}. The last inequality follows since by the definition of

xε(ξ
′) it holds that minx∈X

{
h(x, ξ′1) +

∑
i 6=1 h(x, ξi)

}
≥ h(xε(ξ

′), ξ′1) +
∑

i 6=1 h(xε(ξ
′), ξi) − ε, and
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minx∈X
∑k

i=1 h(x, ξi) ≤
∑k

i=1 h(xε(ξ
′), ξi) by the definition of minimization. Note that (C.2) is

equal to

P
(
E
[
h(xε(ξ

′), ξ′1)− h(xε(ξ
′), ξ1)

∣∣∣ξ′1] > η + ε
)

= P
(
E
[
h(xε(ξ

′), ξ′1)− Z(xε(ξ
′))
∣∣∣ξ′1] > η + ε

)
since ξ1 is independent of xε(ξ

′) and ξ′1

≥ P

(
E

[
min
x∈X
{h(x, ξ′1)− Z(x)}

∣∣∣ξ′1] > η + ε

)
= P

(
min
x∈X
{h(x, ξ′1)− Z(x)} > η + ε

)
(C.3)
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Similarly, for the second term in (C.1), we have

P

(
E

[
min
x∈X

k∑
i=1

h(x, ξi)

∣∣∣∣∣ξ1

]
− E

[
min
x∈X

k∑
i=1

h(x, ξi)

]
< −η

)

= P

(
E

[
min
x∈X

k∑
i=1

h(x, ξi)

]
− E

[
min
x∈X

k∑
i=1

h(x, ξi)

∣∣∣∣∣ξ1

]
> η

)

= P

E [min
x∈X

k∑
i=1

h(x, ξi)

]
− E

min
x∈X

h(x, ξ′1) +
∑
i 6=1

h(x, ξi)


∣∣∣∣∣ξ′1
 > η


where ξ1, ξ

′
1, ξ2, . . . , ξk are all independent

= P

E
min
x∈X

k∑
i=1

h(x, ξi)−min
x∈X

h(x, ξ′1) +
∑
i 6=1

h(x, ξi)


∣∣∣∣∣ξ′1
 > η


≥ P

E
 k∑
i=1

h(xε(ξ), ξi)− h(xε(ξ), ξ′1)−
∑
i 6=1

h(xε(ξ), ξi)

∣∣∣∣∣ξ′1
 > η + ε


where xε(ξ), with ξ = {ξ1, . . . , ξn}, is an ε-optimal solution of min

x∈X

n∑
i=1

h(x, ξi);

this follows since min
x∈X

k∑
i=1

h(x, ξi) + ε ≥
k∑
i=1

h(xε(ξ), ξi) by the definition of xε(ξ) and

min
x∈X

h(x, ξ′1) +
∑
i 6=1

h(x, ξi)

 ≤ h(xε(ξ), ξ′1) +
∑
i 6=1

h(xε(ξ), ξi)

= P

(
E

[
h(xε(ξ), ξ1)− h(xε(ξ), ξ′1)

∣∣∣∣∣ξ′1
]
> η + ε

)

≥ P

(
E

[
min
x∈X
{h(x, ξ1)− h(x, ξ′1)}

∣∣∣ξ′1] > η + ε

)
(C.4)

Combining (C.3) and (C.4) into (C.1), we get (4.17). �

Proof of Lemma 4.5.1 (using Assumption 4.5.6). We first argue consistency of the SAA solu-

tions. Since Assumptions 4.2.1 and 4.4.1 hold, by Theorem 7.48 in Shapiro et al. (2014) we have

supx∈X
∣∣ 1
k

∑k
i=1 h(x, ξi)−Z(x)

∣∣→ 0 almost surely as k →∞. Denote by X̂ ∗k the set of optimal so-

lutions for the SAA problem formed by ξ1, . . . , ξk. Note that X̂ ∗k 6= ∅ because of Lipschitz continuity

and compactness of X . Assumption 4.2.1 also implies Lipschitzness of Z, i.e. |Z(x1)− Z(x2)| ≤

EM(ξ)‖x1 − x2‖. With all these ingredients, Theorem 5.3 in Shapiro et al. (2014) then ensures



APPENDIX C. TECHNICAL PROOFS FOR CHAPTER 4 260

that almost surely supx∈X̂ ∗k
infx′∈X ∗ ‖x−x′‖ → 0. Moreover, since supx∈X̂ ∗k

infx′∈X ∗ ‖x−x′‖ ≤ DX ,

where DX is the diameter of X , we have E[supx∈X̂ ∗k
infx′∈X ∗ ‖x−x′‖2]→ 0 by bounded convergence

theorem.

We now follow the line of arguments in the proof that uses Assumption 4.5.5. Here, we can

work with exact optimal solutions in place of ε-optimal solutions because X̂ ∗k 6= ∅. Following the

coupling argument in the previous proof, we have for the first term in (C.1)

P

(
E

[
min
x∈X

k∑
i=1

h(x, ξi)
∣∣∣ξ1

]
− E

[
min
x∈X

k∑
i=1

h(x, ξi)

]
> η

)
≥ P

(
E
[
h(x(ξ′), ξ′1)− Z(x(ξ′))

∣∣∣ξ′1] > η
)

≥ P
(
E
[
h(x′(ξ′), ξ′1)− Z(x′(ξ′))− (M(ξ′1) + EM(ξ))‖x(ξ′)− x′(ξ′)‖

∣∣∣ξ′1] > η
)

≥ P

(
E

[
min
x∈X ∗

{h(x, ξ′1)− Z∗} − (M(ξ′1) + EM(ξ))‖x(ξ′)− x′(ξ′)‖
∣∣∣ξ′1] > η

)
≥ P

(
min
x∈X ∗

{h(x, ξ′1)− Z∗} − (M(ξ′1) + EM(ξ))E
[
‖x(ξ′)− x′(ξ′)‖

∣∣∣ξ′1] > η

)

where x(ξ′) is an optimal solution for minx∈X {h(x, ξ′1) +
∑k

i=2 h(x, ξi)} and x′(ξ′) ∈ X ∗ minimizes

‖x(ξ′)− x′(ξ′)‖ (minimum is achieved because X ∗ is compact). Since

E
[
E
[
‖x(ξ′)− x′(ξ′)‖

∣∣∣ξ′1]] ≤ E
[

sup
x∈X̂ ∗k

inf
x′∈X ∗

‖x− x′‖

]
≤

(
E

[
sup
x∈X̂ ∗k

inf
x′∈X ∗

‖x− x′‖2
]) 1

2

→ 0

we know E[‖x(ξ′)−x′(ξ′)‖|ξ′1] = op(1) on one hand. On the other hand, M(ξ′1)+E |M(ξ)| = Op(1),

hence (M(ξ′1) + EM(ξ))E[‖x(ξ′)− x′(ξ′)‖|ξ′1] = op(1). By Slutsky’s theorem

min
x∈X ∗

{h(x, ξ′1)− Z∗} − (M(ξ′1) + EM(ξ))E
[
‖x(ξ′)− x′(ξ′)‖

∣∣∣ξ′1]⇒ min
x∈X ∗

{h(x, ξ′1)− Z∗}

which leads to

lim inf
k→∞

P

(
min
x∈X ∗

{h(x, ξ′1)− Z∗} − (M(ξ′1) + EM(ξ))E
[
‖x(ξ′)− x′(ξ′)‖

∣∣∣ξ′1] > η

)
≥ P

(
min
x∈X ∗

{h(x, ξ′1)− Z∗} > η

)
.
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For the second term in (C.1), we have the following lower bound by a similar argument

P

(
E

[
min
x∈X

k∑
i=1

h(x, ξi)

∣∣∣∣∣ξ1

]
− E

[
min
x∈X

k∑
i=1

h(x, ξi)

]
< −η

)

≥ P

(
E

[
h(x(ξ), ξ1)− h(x(ξ), ξ′1)

∣∣∣∣∣ξ′1
]
> η

)

≥ P

(
E

[
min
x∈X ∗

{h(x, ξ1)− h(x, ξ′1)}

∣∣∣∣∣ξ′1
]
− E[M(ξ1)‖x(ξ)− x′(ξ)‖]−M(ξ′1)E‖x(ξ)− x′(ξ)‖ > η

)

where x(ξ) is an optimal solution for minx∈X
∑k

i=1 h(x, ξi) and x′(ξ) ∈ X ∗ minimizes ‖x(ξ)−x′(ξ)‖.

Again E[M(ξ1)‖x(ξ) − x′(ξ)‖] and M(ξ′1)E‖x(ξ) − x′(ξ)‖ are both op(1), and by convergence in

distribution we obtain the lower bound

P

(
E

[
min
x∈X ∗

{h(x, ξ1)− h(x, ξ′1)}

∣∣∣∣∣ξ′1
]
> η

)

in place of (C.4). This completes the proof. �

C.2 Proof of Theorems 4.5.2 and 4.5.3

We need the following result from Van der Vaart (2000):

Theorem C.2.1 (Theorem 11.2 in Van der Vaart (2000)) Let Ln be a linear space of ran-

dom variables with finite second moment that contains the constants. Let Tn be a random variable

with projection Sn onto Ln. If

V ar(Tn)

V ar(Sn)
→ 1 as n→∞

then

Tn − ETn
sd(Tn)

− Sn − ESn
sd(Sn)

p→ 0 as n→∞

where sd(·) denotes the standard deviation.

For any random variable in the form T = T (ξ1, . . . , ξn), we also use the notation T̊ to denote

the Hajek projection, namely, the projection of T onto the space spanned by
∑n

i=1 fi(ξi) where fi’s
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are any measurable functions. By Van der Vaart (2000), we know that, if ξ1, . . . , ξn are i.i.d. and

T has finite second moment,

T̊ =

n∑
i=1

E[T |ξi]− (n− 1)ET

To proceed, we also define

gk,c(ξ̃1, . . . , ξ̃c) = E[Hk(ξ1, . . . , ξk)|ξ1 = ξ̃1, . . . , ξc = ξ̃c]

as the conditional expectation of Hk given the first c variables. In particular, by our definition

before, gk(ξ) = gk,1(ξ) and Hk(ξ1, . . . , ξk) = gk,k(ξ1, . . . , ξk).

We have the following lemma on the estimate of gk,c(·):

Lemma C.2.2 Suppose Assumption 4.4.1 holds. For ξ1, . . . , ξc, ξ
′
1, . . . , ξ

′
c
i.i.d.∼ F , we have

|gk,c(ξ′1, . . . , ξ′c)− E[gk,c(ξ1, . . . , ξc)]| ≤
1

k

c∑
i=1

E

[
sup
x∈X
|h(x, ξ′i)− h(x, ξi)|

∣∣∣∣∣ξ′i
]

Proof. Let ξi, ξ
′
i be i.i.d. variables generated from F . Assumption 4.4.1 ensures EHk(ξ1, . . . , ξk)

2 <

∞ and hence V ar(gk,c(ξ1, . . . , ξc)) = V ar(E[Hk(ξ1, . . . , ξk)|ξ1, . . . , ξc]) ≤ V ar(Hk(ξ1, . . . , ξk)) is

well-defined and finite. Consider

gk,c(ξ
′
1, . . . , ξ

′
c)− E[gk,c(ξ1, . . . , ξc)]

= E[Hk(ξ
′
1, . . . , ξ

′
c, ξ1, . . . , ξk)|ξ′1, . . . , ξ′c]− E[Hk(ξ1, . . . , ξk)]

= E

[
min
x∈X

{
1

k

c∑
i=1

h(x, ξ′i) +
1

k

k∑
i=c+1

h(x, ξi)

}∣∣∣∣∣ξ′1, . . . , ξ′c
]
− E

[
min
x∈X

1

k

k∑
i=1

h(x, ξi)

]

= E

[
min
x∈X

{
1

k

c∑
i=1

h(x, ξ′i) +
1

k

k∑
i=c+1

h(x, ξi)

}
−min

x∈X

1

k

k∑
i=1

h(x, ξi)

∣∣∣∣∣ξ′1, . . . , ξ′c
]

since ξi, ξ
′
i are all independent

≤ E

[
1

k

c∑
i=1

h(xε,k(ξ), ξ′i) +
1

k

k∑
i=c+1

h(xε,k(ξ), ξi)−
1

k

k∑
i=1

h(xε,k(ξ), ξi)

∣∣∣∣∣ξ′1, . . . , ξ′c
]

+ ε (C.5)
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where xε,k(ξ) is an ε-optimal solution of minx∈X
1
k

∑k
i=1 h(x, ξi). The last inequality follows since

min
x∈X

{
1

k

c∑
i=1

h(x, ξ′i) +
1

k

k∑
i=c+1

h(x, ξi)

}
≤ 1

k

c∑
i=1

h(xε,k(ξ), ξ′i) +
1

k

k∑
i=c+1

h(xε,k(ξ), ξi)

by the definition of minimization and

min
x∈X

1

k

k∑
i=1

h(x, ξi) ≥
1

k

k∑
i=1

h(xε,k(ξ), ξi)− ε

by the definition of xε(ξ). Note that (C.5) is equal to

E

[
1

k

c∑
i=1

(h(xε,k(ξ), ξ′i)− h(xε,k(ξ), ξi))

∣∣∣∣∣ξ′1, . . . , ξ′c
]

+ ε

≤ E

[
1

k

c∑
i=1

sup
x∈X
|h(x, ξ′i)− h(x, ξi)|

∣∣∣∣∣ξ′1, . . . , ξ′c
]

+ ε (C.6)

=
1

k

c∑
i=1

E

[
sup
x∈X
|h(x, ξ′i)− h(x, ξi)|

∣∣∣∣∣ξ′i
]

+ ε (C.7)

since ξ1, . . . , ξc, ξ
′
1, . . . , ξ

′
c are independent
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Similarly,

E[gk,c(ξ1, . . . , ξc)]− gk,c(ξ′1, . . . , ξ′c)

= E[Hk(ξ1, . . . , ξk)]− E[Hk(ξ
′
1, . . . , ξ

′
c, ξ1, . . . , ξk)|ξ′1, . . . , ξ′c]

= E

[
min
x∈X

1

k

k∑
i=1

h(x, ξi)

]
− E

[
min
x∈X

{
1

k

c∑
i=1

h(x, ξ′i) +
1

k

k∑
i=c+1

h(x, ξi)

}∣∣∣∣∣ξ′1, . . . , ξ′c
]

= E

[
min
x∈X

1

k

k∑
i=1

h(x, ξi)−min
x∈X

{
1

k

c∑
i=1

h(x, ξ′i) +
1

k

k∑
i=c+1

h(x, ξi)

}∣∣∣∣∣ξ′1, . . . , ξ′c
]

since ξi, ξ
′
i are all independent

≤ E

[
1

k

k∑
i=1

h(xε,k(ξ
′), ξi)−

1

k

c∑
i=1

h(xε,k(ξ
′), ξ′i)−

1

k

k∑
i=c+1

h(xε,k(ξ
′), ξi)

∣∣∣∣∣ξ′1, . . . , ξ′c
]

+ ε

where xε,k(ξ
′) is the ε-optimal solution of min

x∈X

{
1

k

c∑
i=1

h(x, ξ′i) +
1

k

k∑
i=c+1

h(x, ξi)

}
since

min
x∈X

{
1

k

c∑
i=1

h(x, ξ′i) +
1

k

k∑
i=c+1

h(x, ξi)

}
+ ε ≥ 1

k

c∑
i=1

h(xε,k(ξ
′), ξ′i) +

1

k

k∑
i=c+1

h(xε,k(ξ
′), ξi)

by the definition of xε,k(ξ
′) and min

x∈X

1

k

k∑
i=1

h(x, ξi) ≤
1

k

k∑
i=1

h(xε,k(ξ
′), ξi)

= E

[
1

k

c∑
i=1

(h(xε,k(ξ
′), ξi)− h(xε,k(ξ

′), ξ′i))

∣∣∣∣∣ξ′1, . . . , ξ′c
]

+ ε

≤ 1

k

c∑
i=1

E

[
sup
x∈X
|h(x, ξi)− h(x, ξ′i)|

∣∣∣∣∣ξ′i
]

+ ε (C.8)

Combining (C.7) and (C.8), and noting that ε is arbitrary, we have

|gk,c(ξ′1, . . . , ξ′c)− E[gk,c(ξ1, . . . , ξc)]| ≤
1

k

c∑
i=1

E

[
sup
x∈X
|h(x, ξ′i)− h(x, ξi)|

∣∣∣∣∣ξ′i
]

which concludes the lemma. �

We are now ready to prove Theorem 4.5.2: Proof of Theorem 4.5.2. By Assumption 4.4.1,

we have EHk(ξ1, . . . , ξk)
2 < ∞ by (4.16) and hence the centered U -statistic Un,k −Wk satisfies
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E(Un,k−Wk)
2 <∞. Following Section 12.1 in van der Vaart, the Hajek projection of Un,k−Wk is

˚(Un,k −Wk) =
n∑
i=1

E[Un,k −Wk|ξi] =
n∑
i=1

1(
n
k

) ∑
(i1,...,ik)∈Ck

E[Hk(ξi1 , . . . , ξik)−Wk|ξi] (C.9)

Note that

E[Hk(ξi1 , . . . , ξik)−Wk|ξi] =

 E[Hk(ξ1, . . . , ξk)−Wk|ξi] = gk(ξi)−Wk if i ∈ {i1, . . . , ik}

0 otherwise

For each i, the number of E[Hk(ξi1 , . . . , ξik)−Wk|ξi] in which the first case above happens, among

all summands in the inner summation in the left hand side of (C.9), is
(
n−1
k−1

)
. Therefore, (C.9) is

equal to (
n−1
k−1

)(
n
k

) n∑
i=1

(gk(ξi)−Wk) =
k

n

n∑
i=1

(gk(ξi)−Wk) (C.10)

Since ξ1, . . . , ξn are i.i.d., we have

V ar( ˚(Un,k −Wk)) =
k2

n
V ar(gk(ξ)) (C.11)

where ξ ∼ F .

By Theorem C.2.1, if we can prove that

V ar(Un,k)

V ar( ˚(Un,k −Wk))
→ 1 (C.12)

and
˚(Un,k −Wk)− E ˚(Un,k −Wk)

sd( ˚(Un,k −Wk))
⇒ N(0, 1) (C.13)

Then

Un,k −Wk

sd(Un,k)

=

(
Un,k −Wk

sd(Un,k)
−

˚(Un,k −Wk)− E ˚(Un,k −Wk)

sd( ˚(Un,k −Wk))

)
+

˚(Un,k −Wk)− E ˚(Un,k −Wk)

sd( ˚(Un,k −Wk))
⇒ N(0, 1)
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by Slutsky’s Theorem. Furthermore, by (C.12) and Slutsky’s Theorem again, we have

Un,k −Wk

sd( ˚(Un,k −Wk))
=
Un,k −Wk

sd(Un,k)

sd(Un,k)

sd( ˚(Un,k −Wk))
⇒ N(0, 1)

Note that, by (C.11),

Un,k −Wk

sd( ˚(Un,k −Wk))
=

√
n(Un,k −Wk)

k
√
V ar(gk(ξ))

and hence we conclude the theorem.

By (C.10) and (C.11), the left hand side of (C.13) can be written as

(k/n)
∑n

i=1(gk(ξi)−Wk)

(k/
√
n)sd(gk(ξ))

=

√
n((1/n)

∑n
i=1(gk(ξi)−Wk)

sd(gk(ξ))

Thus (C.13) is equivalent to

√
n((1/n)

∑n
i=1(gk(ξi)−Wk)

sd(gk(ξ))
⇒ N(0, 1) (C.14)

The rest of the proof focuses on showing (C.12) and (C.14).

Proof of (C.12). Consider

V ar(Un,k) =
1(
n
k

)2 ∑
(i1,...,ik),(i′1,...,i

′
k)∈Ck

Cov(Hk(ξi1 , . . . , ξik), Hk(ξi′1 , . . . , ξi′k))

=
1(
n
k

)2 k∑
c=1

(
n

k

)(
k

c

)(
n− k
k − c

)
V ar(gk,c(ξ1, . . . , ξc)) (C.15)

=

k∑
c=1

(
k
c

)(
n−k
k−c
)(

n
k

) V ar(gk,c(ξ1, . . . , ξc)) (C.16)

where the second equality follows by counting the number of combinations of (i1, . . . , ik) and

(i′1, . . . , i
′
k) in the summation that have c overlapping indices. For each c, this number follows

by first picking k out of n indices from {1, . . . , n} to place in (i1, . . . , ik), then choosing c from

these k numbers to place in (i′1, . . . , i
′
k) and k − c from the remaining n − k numbers to place in
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the remaining spots in (i′1, . . . , i
′
k). Note also that if (i1, . . . , ik) and (i′1, . . . , i

′
k) have c ≥ 1 over-

lapping indices, say by relabeling and the symmetry of Hk we write the indices as (i1, . . . , ik) and

(i1, . . . , ic, i
′
c+1, . . . , i

′
k), then

Cov(Hk(ξi1 , . . . , ξik), Hk(ξi1 , . . . , ξic , ξi′c+1
, . . . , ξi′k))

= Cov(E[Hk(ξi1 , . . . , ξik)|ξ1, . . . , ξc], E[Hk(ξi1 , . . . , ξic , ξi′c+1
, . . . , ξi′k)|ξ1, . . . , ξc])

+ E[Cov(Hk(ξi1 , . . . , ξik), Hk(ξi1 , . . . , ξic , ξi′c+1
, . . . , ξi′k)|ξ1, . . . , ξc)]

= V ar(gk,c(ξ1, . . . , ξc))

since ξc+1, . . . , ξk and ξ′c+1, . . . , ξ
′
k are independent. Finally, if (i1, . . . , ik) and (i′1, . . . , i

′
k) have no

overlapping index then Cov(Hk(ξi1 , . . . , ξik), Hk(ξi′1 , . . . , ξi′k)) = 0. Therefore the equality in (C.15)

holds.

On the other hand, by (C.11), we have V ar( ˚(Un,k −Wk)) = k2

n V ar(gk(ξ)). Also, by Lemma

4.5.1, V ar(gk(ξ)) > 0. Combining these with (C.16) gives

V ar(Un,k)

V ar( ˚(Un,k −Wk))
=
n
∑k

c=1
(kc)(

n−k
k−c)

(nk)
V ar(gk,c(ξ1, . . . , ξc))

k2V ar(gk(ξ))

=
n

k2
·
(
k
1

)(
n−k
k−1

)(
n
k

) +
n
∑k

c=2
(kc)(

n−k
k−c)

(nk)
V ar(gk,c(ξ1, . . . , ξc))

k2V ar(gk(ξ))
(C.17)

Consider the first term in (C.17). We have

n

k2
·
(
k
1

)(
n−k
k−1

)(
n
k

)
=

n

k2

k · (n− k)(n− k − 1) · · · (n− 2k + 2)/(k − 1)!

n(n− 1) · · · (n− k + 1)/k!

=
n− k
n− 1

· n− k − 1

n− 2
· · · n− 2k + 2

n− k + 1

=

(
1− k − 1

n− 1

)(
1− k − 1

n− 2

)
· · ·
(

1− k − 1

n− k + 1

)
(C.18)
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For k = o(
√
n),

∣∣∣∣∣∣
n−1∑

j=n−k+1

log

(
1− k − 1

j

)∣∣∣∣∣∣ ≤ C
n−1∑

j=n−k+1

k − 1

j

≤ C
∫ n−1

n−k

k − 1

u
du

= C(k − 1) log
n− 1

n− k

= −C(k − 1) log

(
1− k − 1

n− 1

)
≤ C̃(k − 1)

k − 1

n− 1

= o(1)

where C, C̃ > 0 are some constants. Therefore, from (C.18), we get

n

k2
·
(
k
1

)(
n−k
k−1

)(
n
k

) → 1 (C.19)

as n→∞.

Now consider the second term in (C.17). By Lemma C.2.2, for c ≥ 1,

V ar(gk,c(ξ1, . . . , ξc)) ≤ E

(
1

k

c∑
i=1

E

[
sup
x∈X
|h(x, ξ′i)− h(x, ξi)|

∣∣∣∣∣ξ′i
])2

≤ 1

k2

 c∑
i=1

√
E

(
sup
x∈X
|h(x, ξ′i)− h(x, ξi)|

)2
2

by the Minkowski inequality

≤ c2M

k2
(C.20)

for some M > 0 by Assumption 4.5.1.

Note also that (
k
c

)(
n−k
k−c
)(

n
k

)
is the probability mass at c of a hypergeometric variable with parameters (n, k, k). Note that such

a variable takes domain {max(2k − n, 0), . . . , k}, which equals {0, . . . , k} for n sufficiently large
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since k = o(
√
n). This hypergeometric variable has second moment equal to

k2(n− k)2

n2(n− 1)
+
k4

n2
(C.21)

Thus, for n large enough, and using Lemma 4.5.1, we have

n
∑k

c=2
(kc)(

n−k
k−c)

(nk)
V ar(gk,c(ξ1, . . . , ξc))

k2V ar(gk(ξ))

≤
n
∑k

c=2
(kc)(

n−k
k−c)

(nk)
c2M
k2

ε
for some constant ε > 0

= n

(
k2(n− k)2

n2(n− 1)
+
k4

n2
− k2

n
(1 + o(1))

)
M

εk2
(C.22)

by using (C.21) and

(
k
1

)(
n−k
k−1

)(
n
k

) =
k2

n
(1 + o(1)) that we have proven using (C.19)

=

(
(n− k)2

n(n− 1)
+
k2

n
− (1 + o(1))

)
M

ε

= o(1) (C.23)

since k = o(
√
n).

Combining (C.19) and (C.22) into (C.17), we get

V ar(Un,k)

V ar( ˚(Un,k −Wk))
→ 1.

Proof of (C.14). By Lemma C.2.2, denoting ξ, ξ′
i.i.d.∼ F , we have

E|gk(ξi)−Wk|2+δ

≤ E

(
1

k
E

[
sup
x∈X
|h(x, ξ′)− h(x, ξ)|

∣∣∣∣∣ξ′
])2+δ

≤ 1

k2+δ
E sup
x∈X
|h(x, ξ′)− h(x, ξ)|2+δ ≤ M̃

k2+δ

for some M̃ > 0 by Assumption 4.5.1. Moreover, by Lemma 4.5.1 we have V ar(gk(·)) ≥ ε/k2 for
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some ε > 0 for k sufficiently large. Hence

nE|gk(ξ)−Wk|2+δ

(nV ar(gk(ξ)))1+δ/2
≤ nM̃/k2+δ

(nε/k2)1+δ/2
=

M̃

nδ/2ε1+δ/2
→ 0

as n→∞. The Lyapunov condition then implies the central limit theorem in (C.14). �

Proof of Theorem 4.5.3. Let c(n, k, s) count the number of mappings φ : {1, 2, . . . , k} →

{1, 2, . . . , n} such that |φ({1, 2, . . . , k})| = s, or equivalently, count the number of ξi1 , . . . , ξik such

that i1, . . . , ik covers s distinct indices, and let An,s be the average of all Hk(ξi1 , . . . , ξik) with s

distinct indices. In particular, An,k = Un,k. The V-statistic can be expressed for a fixed l ≥ 0 as

nkVn,k =
k∑

s=k−l
c(n, k, s)An,s +

(
nk −

k∑
s=k−l

c(n, k, s)
)
Rn,l

where Rn,l is the average of all Hk(ξi1 , . . . , ξik) with at most k − l − 1 distinct indices. We have

nk(Un,k − Vn,k) = nkUn,k −
k∑

s=k−l
c(n, k, s)(Un,k +An,s − Un,k)−

(
nk −

k∑
s=k−l

c(n, k, s)
)
Rn,l

=
(
nk −

k∑
s=k−l

c(n, k, s)
)
(Un,k −Rn,l)−

k−1∑
s=k−l

c(n, k, s)(An,s − Un,k)

=
( k−l−1∑

s=1

c(n, k, s)
)
(Un,k −Rn,l)−

k−1∑
s=k−l

c(n, k, s)(An,s − Un,k). (C.24)

We want to show that the two terms in (C.24) are both op(n
k−1/2) so that the desired conclusion

follows by Slutsky’s theorem. To this end, we let

l =
⌊ 1

2(1− 2γ)

⌋
(C.25)

the reason for which shall be clear later.

To bound the first term in (C.24), note that c(n, k, s) can be written as

c(n, k, s) = S(k, s)n(n− 1) · · · (n− s+ 1)
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where S(k, s) is the Stirling number of the second kind with parameters k, s, which is the number

of partitions of a set of size k into s non-empty subsets. It’s shown in Rennie and Dobson (1969)

that for k ≥ 2 and 1 ≤ s ≤ k − 1

S(k, s) ≤ 1

2

(
k

s

)
sk−s. (C.26)

Hence
k−l−1∑
s=1

c(n, k, s) ≤ 1

2

k−l−1∑
s=1

(
k

s

)
sk−sns.

Note that the ratio between two neighboring
(
k
s

)
sk−sns is

(
k

s− 1

)
(s− 1)k−s+1ns−1

/(k
s

)
sk−sns =

(s− 1)k−s+1

(k − s+ 1)sk−s−1n
≤ s2

n
≤ k2

n
= o(1),

therefore

k−l−1∑
s=1

c(n, k, s) ≤ 1

2

(
1 +

k−l−2∑
s=1

(k2

n

)s)( k

l + 1

)
(k − l − 1)l+1nk−l−1

≤ 1

2(1− k2/n)

(
k

l + 1

)
(k − l − 1)l+1nk−l−1 = O(k2l+2nk−l−1) = O

((k2

n

)l+1
nk
)
.

For the particular choice of l shown in (C.25), the above bound is o(nk−1/2). Since both Un,k and

Rn,l are Op(1) by Assumption 4.4.1, the first term in (C.24) is Op(n
k−1).

For the second term in (C.24), it suffices to show that for each k − l ≤ s ≤ k − 1 it holds

c(n, k, s)(An,s − Un,k) = op(n
k−1/2) since there are only l of them. Since l is now viewed as a

constant, from the upper bound (C.26) for s ≥ k − l it follows that S(k, s) = O(k2(k−s)), resulting

in c(n, k, s) = O(k2(k−s)ns). If we can argue that An,s − Un,k = Op(k
−1), then each summand can

be bounded as

Op(k
2(k−s)−1ns) = Op(n

2γ(k−s)−γ+s) = Op(n
k+γ−1)

where the last equality holds because γ < 1/2 hence 2γ(k − s)− γ + s increases in s. This implies

an upper bound of order op(n
k−1/2) again because γ < 1/2. Now we show An,s − Un,k = Op(k

−1)

by a coupling argument. The value of An,s can be computed from the same resamples ξi1 , . . . , ξik

(with k distinct data points) used to compute Un,k, by removing k−s of them and fill in with those
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remaining in the resample. To be specific, we use Ik = (I(1), . . . , I(k)) to represent a sequence of

length k where I(j) ∈ {1, . . . , n} for each j ≤ k, define |Ik| to be the number of distinct indices in Ik.

For convenience we denote by Ik(j1 : j2) = (Ik(j1), . . . , Ik(j2)) the sub-sequence for 1 ≤ j1 ≤ j2 ≤ k

and ξIk = (ξIk(1), . . . , ξIk(k)). Then

An,s =
(n− k)!

n!

∑
|Ik|=k

1

sk−s

∑
|I′k|=s,I′k(1:s)=Ik(1:s)

Hk(ξI′k).

This leads to

|An,s − Un,k| ≤
(n− k)!

n!

∑
|Ik|=k

1

sk−s

∑
|I′k|=s,I′k(1:s)=Ik(1:s)

∣∣∣Hk(ξI′k)−Hk(ξIk)
∣∣∣

≤ (n− k)!

n!

∑
|Ik|=k

1

sk−s

∑
|I′k|=s,I′k(1:s)=Ik(1:s)

sup
x∈X

∣∣∣∣∣∣
k∑

j=s+1

1

k
(h(x, ξI′k(j))− h(x, ξIk(j)))

∣∣∣∣∣∣
≤ (n− k)!

n!

∑
|Ik|=k

1

sk−s

∑
|I′k|=s,I′k(1:s)=Ik(1:s)

k∑
j=s+1

1

k
sup
x∈X

∣∣∣h(x, ξI′k(j))− h(x, ξIk(j))
∣∣∣

≤ 1

k

k∑
j=s+1

(n− k)!

n!sk−s

∑
|Ik|=k

∑
|I′k|=s,I′k(1:s)=Ik(1:s)

sup
x∈X

∣∣∣h(x, ξI′k(j))− h(x, ξIk(j))
∣∣∣

=
k − s
k

2

n(n− 1)

∑
1≤i1<i2≤n

sup
x∈X
|h(x, ξi1)− h(x, ξi2)|

where the last equality is because I ′k(j) and Ik(j) are distinct indices and the gross sum over Ik, I
′
k

puts equal weight on each pair (i1, i2). Due to Assumption 4.5.1, we have

E[|An,s − Un,k|] ≤
k − s
k

E[sup
x∈X
|h(x, ξ)− h(x, ξ′)|] = O

( l
k

)
= O

(1

k

)
.

This completes the proof. �

C.3 Proof of Theorems 4.5.4 and 4.5.5

The proof relies on the following ANOVA decomposition of a symmetric statistic:
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Lemma C.3.1 (Adapted from Efron and Stein (1981)) For any symmetric function T map-

ping from Ξk → R and i.i.d. random elements ξ1, . . . , ξk ∈ Ξ such that V ar[T (ξ1, . . . , ξk)] < ∞,

there exist functions T1, . . . , Tk such that

T (ξ1, . . . , ξk) = E[T ] +

k∑
i=1

T1(ξ1) +
∑
i1<i2

T2(ξi1 , ξi2) + · · ·+ Tk(ξ1, . . . , ξk).

Moreover, all the 2k − 1 random variables on the right hand side have mean zero and are mutually

uncorrelated.

Note that T1(x) must be E[T (ξ1, . . . , ξk)|ξ1 = x]−ET by the property in the lemma, and the total

variance of a symmetric statistic T (ξ1, . . . , ξk) can be decomposed as V ar(T ) =
∑k

s=1

(
k
s

)
Vs, where

Vs := V ar(Ts(ξ1, . . . , ξs)). The Hajek projection is defined as T̊ := ET +
∑k

i=1 T1(ξ1), i.e. the first

order effect in the ANOVA decomposition. In particular, the Hajek projections of the symmetric

kernel Hk and the symmetric statistic Un,k are

H̊k = Wk +

k∑
i=1

(gk(ξi)−Wk)

Ůn,k = Wk +
k

n

n∑
i=1

(gk(ξi)−Wk).

As discussed in Section 4.5, we will use the ANOVA decomposition (Efron and Stein (1981)) of the

symmetric kernel Hk to allow for a larger resample size k in obtaining Theorem 4.5.4. We have the

following variance bound from Wager and Athey (2018) in analyzing random forests:

Lemma C.3.2 (Adapted from Lemma 7 of Wager and Athey (2018)) Under Assumption

4.4.1, for any k ≤ n it holds

E(Un,k − Ůn,k)2 ≤ k2

n2
E(Hk − H̊k)

2.

Proof. Wager and Athey (2018) prove this bound in the context of random forests where Hk

is a regression tree and Un,k is the random forest obtained from aggregating the resampled trees

(without replacement). Although the context they focus on is different from ours, their proof works
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for general symmetric kernels and U-statistics including the SAA values considered in this paper.

Note that in Lemma 7 of Wager and Athey (2018) the right hand side is the total variance V ar(Hk)

instead of E(Hk − H̊k)
2, however this comes from upper bounding E(Hk − H̊k)

2 by V ar(Hk) in

their proof so the bound with E(Hk − H̊k)
2 remains true. �

This allows us to derive a CLT under an additional assumption on k:

Theorem C.3.3 Under Assumptions 4.4.1, 4.5.1 and 4.5.5, if the resample size k is chosen such

that

k2E(Hk − H̊k)
2 = o(n) (C.27)

then √
n(Un,k −Wk)

k
√
V ar(gk(ξ))

⇒ N(0, 1)

where N(0, 1) is the standard normal.

Proof. According to the proof of Theorem 4.5.2, we only need to show E(Un,k−Ůn,k)2/V ar(Un,k)→

0, or equivalently E(Un,k−Ůn,k)2/V ar(Ůn,k)→ 0. Under the choice of k we have E(Un,k−Ůn,k)2 =

o(1/n) due to Proposition C.3.2, whereas V ar(Ůn,k) = k2V ar(gk(ξ))/n ≥ ε/n for k large enough.

This completes the proof. �

We state an upper bound for the left hand side of (C.27) in terms of the maximum deviation

of the cost function from its mean.

Lemma C.3.4 We have |Hk − Z∗| ≤ supx∈X
∣∣ 1
k

∑k
i=1 h(x, ξi)− Z(x)

∣∣, hence

E(Hk − H̊k)
2 ≤ V ar(Hk) ≤ E(Hk − Z∗)2 ≤ E

[
sup
x∈X

∣∣1
k

k∑
i=1

h(x, ξi)− Z(x)
∣∣2].

Proof. Let x∗ be an optimal solution of the original optimization (4.1), and x∗k be an optimal

solution of the SAA formed by ξ1, . . . , ξk. If Hk ≤ Z∗, since Z(x∗k) ≥ Z∗, we have |Hk − Z∗| ≤

|Hk−Z(x∗k)| ≤ supx∈X
∣∣ 1
k

∑k
i=1 h(x, ξi)−Z(x)

∣∣. Otherwise, if Hk > Z∗, then obviously Z∗ < Hk ≤
1
k

∑k
i=1 h(x∗, ξi), hence again |Hk − Z∗| ≤ | 1k

∑k
i=1 h(x∗, ξi) − Z(x∗)| ≤ supx∈X

∣∣ 1
k

∑k
i=1 h(x, ξi) −

Z(x)
∣∣. This proves the first inequality. For the second part of the lemma, the inequality E(Hk −
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H̊k)
2 ≤ V ar(Hk) follows from the projection property of Hajek projection and the other two are

obvious. �

To proceed, we need to introduce concepts in empirical processes and some notations. Denote

by

F := {h(x, ·)− Z(x) : x ∈ X}

the family of centered cost functions indexed by the decision x ∈ X . Note that for centered functions

the Lipschitz condition holds with a slightly larger constant than M(ξ)

|h(x1, ξ)− Z(x1)− (h(x2, ξ)− Z(x2))| ≤ (M(ξ) + EM(ξ))‖x1 − x2‖.

For a vector x ∈ Rd, let ‖x‖ be its L2 norm, and for a random variable X we define ‖X‖p :=

(E |X|p)1/p for p ≥ 1. We equip the function space F defined above with the norm ‖·‖2. We denote

by N(ε,X , ‖ · ‖) the covering number, with ball size ε, of the decision space, and by N[ ](ε,F , ‖ · ‖2)

the bracketing number, with bracket size ε, of the function space F .

We need a few results adapted from Van der Vaart and Wellner (1996). The first result connects

the complexity of the function space F to that of the decision space X :

Lemma C.3.5 (Adapted from Theorem 2.7.11 in Van der Vaart and Wellner (1996))

Suppose Assumption 4.2.1 holds and the decision space X is compact, then for any ε > 0

N[ ](4ε‖M(ξ)‖2,F , ‖ · ‖2) ≤ N(ε,X , ‖ · ‖).

The second result gives an upper bound of the covering number of the decision space X , hence an

upper bound of the bracketing number of F because of the first result.

Lemma C.3.6 Let DX be the diameter of the decision space X with respect to the L2 norm ‖ · ‖,

then N(ε,X , ‖ · ‖) ≤
(
3DX /ε

)d
for all ε ≤ DX .

Proof. Problem 6 in Section 2.1 of Van der Vaart and Wellner (1996) states that the ε-packing

number of a Euclidean ball of radius R in Rd is bounded above by (3R/ε
)d

, and the lemma follows
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from the fact that the covering number is always no more than the packing number and that X

can be contained in a Euclidean ball of radius DX . �

The third result concerns the first order moment of the maximum deviation.

Lemma C.3.7 (Adapted from Theorem 2.14.2 of Van der Vaart and Wellner (1996))

Let h̃(ξ) = supx∈X |h(x, ξ)− Z(x)|. We have for all k

√
kE
[

sup
x∈X

∣∣1
k

k∑
i=1

h(x, ξi)− Z(x)
∣∣] ≤ C‖h̃(ξ)‖2

∫ 1

0

√
1 + logN[ ](ε‖h̃(ξ)‖2,F , ‖ · ‖2)dε

where C is a universal constant.

We also need the following result that translates an upper bound of the first order moment to one

for higher order moments:

Lemma C.3.8 (Adapted from Theorem 2.14.5 of Van der Vaart and Wellner (1996))

For any p ≥ 2 it holds

√
k
(
E
[

sup
x∈X

∣∣1
k

k∑
i=1

h(x, ξi)− Z(x)
∣∣p]) 1

p ≤ C
(√

kE
[

sup
x∈X

∣∣1
k

k∑
i=1

h(x, ξi)− Z(x)
∣∣]+ k

− 1
2

+ 1
p ‖h̃(ξ)‖p

)

where C is a constant depending only on p, and h̃ is the same as in Lemma C.3.7.

Now we turn to the problem of further bounding the upper bound in Lemma C.3.4, which

can be viewed as the maximum deviation of the empirical process generated by the cost function.

Specifically, we show that this can be controlled at the canonical rate 1/
√
k in the case of Lipschitz

continuous cost function. We have:

Theorem C.3.9 Suppose Assumptions 4.2.1 and 4.4.1 hold, and that the decision space X is

compact, then we have

E
[

sup
x∈X

∣∣1
k

k∑
i=1

h(x, ξi)− Z(x)
∣∣2] = O

(1

k

)
.
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Proof. First we conclude the following upper bound of the maximum deviation

√
kE
[

sup
x∈X

∣∣1
k

k∑
i=1

h(x, ξi)− Z(x)
∣∣]

≤C‖h̃(ξ)‖2
∫ 1

0

√
1 + logN

( ε‖h̃(ξ)‖2
4‖M(ξ)‖2

,X , ‖ · ‖
)
dε by Lemmas C.3.7 and C.3.5

≤C‖h̃(ξ)‖2
(

1 +

∫ 1

0

√
logN

( ε‖h̃(ξ)‖2
4‖M(ξ)‖2

,X , ‖ · ‖
)
dε
)

since
√
a+ b ≤

√
a+
√
b

≤C‖h̃(ξ)‖2
(

1 +

∫ 4DX ‖M(ξ)‖2
‖h̃(ξ)‖2

∧1

0

√
d log

12DX ‖M(ξ)‖2
ε‖h̃(ξ)‖2

dε
)

by Lemma C.3.6 and N(ε,X , ‖ · ‖) = 1 for ε ≥ DX

=C‖h̃(ξ)‖2 + 12CDX ‖M(ξ)‖2
∫ 1

3
∧ ‖h̃(ξ)‖2

12DX ‖M(ξ)‖2

0

√
d log

1

ε
dε

≤C ′
(
‖h̃(ξ)‖2 +

√
d log

(
3 ∨ 12DX ‖M(ξ)‖2

‖h̃(ξ)‖2

)
(4DX ‖M(ξ)‖2 ∧ ‖h̃(ξ)‖2)

)
<∞ (C.28)

where C ′ is another universal constant. Then we apply the Lemma C.3.8 with p = 2 to get

kE
[

sup
x∈X

∣∣1
k

k∑
i=1

h(x, ξi)− Z(x)
∣∣2] ≤ C2(

√
kE
[

sup
x∈X

∣∣1
k

k∑
i=1

h(x, ξi)− Z(x)
∣∣]+ ‖h̃(ξ)‖2)2 <∞

which concludes Theorem C.3.9. �

With all these preparations, Theorem 4.5.4 can be readily proved: Proof of Theorem 4.5.4. By

Lemma C.3.4 and Theorem C.3.9 we have E(Hk − H̊k)
2 = O(1/k) hence k2E(Hk − H̊k)

2 = O(k),

which is o(n) when k = o(n). The CLT then follows from Theorem C.3.3. �

We now prove Theorem 4.5.5: Proof of Theorem 4.5.5. If we show V ar(Hk)/V ar(H̊k)→ 1 as

k →∞, then the conclusion follows from

E(Hk − H̊k)
2 = V ar(Hk)− V ar(H̊k) = o(V ar(H̊k)) = o(kV ar(gk(ξ))) = o

(1

k

)
and Theorem C.3.3, where the last equality is due to Proposition 4.6.1. Recall that EHk = EH̊k =
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Wk. In fact we will show the stronger results

kE(Hk −Wk)
2 → V ar(h(x∗, ξ)) (C.29)

kE(H̊k −Wk)
2 = k2V ar(gk(ξ))→ V ar(h(x∗, ξ)) (C.30)

where x∗ is the unique optimal solution. The way we prove these two moment convergence results is

to first show that the left hand side weakly converges to some variable that has the desired variance

and then use uniform integrability to conclude convergence in moments.

We first prove the ≤ direction of (C.29). Under the depicted conditions, Theorem 4.2.1 entails

that
√
k(Hk − Z∗)⇒ N(0, V ar(h(x∗, ξ))) on one hand. On the other hand, from Lemma C.3.4 we

have |Hk − Z∗|2+δ ≤ supx∈X
∣∣ 1
k

∑k
i=1 h(x, ξi)− Z(x)

∣∣2+δ
and Lemma C.3.8 with p = 2 + δ implies

E
[
k1+ δ

2 sup
x∈X

∣∣1
k

k∑
i=1

h(x, ξi)− Z(x)
∣∣2+δ

]
≤C
(√

kE
[

sup
x∈X

∣∣1
k

k∑
i=1

h(x, ξi)− Z(x)
∣∣]+ k

− δ
2(2+δ) ‖h̃(ξ)‖2+δ

)2+δ
.

Note that the first term on the right hand side is bounded because of (C.28). Let ξ, ξ′ be i.i.d. copies

of the uncertain variable, then the second term

‖h̃(ξ)‖2+δ
2+δ = E sup

x∈X
|h(x, ξ)− Z(x)|2+δ

≤ Eξ sup
x∈X

Eξ′
∣∣h(x, ξ)− h(x, ξ′)

∣∣2+δ
by Jensen’s inequality

≤ EξEξ′ sup
x∈X

∣∣h(x, ξ)− h(x, ξ′)
∣∣2+δ

<∞. by Assumption 4.5.1

This guarantees that

sup
k

(
√
k |Hk − Z∗|)2+δ ≤ sup

k
E
[
k1+ δ

2 sup
x∈X

∣∣1
k

k∑
i=1

h(x, ξi)− Z(x)
∣∣2+δ

]
<∞

therefore the sequence of random variables k(Hk−Z∗)2 is uniformly integrable. Since
√
k(Hk−Z∗)
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is asymptotically normal we conclude kE(Hk − Z∗)2 → V ar(h(x∗, ξ)), and hence

lim sup
k

kE(Hk −Wk)
2 ≤ lim sup

k
kE(Hk − Z∗)2 = V ar(h(x∗, ξ)). (C.31)

Next we show (C.30). Recall from the proof of Lemma 4.5.1 that when X ∗ = {x∗}

k(gk(ξ
′
1)−Wk)


≥ h(x∗, ξ′1)− Z∗ − (M(ξ′1) + EM(ξ))E

[
‖x(ξ′)− x′(ξ′)‖

∣∣∣ξ′1]
≤ h(x∗, ξ′1)− Z∗ + E[M(ξ1)‖x(ξ)− x′(ξ)‖] +M(ξ′1)E‖x(ξ)− x′(ξ)‖

where x(ξ), x′(ξ), x(ξ′), x′(ξ′) are the same as those in the proof of Lemma 4.5.1. We have

shown that the errors are all op(1), hence k(gk(ξ
′
1) − Wk) ⇒ h(x∗, ξ′1) − Z∗. On the other

hand, when verifying Lyapunov condition in proving Theorem 4.5.2 we have already seen that

supk k
2+δ |gk(ξ′1)−Wk|2+δ < ∞. Therefore uniform integrability of k2(gk(ξ

′
1) −Wk)

2 follows and

as k →∞

kE(H̊k −Wk)
2 = k2E(gk(ξ)−Wk)

2 → E(h(x∗, ξ)− Z∗)2 = V ar(h(x∗, ξ))

which is exactly (C.30).

Now (C.31), (C.30) and the relation E(Hk −Wk)
2 ≥ E(H̊k −Wk)

2 together imply (C.29).

To justify the order of bias, note that (C.31) and (C.29) force that as k →∞

k(Z∗ −Wk)
2 = kE(Hk − Z∗)2 − kE(Hk −Wk)

2 → 0

hence Z∗ −Wk = o(1/
√
k).

The CLT when k ≥ εn follows from Z∗ − Wk = o(1/
√
k) = o(1/

√
n), variance convergence

(C.30) and Slutsky’s theorem. �
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C.4 Proof of Proposition 4.6.1

Proof of Proposition 4.6.1. Using Lemma C.2.2 with c = 1, we have

V ar(gk(ξ)) = E(E[Hk(ξ1, . . . , ξk)|ξ1]− E[Hk(ξ1, . . . , ξk)])
2

≤ 1

k2
E

(
E

[
sup
x∈X
|h(x, ξ′1)− h(x, ξ1)|

∣∣∣ξ′1])2

≤ 1

k2
E

(
sup
x∈X
|h(x, ξ′1)− h(x, ξ1)|

)2

by Jensen’s inequality

≤ 1

k2
E

(
sup
x∈X
|h(x, ξ′1)|+ sup

x∈X
|h(x, ξ1)|

)2

≤ 4

k2
E sup
x∈X
|h(x, ξ)|2 = O

( 1

k2

)
by Minkowski inequality and Assumption 4.4.1

This concludes the proposition. �

C.5 Proof of Theorem 4.6.2 and the Claim in Example 4.6.1

Proof of Theorem 4.6.2. From the batching procedure it is clear that V ar(Z̃k) = V ar(Hk)/m

where m is the number of batches such that mk = n if rounding errors are ignored. For our U-

statistic, note that V ar(Ůn,k) = k2V ar(gk(ξ))/n = kV ar(H̊k)/n, and that the resample sizes in

Theorems 4.5.2 and 4.5.4 satisfy the relation (C.27) hence by Lemma C.3.2 it holds V ar(Un,k −

Ůn,k) = o(1/n) = o(V ar(Ůn,k)). So the asymptotic ratio

lim sup
n,k→∞

V ar(Un,k)

V ar(Z̃k)
= lim sup

n,k→∞

V ar(Ůn,k)

V ar(Hk)/m
= lim sup

n,k→∞

kV ar(H̊k)/n

V ar(Hk)/m
= lim sup

k→∞

V ar(H̊k)

V ar(Hk)
. (C.32)

Then rU ≤ 1 follows from the fact that V ar(H̊k) ≤ V ar(Hk). Under the conditions and resample

sizes of Theorem 4.5.3 we have E(Vn,k−Un,k)2 = o(1/n) = o(V ar(Un,k)) from the proof of Theorem

4.6.4, hence rV = rU follows.

When kV ar(Hk) → ∞, it’s obvious that (C.32) is equal to 0 since kV ar(H̊k) = O(1) by

Proposition 4.6.1. This proves the first case.

To show rU < 1 in the second case, suppose lim supk→∞ V ar(H̊k)/V ar(Hk) = 1, then there
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exists a subsequence {Hks}s such that

V ar(H̊ks)/V ar(Hks)→ 1 as s→∞

which implies that V ar(Hks − H̊ks) = o(V ar(H̊ks)) = o(1/ks). By Theorem C.3.3, this ensures

that Uks,ks , or equivalently Hks , has a Gaussian limit as s→∞. However, the subsequence {Hks}s

must have the same weak limit as the full sequence which is assumed non-Gaussian, thus leading

to a contradiction.

For the last case, from (C.29) and (C.30) in the proof of Theorem 4.5.5 we know (C.32) is equal

to 1. �

Proof of the claim in Example 4.6.1. Like in the proof of Theorem 4.5.5, we can follow the

coupling argument for Lemma 4.5.1 to get

k(gk(ξ
′
1)−Wk) = E

min
x∈X

h(x, ξ′1) +
∑
i 6=1

h(x, ξi)

−min
x∈X

k∑
i=1

h(x, ξi)

∣∣∣∣∣ξ′1


≤ E
[
h(x(ξ), ξ′1)− h(x(ξ), ξ1)

∣∣∣ξ′1]

where x(ξ) is the optimal solution for minx∈X
∑k

i=1 h(x, ξi) hence is independent of ξ′1. Note that

x(ξ) is uniformly distributed among {1, 2, . . . , d}, and that for any fixed ξ1 the solution x(ξ) will

weakly converge to the same uniform distribution. Therefore

E
[
h(x(ξ), ξ′1)− h(x(ξ), ξ1)

∣∣∣ξ′1] =
1

d

d∑
j=1

ξ′1,j − E[h(x(ξ), ξ1)]

=
1

d

d∑
j=1

ξ′1,j − E

1

d

d∑
j=1

ξ1,j +

d∑
j=1

(
P (x(ξ) = j)− 1

d

)
ξ1,j


=

1

d

d∑
j=1

ξ′1,j − E

E
 d∑
j=1

(
P (x(ξ) = j)− 1

d

)
ξ1,j

∣∣∣ξ1


=

1

d

d∑
j=1

ξ′1,j + o(1) by dominated convergence theorem
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where ξ′1,j and ξ1,j are the j-th components of ξ′1 and ξ1 respectively. Therefore we have shown

k(gk(ξ
′
1) − Wk) ≤

∑d
j=1 ξ

′
1,j/d + o(1). Similarly, denoting by x(ξ′) the optimal solution for the

optimization minx∈X {h(x, ξ′1) +
∑k

i=2 h(x, ξi)}, the lower bound can be obtained as

k(gk(ξ
′
1)−Wk) ≥ E

[
h(x(ξ′), ξ′1)− h(x(ξ′), ξ1)

∣∣∣ξ′1]
= E

[
h(x(ξ′), ξ′1)

∣∣∣ξ′1] by independence between ξ1 and x(ξ′)

=
1

d

d∑
j=1

ξ′1,j +
d∑
j=1

(
P (x(ξ′) = j|ξ′1)− 1

d

)
ξ′1,j

=
1

d

d∑
j=1

ξ′1,j + op(1).

The lower and upper bounds agree so

k(gk(ξ
′
1)−Wk)⇒

1

d

d∑
j=1

ξ′1,j = N
(
0,

1

d

)
.

On the other hand k2(gk(ξ
′
1) −Wk)

2 is uniformly integrable as argued in the proof of Theorem

4.5.5, hence k2V ar(gk(ξ)) = E[k2(gk(ξ
′
1)−Wk)

2]→ 1/d. �

C.6 Proof of Theorem 4.6.4

Proof of Theorem 4.6.4. For Un,k, note that each summand in its definition is an SAA value with

distinct i.i.d. data, and thus has mean exactly Wk. For Vn,k, recall the relation (C.24)

nk(Un,k − Vn,k) =
( k−l−1∑

s=1

c(n, k, s)
)
(Un,k −Rn,l)−

k−1∑
s=k−l

c(n, k, s)(An,s − Un,k).

Note that Un,k is unbiased for Wk, and that ERn,l = O(1) since Assumption 4.4.1 implies for

any indices i1, . . . , ik ∈ {1, . . . , n} that |EHk(ξi1 , . . . , ξik)| ≤ E supx∈X |h(x, ξ)|. In the proof of

Theorem 4.5.3 we have shown that E |An,s − Un,k| = O(1/k),
∑k−l−1

s=1 c(n, k, s) = O((k2/n)l+1nk)
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when k = o(
√
n), and that c(n, k, s) = O(k2(k−s)ns) for s ≥ k − l. Therefore

nk |EVn,k −Wk| ≤ O
((k2

n

)l+1
nk
)

+O(1/k)

k−1∑
s=k−l

O(k2(k−s)ns).

Since k2/n = o(1), it holds
∑k−1

s=k−lO(k2(k−s)ns) = O(k2nk−1), which leads to EVn,k − Wk =

O((k2/n)l+1 + k/n) for any fixed l ≥ 0. �

C.7 Proof of Theorems 4.7.1 and 4.7.2

Proof of Theorem 4.7.1. Wager and Athey (2018) provides a proof in the context of random

forests. Since their proof can be adapted to our optimization context, we shall directly borrow

some intermediate results there which hold for general symmetric kernels and U-statistics, and

only focus on parts that rely on the particular SAA kernel considered there. Readers are referred

to the proof of Theorem 9 in Wager and Athey (2018) for explanations of the borrowed results.

Note that Theorems 4.5.2, 4.5.4 and 4.5.5 can be viewed as special cases of Theorem C.3.3

where E(Hk − H̊k)
2 is O(1), O(1/k) and o(1/k) respectively. So it suffices to show consistency

in the more general setting under Theorem C.3.3 and, if not implied by (C.27), the additional

requirement k ≤ θn for some θ < 1. The IJ variance estimator now can be expressed as

n2

(n− k)2

n∑
i=1

Cov2
∗(N

∗
i , H

∗
k) =

n2

(n− k)2

n∑
i=1

(E∗[H
∗
k

k∑
j=1

1(ξij = ξi)]− E∗[N∗i ]E∗[H
∗
k ])2

=
n2

(n− k)2

n∑
i=1

(kE∗[H
∗
k1(ξi1 = ξi)]−

k

n
Un,k)

2

=
n2

(n− k)2

k2

n2

n∑
i=1

(E∗[H
∗
k |ξi1 = ξi]− Un,k)2 (C.33)

=
k2

(n− k)2

n∑
i=1

(Ai +Ri)
2
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where ξi1 , . . . , ξik are resampled from ξ1, . . . , ξn without replacement, and

Ai = E∗[H̊
∗
k |ξi1 = ξi]− E∗[H̊∗k ]

Ri = E∗[H
∗
k − H̊∗k |ξi1 = ξi]− E∗[H∗k − H̊∗k ].

We aim to show that

k2

(n− k)2

n∑
i=1

A2
i

/k2V ar(gk(ξ))

n

p→ 1,
k2

(n− k)2

n∑
i=1

R2
i = op

( 1

n

)
(C.34)

so that consistency follows by an application of Cauchy Schwartz inequality to the cross term∑n
i=1 2AiRi.

First we deal with Ri’s. Lemma 13 in Wager and Athey (2018) shows that

ER2
i =

k∑
s=2

(as + bs)V
H
s

where

as =

(
n− 1

s− 1

)((k − 1

s− 1

)/(n− 1

s− 1

)
−
(
k

s

)/(n
s

))2

bs =

(
n− 1

s

)((k − 1

s

)/(n− 1

s

)
−
(
k

s

)/(n
s

))2

with bk = 0, and V H
s is the variance of the s-th order function in the ANOVA decomposition of Hk

(see the discussion after Lemma C.3.1). Note that V ar(Hk) =
∑k

s=1

(
k
s

)
V H
s and V ar(H̊k) = kV H

1 .

Some basic algebra shows that

as+1/
(
k
s+1

)
as/
(
k
s

) =
(s+ 1)(k − s)
s(n− s)

,
bs+1/

(
k
s+1

)
bs/
(
k
s

) =
(s+ 1)2(k − s)
s2(n− s− 1)

.

Therefore, if k ≤ θn for θ < 1, the above two ratios are both less than one when s ≥ s∗ :=

max{2, d
√
θ/(1 −

√
θ)e}, meaning that the maximum of as/

(
k
s

)
or bs/

(
k
s

)
over s is attained at

some s ≤ s∗. Moreover, by upper bounding (k − s)/(n − s − 1) < 1 we have for all s ≤ s∗ that
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bs/
(
k
s

)
/
(
b2/
(
k
2

))
≤ s2/4 ≤ s∗2/4 and that as/

(
k
s

)
/
(
a2/
(
k
2

))
≤ s/2 ≤ s∗/2 ≤ s∗2/4. Hence

ER2
i ≤

s∗2

4

a2 + b2(
k
2

) s∗∑
s=2

(
k

s

)
V H
s +

k∑
s=s∗+1

as + bs(
k
s

) (
k

s

)
V H
s

≤ s∗2

4

a2 + b2(
k
2

) k∑
s=2

(
k

s

)
V H
s ≤ C(θ)

(n− k)2

n3
E(Hk − H̊k)

2

where C(θ) is a constant that only depends on θ. This bound implies

E
[ k2

(n− k)2

n∑
i=1

R2
i

]
= O

(k2

n2
E(Hk − H̊k)

2
)

= o
( 1

n

)
(C.35)

where the second equality follows from the requirement on resample size in Theorem C.3.3.

Now we analyze the Ai’s. Lemma 12 in Wager and Athey (2018) shows that

Ai =
(
1− k

n

)
(gk(ξi)−Wk) +

(k − 1

n− 1
− k

n

)∑
j 6=i

(gk(ξj)−Wk)

therefore one can write

(n− 1)2k2

n2(n− k)2

n∑
i=1

A2
i =

k2

n

( 1

n

n∑
i=1

(gk(ξi)−Wk)
2 − (ḡk −Wk)

2
)
, where ḡk =

1

n

n∑
i=1

gk(ξi).

Since E[k2(ḡk −Wk)
2/n] = k2V ar(gk(ξ))/n

2 = O(1/n2) = o(1/n) it suffices to prove

1

n

n∑
i=1

(gk(ξi)−Wk)
2
/
V ar(gk(ξ))

p→ 1 (C.36)

in order to justify the first limit equality in (C.34). To proceed, we need the following weak law of

large numbers:

Lemma C.7.1 (Theorem 2.2.9 from Durrett (2010)) For each n let Yn,i, 1 ≤ i ≤ n be inde-

pendent. Let bn > 0 with bn → ∞, and let Ȳn,i = Yn,i1(|Yn,i| ≤ bn). Suppose that, as n → ∞,
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∑n
i=1 P (|Yn,i| > bn)→ 0 and b−2

n

∑n
i=1EȲ

2
n,i → 0, then

∑n
i=1 Yn,i −

∑n
i=1EȲn,i

bn

p→ 0.

We apply the weak law to Yn,i = (gk(ξi)−Wk)
2/V ar(gk(ξ)) with bn = n. To verify the conditions

nP
((gk(ξi)−Wk)

2

V ar(gk(ξ))
> n

)
= nP (|gk(ξi)−Wk|2+δ > (nV ar(gk(ξ)))

1+ δ
2 )

≤ n

(nV ar(gk(ξ)))
1+ δ

2

E |gk(ξi)−Wk|2+δ by Markov inequality

≤ n

(nV ar(gk(ξ)))
1+ δ

2

M̃

k2+δ
by the proof of Theorem 4.5.2

=
M̃

n
δ
2 (k2V ar(gk(ξ)))

1+ δ
2

= O(n−
δ
2 )→ 0

and

1

n
E

[
(gk(ξi)−Wk)

4

(V ar(gk(ξ)))2
1
((gk(ξi)−Wk)

2

V ar(gk(ξ))
≤ n

)]
≤ 1

n
E

[
|gk(ξi)−Wk|2+δ

(V ar(gk(ξ)))
1+ δ

2

n1− δ
2 1
((gk(ξi)−Wk)

2

V ar(gk(ξ))
≤ n

)]

≤ 1

n
δ
2

E

[
|gk(ξi)−Wk|2+δ

(V ar(gk(ξ)))
1+ δ

2

]

≤ M̃

n
δ
2 (k2V ar(gk(ξ)))

1+ δ
2

→ 0.

It remains to show that

∣∣∣∣1− E [(gk(ξi)−Wk)
2

V ar(gk(ξ))
1
((gk(ξi)−Wk)

2

V ar(gk(ξ))
≤ n

)]∣∣∣∣
=

∣∣∣∣E [(gk(ξi)−Wk)
2

V ar(gk(ξ))
1
((gk(ξi)−Wk)

2

V ar(gk(ξ))
> n

)]∣∣∣∣
≤

(
E

[
|gk(ξi)−Wk|2+δ

(V ar(gk(ξ)))
1+ δ

2

]) 2
2+δ (

P
((gk(ξi)−Wk)

2

V ar(gk(ξ))
> n

)) δ
2+δ

by Holder’s inequality

≤

(
M̃

(k2V ar(gk(ξ)))
1+ δ

2

) 2
2+δ ( 1

n

) δ
2+δ

→ 0 by Markov inequality.
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With all these conditions verified, we can conclude (C.36) from Lemma C.7.1 and complete the

proof. �

Proof of Theorem 4.7.2. Given Theorem 4.7.1, it suffices to show that the IJ variance estimator

under resampling with replacement differs by only op(1/n) from the one without replacement. Since

quantities under both resampling with and without replacement will be involved in this proof, we

attach ∗ to quantities under resampling without replacement, and ∗̃ to those with replacement.

Note that k = O(nγ) for some γ < 1/2 which implies n2/(n− k)2 → 1, so the without-replacement

IJ variance estimate without the factor n2/(n−k)2, i.e.
∑n

i=1 Cov2
∗(N

∗
i , H

∗
k), is also consistent. We

have
n∑
i=1

Cov2
∗̃(N

∗̃
i , H

∗̃
k) =

k2

n2

n∑
i=1

(E∗̃[H
∗̃
k |ξi1 = ξi]− Vn,k)2 (C.37)

where ξi1 , . . . , ξik are resampled from ξ1, . . . , ξn with replacement. By comparing (C.33) (without

n2/(n− k)2) and (C.37) and using Cauchy Schwartz inequality

∣∣∣∣∣
n∑
i=1

Cov2
∗̃(N

∗̃
i , H

∗̃
k)−

n∑
i=1

Cov2
∗(N

∗
i , H

∗
k)

∣∣∣∣∣ ≤ k2

n2

n∑
i=1

(vi−ui)2+2

√√√√ n∑
i=1

Cov2
∗(N

∗
i , H

∗
k) · k

2

n2

n∑
i=1

(vi − ui)2

where vi = E∗̃[H
∗̃
k |ξi1 = ξi]−Vn,k and ui = E∗[H

∗
k |ξi1 = ξi]−Un,k. If we show that E(Vn,k−Un,k)2 =

o(1/n) and E(E∗̃[H
∗̃
k |ξi1 = ξi] − E∗[H∗k |ξi1 = ξi])

2 = o(1/n), then E[
∑n

i=1(vi − ui)2] = o(1) and

under the condition k = O(nγ) with γ < 1/2 we have

n∑
i=1

Cov2
∗̃(N

∗̃
i , H

∗̃
k)−

n∑
i=1

Cov2
∗(N

∗
i , H

∗
k) =

k2

n2
op(1) +

√
op
( 1

n
· k

2

n2

)
= op

( 1

n

)
which concludes the theorem.

The first error E(Vn,k − Un,k)2 = o(1/n) can be deduced from (C.24) in the proof of Theorem

4.5.3. We only need to notice that, in the setting of that proof, E(Un,k − Rn,l)2 = O(1) due to

Assumption 4.4.1 and that each E(An,s −Un,k)2 = O(1/k2) for s ≥ k− l due to Assumption 4.5.1.

The second error E(E∗̃[H
∗̃
k |ξi1 = ξi]−E∗[H∗k |ξi1 = ξi])

2 = o(1/n) needs some further discussion.

We study E(E∗̃[H
∗̃
k |ξi1 = ξ1] − E∗[H∗k |ξi1 = ξ1])2 without loss of generality. Given that the first

resampled data point ξi1 is ξ1, for any fixed integer l ≥ 0 we obtain the following decomposition of
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E∗̃[H
∗̃
k |ξi1 = ξ1] similar to that in the proof of Theorem 4.5.3

nk−1E∗̃[H
∗̃
k |ξi1 = ξ1] =

k−1∑
s=k−1−l

c(n− 1, k − 1, s)As + (nk−1 −
k−1∑

s=k−1−l
c(n− 1, k − 1, s))Rl

where As is the average of all Hk(ξ1, ξi2 , . . . , ξik)’s where ξi2 , . . . , ξik contain exactly s distinct data

and none of them is ξ1, and Rl is the average of all other Hk(ξ1, ξi2 , . . . , ξik)’s. Note that, in

particular, Ak−1 = E∗[H
∗
k |ξi1 = ξ1]. We have the following analog of (C.24)

nk−1(E∗[H
∗
k |ξi1 = ξ1]− E∗̃[H ∗̃k |ξi1 = ξ1])

= (nk−1 −
k−1∑

s=k−1−l
c(n− 1, k − 1, s))(Ak−1 −Rl)−

k−2∑
s=k−1−l

c(n− 1, k − 1, s)(As −Ak−1).

Note that the coefficient of the first term does not match the form of (C.24), but we have

nk−1 −
k−1∑

s=k−1−l
c(n− 1, k − 1, s) = nk−1 − (n− 1)k−1 +

k−l−2∑
s=1

c(n− 1, k − 1, s).

Like in the proof of Theorem 4.5.3

k−l−2∑
s=1

c(n− 1, k − 1, s) = O
((k2

n

)l+1
(n− 1)k−1

)
, E(Ak−1 −Rl)2 = O(1)

c(n− 1, k − 1, s) = O(k2(k−1−s)ns) and E(As −Ak−1)2 = O
( 1

k2

)
for s ≥ k − 1− l.

Moreover by Bernoulli’s inequality (1 + x)r ≥ 1 + rx for any integer r ≥ 0 and real x ≥ −1

nk−1 − (n− 1)k−1 = nk−1(1− (1− 1

n
)k−1) ≤ nk−2(k − 1).
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With all these bounds and Minkowski inequality we get

E(E∗[H
∗
k |ξi1 = ξ1]− E∗̃[H ∗̃k |ξi1 = ξ1])2

= O

((k
n

+
(k2

n

)l+1)2
E(Ak−1 −Rl)2 +

k−2∑
s=k−1−l

(k2

n

)2(k−1−s)
E(As −Ak−1)2

)

= O

((k
n

+
(k2

n

)l+1)2
+
k2

n2

)
= o
( 1

n

)
when l is chosen according to (C.25). �

C.8 Proof of Theorem 4.7.3 and Corollary 4.7.4

Proof of Theorem 4.7.3. We have two tasks. One is that Z̃bagk −Un,k = op(1/
√
n) when resampling

without replacement, or Z̃bagk − Vn,k = op(1/
√
n) with replacement, so that by Slutsky’s theorem

the CLTs still hold with Un,k or Vn,k replaced by their estimate Z̃bagk . The other thing is that

∣∣∣∣∣
n∑
i=1

Ĉov
2

∗(N
∗
i , Ẑ

∗
k)−

n∑
i=1

Cov2
∗(N

∗
i , H

∗
k)

∣∣∣∣∣ = op(1/n)

so that the variance estimation is consistent and CLTs remain valid by Slutsky’s theorem. Note

that in the case of resampling without replacement, the condition k ≤ θn for some θ < 1 implies 1 ≤

n2/(n− k)2 ≤ 1/(1− θ)2, hence the error remains op(1/n) after multiplying the factor n2/(n− k)2.

The first task is relatively easy. Note that Z̃bagk is unbiased (for estimating Un,k and Vn,k

respectively) in either case, and

V ar∗(Z̃
bag
k ) =

1

B
V ar∗(H

∗
k) ≤ 1

B
E∗H

∗2
k ≤

1

Bn

n∑
i=1

sup
x∈X
|h(x, ξi)|2 (C.38)

where the last inequality follows from the argument used in (4.16). Due to Assumption 4.4.1

and the strong law of large numbers
∑n

i=1 supx∈X |h(x, ξi)|2 /n
p→ E supx∈X |h(x, ξ)|2 < ∞, hence

V ar∗(Z̃
bag
k ) = Op(1/B). If B/(kn)→∞ we have

E∗(Z̃
bag
k − Un,k)2 = op

( 1

kn

)
= op

( 1

n

)
, E∗(Z̃

bag
k − Vn,k)2 = op

( 1

kn

)
= op

( 1

n

)
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For a non-negative random variable, if its conditional expectation is of order op(1), then itself is

also op(1). Therefore (Z̃bagk − Un,k)2 = op(1/n) and (Z̃bagk − Vn,k)2 = op(1/n).

For the second task, we first deal with resampling without replacement. By Cauchy Schwartz

inequality the Monte Carlo error can be bounded as

∣∣∣∣∣
n∑
i=1

Ĉov
2

∗(N
∗
i , Ẑ

∗
k)−

n∑
i=1

Cov2
∗(N

∗
i , H

∗
k)

∣∣∣∣∣ ≤
n∑
i=1

(Ĉovi − Covi)2 + 2

√√√√ n∑
i=1

Cov2
i

n∑
i=1

(Ĉovi − Covi)2

where Covi = Cov∗(N
∗
i , H

∗
k) and Ĉovi = Ĉov

2

∗(N
∗
i , Ẑ

∗
k) for short. Since

∑n
i=1Cov

2
i is the desired

variance of order 1/n, we only need to show
∑n

i=1(Ĉovi−Covi)2 = op(1/n). By computing variances

of the sample covariances one can get

E∗
[ n∑
i=1

(Ĉovi − Covi)2
]

≤
n∑
i=1

(
1

B
E∗[(H

∗
k − E∗H∗k)2(N∗i −

k

n
)2] +

1

B2
V ar∗(H

∗
k)V ar∗(N

∗
i ) +

2

B
Cov2

i

)

≤ 1

B
E∗[(H

∗
k − E∗H∗k)2

n∑
i=1

(N∗i −
k

n
)2] +

1

B2
V ar∗(H

∗
k)

n∑
i=1

V ar∗(N
∗
i ) +

2

B

n∑
i=1

Cov2
i .(C.39)

Note that
∑n

i=1Cov
2
i = Op(1/n), V ar∗(H

∗
k) = Op(1) as shown in (C.38), and

∑n
i=1(N∗i − k

n)2 =

k(n− k)/n, V ar∗(N
∗
i ) = k(n− k)/n2 since N∗i = 0 or 1 and

∑n
i=1N

∗
i = k. With all these bounds,

we have

E∗
[ n∑
i=1

(Ĉovi − Covi)2
]

= Op
( k
B

+
k

B2
+

1

Bn

)
= Op

( k
B

)
.

If B/(kn) → ∞, then E∗
[∑n

i=1(Ĉovi − Covi)2
]

= op(1/n), which implies
∑n

i=1(Ĉovi − Covi)2 =

op(1/n).

In the case of resampling with replacement, we have the same bound (C.39), where V ar∗(N
∗
i ) =

k(n−1)/n2 and V ar∗(H
∗
k) = Op(1). However, the first term becomes more complicated. We bound
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the first term by a conditioning argument on N∗i

E∗
[
H∗2k |N∗i = s

]
≤ E∗

[(1

k

k∑
j=1

sup
x∈X
|h(x, ξij )|

)2∣∣N∗i = s
]

=
s

k
sup
x∈X
|h(x, ξi)|2 +

k − s
k

1

n− 1

∑
j 6=i

sup
x∈X
|h(x, ξj)|2 by Minkowski inequality

therefore

E∗
[
H∗2k (N∗i −

k

n
)2
]

=

k∑
s=0

E∗
[
H∗2k |N∗i = s

]
(s− k

n
)2P (N∗i = s)

≤
k∑
s=0

( s
k

sup
x∈X
|h(x, ξi)|2 +

k − s
k

1

n− 1

∑
j 6=i

sup
x∈X
|h(x, ξj)|2

)
(s− k

n
)2P (N∗1 = s).

Now we have

E∗
[
H∗2k

n∑
i=1

(N∗i −
k

n
)2
]

=

n∑
i=1

E∗
[
H∗2k (N∗i −

k

n
)2
]

≤
k∑
s=0

( n∑
i=1

sup
x∈X
|h(x, ξi)|2

)
(s− k

n
)2P (N∗1 = s)

≤
n∑
i=1

sup
x∈X
|h(x, ξi)|2V ar∗(N∗1 ) = Op(k)

and the first term can be bounded as

E∗[(H
∗
k −E∗H∗k)2

n∑
i=1

(N∗i −
k

n
)2] ≤ 2E∗[H

∗2
k

n∑
i=1

(N∗i −
k

n
)2] + 2(E∗H

∗
k)2E∗[

n∑
i=1

(N∗i −
k

n
)2] = Op(k).

With these bounds, E∗
[∑n

i=1(Ĉovi − Covi)2
]

= Op(k/B) and the conclusion follows. �

Proof of Corollary 4.7.4. From Theorem 4.7.3, we have

P

(
Z̃bagk −Wk

σ̃IJ
≤ z1−α

)
→ 1− α (C.40)
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Note that

P

(
Z̃bagk −Wk

σ̃IJ
≤ z1−α

)
= P

(
Z̃bagk − z1−ασ̃IJ ≤Wk

)
≤ P

(
Z̃bagk − z1−ασ̃IJ ≤ Z∗

)
(C.41)

by (4.6). Combining (C.40) and (C.41) gives the conclusion. �
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Appendix D

Technical Proofs for Chapter 5

This chapter presents technical proofs for results in Chapter 5. In all the proofs, for universal

constants which are usually denoted C or c, we abuse notation slightly to allow C or c to take a

different value in each appearance. For example, consider three quantities x, y, z such that x ≤ Cy

and z ≤ 2x. This implies z ≤ 2Cy, but we would write as z ≤ Cy to simplify the notation.

D.1 Existing Central Limit Theorems in High Dimensions

This section reviews some results on high-dimensional central limit theorems that are needed sub-

sequently in our proofs. We start with some notations. Let Xi := (Xi,1, . . . , Xi,p), i = 1, . . . , n be

n i.i.d. copies of the random vector X := (X1, . . . , Xp) ∈ Rp, and µj := E[Xj ] for j = 1, . . . , p. Let

X̄j =
∑n

i=1Xi,j/n be the sample mean of the j-th component. We denote by Z := (Z1, . . . , Zp)

a p-dimensional Gaussian random vector with E[Zj ] = 0 and covariance structure Cov(Zj , Zj′) =

Σ(j, j′) := Cov(Xj , Xj′) for j, j′ = 1, . . . , p, and by Ẑ := (Ẑ1, . . . , Ẑp) a p-dimensional centered

Gaussian random vector with covariance Σ̂, where

Σ̂(j, j′) =
1

n

n∑
i=1

Xi,jXi,j′ − X̄jX̄j′

is the sample covariance of all Xi’s. We also denote σ2
j = Σ(j, j) and σ̂2

j = Σ̂(j, j).

We make the following assumption:
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Assumption D.1.1 There exist constants b > 0 and B ≥ 1 such that

V ar[Xj ] ≥ b and E[exp(|Xj − µj |2 /B2)] ≤ 2 for all j = 1, . . . , p

E[|Xj − µj |2+k] ≤ Bk for all j = 1, . . . , p and k = 1, 2.

Note that, since the sub-exponential norm of a random variable is always bounded above by its

sub-Gaussian norm up to some universal constant C, the exponential condition in Assumption

D.1.1 implies E[exp(|Xj − µj | /(CB))] ≤ 2. Chernozhukov et al. (2017) proved the following CLT:

Theorem D.1.1 (Proposition 2.1 in Chernozhukov et al. (2017)) When Assumption D.1.1

holds, we have

sup
aj≤bj ,j=1,...,p

∣∣P (aj ≤
√
n(X̄j − µj) ≤ bj for all j)− P (aj ≤ Zj ≤ bj for all j)

∣∣
≤C1

(B2 log7(pn)

n

) 1
6

where the constant C1 depends only on b.

To derive confidence bounds based on the CLT, one needs to properly estimate the quantile of

the limit Gaussian vector Z ∼ Np(0,Σ). One common approach is to use the Gaussian vector

Ẑ ∼ Np(0, Σ̂), where Σ̂ is the sample covariance matrix, to approximate Z. This approach is also

called the multiplier bootstrap. Chernozhukov et al. (2017) gave the following result concerning

the statistical accuracy of the multiplier bootstrap:

Theorem D.1.2 (Corollary 4.2 in Chernozhukov et al. (2017)) If Assumption D.1.1 holds,

then for any constant 0 < α < 1
e we have

sup
aj≤bj ,j=1,...,p

∣∣∣P (aj ≤ Ẑj ≤ bj for all j|{Xi}ni=1)− P (aj ≤ Zj ≤ bj for all j)
∣∣∣

≤C2

(B2 log5(pn) log2(1/α)

n

) 1
6

with probability at least 1− α, where the constant C2 depends only on b.
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D.2 Proofs of Results in Section 5.3

This section proves the performance guarantees of our Gaussian supremum validators. Section

D.2.1 adapts the high-dimensional CLTs in Section D.1 to handle small-variance situations that

potentially arise in our optimization context. Section D.2.2 extends them to the case where the

sample means are normalized by their standard deviations, a key step to justify our normalized

Gaussian supremum validator. Section D.2.3 presents results on the consistency of the multiplier

bootstrap to approximate the limiting Gaussian distributions. Section D.2.4 puts together all these

results to synthesize the main proofs for Section 5.3.

D.2.1 A CLT for Random Vectors with Potentially Small Variances

Note that in both Theorems D.1.1 and D.1.2, the constants C1, C2 depend on the minimum variance

b. By tracing the proof in Chernozhukov et al. (2017), the constant C1 is of the form c1(b−1 ∨ c2)

where c1, c2 are two universal constants. Due to such a dependence on the minimum variance, the

bound can deteriorate when the noise levels across different components of X are not of the same

scale, e.g., in the case of CCPs. To resolve this issue, we derive an alternate CLT that applies to

normalized random vectors. We assume:

Assumption D.2.1 V ar[Xj ] > 0 for all j = 1, . . . , p and there exists some constant D1 ≥ 1 such

that

E
[

exp
( |Xj − µj |2

D2
1V ar[Xj ]

)]
≤ 2 for all j = 1, . . . , p (D.1)

E
[( |Xj − µj |√

V ar[Xj ]

)2+k]
≤ Dk

1 for all j = 1, . . . , p and k = 1, 2. (D.2)

Note that rectangles in Rp are invariant with respect to component-wise rescaling, i.e., for any

rectangle R = {(x1, . . . , xp) : aj ≤ xj ≤ bj , j = 1, . . . , p}, the rescaled set R′ := {(λ1x1, . . . , λpxp) :

(x1, . . . , xp) ∈ R} with each λj > 0 is still a rectangle that can be represented as R′ = {(x1, . . . , xp) :

λjaj ≤ xj ≤ λjbj , j = 1, . . . , p}. Hence one can show the following CLT by applying Theorem D.1.1

to the rescaled data:
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Theorem D.2.1 If Assumption D.2.1 holds, then

sup
aj≤bj ,j=1,...,p

∣∣∣P (aj ≤
√
n(X̄j − µj) ≤ bj for all j)− P (aj ≤ Zj ≤ bj for all j)

∣∣∣ ≤ C(D2
1 log7(pn)

n

) 1
6

where C is a universal constant.

Proof of Theorem D.2.1. Consider the rescaled data Yi,j = (Xi,j−µj)/
√
V ar[Xj ]. Due to Assump-

tion D.2.1, Yi,j ’s satisfy Assumption D.1.1 with b = 1 and B = D1, and has covariance structure

ΣY (j, j′) = Σ(j, j′)/
√

Σ(j, j)Σ(j′, j′). Let Ȳj =
∑n

i=1 Yi,j/n. By Theorem D.1.1 we have

sup
aj≤bj ,j=1,...,p

∣∣∣P (aj ≤
√
nȲj ≤ bj for all j)− P (aj ≤

Zj√
V ar[Xj ]

≤ bj for all j)
∣∣∣

≤C
(D2

1 log7(pn)

n

) 1
6
.

The theorem follows from

sup
aj≤bj ,j=1,...,p

∣∣∣P (aj ≤
√
n(X̄j − µj) ≤ bj for all j)− P (aj ≤ Zj ≤ bj for all j)

∣∣∣
= sup
aj≤bj ,j=1,...,p

∣∣∣P (
√
V ar[Xj ]aj ≤

√
n(X̄j − µj) ≤

√
V ar[Xj ]bj for all j)

− P (
√
V ar[Xj ]aj ≤ Zj ≤

√
V ar[Xj ]bj for all j)

∣∣∣
= sup
aj≤bj ,j=1,...,p

∣∣∣P (aj ≤
√
nȲj ≤ bj for all j)− P (aj ≤

Zj√
V ar[Xj ]

≤ bj for all j)
∣∣∣.

�

Similarly, we have the following result regarding the multiplier bootstrap:

Theorem D.2.2 If Assumption D.2.1 holds, then for any constant 0 < α < 1
e we have

sup
aj≤bj ,j=1,...,p

∣∣∣P (aj ≤ Ẑj ≤ bj for all j|{Xi}ni=1)− P (aj ≤ Zj ≤ bj for all j)
∣∣∣

≤C
(D2

1 log5(pn) log2(1/α)

n

) 1
6

with probability at least 1− α, where C is a universal constant.
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Proof of Theorem D.2.2. Again, consider the rescaled data Yi,j = (Xi,j−µj)/
√
V ar[Xj ]. Note that

the sample covariance of Yi,j is the same as the covariance of (Ẑ1/
√
V ar[X1], . . . , Ẑm/

√
V ar[Xp]).

Theorem D.2.2 entails that

sup
aj≤bj ,j=1,...,p

∣∣∣P (aj ≤
Ẑj√

V ar[Xj ]
≤ bj for all j|{Xi}ni=1)− P (aj ≤

Zj√
V ar[Xj ]

≤ bj for all j)
∣∣∣

≤C
(D2

1 log5(pn) log2(1/α)

n

) 1
6

with probability at least 1 − α. The desired conclusion then follows by invariance of the class of

rectangles under component-wise rescaling. �

Theorems D.2.1 and D.2.2 rely on conditions more pertinent to our context than those in

Theorems D.1.1 and D.1.2. The first condition (D.1) of Assumption D.2.1 measures the ratio of

the sub-exponential norm to the L2 norm of each component of the vector, whereas the second

condition (D.2) concerns the kurtosis of each component. Therefore, to guarantee a valid CLT, we

need the vector to be sufficiently light-tailed after being normalized to have unit variance.

D.2.2 CLTs for Sample Means Normalized by Standard Deviations

We establish CLTs for sample means normalized by sample standard deviations, needed to prove

results regarding our normalized supremum validator. Note that when the dimension p is fixed,

such CLTs can be established by Slutsky’s theorem, but when p is huge or grows with the data size

n this is no longer applicable. Instead, we need to develop concentration inequalities for sample

variances, which we state below.

Lemma D.2.3 (Concentration of sample variances) Let ξ1, . . . , ξn be n i.i.d. copies of the

random variable ξ ∈ R, σ2 := V ar[ξ] be the true variance, and σ̂2 =
∑n

i=1(ξi − ξ̄)2/n, where

ξ̄ =
∑n

i=1 ξi/n is the sample mean, be the sample variance. We have the following concentration

inequalities:
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1. if ξ is [0, 1]-valued, then there exists a universal constant C such that for any t > 0

P (|σ̂2 − σ2| > t) ≤ 2 exp
(
− Cnt2

σ2 + t

)
. (D.3)

2. if ξ −E[ξ] has a sub-Gaussian norm at most K, i.e. E[exp((ξ −E[ξ])2/K2)] ≤ 2, then there

exists a universal constant C such that for any t > 0

P (|σ̂2 − σ2| > t) ≤ 4 exp(− Cnt2

K4 +K2t
). (D.4)

Proof of Lemma D.2.3. Case 1: Since the unbiased sample variance, (n/(n−1))σ̂2, is a U-statistic

of degree 2, Hoeffding’s inequality for U-statistics (see, e.g., Hoeffding (1963), Peel et al. (2010))

entails that with probability at least 1− α

| n

n− 1
σ̂2 − σ2| ≤

√
4V ar[(ξ − ξ′)2]

n
log

2

α
+

4

3n
log

2

α

where ξ, ξ′ are i.i.d. copies. Note that V ar[(ξ − ξ′)2] ≤ E[(ξ − ξ′)4] ≤ E[(ξ − ξ′)2] = 2σ2 because

|ξ − ξ′| ≤ 1, and σ̂2 ≤ 1 for the same reason. Therefore with probability at least 1− α

|σ̂2 − σ2| ≤
√

8σ2

n
log

2

α
+

4

3n
log

2

α
+

σ̂2

n− 1

≤
√

8σ2

n
log

2

α
+

5

n
log

2

α

and the conclusion easily follows by fixing the right hand side and solving for α.

Case 2: Since the sub-Gaussian norm of ξ−E[ξ] is at most K, (ξ−E[ξ])2 has a sub-exponential

norm of at most K2 by definition. Centering a variable can only inflate its sub-exponential norm

by a constant factor (Remark 5.18 in Vershynin (2010)), that is, (ξ −E[ξ])2 − σ2 must have a sub-

exponential norm of at most CK2 where C is a universal constant. By Hoeffding’s inequality and

Bernstein’s inequality for sums of independent variables (Propositions 5.10 and 5.16 in Vershynin



APPENDIX D. TECHNICAL PROOFS FOR CHAPTER 5 299

(2010)) we have for some universal constant C and any t > 0

P
(∣∣ 1
n

n∑
i=1

(ξi − E[ξ])2 − σ2
∣∣ > t

)
≤ 2 exp(− Cnt2

K4 +K2t
)

P
(∣∣ 1
n

n∑
i=1

ξi − E[ξ]
∣∣ > t

)
≤ 2 exp(−Cnt

2

K2
).

Note that the sample variance can be expressed as

σ̂2 =
1

n

n∑
i=1

(ξi − E[ξ])2 − (
1

n

n∑
i=1

ξi − E[ξ])2.

Hence by a union bound

P (
∣∣σ̂2 − σ2

∣∣ > t) ≤ P
(∣∣ 1
n

n∑
i=1

(ξi − E[ξ])2 − σ2
∣∣ > t/2

)
+ P

(∣∣ 1
n

n∑
i=1

ξi − E[ξ]
∣∣ >√t/2)

≤ 2 exp(− Cnt2

K4 +K2t
) + 2 exp(−Cnt

K2
)

≤ 4 exp(− Cnt2

K4 +K2t
).

This completes the proof. �

Note that inequality (D.3) cannot be deduced from inequality (D.4) as a special case because of

the appearance of σ2 in the bound. In fact (D.3) is a sharper bound than (D.4) when the variable

ξ is Bernoulli, e.g., in the case of chance constrained optimization, because the sub-Gaussian norm

of ξ − E[ξ] is of order K2 = Θ(log−1(1/ε))� Θ(ε) = σ2 when the success probability ε is small.

We also need the following anti-concentration inequality for Gaussian distribution:

Lemma D.2.4 (Nazarov’s inequality) Let (Y1, . . . , Yp) be an p-dimensional centered Gaussian

random vector such that V ar[Yj ] ≥ b for all j = 1, . . . , p and some constant b > 0. Then for every

−∞ ≤ aj ≤ bj ≤ +∞, j = 1, . . . , p and every δ > 0 it holds

P (aj − δ ≤ Yj ≤ bj + δ for all j)− P (aj ≤ Yj ≤ bj for all j) ≤ C3δ
√

log p

where C3 is a constant that depends only on b.
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A special case of this inequality where aj = −∞ for all j = 1, . . . , p has appeared in Chernozhukov

et al. (2017). Establishing a similar inequality for the case of possibly finite aj ’s involves a rou-

tine application of union bound. For completeness we provide a proof here. Proof of Lemma

D.2.4. Lemma A.1 in Chernozhukov et al. (2017) states that for every δ > 0 and every b1, . . . , bp

the following bound holds

P (Yj ≤ bj + δ for all j)− P (Yj ≤ bj for all j) ≤ Cδ
√

log p

where C depends on b only. Applying the same bound to −Yj , j = 1, . . . , p and −aj , j = 1, . . . , p

gives

P (aj − δ ≤ Yj for all j)− P (aj ≤ Yj for all j) ≤ Cδ
√

log p.

Therefore

P (aj − δ ≤ Yj ≤ bj + δ for all j)− P (aj ≤ Yj ≤ bj for all j)

= P (aj − δ ≤ Yj ≤ bj + δ for all j)− P (aj − δ ≤ Yj ≤ bj for all j)

+P (aj − δ ≤ Yj ≤ bj for all j)− P (aj ≤ Yj ≤ bj for all j)

≤ P (Yj ≤ bj + δ for all j)− P (Yj ≤ bj for all j)

+P (aj − δ ≤ Yj for all j)− P (aj ≤ Yj for all j)

≤ 2Cδ
√

log p.

This completes the proof. �

We have the following CLT with componentwise normalization. Recall that σ̂2
j is the sample

variance of Xj computed from the data {X1,j , . . . , Xn,j}.
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Theorem D.2.5 Under Assumption D.2.1 we have

sup
aj≤bj ,j=1,...,p

∣∣∣P (σ̂jaj ≤
√
n(X̄j − µj) ≤ σ̂jbj for all j)− P (σjaj ≤ Zj ≤ σjbj for all j)

∣∣∣
≤C
(D2

1 log7(pn)

n

) 1
6

+ Cp exp
(
− cn2/3

D
10/3
1

)
for some universal constants C, c.

If each component of the random vector is [0, 1]-valued, we assume:

Assumption D.2.2 Each Xj is [0, 1]-valued and σ2
j := V ar[Xj ] ≥ δ for all j = 1, . . . , p and some

constant δ > 0.

Then we have an alternate CLT:

Theorem D.2.6 Under Assumptions D.2.1 and D.2.2 we have

sup
aj≤bj ,j=1,...,p

∣∣∣P (σ̂jaj ≤
√
n(X̄j − µj) ≤ σ̂jbj for all j)− P (σjaj ≤ Zj ≤ σjbj for all j)

∣∣∣
≤C
(D2

1 log7(pn)

n

) 1
6

+ Cp exp
(
− cδD2/3

1 n2/3
)

for some universal constants C, c.

Proof of Theorems D.2.5 and D.2.6. For any aj ≤ bj , j = 1, . . . , p and 0 < ε < 1/2

P (σ̂jaj ≤
√
n(X̄j − µj) ≤ σ̂jbj for all j)

=P (
σ̂j
σj
aj ≤

√
n(X̄j − µj)

σj
≤ σ̂j
σj
bj for all j)

=P (
σ̂j
σj
aj ≤

√
n(X̄j − µj)

σj
≤ σ̂j
σj
bj ,
∣∣ σ̂j
σj
− 1
∣∣ ≤ ε for all j)

+ P (
σ̂j
σj
aj ≤

√
n(X̄j − µj)

σj
≤ σ̂j
σj
bj for all j,

∣∣ σ̂j
σj
− 1
∣∣ > ε for some j)

≤P (aj − ε |aj | ≤
√
n(X̄j − µj)

σj
≤ bj + ε |bj | for all j) + P (

∣∣ σ̂j
σj
− 1
∣∣ > ε for some j)

≤P (aj − ε |aj | ≤
Zj
σj
≤ bj + ε |bj | for all j) + C

(D2
1 log7(pn)

n

) 1
6

+

p∑
j=1

P (
∣∣σ̂j − σj∣∣ > εσj)
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where in the last inequality we use Theorem D.2.1 for the first probability and apply the union

bound to the second probability. Note that ε < 1/2 hence for any constant M > 0 if we denote by

fM (x) = −∞ · 1(x < −M) +∞ · 1(x > M) then we have

P (aj − ε |aj | ≤
Zj
σj
≤ bj + ε |bj | for all j)

≤P (fM (aj) + aj − ε |aj | ≤
Zj
σj
≤ fM (bj) + bj + ε |bj | for all j) + 2p exp(−cM2)

≤P (fM (aj) + aj ≤
Zj
σj
≤ fM (bj) + bj for all j) + CεM

√
log p+ 2p exp(−cM2)

≤P (aj ≤
Zj
σj
≤ bj for all j) + 4p exp(−cM2) + CεM

√
log p

where in the second inequality we use Lemma D.2.4 (note that fM (aj) + aj − ε |aj | is either ∞

or its absolute value ≤ 3
2M , so is fM (bj) + bj + ε |bj |), the term exp(−cM2) is the tail bound of

the univariate standard normal distribution, and C, c are universal constants. Therefore we have

derived the following upper bound

P (σ̂jaj ≤
√
n(X̄j − µj) ≤ σ̂jbj for all j)

≤P (aj ≤
Zj
σj
≤ bj for all j) + 4p exp(−cM2) + CεM

√
log p+ C

(D2
1 log7(pn)

n

) 1
6

+

p∑
j=1

P (
∣∣σ̂j − σj∣∣ > εσj)

which holds true for ε < 1/2 and M > 0. Similarly, one can show

P (σ̂jaj ≤
√
n(X̄j − µj) ≤ σ̂jbj for all j)

≥P (aj + ε |aj | ≤
Zj
σj
≤ bj − ε |bj | for all j)− C

(D2
1 log7(pn)

n

) 1
6 −

p∑
j=1

P (
∣∣σ̂j − σj∣∣ > εσj)
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along with

P (aj + ε |aj | ≤
Zj
σj
≤ bj − ε |bj | for all j)

≥P (fM (aj) + aj + ε |aj | ≤
Zj
σj
≤ fM (bj) + bj − ε |bj | for all j)− 2p exp(−cM2)

≥P (fM (aj) + aj ≤
Zj
σj
≤ fM (bj) + bj for all j)− CεM

√
log p− 2p exp(−cM2)

≥P (aj ≤
Zj
σj
≤ bj for all j)− CεM

√
log p− 4p exp(−cM2).

This leads to

∣∣P (σ̂jaj ≤
√
n(X̄j − µj) ≤ σ̂jbj for all j)− P (aj ≤

Zj
σj
≤ bj for all j)

∣∣
≤4p exp(−cM2) + CεM

√
log p+ C

(D2
1 log7(pn)

n

) 1
6

+

p∑
j=1

P (
∣∣σ̂j − σj∣∣ > εσj)

≤4p exp(−cM2) + CεM
√

log p+ C
(D2

1 log7(pn)

n

) 1
6

+

p∑
j=1

P (
∣∣σ̂2
j − σ2

j

∣∣ > εσ2
j )

≤4p exp(−cM2) + CεM
√

log p+ C
(D2

1 log7(pn)

n

) 1
6

+ 4p exp(− cnε2

D4
1 +D2

1ε
) (D.5)

where the last inequality holds because Assumption D.2.1 guarantees that the sub-Gaussian norm

of Xj − µj is at most D1σj and one then applies Lemma D.2.3. Now set

M =

√
1

c
log(pn), ε =

(D2
1

n

) 1
6

and note that ε < 1/2 can be assumed since otherwise the first term in the desired bound is already

greater than 1 (by enlarging the universal constant if necessary) and the bound is trivial. We get
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the uniform bound

∣∣P (σ̂jaj ≤
√
n(X̄j − µj) ≤ σ̂jbj for all j)− P (aj ≤

Zj
σj
≤ bj for all j)

∣∣
≤C
(D2

1 log7(pn)

n

) 1
6

+ Cp exp
(
− cD

2/3
1 n2/3

D4
1 +D2

1ε

)
≤C
(D2

1 log7(pn)

n

) 1
6

+ Cp exp
(
− cn2/3

D
10/3
1

)

where the second inequality holds because D2 ≥ 1 and ε < 1/2. In particular, if Xj ’s are [0, 1]-

valued, we use the concentration inequality (D.3) instead of (D.4) to refine the bound (D.5) to

be

∣∣P (σ̂jaj ≤
√
n(X̄j − µj) ≤ σ̂jbj for all j)− P (aj ≤

Zj
σj
≤ bj for all j)

∣∣
≤4p exp(−cM2) + CεM

√
log p+ C

(D2
1 log7(pn)

n

) 1
6

+ 4p exp(−cnδε
2

1 + ε
).

Likewise, letting M and ε take the same values as before, we obtain

∣∣P (σ̂jaj ≤
√
n(X̄j − µj) ≤ σ̂jbj for all j)− P (aj ≤

Zj
σj
≤ bj for all j)

∣∣
≤C
(D2

1 log7(pn)

n

) 1
6

+ Cp exp
(
− cδD2/3

1 n2/3
)
.

This completes the proof of Theorems D.2.5 and D.2.6. �

The following are corresponding results for the multiplier bootstrap:

Theorem D.2.7 If Assumption D.2.1 holds, for any constant 0 < α < 1
e we have

sup
aj≤bj ,j=1,...,p

∣∣∣P (σ̂jaj ≤ Ẑj ≤ σ̂jbj for all j|{Xi}ni=1)− P (σjaj ≤ Zj ≤ σjbj for all j)
∣∣∣

≤C
(D2

1 log5(pn) log2(1/α)

n

) 1
6

+
CD2

1 log(pn) log(p/α)√
n

with probability at least 1− α, where C is a universal constant.



APPENDIX D. TECHNICAL PROOFS FOR CHAPTER 5 305

Theorem D.2.8 If Assumptions D.2.1 and D.2.2 hold, for any constant 0 < α < 1
e we have

sup
aj≤bj ,j=1,...,p

∣∣∣P (σ̂jaj ≤ Ẑj ≤ σ̂jbj for all j|{Xi}ni=1)− P (σjaj ≤ Zj ≤ σjbj for all j)
∣∣∣

≤C
(D2

1 log5(pn) log2(1/α)

n

) 1
6

+
C log(pn) log(p/α)√

nδ

with probability at least 1− α, where C is a universal constant.

Proof of Theorems D.2.7 and D.2.8. For any aj ≤ bj , j = 1, . . . , p and 0 < ε < 1/2

P (σ̂jaj ≤ Ẑj ≤ σ̂jbj for all j|{Xi}ni=1)

=P (
σ̂j
σj
aj ≤

Ẑj
σj
≤ σ̂j
σj
bj for all j|{Xi}ni=1)

=P (
σ̂j
σj
aj ≤

Ẑj
σj
≤ σ̂j
σj
bj ,
∣∣ σ̂j
σj
− 1
∣∣ ≤ ε for all j|{Xi}ni=1)

+ P (
σ̂j
σj
aj ≤

Ẑj
σj
≤ σ̂j
σj
bj for all j,

∣∣ σ̂j
σj
− 1
∣∣ > ε for some j|{Xi}ni=1)

≤P (aj − ε |aj | ≤
Ẑj
σj
≤ bj + ε |bj | ,

∣∣ σ̂j
σj
− 1
∣∣ ≤ ε for all j|{Xi}ni=1)

with probability at least 1−
p∑
j=1

P (
∣∣σ̂j − σj∣∣ > εσj)

≤P (aj − ε |aj | ≤
Ẑj
σj
≤ bj + ε |bj | for all j|{Xi}ni=1)

≤P (aj − ε |aj | ≤
Zj
σj
≤ bj + ε |bj | for all j) + C

(D2
1 log5(pn) log2(4/α)

n

) 1
6

with probability at least 1− α

4
.

In the proof of Theorems D.2.5 and D.2.6 we show

P (aj − ε |aj | ≤
Zj
σj
≤ bj + ε |bj | for all j)

≤P (aj ≤
Zj
σj
≤ bj for all j) + 4p exp(−cM2) + CεM

√
log p.
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Similarly we can show the other direction

P (σ̂jaj ≤ Ẑj ≤ σ̂jbj for all j|{Xi}ni=1)

≥P (aj + ε |aj | ≤
Zj
σj
≤ bj − ε |bj | for all j)− C

(D2
1 log5(pn) log2(4/α)

n

) 1
6

with probability at least 1− α

4
−

p∑
j=1

P (
∣∣σ̂j − σj∣∣ > εσj)

≥P (aj ≤
Zj
σj
≤ bj for all j)− CεM

√
log p− 4p exp(−cM2)− C

(D2
1 log5(pn) log2(4/α)

n

) 1
6
.

Therefore the following uniform bound holds with probability at least 1− α
2 −2

∑p
j=1 P (

∣∣σ̂j−σj∣∣ >
εσj)

∣∣P (σ̂jaj ≤ Ẑj ≤ σ̂jbj for all j|{Xi}ni=1)− P (aj ≤
Zj
σj
≤ bj for all j)

∣∣
≤C
(D2

1 log5(pn) log2(4/α)

n

) 1
6

+ CεM
√

log p+ 4p exp(−cM2).

Note that

2

p∑
j=1

P (
∣∣σ̂j − σj∣∣ > εσj) ≤ 8p exp(− cnε2

D4
1 +D2

1ε
).

By setting the right hand side of the above inequality to be α/2 and M =
√

1
c log(pn) we get

∣∣P (σ̂jaj ≤ Ẑj ≤ σ̂jbj for all j|{Xi}ni=1)− P (aj ≤
Zj
σj
≤ bj for all j)

∣∣
≤C
(D2

1 log5(pn) log2(4/α)

n

) 1
6

+ C
(√D4

1

n
log

16p

α
+
D2

1

n
log

16p

α

)
log(pn)

≤C
(D2

1 log5(pn) log2(4/α)

n

) 1
6

+ C
D2

1√
n

log
16p

α
log(pn)

with probability at least 1− α.



APPENDIX D. TECHNICAL PROOFS FOR CHAPTER 5 307

In case of [0, 1]-valued variables, we use (D.3) instead of (D.4) to get

∣∣P (σ̂jaj ≤ Ẑj ≤ σ̂jbj for all j|{Xi}ni=1)− P (aj ≤
Zj
σj
≤ bj for all j)

∣∣
≤C
(D2

1 log5(pn) log2(4/α)

n

) 1
6

+ C
(√ 1

nδ
log

16p

α
+

1

nδ
log

16p

α

)
log(pn)

≤C
(D2

1 log5(pn) log2(4/α)

n

) 1
6

+ C
( 1√

nδ
+

1

nδ

)
log

16p

α
log(pn)

with probability at least 1−α. We can assume that nδ ≥ 1 to get the desired bound since otherwise

the second term in the bound is already greater than 1. �

D.2.3 Coverage Probability through Multiplier Bootstrap

Theorem D.2.9 (Coverage probability for unnormalized supremum) If Assumption D.2.1

holds, for every 0 < β < 1 we have

|P (
√
n(X̄j − µj) ≤ q̂1−β for all j)− (1− β)| ≤ C

(D2
1 log7(pn)

n

) 1
6

where q̂1−β is such that

P (Ẑj ≤ q̂1−β for all j|{Xi}ni=1) = 1− β

and C is a universal constant.

Proof of Theorem D.2.9. Denote by ε = C
(
D2

1 log5(pn) log2(1/α)
n

)1/6
and by Aα the event that

sup
aj≤bj ,j=1,...,p

∣∣∣P (aj ≤ Ẑj ≤ bj for all j|{Xi}ni=1)− P (aj ≤ Zj ≤ bj for all j)
∣∣∣ ≤ ε.

Then we can rewrite

P (
√
n(X̄j − µj) ≤ q̂1−β for all j)

=P (
√
n(X̄j − µj) ≤ q̂1−β for all j, and Aα) + P (

√
n(X̄j − µj) ≤ q̂1−β for all j, and Acα)
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The second term is bounded by α because of Theorem D.2.2. To study the first term, denote

by q1−β the true (1 − β)-level quantile of the limit distribution, i.e., q1−β is such that P (Zj ≤

q1−β for all j) = 1− β. On event Aα we have q1−β−ε ≤ q̂1−β ≤ q1−β+ε, therefore

P (
√
n(X̄j − µj) ≤ q1−β−ε for all j, and Aα) ≤ P (

√
n(X̄j − µj) ≤ q̂1−β for all j, and Aα)

≤ P (
√
n(X̄j − µj) ≤ q1−β+ε for all j, and Aα).

From this two-sided bound we get

P (
√
n(X̄j − µj) ≤ q̂1−β for all j)

≤P (
√
n(X̄j − µj) ≤ q1−β+ε for all j) + α

≤P (Zj ≤ q1−β+ε for all j) + C
(D2

1 log7(pn)

n

)1/6
+ α

=1− β + ε+ C
(D2

1 log7(pn)

n

)1/6
+ α.

Similarly the lower bound can be derived as

P (
√
n(X̄j − µj) ≤ q̂1−β for all j)

≥P (
√
n(X̄j − µj) ≤ q1−β−ε for all j, and Aα)

=P (
√
n(X̄j − µj) ≤ q1−β+ε for all j)− P (

√
n(X̄j − µj) ≤ q1−β−ε for all j, and Acα)

≥P (Zj ≤ q1−β−ε for all j)− C
(D2

1 log7(pn)

n

)1/6
− α

=1− β − ε− C
(D2

1 log7(pn)

n

)1/6
− α.

This gives the following bound for any α < 1/e

|P (
√
n(X̄j − µj) ≤ q̂1−β for all j)− (1− β)| ≤ C

(D2
1 log7(pn)

n

) 1
6

+ ε+ α.

Set α = 1/n and note that 1/n is less than the leading term, thus we have shown the desired

conclusion. �
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Theorem D.2.10 (Coverage probability for normalized supremum) If Assumptions D.2.1

holds, for every 0 < β < 1 we have

|P (
√
n(X̄j − µj) ≤ σ̂j q̂1−β for all j)− (1− β)|

≤C
((D2

1 log7(pn)

n

) 1
6

+
D2

1 log2(pn)√
n

+ p exp
(
− cn2/3

D
10/3
1

))
.

If Assumption D.2.2 also holds, then

|P (
√
n(X̄j − µj) ≤ σ̂j q̂1−β for all j)− (1− β)|

≤C
((D2

1 log7(pn)

n

) 1
6

+
log2(pn)√

nδ
+ p exp

(
− cδD2/3

1 n2/3
))
.

Here q̂1−β is such that

P (Ẑj ≤ σ̂j q̂1−β for all j|{Xi}ni=1) = 1− β

and C, c are universal constants.

Proof of Theorem D.2.10. Let ε = C
(
D2

1 log5(pn) log2(1/α)
n

)1/6
+

CD2
1 log(pn) log(p/α)√

n
and Aα be the

event that

sup
aj≤bj ,j=1,...,p

∣∣∣P (σ̂jaj ≤ Ẑj ≤ σ̂jbj for all j|{Xi}ni=1)− P (σjaj ≤ Zj ≤ σjbj for all j)
∣∣∣ ≤ ε.

We know that P (Aα) ≤ α from Theorem D.2.7. Following the same line of the proof for Theorem

D.2.9 and using the CLT in Theorem D.2.5 we can derive that

|P (
√
n(X̄j − µj) ≤ σ̂j q̂1−β for all j)− (1− β)| ≤ C

(D2
1 log7(pn)

n

) 1
6

+ Cp exp
(
− cn2/3

D
10/3
1

)
+ ε+ α.

Again setting α = 1
n leads to the first bound.

The second bound can be derived similarly. Let ε = C
(
D2

1 log5(pn) log2(1/α)
n

)1/6
+ C log(pn) log(p/α)√

nδ
,
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and now Theorem D.2.8 entails that P (Aα) ≤ α again. Using the CLT in Theorem D.2.6 gives

|P (
√
n(X̄j − µj) ≤ σ̂j q̂1−β for all j)− (1− β)|

≤C
(D2

1 log7(pn)

n

) 1
6

+ Cp exp
(
− cδD2/3

1 n2/3
)

+ ε+ α.

The second bound follows from setting α = 1
n . �

D.2.4 Proofs of Main Statistical Guarantees

We now put together all the previous results to prove the statistical guarantees of our validators.

For convenience, we suppress the subscript ξ1:n2 in the probability notation.

Proof of Theorem 5.3.1. We bound the probability as follows

P (x∗(ŝ∗) is feasible for (5.1))

≥P (Ĥj ≥ γ +
q1−β√
n2

for some j = 1, . . . , p in (5.8) and H(x∗(sj)) ≥ Ĥj −
q1−β√
n2

for all j = 1, . . . , p)

≥P (H(x∗(sj)) ≥ Ĥj −
q1−β√
n2

for all j = 1, . . . , p)− P (Ĥj < γ +
q1−β√
n2

for all j = 1, . . . , p)

≥1− β − C
(D2

1 log7(pn2)

n2

) 1
6 − P (Ĥj < γ +

q1−β√
n2

for all j = 1, . . . , p) (D.6)

where we use Theorem D.2.9 for the first probability by letting Xi,j = h(x∗(sj), ξi). To bound the

second probability, we recall that σ̂2
j is the sample variance of {h(x∗(sj), ξ1), . . . , h(x∗(sj), ξn2)} and
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write

P (Ĥj < γ +
q1−β√
n2

for all j = 1, . . . , p)

≤ P (Ĥj < γ +
q1−β√
n2

and σ̂2
j ≤ 2σ2(x∗(sj)) for all j = 1, . . . , p)

+P (σ̂2
j > 2σ2(x∗(sj)) for some j = 1, . . . , p)

≤ P (Ĥj < γ +
Cσ̄
√

log(p/β)
√
n2

for all j = 1, . . . , p) + P (σ̂2
j > 2σ2(x∗(sj)) for some j = 1, . . . , p)

because of the fact that q1−β ≤ C max
j
σ̂j
√

log(p/β) for some universal constant C

≤ P (Ĥj̄ −H < γ +
Cσ̄
√

log(p/β)
√
n2

−H) + Cp exp(−cn2

D4
1

)

where j̄ is the index such that H(x∗(sj̄)) = H and the concentration (D.4) is used

≤ C exp
(
− cn2ε

2

D2
1σ̄

2

)
+ Cp exp(−cn2

D4
1

)

because the sub-Gaussian norm of h(x∗(sj̄), ξ) is at most D1σ̄.

Substituting this bound into (D.6) gives the desired conclusion. �

Proof of Theorem 5.3.2. Similar to the proof of Theorem 5.3.1, we have the bound

P (x∗(ŝ∗) is feasible for (5.1))

≥ P (H(x∗(sj)) ≥ Ĥj −
q1−βσ̂j√

n2
for all j = 1, . . . , p)− P (Ĥj < γ +

q1−βσ̂j√
n2

for all j = 1, . . . , p)

≥ 1− β − C

((D2
1 log7(pn2)

n2

) 1
6

+
D2

1 log2(pn2)
√
n2

+ p exp
(
− cn

2/3
2

D
10/3
1

))
−

P (Ĥj < γ +
q1−βσ̂j√

n2
for all j = 1, . . . , p)

where the first bound is due to Theorem D.2.10.



APPENDIX D. TECHNICAL PROOFS FOR CHAPTER 5 312

For the second probability we write

P (Ĥj < γ +
q1−βσ̂j√

n2
for all j = 1, . . . , p)

≤ P (Ĥ(x∗(s̄)) < γ +
q1−βσ̂(x∗(s̄))
√
n2

)

≤ P (Ĥ(x∗(s̄)) < γ +
q1−β
√

2σ(x∗(s̄))
√
n2

) + P (σ̂2(x∗(s̄)) > 2σ2(x∗(s̄)))

≤ P (Ĥ(x∗(s̄)) < γ +
C
√

log(p/β)σ(x∗(s̄))
√
n2

) + P (σ̂2(x∗(s̄)) > 2σ2(x∗(s̄)))

since q1−β ≤ C
√

log(p/β)

≤ C exp
(
− cn2ε

2

D2
1σ

2(x∗(s̄))

)
+ C exp(−cn2

D4
1

)

Combining the two probability bounds and noting that p exp
(
− cn

2/3
2

D
10/3
1

)
dominates exp(− cn2

D4
1

) (be-

cause n2

D4
1

=
n
2/3
2

D
10/3
1

·
(
n2

D2
1

)1/3
and n2

D2
1
≥ 1 can be assumed), we obtain the desired conclusion. �

Proof of Corollary 5.3.3. When H > γ, we have ε → H − γ > 0 in Theorems 5.3.1 and

5.3.2, therefore the exponential error term with ε vanishes as n2 → ∞. Under the condition that

p exp(−n1/7
2 )→ 0 it is straightforward to check that other error terms also vanish. �

Proof of Theorem 5.3.4. Unlike the proof of Theorem 5.3.1, we use the Bernoulli structure to

derive the error bound. Note that in this case γ = 1− α. Define events

E1 =
{
Ĥj ≥ 1− α+

q1−β√
n2

for some j = 1, . . . , p in (5.8)
}

E2 =
{
H(x∗(sj)) ≥ Ĥj −

q1−β√
n2

for all j such that H(x∗(sj)) ∈ (α, 1− α)
}

E3 =
{
Ĥj < 1− α+

q1−β√
n2

for all j such that H(x∗(sj)) ≤ α
}
.

Then we have

P (x∗(ŝ∗) is feasible for (5.1)) ≥ P (E1 ∩ E2 ∩ E3)

≥ 1− P (Ec1)− P (Ec2)− P (Ec3)

= P (E2)− P (Ec1)− P (Ec3). (D.7)
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We bound the three probabilities. Let qα1−β be the 1 − β quantile of max{Zj : H(x∗(sj)) ∈

(α, 1 − α), 1 ≤ j ≤ p} where (Z1, . . . , Zp) ∼ Np(0, Σ̂). By stochastic dominance it is clear that

qα1−β ≤ q1−β almost surely, therefore

P (E2) ≥ P
(
H(x∗(sj)) ≥ Ĥj −

qα1−β√
n2

for all j such that H(x∗(sj)) ∈ (α, 1− α)
)

≥ 1− β − C
( log7(pn2)

n2α

) 1
6

by applying Theorem D.2.9 to {h(x∗(sj), ξ) : H(x∗(sj)) ∈ (α, 1− α), 1 ≤ j ≤ p} and noticing that

Assumption D.2.1 is satisfied with D1 = C√
α

for some universal constant C.

We then bound the second probability

P (Ec1) = P (Ĥj < 1− α+
q1−β√
n2

for all j = 1, . . . , p)

≤ P (Ĥj̄ < 1− α+
q1−β√
n2

) where j̄ is the index such that H(x∗(sj̄)) = 1− ᾱ

≤ P (Ĥj̄ < 1− α+
C
√

log(p/β)
√
n2

) because q1−β ≤ C max
j
σ̂j
√

log(p/β) ≤ C
√

log(p/β)

≤ exp
(
− n2ε

2

2(ᾱ(1− ᾱ) + ε/3)

)
where in the last line we use a Bernstein’s inequality for sums of bounded random variables

(see equation (2.10) in Boucheron et al. (2013)). Note that this is further bounded by exp
(
−

cn2 min{ε, ε2ᾱ }
)

if ᾱ ≤ 1/2.

The third probability can be bounded as

P (Ec3) ≤ P
(
Ĥj ≥ 1− α for some j such that H(x∗(sj)) ≤ α

)
≤

∑
j:H(x∗(sj))≤α

P (Ĥj ≥ 1− α)

≤ p exp(−2n2(1− 2α)2) ≤ p exp(−cn2) by Hoeffding’s inequality.
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Substituting the bounds into (D.7) leads to

P (x∗(ŝ∗) is feasible for (5.1)) ≤ 1− β − C
( log7(pn2)

n2α

) 1
6 − exp

(
− cn2 min{ε, ε

2

ᾱ
}
)
− p exp(−cn2).

It remains to show that p exp(−cn2) is negligible relative to other error terms. Since α < 1 it

is clear that
(

1
n2

)1/6 ≤ ( log7(pn2)
n2α

)1/6
, and we argue that

(
1
n2

)1/6 ≥ p exp(−cn2) can be assumed

so that p exp(−cn2) ≤
(

log7(pn2)
n2α

)1/6
. If

(
1
n2

)1/6
< p exp(−cn2), then p > exp(cn2)n

−1/6
2 , and

log7(pn2)
n2α

≥ (cn2)7

n2α
≥ c7n6

2, hence the first error term already exceeds 1 (enlarge the universal constant

C if necessary) and the error bound holds true trivially. �

Proof of Theorem 5.3.5. The proof follows the one for Theorem 5.3.4, and we focus on the

modifications. The events are now defined as

E1 =
{
Ĥj ≥ 1− α+

q1−βσ̂j√
n2

for some j = 1, . . . , p in (5.9)
}

E2 =
{
H(x∗(sj)) ≥ Ĥj −

q1−βσ̂j√
n2

for all j such that H(x∗(sj)) ∈ (α, 1− α)
}

E3 =
{
Ĥj < 1− α+

q1−βσ̂j√
n2

for all j such that H(x∗(sj)) ≤ α
}
.

Again we have P (x∗(ŝ∗) is feasible for (5.1)) ≥ P (E2)− P (Ec1)− P (Ec3).

The first probability bound becomes

P (E2) ≥ 1− β − C
(( log7(pn2)

n2α

) 1
6

+
log2(pn2)
√
n2α

+ p exp
(
− c(n2α)2/3

))

by using the second half of Theorem D.2.10 and noting that δ = α(1 − α) ≥ 1
2α if α < 1

2 and
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D1 = C√
α

. For the second probability we have

P (Ec1) ≤ P (Ĥj̄ < 1− α+
q1−βσ̂j̄√

n2
) where j̄ is the index such that H(x∗(sj̄)) = 1− ᾱ

≤ P (Ĥj̄ < 1− α+
q1−βt√
n2

) + P (σ̂j̄ > t) where t =
√
ᾱ(1− ᾱ) +

√
2 log(n2α)/n2

≤ P (Ĥj̄ < 1− α+
q1−βt√
n2

) +
1

n2α

where the bound
1

n2α
is by (D.3) (see Theorem 10 in Maurer and Pontil (2009))

≤ P (Ĥj̄ < 1− α+
C
√

(ᾱ+ log(n2α)/n2) log(p/β)
√
n2

) +
1

n2α

because q1−β ≤ C
√

log(p/β)

≤ exp
(
− n2ε

2

2(ᾱ(1− ᾱ) + ε/3)

)
+

1

n2α
by Bernstein’s inequality.

Whereas for the third probability we still have P (Ec3) ≤ p exp(−cn2).

Finally, using a similar argument in the proof of Theorem 5.3.4, we can show that 1
n2α

,

p exp(−cn2), and p exp
(
− c(n2α)2/3

)
are all dominated by

(
log7(pn2)
n2α

)1/6
when

(
log7(pn2)
n2α

)1/6
< 1,

therefore the desired conclusion follows from combining the three probability bounds. �

Proof of Corollary 5.3.6. Like Corollary 5.3.3, this is a direct consequence of the finite sample

result, Theorem 5.3.4 or 5.3.5. �

D.3 Proofs of Results in Section 5.4

Proof of Proposition 5.4.1. Case (i): Assumption 5.4.2 follows from the Jain-Marcus theorem

(see Example 2.11.13 in Van der Vaart and Wellner (1996)). Assumption 5.4.3 holds because

supx∈X |h(x, ξ)| ≤ |h(x̃, ξ)|+diam(X )M(ξ), where diam(X) denotes the (finite) diameter of X , and

finiteness of second moments of h(x̃, ξ) and M(ξ). Assumption 5.4.4 then follows from the Lipschitz

continuity of h(x, ξ) in x and an application of the dominated convergence theorem.

Case (ii): We need two results from empirical process theory to verify Assumption 5.4.2:

Theorem D.3.1 (Theorem 2.6.8 and its proof in Van der Vaart and Wellner (1996))

If a class F of measurable functions satisfies:
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i. there exists a countable subset Fc ⊆ F such that for every f ∈ F there exists a sequence

fn ∈ Fc such that limn→∞ fn(ξ) = f(ξ) for all ξ;

ii. the envelope E(ξ) := supf∈F |f(ξ)| satisfies EF [(E(ξ))2] <∞;

iii. F is a VC-subgraph class (see Section 2.6.2 of Van der Vaart and Wellner (1996)),

then F is F -Donsker.

Theorem D.3.2 (Theorem 2.10.1 in Van der Vaart and Wellner (1996)) If a class F is

F -Donsker, then any subclass G ⊆ F is also F -Donsker.

Theorem D.3.3 (Example 2.10.8 in Van der Vaart and Wellner (1996)) If F and G both

are uniformly bounded F -Donsker classes, then F · G := {fg : f ∈ F , g ∈ G} is also F -Donsker.

In order to show F -Donskerness of the class of constraint functions, it suffices to show F -Donskerness

for the larger function class F̃ := {1(a′kxk ≤ bkyk + zk for k = 1, . . . ,K) : xk ∈ Rmk , yk, zk ∈

R, for k = 1, . . . ,K} according to Theorem D.3.2. Moreover, note that F̃ = F̃1 · F̃2 · · · F̃K where

each F̃k := {1(a′kx ≤ bky + z) : x ∈ Rmk , y, z ∈ R}, therefore by applying Theorem D.3.3 recur-

sively we see that F -Donskerness for all F̃k’s implies F -Donskerness of F̃ . It remains to prove

F -Donskerness of each F̃k using Theorem D.3.1. Among the conditions of Theorem D.3.1, (ii) is

trivially satisfied since the family of indicator functions is uniformly bounded by 1. By writing

a′kx ≤ bky + z as (a′k,−bk,−1)(x′, y, z)′ ≤ 0 and noting that the collection of all half-spaces on

Rmk+2 has a V C dimension mk + 4 (Problem 14 in Section 2.6 in Van der Vaart and Wellner

(1996)), we have that F̃k is a VC-subgraph class (Problem 9 in Section 2.6 in Van der Vaart

and Wellner (1996)) therefore (iii) holds. To verify condition (i), consider the countable subclass

F̃ck = {1(a′kx ≤ bky + z) : x ∈ Qmk , y, z ∈ Q} where Q denotes the set of all rationals. Given

xo ∈ Rmk , yo, zo ∈ R, one can pick a sequence xio ∈ Qmk , yio, z
i
o ∈ Q such that zio > zo for all i,

limi→∞ x
i
o → xo, limi→∞ y

i
o → yo, limi→∞ z

i
o → zo and

lim
i→∞

‖xio − xo‖2 + |yio − yo|
zio − zo

= 0. (D.8)
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For every fixed ak, bk such that a′kxo < bkyo + zo (a′kxo > bkyo + zo) we have a′kx
i
o < bky

i
o + zio

(a′kx
i
o > bky

i
o + zio) for sufficiently large i because of the convergence of xio, y

i
o, z

i
o to xo, yo, zo. For

ak, bk such that a′kxo = bkyo + zo we have a′kx
i
o ≤ bky

i
o + zio for sufficiently large i thanks to (D.8).

Therefore 1(a′kx
i
o ≤ bkyio + zio) converges to 1(a′kxo ≤ bkyo + zo) pointwise as i→∞, giving rise to

condition (i). Theorem D.3.1 then implies that each F̃k is F -Donsker.

Assumption 5.4.3 trivially holds since indicator functions are uniformly bounded by 1. It remains

to prove Assumption 5.4.4. For any x, x′ we write

|1(a′kAk(x) ≤ bk for k = 1, . . . ,K)− 1(a′kAk(x
′) ≤ bk for k = 1, . . . ,K)|

≤
K∑
k=1

1(a′kAk(x) ≤ bk < a′kAk(x
′) or a′kAk(x

′) ≤ bk < a′kAk(x))

≤
K∑
k=1

1(|a′kAk(x)− bk| ≤ ‖ak‖2‖Ak(x)−Ak(x′)‖2).

Therefore

EF [|1(a′kAk(x) ≤ bk for k = 1, . . . ,K)− 1(a′kAk(x
′) ≤ bk for k = 1, . . . ,K)|2]

≤
( K∑
k=1

PF (|a′kAk(x)− bk| ≤ ‖ak‖2‖Ak(x)−Ak(x′)‖2)
)2

hence it suffices to show each PF (|a′kAk(x) − bk| ≤ ‖ak‖2‖Ak(x) − Ak(x
′)‖2) → 0 as x′ → x.

We use the bound PF (|a′kAk(x) − bk| ≤ ‖ak‖2‖Ak(x) − Ak(x
′)‖2) ≤ PF (|a′kAk(x) − bk| ≤ ε) +

PF (‖ak‖2‖Ak(x)−Ak(x′)‖2 > ε) for any ε > 0. On one hand we have PF (|a′kAk(x)−bk| ≤ ε)→ 0 as

ε→ 0. To explain, if ak has a density and bk 6= 0, then a′kAk(x)−bk either has a density on R or is a

point mass at bk (when Ak(x) is the zero vector), either of which implies PF (|a′kAk(x)−bk| ≤ ε)→ 0.

Otherwise if (ak, bk) has a joint density, a′kAk(x)−bk has a density hence PF (|a′kAk(x)−bk| ≤ ε)→ 0

again. On the other hand, by the continuity of Ak it holds Ak(x
′) → Ak(x) hence ‖ak‖2‖Ak(x) −

Ak(x
′)‖2 = op(1), leading to PF (‖ak‖2‖Ak(x) − Ak(x′)‖2 > ε) → 0 as x′ → x for each fixed ε. By

sending ε to 0, we show PF (|a′kAk(x)− bk| ≤ ‖ak‖2‖Ak(x)−Ak(x′)‖2)→ 0. �

Proof of Proposition 5.4.2. For any s1 < s2, v(s1) ≤ v(s2) follows trivially from the mono-
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tonicity property Sol(s2) ⊆ Sol(s1). Furthermore, if x∗(s1) and x∗(s2) are the unique optimal

solutions for OPT (s1) and OPT (s2) respectively and they are distinct, then we have v(s1) =

f(x∗(s1)) < f(x∗(s2)) = v(s2) because x∗(s2) is feasible but not optimal for OPT (s1). Otherwise

if x∗(s1) = x∗(s2) then obviously v(s1) = f(x∗(s1)) = f(x∗(s2)) = v(s2). �

Proof of Proposition 5.4.3. A consequence of Assumption 5.4.4 is the continuity of H(x) on X

because for every x′, x it holds |H(x′)−H(x)| ≤ EF [|h(x′, ξ)−h(x, ξ)|] ≤
√
EF [|h(x′, ξ)− h(x, ξ)|2].

We prove the uniqueness of optimal solution by contradiction. Suppose there are x1 6= x2 and

both x1, x2 ∈ X ∗S . Case (i): there are s1, s2 /∈ {s̃1, . . . , s̃M−1} such that x1 = x∗(s1), x2 = x∗(s2). In

this case we must have s1 6= s2 hence f(x1) 6= f(x2) by Proposition 5.4.2, contradicting with the fact

that both x1, x2 are optimal. Case (ii): there exists some s1 /∈ {s̃1, . . . , s̃M−1} such that x1 = x∗(s1),

and x2 ∈ x∗(s̃i∗) for some 1 ≤ i∗ ≤ M − 1 but x2 6= x∗(s) for all s /∈ {s̃1, . . . , s̃M−1}. Since x2

is feasible we have H(x2) ≥ γ on one hand. On the other hand, H(x2) 6= γ due to Assumption

5.4.7, therefore we must have H(x2) > γ. We argue that it must be the case that x2 = x∗(s̃i∗+).

If x2 = x∗(s̃i∗−) then as s → s̃i∗− we must have x∗(s) 6= x2 and x∗(s) → x2, therefore by

the continuity of H(x) there exist s′1 < s′2 < s̃i∗ such that H(x∗(s′1)) > γ,H(x∗(s′2)) > γ and

x∗(s′1) 6= x∗(s′2). For such s′1, s
′
2 we have f(x∗(s′1)) < f(x∗(s′2)) ≤ f(x2) from Proposition 5.4.2,

i.e., x∗(s′1) is a feasible solution with strictly less objective value than x2, contradicting with the

optimality of x2. Hence x2 = x∗(s̃i∗+) must hold. If s1 < s̃i∗ , we argue that f(x1) < f(x2) hence

arrive at a contradiction. Note that the feasible set Sol(s1) is closed, that Sol(s) ⊆ Sol(s1) for

all s > s1, and that x2 = lims→s̃i∗ x
∗(s) with each x∗(s) ∈ Sol(s1), hence x2 ∈ Sol(s1). Since

x2 6= x∗(s1) = x1 we must have f(x1) < f(x2) by the uniqueness of x∗(s1) for OPT (s1). Otherwise

if s1 > s̃i∗ , we take an s ∈ (s̃i∗ , s1) sufficiently close to s̃i∗ so that x∗(s) is sufficiently close to x2 and

x∗(s) 6= x1 = x∗(s1), then from Proposition 5.4.2 we have f(x2) ≤ f(x∗(s)) < f(x1), a contradiction

again. Case (iii): there are s̃i∗1 , s̃i∗2 such that x1 ∈ x∗(s̃i∗1) and x2 ∈ x∗(s̃i∗2), but there is no

s /∈ {s̃1, . . . , s̃M−1} such that x1 = x∗(s) or x2 = x∗(s). By the same argument in Case (ii), we can

show that it must be the case that x1 = x∗(s̃i∗1+) and x2 = x∗(s̃i∗2+), therefore H(x1), H(x2) > γ.

Assume s̃i∗1 < s̃i∗2 without loss of generality, and consider an s ∈ (s̃i∗1 , s̃i∗2) that is sufficiently close

to s̃i∗1 so that H(x∗(s)) > γ, then by Proposition 5.4.2 we have f(x1) = f(x∗(s)) = f(x2) hence
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x∗(s) ∈ X ∗S , and we are in Case (ii) again. This proves that X ∗S must be a singleton.

To show that the optimal parameter set S∗ must be a closed interval, we first observe that S∗

must be a closed set due to the continuity of the solution path. Let s∗l = min{s : s ∈ S∗} and

s∗u = max{s : s ∈ S∗}, then we have S∗ ⊆ [s∗l , s
∗
u]. Case (i): both s∗l , s

∗
u /∈ {s̃1, . . . , s̃M−1}. Note

that x∗(s∗l ) = x∗(s∗u) = x∗S and v(s∗l ) = v(s∗u), hence Proposition 5.4.2 then forces x∗(s) = x∗S hence

s ∈ S∗ for all s ∈ [s∗l , s
∗
u] − {s̃1, . . . , s̃M−1} because otherwise v(s∗l ) < v(s) < v(s∗u). This further

implies x∗(s̃i−) = x∗(s̃i+) = {x∗S} and subsequently s̃i ∈ S∗ for any s̃i ∈ [s∗l , s
∗
u]. Altogether we

have [s∗l , s
∗
u] = S∗. Case (ii): s∗l = s̃i∗ for some 1 ≤ i∗ ≤ M − 1 and s∗u /∈ {s̃1, . . . , s̃M−1}. Using

Proposition 5.4.2 as in Case (i), one can show that for every s ∈ [s∗l , s
∗
u]− {s̃1, . . . , s̃M−1} we have

v(s∗l ) = v(s) = v(s∗u) and x∗(s) = x∗S , therefore S∗ = [s∗l , s
∗
u] again. Case (iii): s∗u = s̃i∗ for some

1 ≤ i∗ ≤ M − 1 and s∗l /∈ {s̃1, . . . , s̃M−1}. This case resembles Case (ii) and S∗ = [s∗l , s
∗
u] can be

shown using the same argument. Case (iv): s∗l = s̃i∗1 , s
∗
u = s̃i∗2 for some 1 ≤ i∗1 ≤ i∗2 ≤ M − 1. If

s̃i∗1 = s̃i∗2 then x∗S is a singleton and the interval representation trivially holds, so we focus on the

case s̃i∗1 < s̃i∗2 . We argue that x∗(s̃i∗1+) = x∗S . Otherwise if x∗(s̃i∗1−) = x∗S , then Assumption 5.4.7

forces H(x∗(s̃i∗1−)) > γ, and the continuity of the solution path and the constraint H imply that

H(x∗(s′)) > γ for some s′ sufficiently close to s̃i∗1 but s′ < s̃i∗1 . Note that such an s′ corresponds

to an objective value f(x∗(s′)) = v(s′) ≤ lims→s̃i∗1−
v(s) = f(x∗S) by Proposition 5.4.2, therefore

x∗(s′) = x∗S by the uniqueness of X ∗S , contradicting with the definition of s∗l . Therefore it must be

the case that x∗(s̃i∗1+) = x∗S . Because H(x∗(s̃i∗1+)) > γ, there exists a δ > 0 so that s̃i∗1 + δ < s̃i∗2 ,

s̃i∗1 + δ /∈ {s̃1, . . . , s̃M−1}, and H(x∗(s)) > γ for all s ∈ (s̃i∗1 , s̃i∗1 + δ]. Since Proposition 5.4.2

implies v(s) = f(x∗S) for such s, we must have x∗(s) = x∗S hence [s∗l , s
∗
l + δ] ⊆ S∗. The rest part

[s∗l + δ, s∗u] ⊆ S∗ can be shown by treating s∗l + δ as the s∗l in Case (iii). Altogether we still have

S∗ = [s∗l , s
∗
u]. In particular, when v(s) is strictly monotonic, it is clear that there can be at most

one optimal parameter hence S∗ becomes a singleton. �

Proof of Theorem 5.4.4. For any function class G and g ∈ G, we write P (g) = EF [g(ξ)] (or

just Pg) and Pn2(g) = 1
n2

∑n2
i=1 g(ξi) (or just Pn2g), as functions from G → R. For any function

φ : G → R, define ‖φ‖G = supg∈G|φ(g)|. For example ‖Pn2 − P‖G denotes the maximum deviation

of the sample mean.
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First we show uniform convergence of the standard-deviation-adjusted sample mean to the

expected constraint value. The function class {h(x, ·)|x ∈ X} is F -Donsker by Assumption 5.4.2,

hence is F -Glivenko-Cantelli(GC). By Lemma 2.10.14 from Van der Vaart and Wellner (1996),

the squared class {h2(x, ·)|x ∈ X} is also F -GC under Assumptions 5.4.2 and 5.4.3. Define XS =

{x∗(s) : s ∈ S\{s̃1, . . . , s̃M−1}} ∪
(
∪M−1
i=1 x∗(s̃i)

)
. As sub-classes, FXS := {h(x, ·)|x ∈ XS} and

F2
XS := {h2(x, ·)|x ∈ XS} are both F -GC, i.e.,

‖Pn2 − P‖FXS → 0 a.s.

‖Pn2 − P‖F2
XS
→ 0 a.s..

Letting σ̂2(h) = Pn2(h2)−(Pn2(h))2 and σ2(h) = P (h2)−(P (h))2 be the sample and true variances,

we have

∥∥σ̂2 − σ2
∥∥
FXS

≤ ‖Pn2 − P‖F2
XS

+ ‖Pn2 − P‖
2
FXS

+ 2 ‖P‖FXS ‖Pn2 − P‖FXS
= ‖Pn2 − P‖F2

XS
+ ‖Pn2 − P‖

2
FXS

+ 2 sup
x∈XS

|H(x)| ‖Pn2 − P‖FXS
→ 0 a.s. (D.9)

where the limit comes from the fact that supx∈XS |H(x)| < ∞ because H is continuous (implied

by Assumption 5.4.4) and XS is compact (implied by the piecewise uniform continuity condi-

tion, i.e., Assumption 5.4.6). By Assumption 5.4.3 we have
∥∥σ2

∥∥
FXS

= supx∈XS Var(h(x, ξ)) ≤

E[supx∈X h
2(x, ξ)] <∞, and arrive at

∥∥∥∥Pn2 −
z1−β√
n2
σ̂ − P

∥∥∥∥
FXS

≤ ‖Pn2 − P‖FXS +
z1−β√
n2

√
‖σ̂2‖FXS → 0 a.s..

When we use a discrete mesh {s1, . . . , sp}, it is clear that, using the notations from Algorithm 11

and Hj := H(x∗(sj))

max
1≤j≤p

∣∣∣∣Ĥj −
z1−β√
n2
σ̂j −Hj

∣∣∣∣ ≤ ∥∥∥∥Pn2 −
z1−β√
n2
σ̂ − P

∥∥∥∥
FXS

→ 0 a.s.. (D.10)
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Secondly, we prove convergence of the estimated solution x∗(ŝ∗) to the optimum x∗S . Fixing

any ε > 0, we argue that almost surely there exists a finite N and εS > 0 such that for all n2 ≥ N

and εS ≤ εS it holds ‖x∗(ŝ∗)− x∗S‖ < ε. To proceed, define

δ := min
x∈XS
{f(x)− f(x∗S)|H(x) ≥ γ, ‖x− x∗S‖ ≥ ε}. (D.11)

Since the objective f is continuous and {x|x ∈ XS , H(x) ≥ γ, ‖x− x∗S‖ ≥ ε} is a compact set, by a

compactness argument we must have δ > 0. By Assumption 5.4.9, for any ε′ ≤ ε there exists some

s′ /∈ {s̃1, . . . , s̃M−1} such that H(x∗(s′)) > γ and ‖x∗(s′)− x∗S‖ < ε′. By continuity of f , one can

set ε′ small enough so that f(x∗(s′)) − f(x∗S) < δ
2 . Moreover, due to the continuity of x∗(s) at s′

and the continuity of f and H, there exists an εS > 0 such that mins s.t. |s−s′|≤εS H(x∗(s)) > γ and

maxs s.t. |s−s′|≤εS f(x∗(s)) < f(x∗S) + δ
2 . Therefore, when the mesh size εS ≤ εS , there must exist

some sj′ ∈ {s1, . . . , sp} such that

H(x∗(sj′)) ≥ min
s s.t. |s−s′|≤εS

H(x∗(s)) > γ (D.12)

f(x∗(sj′)) ≤ max
s s.t. |s−s′|≤εS

f(x∗(s)) < f(x∗S) +
δ

2
. (D.13)

For the given ε define for ∆ ≥ 0

δ∆ := min
x∈XS
{f(x)− f(x∗S)|H(x) ≥ γ −∆, ‖x− x∗S‖ ≥ ε}. (D.14)

We argue that lim∆→0+ δ∆ → δ by contradiction. Clearly δ∆ is non-increasing in ∆ and δ∆ ≤ δ,

hence the limit lim∆→0+ δ∆ must exists and is finite. Suppose lim∆→0+ δ∆ < δ, then there exist

δ̃ < δ and a sequence {xk}∞k=1 ⊂ XS such that ‖xk − x∗S‖ ≥ ε, H(xk) ≥ γ − ∆k with ∆k → 0+,

and f(xk) − f(x∗S) ≤ δ̃. By the compactness of XS , there must exist a subsequence {xks}∞s=1

converging to some x∞ ∈ XS , and by continuity x∞ must satisfy ‖x∞ − x∗S‖ ≥ ε, H(x∞) ≥ γ and

f(x∞)− f(x∗S) ≤ δ̃. From the definition (D.11) of δ this implies δ ≤ δ̃, a contradiction. Now pick

a small enough ∆′ so that δ∆′ >
δ
2 . From the uniform convergence (D.10) we know that almost
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surely there exists some N such that for any n2 ≥ N

max
1≤j≤p

∣∣∣∣Ĥj −
z1−β√
n2
σ̂j −Hj

∣∣∣∣ < min{∆′, min
s s.t. |s−s′|≤εS

H(x∗(s))− γ} ≤ min{∆′, H(x∗(sj′))− γ}.

(D.15)

where the second inequality is due to (D.12). In particular, (D.15) implies that for such n2 we have

Ĥ(x∗(sj′))−
z1−β√
n2
σ̂(x∗(sj′)) > H(x∗(sj′))−min{∆′, H(x∗(sj′))− γ} ≥ γ, therefore on one hand we

must have

f(x∗(ŝ∗)) ≤ f(x∗(sj′)) < f(x∗S) +
δ

2
(D.16)

where the first inequality holds due to the way ŝ∗ is chosen and the second results from (D.13). On

the other hand it also follows from (D.15) that

H(x∗(ŝ∗)) > Ĥ(x∗(ŝ∗))−
z1−β√
n2
σ̂(x∗(ŝ∗))−min{∆′, H(x∗(sj′))− γ}

≥ γ −min{∆′, H(x∗(sj′))− γ}

≥ γ −∆′. (D.17)

The bounds (D.16) and (D.17) on the objective value and the constraint value at the estimated

solution x∗(ŝ∗), together with the fact that δ∆′ >
δ
2 due to the way ∆′ is chosen, imply that

‖x∗(ŝ∗)− x∗S‖ < ε by the definition (D.14) of δ∆. Since ε can be arbitrarily small, we have

limn2→∞ x
∗(ŝ∗) = x∗S a.s.. Convergence of ŝ∗ to the optimal parameter set S∗ is then a consequence

of the convergence of x∗(ŝ∗) to x∗S . Suppose ŝ∗ does not converge to S∗, then by compactness of S

there exists a subsequence ŝ∗k converging to some s∞ /∈ S∗. Since the corresponding x∗(ŝ∗k) → x∗S

we have either s∞ /∈ {s̃1, . . . , s̃M−1} with x∗(s∞) = x∗S or s∞ ∈ {s̃1, . . . , s̃M−1} with x∗S ∈ x∗(s∞),

however in either case s∞ ∈ S∗, a contradiction.

Then we prove the feasibility guarantees. The case H(x∗S) > γ is relatively straightforward.

By the continuity of H and that a.s. x∗(ŝ∗) → x∗S we have H(x∗(ŝ∗)) → H(x∗S) > γ a.s.. Almost

surely convergence implies convergence in probability, thus H(x∗(ŝ∗))→ H(x∗S) in probability and,
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in particular, Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)→ 1. If H(x∗S) = γ we denote by

Gn2(x) :=
√
n2(Pn2(h(x, ·))− P (h(x, ·)))

the empirical process indexed by the decision x and let σ̂2(x), σ2(x) represent the sample and true

variance of h(x, ξ), and then write

H(x∗(ŝ∗)) ≥ H(x∗(ŝ∗))−
(
Ĥ(x∗(ŝ∗))− z1−β

σ̂(x∗(ŝ∗))
√
n2

− γ
)

(D.18)

= γ + (H(x∗(ŝ∗))− Ĥ(x∗(ŝ∗))) + z1−β
σ̂(x∗(ŝ∗))
√
n2

= γ − 1
√
n2

Gn2(x∗(ŝ∗)) + z1−β
σ̂(x∗(ŝ∗))
√
n2

= γ − 1
√
n2

Gn2(x∗S) + z1−β
σ̂(x∗S)
√
n2

+ E1 + E2 (D.19)

where the errors

E1 =
1
√
n2

(
Gn2(x∗S)−Gn2(x∗(ŝ∗))

)
, E2 =

z1−β√
n2

(
σ̂(x∗(ŝ∗))− σ̂(x∗S)

)
.

We need to show that E1 = op
(

1√
n2

)
, E2 = op

(
1√
n2

)
. We deal with E2 first. E2 can be bounded

as

|E2| ≤
z1−β√
n2

(
2 ‖σ̂ − σ‖FXS + |σ(x∗(ŝ∗))− σ(x∗S)|

)
.

On one hand we have already shown that x∗(ŝ∗)→ x∗S a.s.. On the other hand, σ2(x) is continuous

in x. Therefore |σ(x∗(ŝ∗))− σ(x∗S)| → 0 a.s. as n2 → ∞. By uniform convergence (D.9) and

the relation ‖σ̂ − σ‖FXS ≤
√
‖σ̂2 − σ2‖FXS , we have ‖σ̂ − σ‖FXS → 0 a.s.. Consequently it holds

√
n2 |E2| = o(1) a.s. and, in particular, E2 = op

(
1√
n2

)
.

To bound the error E1, let ρ(x, x′) =
√

Var(h(x, ξ)− h(x′, ξ)) denote the intrinsic semimet-

ric of the tight Gaussian process G indexed by x ∈ XS with mean zero and covariance struc-

ture Cov(G(x),G(x′)) = CovF (h(x, ξ), h(x′, ξ)), and for any ε > 0 let δ(ε) = sup{ρ(x, x∗S)|x ∈
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XS , ‖x− x∗S‖ < ε}. Note that Assumption 5.4.4 entails δ(ε)→ 0 as ε→ 0. We have for any ε > 0

|E1| = |E1|1{‖x∗(ŝ∗)− x∗S‖ < ε}+ |E1|1{‖x∗(ŝ∗)− x∗S‖ ≥ ε}

≤ sup
x∈XS s.t. ‖x−x∗S‖<ε

1
√
n2
|Gn2(x∗S)−Gn2(x)|1{‖x∗(ŝ∗)− x∗S‖ < ε}+∞ · 1{‖x∗(ŝ∗)− x∗S‖ ≥ ε}

where ∞ · 0 = 0

≤ sup
x∈XS s.t. ‖x−x∗S‖<ε

1
√
n2
|Gn2(x∗S)−Gn2(x)|+∞ · 1{‖x∗(ŝ∗)− x∗S‖ ≥ ε}

≤ sup
x,x′∈XS s.t. ρ(x,x′)≤δ(ε)

1
√
n2

∣∣Gn2(x)−Gn2(x′)
∣∣+∞ · 1{‖x∗(ŝ∗)− x∗S‖ ≥ ε}.

We have already shown that ‖x∗(ŝ∗)− x∗S‖ → 0 a.s., hence Pξ1:n2
(‖x∗(ŝ∗)− x∗S‖ ≥ ε) → 0 for any

fixed ε > 0. Therefore we can choose an n2-dependent ε := εn2 so that both Pξ1:n2
(‖x∗(ŝ∗)− x∗S‖ ≥

εn2)→ 0 and εn2 → 0 as n2 →∞, and get

|E1| ≤ sup
x,x′∈XS s.t. ρ(x,x′)≤δ(εn2 )

1
√
n2

∣∣Gn2(x)−Gn2(x′)
∣∣+∞ · 1{‖x∗(ŝ∗)− x∗S‖ ≥ εn2}. (D.20)

By the way εn2 is chosen, the second term on the right hand side of (D.20) is of arbitrarily small

order, in particular, op
(

1√
n2

)
. To control the first term, note that δ(εn2)→ 0 as n2 →∞. Since the

function class FXS is F -Donsker, the empirical process Gn2 on FXS is asymptotically tight, hence by

Theorem 1.5.7 and Addendum 1.5.8 from Van der Vaart and Wellner (1996) Gn2 is asymptotically

uniformly equicontinuous in probability with respect to the intrinsic semimetric ρ of the limit

Gaussian process G, i.e., for any ε > 0

lim
δ→0

lim sup
n2→∞

Pξ1:n2

(
sup

x,x′∈XS s.t. ρ(x,x′)≤δ

∣∣Gn2(x)−Gn2(x′)
∣∣ > ε

)
= 0. (D.21)

Note that supx,x′∈XS s.t. ρ(x,x′)≤δ |Gn2(x)−Gn2(x′)| is monotonically increasing in δ a.s. and that

δ(εn2)→ 0, therefore it must hold that for any fixed δ > 0

sup
x,x′∈XS s.t. ρ(x,x′)≤δ(εn2 )

∣∣Gn2(x)−Gn2(x′)
∣∣ ≤ sup

x,x′∈XS s.t. ρ(x,x′)≤δ

∣∣Gn2(x)−Gn2(x′)
∣∣ a.s.
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when n2 is sufficiently large, therefore for any ε > 0 the first term in (D.20) can be controlled as

lim sup
n2→∞

Pξ1:n2

(
sup

x,x′∈XS s.t. ρ(x,x′)≤δ(εn2 )

∣∣Gn2(x)−Gn2(x′)
∣∣ > ε

)
≤ lim sup

n2→∞
Pξ1:n2

(
sup

x,x′∈XS s.t. ρ(x,x′)≤δ

∣∣Gn2(x)−Gn2(x′)
∣∣ > ε

)
. (D.22)

Due to (D.21) the right hand side of (D.22) can be made arbitrarily small by sending δ → 0,

hence the left hand side of (D.22) must be identical to zero. Since ε is arbitrary, by definition

supx,x′∈XS s.t. ρ(x,x′)≤δ(εn2 ) |Gn2(x)−Gn2(x′)| = op(1), which in turn leads to E1 = op
(

1√
n2

)
.

We now go back to the representation (D.19) of H(x∗(ŝ∗)) to conclude the coverage guarantee.

From (D.19) we see that

lim inf
n2→∞,εS→0

Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

≥ lim inf
n2→∞,εS→0

Pξ1:n2

(
γ − 1
√
n2

Gn2(x∗S) + z1−β
σ̂(x∗S)
√
n2

+ E1 + E2 ≥ γ
)

= lim inf
n2→∞,εS→0

Pξ1:n2

(
− 1
√
n2

Gn2(x∗S) + z1−β
σ̂(x∗S)
√
n2

+ op
( 1
√
n2

)
≥ 0
)

= lim inf
n2→∞,εS→0

Pξ1:n2

(Gn2(x∗S)

σ̂(x∗S)
+ op(1) ≤ z1−β

)
since σ̂(x∗S)→ σ(x∗S) a.s. and σ2(x∗S) > 0 (Assumption 5.4.5)

= 1− β

where in the last equality we use Slutsky’s theorem to justify that
Gn2 (x∗S)

σ̂(x∗S) +op(1) weakly converges

to the standard normal. �

Proof of Theorem 5.4.5. Following the proof of Theorem 5.4.4, we see that in order to conclude

the tight feasibility confidence level it suffices to show that the inequality gap of (D.18) is of order

op
(

1√
n2

)
, i.e.,

γ ≤ Ĥ(x∗(ŝ∗))− z1−β
σ̂(x∗(ŝ∗))
√
n2

≤ γ + op
( 1
√
n2

)
. (D.23)

Indeed, once the second inequality in (D.23) is shown, we can use the representation (D.19) and
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apply Slutsky’s theorem, like in the proof of Theorem 5.4.4, to get

limPξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

= limPξ1:n2

(
γ − 1
√
n2

Gn2(x∗S) + z1−β
σ̂(x∗S)
√
n2

+ E1 + E2 + op
( 1
√
n2

)
≥ γ

)
= limPξ1:n2

(
− 1
√
n2

Gn2(x∗S) + z1−β
σ̂(x∗S)
√
n2

+ op
( 1
√
n2

)
≥ 0
)

since E1, E2 = op
( 1
√
n2

)
= limPξ1:n2

(Gn2(x∗S)

σ̂(x∗S)
+ op(1) ≤ z1−β

)
= 1− β.

Now we prove the second inequality in (D.23). By Proposition 5.4.3 the optimal parameter

set is a singleton S∗ = {s∗}. Moreover, in the case H(x∗S) = γ Assumption 5.4.7 forces that

s∗ /∈ {s̃1, . . . , s̃M−1} ∪ {sl, su}. Suppose s∗ ∈ (s̃i∗ , s̃i∗+1) for some 0 ≤ i∗ ≤ M − 1 (note that

s̃0 = sl, s̃M = su). Assumption 5.4.6 then ensures that the parameter-to-solution mapping x∗(·) is

uniformly continuous in some neighborhood N (s∗) ⊆ (s̃i∗ , s̃i∗+1) of s∗. Since N (s∗) is contained in a

compact set, the standard deviation function σ(x∗(·)) is uniformly continuous in N (s∗). Moreover,

the semimetric ρ(x∗(·), x∗(·)) between two solutions is also uniformly continuous in N (s∗)×N (s∗).

Therefore as εS → 0 the following holds

ωσ(2εS) : = sup
s,s′∈N (s∗) s.t. ‖s−s′‖<2εS

∣∣σ(x∗(s))− σ(x∗(s′))
∣∣ = o(1)

ωρ(2εS) : = sup
s,s′∈N (s∗) s.t. ‖s−s′‖<2εS

ρ(x∗(s), x∗(s′)) = o(1).

According to the criterion of choosing ŝ∗ we must have for every parameter value sj that either

f(x∗(sj)) ≥ f(x∗(ŝ∗)) or Ĥ(x∗(sj))− z1−β
σ̂(x∗(sj))√

n2
< γ. Therefore if ŝ∗ ∈ N (s∗), say ŝ∗ = si

∗
j∗ , and

si
∗
j∗−1 ∈ N (s∗) as well, then because si

∗
j∗−1 < si

∗
j∗ and the parameter-to-objective mapping f(x∗(·))

is strictly increasing in s it must hold that

Ĥ(x∗(si
∗
j∗−1))− z1−β

σ̂(x∗(si
∗
j∗−1))

√
n2

< γ. (D.24)

We shall use this fact to derive (D.23). For convenience, we denote by B(s, ε) := {s′ ∈ S| ‖s′ − s‖ <
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ε} the ball of radius ε > 0 centered at s. Because ŝ∗ → s∗ a.s. and εS → 0, it is implied that

Pξ1:n2
(B(ŝ∗, 2εS) ⊆ N (s∗))→ 1 as n2 →∞. Thus we can write

Ĥ(x∗(ŝ∗))− z1−β
σ̂(x∗(ŝ∗))
√
n2

≤ ∞ · 1{B(ŝ∗, 2εS) 6⊆ N (s∗)}+
(
Ĥ(x∗(si

∗
j∗))− z1−β

σ̂(x∗(si
∗
j∗))√

n2

)
1{B(ŝ∗, 2εS) ⊆ N (s∗)}

where si
∗
j∗ = ŝ∗

≤ op
( 1
√
n2

)
+
(
Ĥ(x∗(si

∗
j∗−1))− z1−β

σ̂(x∗(si
∗
j∗−1))

√
n2

)
1{B(ŝ∗, 2εS) ⊆ N (s∗)}+( ∣∣∣Ĥ(x∗(si

∗
j∗−1))− Ĥ(x∗(si

∗
j∗))
∣∣∣+

z1−β√
n2

∣∣∣σ̂(x∗(si
∗
j∗−1))− σ̂(x∗(si

∗
j∗))
∣∣∣ )1{B(ŝ∗, 2εS) ⊆ N (s∗)}

≤ op
( 1
√
n2

)
+ γ +

( ∣∣∣H(x∗(si
∗
j∗−1))−H(x∗(si

∗
j∗))
∣∣∣+

1
√
n2

∣∣∣Gn2(x∗(si
∗
j∗−1))−Gn2(x∗(si

∗
j∗))
∣∣∣+

z1−β√
n2

(
2 ‖σ̂ − σ‖FXS +

∣∣∣σ(x∗(si
∗
j∗−1))− σ(x∗(si

∗
j∗))
∣∣∣ ))1{B(ŝ∗, 2εS) ⊆ N (s∗)}

where the γ term comes from (D.24)

≤ op
( 1
√
n2

)
+ γ +

(
o
( 1
√
n2

)
+

1
√
n2

sup
x,x′∈XS s.t. ρ(x,x′)≤ωρ(2εS)

∣∣Gn2(x)−Gn2(x′)
∣∣+

z1−β√
n2

(
2 ‖σ̂ − σ‖FXS + ωσ(2εS)

))
1{B(ŝ∗, 2εS) ⊂ N (s∗)}

where the o
( 1
√
n2

)
terms is due to condition (5.21)

≤ op
( 1
√
n2

)
+ γ + o

( 1
√
n2

)
+

1
√
n2

sup
x,x′∈XS s.t. ρ(x,x′)≤ωρ(2εS)

∣∣Gn2(x)−Gn2(x′)
∣∣

+
z1−β√
n2

(
op
(
1) + o(1)

)
= γ + op

( 1
√
n2

)
+

1
√
n2

sup
x,x′∈XS s.t. ρ(x,x′)≤ωρ(2εS)

∣∣Gn2(x)−Gn2(x′)
∣∣ .

Since ωρ(2εS) → 0, through an argument similar to (D.22) the asymptotically uniform equiconti-

nuity of Gn2 results in supx,x′∈XS s.t. ρ(x,x′)≤ωρ(2εS) |Gn2(x)−Gn2(x′)| = op(1). This finally leads to

the upper bound in (D.23), hence concludes the theorem. �

Proof of Theorem 5.4.6. We first treat the unnormalized validator (Algorithm 9). First, we

introduce some notations and a few auxiliary Gaussian processes. Let So := S\{s̃1, . . . , s̃M−1} be
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the parameter space after excluding the pathological points {s̃1, . . . , s̃M−1}. We denote by

{G(s) : s ∈ So}

the Gaussian process with mean zero and covariance Cov(s, s′) = CovF (h(x∗(s), ξ), h(x∗(s′), ξ)),

and by

{G′(s) : s ∈ So}

the Gaussian process with mean zero and covariance structure Cov(s, s′) = 1
n2

∑n2
i=1(h(x∗(s), ξi)−

Ĥ(x∗(s)))(h(x∗(s′), ξi)− Ĥ(x∗(s′))) where Ĥ(x∗(s)) = (1/n2)
∑n2

i=1 h(x∗(s), ξi) is the sample mean

at x∗(s) and Ĥ(x∗(s′)) is the sample mean at x∗(s′). For a generic stochastic process {Y (θ) : θ ∈ Θ}

over some set Θ, we denote by

ψ1−β({Y (θ) : θ ∈ Θ})

the 1 − β quantile of supθ∈Θ Y (θ). We can formally express the critical value calibrated in Al-

gorithm 9 as q1−β = ψ1−β({G′(s) : s ∈ {s1, . . . , sp}}), and q̄1−β = ψ1−β({G(s) : s ∈ So}).

Under Assumption 5.4.2, the Gaussian process G as the weak limit of the empirical process

{√n2((1/n2)
∑n2

i=1 h(x∗(s), ξi)−H(x∗(s))) : s ∈ So} is a tight Borel measurable element in the space

l∞(So) := {f : f is a function So → R such that sups∈So |f(s)| < ∞}, so the sample path of G is

uniformly continuous with respect to the semimetric ρ(s, s′) :=
√

VarF (h(x∗(s), ξ)− h(x∗(s′), ξ))

almost surely (Example 1.5.10 in Van der Vaart and Wellner (1996)). Note that, under Assumptions

5.4.4 and 5.4.6, on each continuous piece of the solution path this semimetric is continuous in the

pair s, s′ with respect to the Euclidean metric on S. In other words, almost surely the sample path

of G is continuous with respect to the Euclidean metric d(s, s′) := |s− s′| on each piece (s̃i, s̃i+1).

Therefore, by continuity, every countable dense (w.r.t. the Euclidean metric) subset Soc ⊂ So, e.g.,

the set of all rational s, renders

sup
s∈So

G(s) = sup
s∈Soc

G(s) almost surely.

Suppose Soc = {soj}∞j=1, then max1≤j≤kG(soj) monotonically increases in k towards sups∈So G(s) al-
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most surely, and almost sure convergence implies convergence in distribution therefore ψ1−β({G(s) :

s ∈ {so1, . . . , sok}}) monotonically increases in k towards the limit q̄1−β, i.e.,

ψ1−β({G(s) : s ∈ {so1, . . . , sok}}) ≤ q̄1−β, and lim
k→∞

ψ1−β({G(s) : s ∈ {so1, . . . , sok}}) = q̄1−β. (D.25)

As the second step, we want to show that q1−β converges to q̄1−β almost surely. Under As-

sumptions 5.4.2 and 5.4.3, Theorem 10.6 in Kosorok (2008) states that, for almost every realiza-

tion of the data sequence {ξi}∞i=1, the Gaussian process G′ weakly converges to G as n2 → ∞.

By the continuous mapping theorem, sups∈So G
′
(s) also weakly converges to sups∈So G(s) al-

most surely, therefore limn2→∞ ψ1−β({G′(s) : s ∈ So}) = q̄1−β almost surely. It is obvious

that q1−β ≤ ψ1−β({G′(s) : s ∈ So}), hence we have established that lim supn2→∞,εS→0 q1−β ≤

q̄1−β. To show the other direction, we exploit the separability (D.25) of G. For each i, let

sji ∈ {s1, . . . , sp} be such that sji → soi as εS → 0. Consider two more Gaussian processes

{G′(s) : s ∈ {sj1 , . . . , sjk}} and {G(s) : s ∈ {sj1 , . . . , sjk}}. For a fixed k, let Σ̂′, Σ̂ be the covariance

matrices of {G′(s) : s ∈ {sj1 , . . . , sjk}} and {G(s) : s ∈ {sj1 , . . . , sjk}} respectively, and let Σ be

the covariance matrix of {G(s) : s ∈ {so1, . . . , sok}}. Assumption 5.4.4 and the convergence of each

sji to soi ensure that Σ̂ → Σ as εS → 0. To argue that Σ̂′ − Σ̂ → 0 ∈ Rk×k, where 0 denotes

the k × k matrix with zero entries, we need the F-Glivenko-Contelli property of the product class

F · F := {f(·) = h(x, ·)h(x′, ·) : x, x′ ∈ X}. F-Donskerness implies F-Glivenko-Contelli, therefore

F = {h(x, ·) : x ∈ X} is F-Glivenko-Contelli under Assumption 5.4.2, which together with Assump-

tion 5.4.3 forces the product class F · F to be F-Glivenko-Contelli by statement (ii) of Corollary

9.27 from Kosorok (2008). As a result, we have

sup
x,x′∈X

∣∣ 1

n2

n2∑
i=1

(h(x, ξi)− Ĥ(x))(h(x′, ξi)− Ĥ(x′))− CovF (h(x, ξ), h(x′, ξ))
∣∣→ 0 as n2 →∞

almost surely, where Ĥ(x) = (1/n2)
∑n2

i=1 h(x, ξi) and Ĥ(x′) is similar. In particular Σ̂′− Σ̂→ 0 ∈

Rk×k as desired. Combining this with the convergence of Σ̂ to Σ, we conclude limn2→∞,εS→0 Σ̂′ = Σ

almost surely. Since the distribution of a zero mean multivariate Gaussian is uniquely determined

by its covariance matrix, we must have {G′(s) : s ∈ {sj1 , . . . , sjk}} weakly converges to {G(s) :
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s ∈ {so1, . . . , sok}}, and hence ψ1−β({G′(s) : s ∈ {sj1 , . . . , sjk}}) → ψ1−β({G(s) : s ∈ {so1, . . . , sok}})

almost surely. Note that ψ1−β({G′(s) : s ∈ {sj1 , . . . , sjk}}) ≤ ψ1−β({G′(s) : s ∈ {s1, . . . , sp}}) =

q1−β, hence

lim inf
n2→∞,εS→0

q1−β ≥ ψ1−β({G(s) : s ∈ {so1, . . . , sok}}) for each k.

This together with (D.25) gives lim infn2→∞,εS→0 q1−β ≥ q̄1−β. Putting all these together we have

limn2→∞,εS→0 q1−β = q̄1−β almost surely.

The rest of the proof closely follows that of Theorem 5.4.4. We only highlight some modi-

fications. First, each occurrence of
z1−β σ̂j√

n2
,
z1−β σ̂(x∗(ŝ∗))√

n2
and

z1−β σ̂(x∗S)√
n2

shall be replaced by
q1−β√
n2

.

Second, the second error E2 in (D.19) is no longer present, and the series of inequalities in the last

paragraph become

lim inf
n2→∞,εS→0

Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

≥ lim inf
n2→∞,εS→0

Pξ1:n2

(
− 1
√
n2

Gn2(x∗S) +
q1−β√
n2

+ op
( 1
√
n2

)
≥ 0
)

= lim inf
n2→∞,εS→0

Pξ1:n2

(
− 1
√
n2

Gn2(x∗S) +
q̄1−β√
n2

+ op
( 1
√
n2

)
≥ 0
)

since q1−β → q̄1−β a.s.

= lim inf
n2→∞,εS→0

Pξ1:n2

(Gn2(x∗S)

σ(x∗S)
+ op(1) ≤

q̄1−β
σ(x∗S)

)
= Φ

( q̄1−β
σ(x∗S)

)
by Slutsky’s theorem.

This completes the proof for Algorithm 9.

Now we prove the results for Algorithm 10 by a similar argument. Consider the Gaussian

process

{G̃(s) : s ∈ So}

with mean zero and covariance Cov(s, s′) = CovF (h(x∗(s), ξ), h(x∗(s′), ξ))/(σ(x∗(s))σ(x∗(s′))), and

the Gaussian process

{G̃′(s) : s ∈ So}
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with mean zero and covariance

Cov(s, s′) =
[ 1

n2

n2∑
i=1

(h(x∗(s), ξi)− Ĥ(x∗(s)))(h(x∗(s′), ξi)− Ĥ(x∗(s′)))
]
/(σ̂(x∗(s))σ̂(x∗(s′)))

where Ĥ(x∗(s)) = 1
n2

∑n2
i=1 h(x∗(s), ξi), σ̂

2(x∗(s)) = 1
n2

∑n2
i=1(h(x∗(s), ξi) − Ĥ(x∗(s)))2. Ĥ(x∗(s′))

and σ̂2(x∗(s′)) are similarly defined. We have q̃1−β = ψ1−β({G̃(s) : s ∈ So}), and q1−β =

ψ1−β({G̃′(s) : s ∈ {s1, . . . , sp}}) ≤ ψ1−β({G̃′(s) : s ∈ So}). Under the depicted conditions,

Lemma 3 from Lam (2019) states that, for almost every realization of the data sequence {ξi}∞i=1,

the Gaussian process G̃′ weakly converges to G̃, so we have

lim sup
n2→∞,εS→0

q1−β ≤ lim sup
n2→∞,εS→0

ψ1−β({G̃′(s) : s ∈ So}) = q̃1−β

almost surely. By a similar argument based on the separability of G̃ and the uniform convergence of

covariance as in the case of Algorithm 9, we can show the other direction lim infn2→∞,εS→0 q1−β ≥

q̃1−β and thereby conclude that limn2→∞,εS→0 q1−β = q̃1−β almost surely. The rest of the proof

for Algorithm 10 also follows that of Theorem 5.4.4, but with each occurrence of z1−β replaced by

q1−β. The display in the last paragraph should be modified to be

lim inf
n2→∞,εS→0

Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

≥ lim inf
n2→∞,εS→0

Pξ1:n2

(
− 1
√
n2

Gn2(x∗S) +
q1−βσ̂(x∗S)
√
n2

+ op
( 1
√
n2

)
≥ 0
)

= lim inf
n2→∞,εS→0

Pξ1:n2

(
− 1
√
n2

Gn2(x∗S) +
q̃1−βσ(x∗S)
√
n2

+ op
( 1
√
n2

)
≥ 0
)

since q1−β → q̃1−β and σ̂(x∗S)→ σ(x∗S) > 0 a.s.

= lim inf
n2→∞,εS→0

Pξ1:n2

(Gn2(x∗S)

σ(x∗S)
+ op(1) ≤ q̃1−β

)
= Φ(q̃1−β) by Slutsky’s theorem.

Lastly, by stochastic dominance of the supremum of the Gaussian process G or G̃ over each of its

marginal Gaussian component, it is straightforward that q̄1−β ≥ z1−βσ(x∗S) and that q̃1−β ≥ z1−β,

therefore both Φ
( q̄1−β
σ(x∗S)

)
and Φ(q̃1−β) are at least 1− β. �
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D.4 Proofs of Results in Section 5.5

We first provide a lemma on the continuity of the solution path x∗(s):

Lemma D.4.1 Suppose the formulation OPT (s) satisfies Assumptions 5.4.8 and 5.5.1-5.5.3. If

F̂(s) = {x : gt(x, s) ≤ 0, t = 1, . . . , T} for some finite T where each gt is jointly continuous in x, s

and convex in x for every fixed s, the objective f(x) is continuous, and OPT (s) := min{f(x) : x ∈

X ∩ F̂(s)} has a unique solution x∗(s) for all s ∈ [s, s], then the solution path x∗(s) is continuous

on [s, s].

Proof of Lemma D.4.1. The lemma is an application of Proposition 4.4 from Bonnans and Shapiro

(2013). Based on the discussion following Proposition 4.4 in Bonnans and Shapiro (2013), we argue

one by one that OPT (s) satisfies assumptions (i)-(iv) of Proposition 4.4. Assumption (i): The

objective f(x) is continuous and independent of s hence it’s jointly continuous in x, s. Assumption

(ii): The constraints of OPT (s) can be formulated as (f1(x, s), . . . , fR(x, s), w′1x − z1, . . . , w
′
Lx −

zL, g1(x, s), . . . , gT (x, s)) ∈ [0,+∞)R+L+T , where the left hand side is a vector of continuous func-

tions and the right hand size is a closed convex cone. Assumption (iii) is implied by our Assumptions

5.4.8 and 5.5.3. Assumption (iv): Since OPT (s) is convex, our Assumptions 5.4.8 and 5.5.2 ensure

Slater’s condition for OPT (s) for all s ∈ [sl, su], and Slater’s condition implies Robinson’s con-

straint qualification, a sufficient condition for assumption (iv). Therefore the set-valued mapping

X ∗(s) := {x ∈ X ∪ F̂(s) : f(x) = minx∈X∪F̂(s) f(x)} is upper semicontinuous at every s ∈ [s, s].

When the optimal solution x∗(s) for OPT (s) is unique, upper semicontinuity implies continuity,

hence x∗(s) is continuous on [s, s]. �

The second lemma we present concerns the uniqueness of x∗(s) for linear objectives:

Lemma D.4.2 Consider an optimization problem in the form of min c′x subject to fr(x) ≤ 0 for

r = 1, . . . , R and Ax ≤ b for A = [a1, . . . , aL]′ ∈ RL×d and b ∈ RL where each fr is continuous

and convex and c is a non-zero vector. For each fr and any two solutions x1 6= x2 such that

fr(x1) = fr(x2) = 0, assume fr(θx1 + (1− θ)x2) < 0 for any θ ∈ (0, 1). If any k ≤ d− 1 rows of A

does not satisfy the SCI condition, then the optimal solution must be unique whenever one exists.
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Proof of Lemma D.4.2. Suppose there are two optimal solutions x1, x2. By convexity any solution

in the form θx1 + (1 − θ)x2 for θ ∈ [0, 1] is also optimal, and because of the condition on fr we

can assume that fr(x1) < 0, fr(x2) < 0 for all r = 1, . . . , R. Therefore, only the linear constraints

can be binding on the line segment θx1 + (1 − θ)x2, θ ∈ [0, 1]. Let Aox ≤ bo be the binding

linear constraints on the segment where Ao consists of rows of A and bo contains the corresponding

components of b, then it is clear that solution of the form θx1 + (1− θ)x2 is optimal for the linear

program min c′x subject to Aox ≤ bo. Since Aox1 = Aox2 = bo, we have Ao(x2− x1) = 0 hence the

rank of Ao is at most d− 1. Now consider the dual min b′oy subject to A′oy = −c, y ≥ 0. Since the

rank of Ao is at most d− 1, by removing linearly dependent rows, the constraint A′oy = −c can be

simplified to Ã′oy = −c̃ where Ã′o has at most d−1 linearly independent rows. Let y∗ be an optimal

basic feasible solution of the dual with the simplified constraint Ã′oy = −c̃, then y∗ has at most

d − 1 non-zero (positive) components. However as a feasible solution y∗ has to satisfy A′oy
∗ = −c

therefore the SCI condition holds for the rows of A corresponding to the positive components of

y∗, leading to a contradiction. �

Proof of Theorem 5.5.2. We only need to verify the conditions of Lemma D.4.1. In both cases

(i) and (ii), F̂(s) = {x : γ+ s− 1
n

∑n
i=1 h(x, ξi) ≤ 0} and γ+ s− 1

n

∑n
i=1 h(x, ξi) is obviously jointly

continuous in x, s and convex in x, and also f(x) is continuous. Therefore, it only remains to check

uniqueness of x∗(s) in order to apply Lemma D.4.1.

In case (i), the strict convexity of f(x) forces the solution x∗(s) to be unique. In case (ii),

we first treat the case when h is linear in x. We first note that for such h the SAA takes

the form −
(

1
n

∑n
i=1A(ξi)

)′
x ≤ 1

n

∑n
i=1 b(ξi) − γ − s. Therefore each constraint of OPT (s) is

either linear or strictly convex, and thanks to Lemma D.4.2 it remains to show that the SCI

condition is not satisfied for each s ∈ S. For any k ≤ d − 2 rows {wl(1), . . . , wl(k)} of W and

the coefficient vector − 1
n

∑n
i=1A(ξi), we want to show that the SCI condition does not hold

for {wl(1), . . . , wl(k),− 1
n

∑n
i=1A(ξi)}. Suppose SCI does hold, then we have the representation

− 1
n

∑n
i=1A(ξi) =

∑k
j=1 λjwl(j) +λcc, i.e., − 1

n

∑n
i=1A(ξi) lies in the subspace of dimension spanned

by {wl(1), . . . , wl(k), c}. However, − 1
n

∑n
i=1A(ξi) has a density hence lies in any given subspace

of dimension ≤ d − 1 with probability zero. Therefore almost surely SCI does not hold for
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{wl(1), . . . , wl(k),− 1
n

∑n
i=1A(ξi)}. If only linear coefficients from Wx ≤ z are considered, SCI

condition is again not satisfied by the condition imposed. Therefore almost surely SCI is not sat-

isfied for OPT (s). By noting that the SCI condition is independent of s since s is on the right

hand side, we conclude that almost surely SCI is not satisfied for all s ∈ S. When h(x, ξ) is strictly

concave in x, Lemma D.4.2 can be directly applied to show the uniqueness of x∗(s). �

Proof of Theorem 5.5.4. We first argue that the constraint function

g(x, s) = inf
{ n∑
i=1

wih(x, ξi) :
n∑
i=1

1

n
φ(nwi) ≤ s,

n∑
i=1

wi = 1, wi ≥ 0 for all i
}

is jointly continuous in x, s. Viewing both x, s as parameters of the optimization problem defining

g(x, s), one can easily check that the assumptions of Proposition 4.4 from Bonnans and Shapiro

(2013) are satisfied, hence g(x, s) as the optimal value of the optimization problem is continuous

in the parameters x, s. It is also obvious that g(x, s) is concave in x for every s because of its

representation as the minimum of a family of concave functions. By Lemma D.4.1 it remains to

show the uniqueness of x∗(s).

Case (i) follows from the strict convexity of f as in Theorem 5.5.2. In case (ii), we would like

to show that the constraint function g(x, s) is strictly concave in x. Indeed, due to compactness

an optimal weight vector w∗ must exist for the minimization problem defining g(x, s). Consider

x1 6= x2 and θ ∈ (0, 1), and let w∗ be the minimizing weight vector that gives the worst-case value

g(θx1 + (1− θ)x2, s) at the solution θx1 + (1− θ)x2. Then because of the strict concavity of h(x, ξ)

in x, we have

g(θx1 + (1− θ)x2, s) =
n∑
i=1

w∗i h(θx1 + (1− θ)x2, ξi)

>

n∑
i=1

w∗i (θh(x1, ξi) + (1− θ)h(x2, ξi))

≥ θg(x1, s) + (1− θ)g(x2, s).

Therefore g(x, s) is strictly concave in x, and uniqueness of x∗(s) follows from the SCI condition not

being satisfied and applying Lemma D.4.2. In case (iii), the strict concavity of g(x, s) can be shown
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as follows. Due to the strict convexity of φ, for each decision x the minimizing weight vector w∗ not

only exists but also is unique. Let x1 6= x2, then by the condition there must be some θ′ ∈ [0, 1) such

that Ĉorr(x1, θ
′x1 + (1− θ′)x2) 6= 1, and let w1∗,wθ′∗ be the respective minimizing weight vectors.

We argue that w1∗ 6= wθ′∗. The condition limx→0+ φ(x) = +∞ ensures positive components of the

minimizing weight vector, hence the optimality condition entails h(x1, ξi) = λ1φ
′(nw1∗

i ) − β1 and

h(θ′x1 + (1 − θ′)x2, ξi) = λθ′φ
′(nwθ

′∗
i ) − βθ′ for all i = 1, . . . , n and some constants λ1, β1, λθ′ , βθ′ .

Therefore the empirical correlation between h(x1, ξ) and h(θ′x1 + (1− θ′)x2, ξ) takes the form

Ĉorr(x1, θ
′x1 + (1− θ′)x2) =

(1/n)
∑n

i=1(φ′(nw1∗
i )− φ̄′1)(φ′(nwθ

′∗
i )− φ̄′θ′)√

(1/n)
∑n

i=1(φ′(nw1∗
i )− φ̄′1)2(1/n)

∑n
i=1(φ′(nwθ

′∗
i )− φ̄′θ′)2

where φ̄′1 = (1/n)
∑n

i=1 φ
′(nw1∗

i ), φ̄′θ′ = (1/n)
∑n

i=1 φ
′(nwθ

′∗
i ). If w1∗ = wθ′∗, we must have

Ĉorr(x1, θ
′x1 + (1 − θ′)x2) = 1, a contradiction. Therefore, if θ′ > 0, we have g(θ′x1 + (1 −

θ′)x2, s) =
∑n

i=1w
θ′∗
1 h(θ′x1 + (1 − θ′)x2, ξi) ≥ θ′

∑n
i=1w

θ′∗
1 h(x1, ξi) + (1 − θ′)

∑n
i=1w

θ′∗
1 h(x2, ξi) >

θ′g(x1, s) + (1− θ′)g(x2, s), hence g(θx1 + (1− θ)x2, s) > θg(x1, s) + (1− θ)g(x2, s) for all θ ∈ (0, 1)

by the (non-strict) concavity of g(x, s) in x. Otherwise, if θ′ = 0, i.e., Ĉorr(x1, x2) 6= 1, then by

continuity there exists a small enough θ > 0 such that Ĉorr(x1, θx1 + (1− θ)x2) 6= 1, hence things

reduce to the previous case. �

Proof of Theorem 5.5.5. Strong duality results from Gao and Kleywegt (2016) or Blanchet

et al. (2019) show that the constraint function takes the form

g(x, s) := inf
{
EG[h(x, ξ)] : dp(G,Fn) ≤ s

}
= sup

λ≥0

{ 1

n

n∑
i=1

inf
ξ∈Ξ

(h(x, ξ) + λ ‖ξ − ξi‖p)− λsp
}
.

We would like to show that g(x, s) is jointly continuous in x, s. Let a(x, λ) = 1
n

∑n
i=1 infξ∈Ξ(h(x, ξ)+

λ ‖ξ − ξi‖p). It is clear that a(x, λ) − λsp ≤ 1
n

∑n
i=1 h(x, ξi) − λsp ≤ 1

n

∑n
i=1 h(x, ξi) − λspl by

taking ξ = ξi in each infimum, and that a(x, 0) = infξ∈Ξ h(x, ξ). For each x choose λ(x) so

that 1
n

∑n
i=1 h(x, ξi) − λ(x)spl = infξ∈Ξ h(x, ξ). Since h(x, ξ) is jointly continuous in x, ξ and Ξ is

compact, h(x, ξ) is uniformly continuous in x, ξ on [xo − δ, xo + δ] × Ξ for given xo and 0 < δ <

∞. This uniform continuity implies that the infimum infξ∈Ξ h(x, ξ) is continuous in x because
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|infξ∈Ξ h(x, ξ) − infξ∈Ξ h(xo, ξ)| ≤ supξ∈Ξ|h(x, ξ) − h(xo, ξ)| → 0 as x → xo. Therefore λ(x) is

continuous in x and

g(x, s) = sup
0≤λ≤λ(x)

(a(x, λ)− λsp) = sup
0≤λ≤λ(x)

{ 1

n

n∑
i=1

inf
ξ∈Ξ

(h(x, ξ) + λ ‖ξ − ξi‖p)− λsp
}
.

Since Ξ is compact, by an argument similar to the one used to prove the continuity of infξ∈Ξ h(x, ξ)

we see that a(x, λ) is jointly continuous in x, λ. Continuity of a(x, λ) and λ(x) leads to the

joint continuity of g(x, s) in x, s. To explain, for a fixed x and some δ > 0, define λδ :=

supx′ s.t. ‖x′−x‖2≤δ λ(x′), so for all x′, s′ such that ‖x′ − x‖2 ≤ δ and |s′ − s| ≤ δ we have

|g(x′, s′)− g(x, s)| = | sup
0≤λ≤λδ

(a(x′, λ)− λs′p)− sup
0≤λ≤λδ

(a(x, λ)− λsp)|

≤ sup
0≤λ≤λδ

|a(x′, λ)− a(x, λ)|+ λδ|s′
p − sp| → 0 as x′ → x, s′ → s

where the limit holds because a(x, λ) is uniformly continuous on the compact set {x′ : ‖x′ − x‖ ≤

δ} × [0, λδ]. Concavity of g(x, s) in x holds because for any probability measure G the expectation

EG[h(x, ξ)] is concave in x and the infimum operation perserves concavity.

In order to utilize Lemma D.4.1, it remains to prove uniqueness of x∗(s) for all s ∈ S. In case

(i) uniqueness trivially follows from strict convexity of f . In case (ii), we first establish a result

concerning the existence of the worst-case distribution:

Lemma D.4.3 Under the same conditions of Theorem 5.5.5, if g(x, s) = a(x, λ∗)− λ∗sp for some

λ∗ > 0, then there exists a distribution G∗ that belongs to the Wasserstein ball and that achieves

the worst-case expectation, i.e., g(x, s) = EG∗ [h(x, ξ)].

Proof of Lemma D.4.3. This is a direct consequence of Corollary 1 in Gao and Kleywegt (2016).

Note that, since Ξ is compact and h(x, ξ) is continuous, for each decision x the quantity a(x, λ) is

finite for all λ ≥ 0. Corollary 1 from Gao and Kleywegt (2016) then entails the existence of the

worst-case distribution if there exists a dual maximizer λ∗ > 0. �

Consider x1 6= x2. If there exists some θ′ ∈ (0, 1) such that g(θ′x1 + (1 − θ′)x2, s) = a(θ′x1 +

(1−θ′)x2, λ
′)−λ′sp for some λ′ > 0, then there exists some distribution Gθ′ in the Wasserstein ball
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generating the worst-case expectation g(θ′x1 + (1− θ′)x2, s). The strict concavity of h then implies

g(θ′x1 + (1− θ′)x2, s) = EGθ′ [h(θ′x1 + (1− θ′)x2, ξ)]

> EGθ′ [θ
′h(x1, ξ) + (1− θ′)h(x2, ξ)]

≥ θ′g(x1, s) + (1− θ′)g(x2, s).

Since g(x, s) is (non-strictly) concave in x, the above strict inequality at a certain θ′ extends to

all other θ, i.e., g(θx1 + (1 − θ)x2, s) > θg(x1, s) + (1 − θ)g(x2, s) for all θ ∈ (0, 1). Otherwise if

g(θx1 + (1 − θ)x2, s) = a(θx1 + (1 − θ)x2, 0) > a(θx1 + (1 − θ)x2, λ) − λsp for all θ ∈ (0, 1) and

λ > 0, since a(x, 0) = infξ∈Ξ h(x, ξ) we still have the strict concavity of g(θx1 + (1 − θ)x2, s) in θ.

Therefore, according to Lemma D.4.2, the solution x∗(s) is unique. �

Proof of Theorem 5.5.6. We first show that each gi(x, s) := sup(µ,Σ)∈Ui(s) µ
′x+

√
1−αi
αi

√
x′Σx

is jointly continuous in x and s. For a fixed pair xo, so and an arbitrary pair x, s, we write

|gi(x, s)− gi(xo, so)|

≤ |gi(xo, s)− gi(xo, so)|+ |gi(x, s)− gi(xo, s)|

≤ |gi(xo, s)− gi(xo, so)|+ sup
(µ,Σ)∈Ui(s)

|µ′x+

√
1− αi
αi

√
x′Σx− (µ′xo +

√
1− αi
αi

√
x′oΣxo)|

≤ |gi(xo, s)− gi(xo, so)|+ sup
(µ,Σ)∈Ui(su)

|µ′x+

√
1− αi
αi

√
x′Σx− (µ′xo +

√
1− αi
αi

√
x′oΣxo)|

where su is the maximum value for s. (D.26)

Note that µ′x +
√

1−αi
αi

√
x′Σx as a function jointly in µ,Σ, x is continuous, and hence by the

compactness of Ui(su) is uniformly continuous for (µ,Σ) ∈ Ui(su) and x in some neighborhood of

xo. Uniform continuity implies that the second term in (D.26) vanishes as x → xo. It remains to

show that the first term in (D.26) also vanishes, i.e., gi(xo, s)→ gi(xo, so), as s→ so. We first show
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that as s→ so

sup
(µs,Σs)∈Ui(s)

inf
(µso ,Σso )∈Ui(so)

(‖µs − µso‖2 + ‖Σs − Σso‖2)→ 0, (D.27)

sup
(µso ,Σso )∈Ui(so)

inf
(µs,Σs)∈Ui(s)

(‖µs − µso‖2 + ‖Σs − Σso‖2)→ 0. (D.28)

We prove (D.27) by contradiction. Suppose there exists (µsk ,Σsk) ∈ Ui(sk) and sk → so such that

inf(µso ,Σso )∈Ui(so)(‖µsk − µso‖2 + ‖Σsk − Σso‖2) > ε for some ε > 0. Note that all (µsk ,Σsk) lie

in the compact set Ui(su), hence there is a subsequence converging to some (µ∞,Σ∞) such that

inf(µso ,Σso )∈Ui(so)(‖µ∞ − µso‖2 + ‖Σ∞ − Σso‖2) ≥ ε, i.e., (µ∞,Σ∞) /∈ Ui(so). Since ∩s>soUi(s) =

Ui(so) and Ui(s) is non-decreasing in s, there exists some δ > 0 such that (µ∞,Σ∞) /∈ Ui(s) for

all s ≤ so + δ, a contradiction with the convergence to (µ∞,Σ∞). To show (D.28), suppose there

exists (µk,Σk) ∈ Ui(so) and sk → so such that

inf
(µsk ,Σsk )∈Ui(sk)

(‖µk − µsk‖2 + ‖Σk − Σsk‖2) > ε (D.29)

for some ε > 0. By compactness, assume without loss of generality that (µk,Σk) converges

to some limit (µ∞,Σ∞) ∈ Ui(so). However, the condition ∪s<soUi(s) = Ui(so) ensures that

inf(µsk ,Σsk )∈Ui(sk)(‖µ∞ − µsk‖2 + ‖Σ∞ − Σsk‖2)→ 0 as sk → so, which further entails that

inf
(µsk ,Σsk )∈Ui(sk)

(‖µk − µsk‖2 + ‖Σk − Σsk‖2)

≤ inf
(µsk ,Σsk )∈Ui(sk)

(‖µ∞ − µsk‖2 + ‖Σ∞ − Σsk‖2 + ‖µ∞ − µk‖2 + ‖Σ∞ − Σk‖2)

≤ inf
(µsk ,Σsk )∈Ui(sk)

(‖µ∞ − µsk‖2 + ‖Σ∞ − Σsk‖2) + ‖µ∞ − µk‖2 + ‖Σ∞ − Σk‖2

→ 0

a contradiction with (D.29). This proves (D.28). Now we use (D.27) and (D.28) to conclude

gi(xo, s) → gi(xo, so) as s → so. Since Ui(so) is compact, there exists an (µ∗s0 ,Σ
∗
so) ∈ Ui(so)

such that gi(xo, so) = µ∗so
′xo +

√
1−αi
αi

√
x′oΣ

∗
soxo. (D.28) entails that there exists some (µs,Σs) ∈

Ui(s) for each s such that (µs,Σs)→ (µ∗s0 ,Σ
∗
so), therefore lim infs→so gi(xo, s) ≥ lim infs→so µ

′
sxo +
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√
1−αi
αi

√
x′oΣsxo = gi(xo, so). On the other hand, for each s, compactness of Ui(s) implies the

existence of some (µ∗s,Σ
∗
s) ∈ Ui(s) such that gi(xo, s) = µ∗s

′xo +
√

1−αi
αi

√
x′oΣ

∗
sxo. (D.27) then

implies that there exists corresponding (µos,Σ
o
s) ∈ Ui(so) such that ‖µos − µ∗s‖ → 0 and ‖Σo

s − Σ∗s‖ →

0 as s → so. Since µ′xo +
√

1−αi
αi

√
x′oΣxo as a function of (µ,Σ) is uniformly continuous on

Ui(su), we have lim sups→so gi(xo, s) = lim sups→so µ
∗
s
′xo +

√
1−αi
αi

√
x′oΣ

∗
sxo = lim sups→so µ

o
s
′xo +√

1−αi
αi

√
x′oΣ

o
sxo ≤ gi(xo, so). Altogether we have shown that gi(xo, s) → gi(xo, so), hence gi is

jointly continuous in x, s.

Secondly, we show the uniqueness of x∗(s) so that the desired result follows from applying

Lemma D.4.1. Note that the supremum of a family of convex functions is still convex, therefore

each gi is convex in x. In case (i), strictly convexity of f automatically forces uniqueness of x∗(s).

In case (ii), we prove uniqueness by either condition (3) or condition (4). Consider x1 6= x2 such

that gi(x1, s) = gi(x2, s) = bi, and xθ := (1 − θ)x1 + θx2 for some θ ∈ (0, 1). Note that it is

impossible that x1 = cx2 or x2 = cx1 for some c ≥ 0 and c 6= 1, because otherwise gi(x1, s) =

cgi(x2, s) = cbi 6= bi or gi(x2, s) = cgi(x1, s) = cbi 6= bi. Let (µθ,Σθ) ∈ Ui(s) be such that

gi(xθ, s) = µθ
′xθ +

√
1−αi
αi

√
x′θΣθxθ. Under condition (3), Σθ is automatically positive definite.

Under condition (4), Σθ can be taken to be Σs because x′θΣsxθ − x′θΣθxθ = x′θ(Σs − Σθ)xθ ≥ 0,

where the last inequality is due to Σθ � Σs. That is, in either case, Σθ can be taken to be positive

definite. We then follow the proof of Theorem 5.5.8 to show that

gi(xθ, s) < (1− θ)
(
µθ
′x1 +

√
1− αi
αi

√
x′1Σθx1

)
+ θ
(
µθ
′x2 +

√
1− αi
αi

√
x′2Σθx2

)
≤ (1− θ)gi(x1, s) + θgi(x2, s)

and to conclude uniqueness of x∗(s) for each s using Lemma D.4.2. �

Proof of Theorem 5.5.7. We first transform the infinitely constrained robust counterpart into

finitely many constraints. Note that, since each uncertainty set Ui(s) is a bounded polytope, in

each robust constraint maxai∈Ui(s) a
′
ix ≤ bi the maximum is attained at a vertex of Ui(s). The set



APPENDIX D. TECHNICAL PROOFS FOR CHAPTER 5 340

of vertices of Ui(s) takes the form

Vi(s) =

{
W̃−1
i zi + sW̃−1

i ei :
W̃i ∈ Rd×d is an invertible submatrix of Wi

WiW̃−1
i zi − zi ≤ s(ei −WiW̃−1

i ei)

}

where the second condition ensures that W̃−1
i zi + sW̃−1

i ei ∈ Ui(s). The robust counterpart then

becomes v′ix ≤ bi, vi ∈ Vi(s) for all i = 1, . . . ,K. We make two important observations for Vi(s).

First, the number of elements in Vi(s) is no more than the number of square submatrices of Wi

which is finite. Second, the right hand side of WiW̃−1
i zi − zi ≤ s(ei − WiW̃−1

i ei) is linear in s

hence the system of inequalities are valid for s in some interval of the form (−∞, u], [l,−∞) or

[l, u], therefore the set of bases corresponding to vertices in Vi(s) changes at only finitely many s

values. That is, there are sl = s′0 ≤ s′1 < · · · < s′q−1 < s′q = su such that, for each 1 ≤ j ≤ q,

there exist submatrices W̃i,1, W̃i,2, . . . , W̃i,ki,j of each Wi such that the polyhedral RO OPT (s) for

all s ∈ [s′j−1, s
′
j ] can be simply expressed as

min
x∈X

c′x

subject to (W̃−1
i,l zi + sW̃−1

i,l ei)
′x ≤ bi for all i = 1, . . . ,K, l = 1, . . . , ki,j .

The uniqueness of x∗(s) is relatively straightforward to justify. The above representation of

the RO and an application of Lemma D.4.2 suggest that, under the imposed conditions regarding

satisfaction of the SCI condition, the solution x∗(s) can be non-unique at only finitely many s

values.

We now prove piecewise uniform continuity of the solution path. If at parameter value s̃ the

solution x∗(s̃) is not unique, we call it a non-unique point. Between every two consecutive non-

unique points s̃j < s̃j+1, x∗(s) is unique hence is continuous in (s̃j , s̃j+1) due to Lemma D.4.1. To

show that x∗(s) is actually uniformly continuous, it is sufficient and necessary to demonstrate that,

as s approaches some non-unique point s̃, left and right limits lims→s̃− x
∗(s), lims→s̃+ x

∗(s) exist.

Without loss of generality, we focus on left limit. Toward this goal, we first derive a convenient

formula of the optimal solution x∗(s) for s in a sufficiently small neighborhood [s̃ − δ, s̃) of s̃. As
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shown in the first step, for sufficiently small δ the reformulation OPT (s) takes the form

min
x

c′x

subject to (W̃−1
i,l zi + sW̃−1

i,l ei)
′x ≤ bi for all i = 1, . . . ,K, l = 1, . . . , ki

Wx ≤ z

for all s ∈ [s̃− δ, s̃). For convenience, we rewrite the above parametric program in a more compact

form

min
x

c′x

subject to (A+ s∆)x ≤ b
(D.30)

where the matrix A contains all W̃−1
i,l zi’s and W as its rows, and the right hand side b has all

the corresponding bi’s and z as its components, whereas the perturbation matrix ∆ consists of all

the W̃−1
i,l ei’s (and zero entries for the W part of A). Note again that x∗(s) is the unique optimal

solution of (D.30) for all s ∈ [s̃− δ, s̃). The dual of (D.30) takes the form

max
y

b′y

subject to (A+ s∆)′y = c

y ≤ 0

(D.31)

By the theory of simplex method, for the dual (D.31) there exists some basis Aβ + s∆β, where

β is a subset of size d of {1, 2, . . . ,
∑K

i=1 ki + L} and Aβ,∆β denote the submatrices formed by

the corresponding rows of A,∆, that gives rise to the optimal solution y∗β(s) = (A′β + s∆′β)−1c

to (D.31) (other components of y∗(s) are all zero). Moreover, the corresponding primal optimal

solution to (D.30) is x∗(s) = (Aβ + s∆β)−1bβ. By statement (ii) in Lemma 1 from Freund (1985),

this optimal basis β for (D.31) can change for only finitely many times as the parameter s varies,

therefore by choosing a small enough δ this basis β remain the same one for all s ∈ [s̃− δ, s̃). That

is, the unique optimal solution x∗(s) = (Aβ + s∆β)−1bβ for all s ∈ [s̃ − δ, s̃) and some basis β.

Given this convenient formula, we now establish existence of the left limit. Case (i): Aβ + s̃∆β
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is invertible. In this case the inverse (Aβ + s∆β)−1 must be continuous in s at the non-unique

point s̃, hence the left limit lims→s̃− x
∗(s) = (Aβ + s̃∆β)−1bβ. Case (ii): bβ is the zero vector.

This case is trivial because x∗(s) is also the zero vector hence the left limit exists and is the zero

vector. Case (iii): Aβ + s̃∆β is singular and bβ is a non-zero vector. Note that Assumption 5.5.3

implies that the solution path {x∗(s) : s ∈ S} is confined within a bounded region, and we shall

use this key information to conclude this case. For convenience we reparametrize the solution path

as so = (s− s̃+ δ)−1 and x∗o(so) := x∗(s) for s ∈ (s̃− δ, s̃). Letting Aoβ = Aβ + (s̃− δ)∆β, we can

express the reparametrization x∗o(so) as

x∗o(so) = so
(
(Aoβ)−1∆β + soId

)−1
(Aoβ)−1bβ for so ∈ (δ−1,+∞)

and our goal is to show limso→δ−1+ x
∗
o(so) exists. The matrix (Aoβ)−1∆β admits a Jordan decom-

position (Aoβ)−1∆β = P−1JP , where P is an invertible matrix with complex entries and J is the

Jordan normal form with the diagonal structure

J =



J1

J2

. . .

JT


, with each diagonal block Jt =



λt 1

λt 1

. . .

λt 1

λt


where each λt is an eigenvalue of (Aoβ)−1∆β. With the Jordan decomposition, the reparametrized

solution path takes the form

x∗o(so) = soP
−1
(
J + soId

)−1
P (Aoβ)−1bβ.
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Moreover, the inverse
(
J + soId

)−1
can be expressed as

(
J + soId

)−1
=



(J1 + soI)−1

(J2 + soI)−1

. . .

(JT + soI)−1


where each diagonal block, if Jt ∈ Rdt×dt , has the form

(Jt + soI)−1 =



(λt + so)
−1 −(λt + so)

−2 · · · (−1)dt−1(λt + so)
−dt

(λt + so)
−1 −(λt + so)

−2 · · ·
. . .

. . .
...

(λt + so)
−1 −(λt + so)

−2

(λt + so)
−1


.

(D.32)

If we let (P (Aoβ)−1bβ)t be the vector of length dt consisting of the (1 +
∑t−1

i=1 di)-th to (
∑t

i=1 di)-th

components of P (Aoβ)−1bβ, then

x∗o(so) = soP
−1



(J1 + soI)−1(P (Aoβ)−1bβ)1

(J2 + soI)−1(P (Aoβ)−1bβ)2

...

(JT + soI)−1(P (Aoβ)−1bβ)T


.

We argue that (P (Aoβ)−1bβ)t must be the zero vector for all t such that λt = −δ−1. Note that,

since Aβ + s̃∆β is singular, some λt must be −δ−1. Consider a Jordan block Jt with λt = −δ−1.

From the form (D.32) of the inverse, one can check that
∥∥(Jt + soI)−1v

∥∥
2
→ ∞ as so → δ−1 for

any given non-zero vector v. However, the solution x∗(s), hence each (Jt + soI)−1(P (Aoβ)−1bβ)t, is

confined to a bounded region, therefore (P (Aoβ)−1bβ)t must be zero if λt = −δ−1. For those blocks

with λt 6= −δ−1, the inverse (Jt + soI)−1 is continuous in so at so = δ−1. Altogether, each block

(Jt + soI)−1(P (Aoβ)−1bβ)t is either constantly zero or continuous at so = δ−1, therefore x∗o(so) has
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right limit at so = δ−1. This proves the existence of left limit of x∗(s) at s = s̃. �

Proof of Theorem 5.5.8. The continuity of the second-order cone constraints in x, s and its

convexity in x are straightforward. We only focus on the uniqueness of x∗(s). In case (i) uniqueness

trivially follows from strict convexity of f . In case (ii), we want to show for each cone constraint that

for any x1, x2 such that µ′ix1+s ‖Σix1‖2 = µ′ix2+s ‖Σix2‖2 = bi we must have µ′ixθ+s ‖Σixθ‖2 < bi

for any xθ = θx1 + (1 − θ)x2 where θ ∈ (0, 1). First of all, there exists no c ≥ 0, c 6= 1 such that

x1 = cx2 or x2 = cx1 because otherwise µ′ix1 + s ‖Σix1‖2 = c(µ′ix2 + s ‖Σix2‖2) = cbi 6= bi. Second,

if there exists some c < 0 such that x1 = cx2 or x2 = cx1, then µ′ixθ + s ‖Σixθ‖2 is piecewise linear

in θ and has two pieces with different slopes, therefore µ′ixθ + s ‖Σixθ‖2 < bi for all θ ∈ (0, 1).

Finally, if x1 and x2 are not parallel, then it is easy to verify that ‖Σixθ‖2 is strictly convex in θ

by examining its second order derivative, therefore we have µ′ixθ + s ‖Σixθ‖2 < bi again. Together

with the SCI condition not being satisfied, we can use Lemma D.4.2 to conclude the uniqueness of

x∗(s) for all s ∈ S. Lemma D.4.1 then implies the desired conclusion. �

D.5 Finite Sample Performance Guarantees for Univariate Gaus-

sian Validator

This section provides finite-sample errors regarding the performance guarantees presented in The-

orem 5.4.4, focusing on two general classes of constraints: differentiable stochastic constraints

(Section D.5.1) and linear chance constraints (Section D.5.2).

D.5.1 Differentiable Constraints

In order to derive finite-sample errors, we need stronger versions of Assumptions 5.4.2-5.4.4 and

5.4.9. Assumption 5.4.3 is replaced by boundedness of the fourth order moment:

Assumption D.5.1 m4 :=
(
EF
[

supx∈X |h(x, ξ)−H(x)|4
]) 1

4 <∞.

The L2-continuity condition for the constraint function h in Assumption 5.4.4 is now strength-

ened to a differentiability condition:
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Assumption D.5.2 The random function h(·, ξ) is continuously differentiable on X for almost

every ξ ∈ Ξ, and ∇H(x) = EF [∇h(x, ξ)]. Assume ρ := supx∈X ρ(CovF (∇h(x, ξ))) <∞ where ρ(·)

denotes the largest eigenvalue of a matrix.

Note that, in the presence of Assumption 5.4.3, Assumption D.5.2 implies Assumption 5.4.4 through

the dominated convergence theorem. When the gradient has a square integrable envelope, i.e.,

EF [supx∈X ‖∇h(x, ξ)‖2] <∞, and the decision space X is compact, Assumption D.5.2 also implies

Assumption 5.4.2.

We then assume uniqueness of the optimal parameter, and local differentiability of the solution

path and the expectation constraint:

Assumption D.5.3 (Unique optimal parameter and local differentiability) There exists a

unique optimal parameter, i.e., S∗ = {s∗}, and H(x∗S) = γ at the optimal solution x∗S = x∗(s∗).

Moreover, H(x) is continuously differentiable in a neighborhood of x∗S, and the parameter-to-solution

mapping x∗(s) is continuously differentiable in a neighborhood of s∗. There exists a δ > 0 such

that for all s ∈ [s∗ − δ, s∗ + δ] ⊆ S it holds 1
2 ≤ ∇H(x∗(s))′∇x∗(s)/∇H(x∗S)′∇x∗(s∗) ≤ 2 and

‖∇x∗(s)‖2 / ‖∇x∗(s∗)‖2 ≤ 2, and that for all s ≤ s∗ − δ it holds H(x∗(s)) ≤ H(x∗(s∗ − δ)).

We have the following finite-sample performance bounds for Algorithm 11:

Theorem D.5.1 (Finite-sample feasibility guarantee of univariate Gaussian validator)

Suppose Assumptions 5.4.1, 5.4.5-5.4.8 and D.5.1-D.5.3 hold, and {s1, . . . , sp}∩{s̃1, . . . , s̃M−1} = ∅.

Recall the mesh size εS = sups∈S inf1≤j≤p |s− sj |. Denote by c∗ := ∇H(x∗S)′∇x∗(s∗)/ ‖∇x∗(s∗)‖2,

and by C some universal constant. For any t > 0 such that

2εS < err(p, n2, t) :=
4(1 + z1−β)m4

c∗ ‖∇x∗(s∗)‖2

√
t log p

n2
<
δ

2

it holds for the parameter ŝ∗ output by Algorithm 11 that

Pξ1:n2
(|ŝ∗ − s∗| > 2err(p, n2, t)) ≤

C

t
.
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If

2εS <
4(1 + z1−β)m4

c∗ ‖∇x∗(s∗)‖2
· (log p)1/4

n
3/8
2

<
δ

2

we have

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.1)) ≥ 1− β −C(1 + z1−β)2

( m4

σ(x∗S)

)3(
1 +

√
ρ̄

c∗
) 2

3
((log p)2

n2

) 1
4 . (D.33)

Proof of Theorem D.5.1. First we present a lemma concerning moment inequalities for the maxi-

mum deviation of sample means:

Lemma D.5.2 Let G be function class of finite cardinality, and G(ξ) := maxg∈G |g(ξ)| be the

envelope function. Suppose ξ1, . . . , ξn are i.i.d. observations from a common distribution F , then

for any k ≥ 1 we have

√
n

(
E
[

max
g∈G

∣∣ 1
n

n∑
i=1

g(ξi)− EF [g(ξ)]
∣∣k])1/k

≤ C
√

1 + log|G|
(
EF [(G(ξ))k̃]

)1/k̃

where k̃ = max(2, k), the constant C only depends on k, and |G| denotes the cardinality of G.

Proof of Lemma D.5.2. This is a direct consequence of Theorem 2.14.1 from Van der Vaart and

Wellner (1996). To apply that theorem, note that the covering number of the function class G is

at most |G|, hence its entropy integral is at most
√

1 + log|G|. �

We use Lemma D.5.2 to derive tail bounds for various maximum deviations. Denote by Hj =

H(x∗(sj)), and σ2
j = σ2(x∗(sj)) for convenience. Applying Lemma D.5.2 to {h(x∗(sj), ·)−Hj : j =

1, . . . , p} with k = 4 gives

n2
2Eξ1:n2

[(
max
j

∣∣Ĥj −Hj

∣∣)4] ≤ C(log p)2EF [(max
j
|h(x∗(sj), ξ)−Hj |)4]

≤ C(log p)2m4
4

where C is a universal constant (because k is fixed at 4) and Eξ1:n2
denotes the expectation con-

ditioned on Phase one data and with respect to Phase two data. Similarly applying the lemma to
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the squared class {(h(x∗(sj), ·)−Hj)
2 − σ2

j : j = 1, . . . , p} with k = 2 gives

n2Eξ1:n2

[(
max
j

∣∣ 1

n2

n2∑
i=1

(h(x∗(sj), ξi)−Hj)
2 − σ2

j

∣∣)2]
≤ C log pEF [(max

j
|(h(x∗(sj), ξ)−Hj)

2 − σ2
j |)2]

≤ C log pm4
4.

By Markov’s inequality, for any t1 > 0 we have

max
j=1,...,p

∣∣∣Ĥj −Hj

∣∣∣ ≤ m4t1√
n2

with probability at least 1− C(log p)2/t41 and

max
j=1,...,p

∣∣σ̂2
j − σ2

j

∣∣ ≤ max
j

∣∣ 1

n2

n2∑
i=1

(h(x∗(sj), ξi)−Hj)
2−σ2

j

∣∣+ max
j=1,...,p

(Ĥj−Hj)
2 ≤ m2

4t1√
n2

+
m2

4t
2
1

n2
(D.34)

with probability at least

1− C(log p)2

t41
− C(log p)

t21
.

Note that, when the upper bound (D.34) holds, maxj σ̂
2
j ≤ maxj σ

2
j +

m2
4t1√
n2

+
m2

4t
2
1

n2
≤ m2

4 +
m2

4t1√
n2

+
m2

4t
2
1

n2
.

Therefore for any t1 > 0

max
j=1,...,p

∣∣∣∣Ĥj − z1−β
σ̂j√
n2
−Hj

∣∣∣∣ ≤ m4t1√
n2

+ z1−β

√
m2

4

n2
+

m2
4t1

n
3/2
2

+
m2

4t
2
1

n2
2

≤ (1 + z1−β)m4
1 + t1√
n2
≤ 2(1 + z1−β)m4

t1√
n2

(D.35)

for all t1 ≥ 1 with probability at least

1− C(log p)2

t41
− C(log p)

t21
.

For every constant ε < δ, the solution path x∗(s) is differentiable for s ∈ [s∗ − ε, s∗ + ε]. Therefore



APPENDIX D. TECHNICAL PROOFS FOR CHAPTER 5 348

for any sj such that |sj − s∗| ≤ ε, by differentiability we have

|[h(x∗(sj), ξ)−Hj ]− [h(x∗S , ξ)−H(x∗S))]| =

∣∣∣∣∫ sj

s∗
(∇h(x∗(s), ξ)−∇H(x∗(s)))′∇x∗(s)ds

∣∣∣∣
≤

∫ s∗+ε

s∗−ε

∣∣(∇h(x∗(s), ξ)−∇H(x∗(s)))′∇x∗(s)
∣∣ ds.

The right hand side of the above inequality serves as an envelope function of the function class

{[h(x∗(sj), ξ) − Hj ] − [h(x∗S , ξ) − H(x∗S))] : |sj − s∗| ≤ ε}. From Assumption D.5.2 we have that

EF [|(∇h(x∗(s), ξ)−∇H(x∗(s)))′∇x∗(s)|2] ≤ ρ̄ ‖∇x∗(s)‖22 for all s, therefore by Jensen’s inequality

(or Minkowski’s integral inequality)

EF
[( ∫ s∗+ε

s∗−ε

∣∣(∇h(x∗(s), ξ)−∇H(x∗(s)))′∇x∗(s)
∣∣ ds)2]

≤
( ∫ s∗+ε

s∗−ε

√
EF [|(∇h(x∗(s), ξ)−∇H(x∗(s)))′∇x∗(s)|2]ds

)2
≤ ρ̄

( ∫ s∗+ε

s∗−ε
‖∇x∗(s)‖2 ds

)2
≤ 16ρ̄ ‖∇x∗(s∗)‖22 ε

2

an upper bound for the second moment of the envelope. Now applying Lemma D.5.2 with k = 2

to {[h(x∗(sj), ξ)−Hj ]− [h(x∗S , ξ)−H(x∗S))] : |sj − s∗| ≤ ε)}, and noting that the cardinality does

not exceed p, we have

n2Eξ1:n2

[
max

j:|sj−s∗|≤ε

∣∣Ĥj −Hj − (Ĥ(x∗S)−H(x∗S))
∣∣2] ≤ C(log p)ρ̄ ‖∇x∗(s∗)‖22 ε

2

which implies through Markov’s inequality that for every t2 > 0

max
j:|sj−s∗|≤ε

∣∣Ĥj −Hj − (Ĥ(x∗S)−H(x∗S))
∣∣ ≤ t2√

n2
(D.36)

with probability at least

1−
C(log p)ρ̄ ‖∇x∗(s∗)‖22 ε2

t22
.
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Deviation inequalities (D.34), (D.35) and (D.36) are the key elements for establishing finite sample

error bounds. Lastly, we also need a bound characterizing the modulus of continuity of the variance

σ2(x∗(s)). For every sj such that |sj − s∗| ≤ ε

|σ2
j − σ2(x∗S)| = |EF [(h(x∗(sj), ξ)−Hj)

2]− EF [(h(x∗S , ξ)−H(x∗S))2]|

=

∣∣∣∣EF [ ∫ sj

s∗
2(h(x∗(s), ξ)−H(x∗(s)))(∇h(x∗(s), ξ)−∇H(x∗(s)))′∇x∗(s)ds

]∣∣∣∣
≤ EF

[ ∫ sj

s∗
2|h(x∗(s), ξ)−H(x∗(s))||(∇h(x∗(s), ξ)−∇H(x∗(s)))′∇x∗(s)|ds

]
≤ EF

[ ∫ s∗+ε

s∗−ε
2|h(x∗(s), ξ)−H(x∗(s))||(∇h(x∗(s), ξ)−∇H(x∗(s)))′∇x∗(s)|ds

]
=

∫ s∗+ε

s∗−ε
2EF

[
|h(x∗(s), ξ)−H(x∗(s))||(∇h(x∗(s), ξ)−∇H(x∗(s)))′∇x∗(s)|

]
ds

by Fubini’s theorem

≤
∫ s∗+ε

s∗−ε
2σ(x∗(s))

√
ρ̄ ‖∇x∗(s)‖2 ds by Cauchy Schwartz inequality

≤ 8m4
√
ρ̄ ‖∇x∗(s∗)‖2 ε.

That is, for all ε < δ

max
j:|sj−s∗|≤ε

|σ2
j − σ2(x∗S)| ≤ 8m4

√
ρ̄ ‖∇x∗(s∗)‖2 ε. (D.37)

We first show the deviation inequality for ŝ∗. If (D.35) happens, and t1 is such that

2εS < ε(t1, n2) :=
4(1 + z1−β)m4

c∗ ‖∇x∗(s∗)‖2
· t1√

n2
<
δ

2
(D.38)

we want to show that |ŝ∗ − s∗| ≤ 2ε(t1, n2). By Assumption D.5.3, for any s ∈ (s∗, s∗ + δ] the

constraint value H(x∗(s)) ≥ γ + s−s∗
2 ∇H(x∗(s∗))′∇x∗(s∗) = γ + s−s∗

2 c∗ ‖∇x∗(s∗)‖2, and similarly

H(x∗(s)) ≤ γ+ s−s∗
2 c∗ ‖∇x∗(s∗)‖2 for all s ∈ [s∗−δ, s∗). Therefore Hj > γ+2(1+z1−β)m4

t1√
n2

for all

sj ∈ (s∗+ε(t1, n2), s∗+δ] and Hj < γ−2(1+z1−β)m4
t1√
n2

for all sj ∈ [s∗−δ, s∗−ε(t1, n2)). Under the

condition that 2εS < ε(t1, n2) there must be some j for which sj ∈ (s∗+ ε(t1, n2), s∗+ 2ε(t1, n2)) ⊂

(s∗ + ε(t1, n2), s∗ + δ] and hence Ĥj − z1−β
σ̂j√
n2
> γ on one hand. On the other hand the solution

path has a derivative ∇x∗(s) that is non-zero in [s∗ − δ, s∗ + δ] hence the parameter-to-objective
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mapping v(s) strictly increases in s in the same interval. Therefore the picked parameter ŝ∗ ≤ sj .

Similarly, there exists some j such that sj ∈ (s∗ − 2ε(t1, n2), s∗ − ε(t1, n2)) ⊂ (s∗ − δ, s− ε(t1, n2)]

and Hj < γ− 2(1 + z1−β)m4
t1√
n2

. Since H(x∗(s∗− δ)) ≥ H(x∗(s)) for all s ≤ s∗− δ, we have for all

sj ≤ sj that Hj ≤ Hj and Ĥj − z1−β
σ̂j√
n2
< γ, therefore ŝ∗ ≤ sj is impossible. That is, it must be

the case that ŝ∗ ∈ (sj , sj ] ⊂ [s∗ − 2ε(t1, n2), s∗ + 2ε(t1, n2)]. This gives the deviation inequality

Pξ1:n2
(|ŝ∗ − s∗| > 2ε(t1, n2)) ≤ C

((log p)2

t41
+

log p

t21

)
≤ C log p

t21

provided that (D.38) holds. Since the above bound becomes trivial when (log p)/t21 ≥ 1, hence

we can assume (log p)/t21 < 1 without loss of generality (and enlarge the universal constant C if

necessary) to get

Pξ1:n2
(|ŝ∗ − s∗| > 2ε(t1, n2)) ≤ C log p

t21
. (D.39)

Now we derive the finite sample error for the feasibility confidence level. Using the same notation
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ε(t1, n2), we write

Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

≥ Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ, |ŝ∗ − s∗| ≤ 2ε(t1, n2))

≥ Pξ1:n2

(
Ĥ(x∗(ŝ∗))−H(x∗(ŝ∗))−

z1−βσ̂(x∗(ŝ∗))
√
n2

≤ Ĥ(x∗(ŝ∗))−
z1−βσ̂(x∗(ŝ∗))

√
n2

− γ,

and |ŝ∗ − s∗| ≤ 2ε(t1, n2)
)

≥ Pξ1:n2
(Ĥ(x∗(ŝ∗))−H(x∗(ŝ∗))−

z1−βσ̂(x∗(ŝ∗))
√
n2

≤ 0, |ŝ∗ − s∗| ≤ 2ε(t1, n2))

= Pξ1:n2
(Ĥ(x∗S)−H(x∗S)−

z1−βσ(x∗S)
√
n2

+ ∆H + ∆σ ≤ 0, |ŝ∗ − s∗| ≤ 2ε(t1, n2))

where ∆H = (Ĥ(x∗(ŝ∗))−H(x∗(ŝ∗)))− (Ĥ(x∗S)−H(x∗S)) and

∆σ = (z1−β/
√
n2)(σ(x∗S)− σ̂(x∗(ŝ∗)))

≥ Pξ1:n2

(
Ĥ(x∗S)−H(x∗S)−

z1−βσ(x∗S)
√
n2

+ max
j:|sj−s∗|≤2ε(t1,n2)

∣∣Ĥj −Hj − (Ĥ(x∗S)−H(x∗S))
∣∣+

z1−β√
n2

max
j:|sj−s∗|≤2ε(t1,n2)

|σ(x∗S)− σ̂j | ≤ 0, |ŝ∗ − s∗| ≤ 2ε(t1, n2)
)

≥ Pξ1:n2

(√n2(Ĥ(x∗S)−H(x∗S))

σ(x∗S)
+

√
n2

σ(x∗S)
max

j:|sj−s∗|≤2ε(t1,n2)

∣∣Ĥj −Hj − (Ĥ(x∗S)−H(x∗S))
∣∣+

z1−β
σ(x∗S)

max
j:|sj−s∗|≤2ε(t1,n2)

|σ(x∗S)− σ̂j | ≤ z1−β, |ŝ∗ − s∗| ≤ 2ε(t1, n2)
)
.

It follows from (D.34) and (D.37) that

max
j:|sj−s∗|≤2ε(t1,n2)

|σ2(x∗S)− σ̂2
j | ≤

m2
4t1√
n2

+
m2

4t
2
1

n2
+ 16m4

√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2)

with probability at least 1−C(log p)/t21−C(log p)2/t41. If
m2

4t1√
n2

+
m2

4t
2
1

n2
+16m4

√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2) ≤

σ2(x∗S)/4, it follows from mean value theorem that with at least the same probability

max
j:|sj−s∗|≤2ε(t1,n2)

|σ(x∗S)− σ̂j | ≤
1

σ(x∗S)

(m2
4t1√
n2

+
m2

4t
2
1

n2
+ 16m4

√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2)

)
. (D.40)

For now we assume
m2

4t1√
n2

+
m2

4t
2
1

n2
+ 16m4

√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2) ≤ σ2(x∗S)/4 holds so that the bound



APPENDIX D. TECHNICAL PROOFS FOR CHAPTER 5 352

(D.40) is valid. Later on we shall show that this is without loss of generality. We proceed as

Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

≥Pξ1:n2

(√n2(Ĥ(x∗S)−H(x∗S))

σ(x∗S)
+

t2
σ(x∗S)

+
z1−β
σ2(x∗S)

(m2
4t1√
n2

+
m2

4t
2
1

n2
+ 16m4

√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2)

)
≤ z1−β

)
− Pξ1:n2

(
max

j:|sj−s∗|≤2ε(t1,n2)

∣∣Ĥj −Hj − (Ĥ(x∗S)−H(x∗S))
∣∣ > t2√

n2

)
− Pξ1:n2

(
|ŝ∗ − s∗| > 2ε(t1, n2)

)
− Pξ1:n2

(
max

j:|sj−s∗|≤2ε(t1,n2)
|σ(x∗S)− σ̂j | >

1

σ(x∗S)

(m2
4t1√
n2

+
m2

4t
2
1

n2
+ 16m4

√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2)

))
≥Pξ1:n2

(√n2(Ĥ(x∗S)−H(x∗S))

σ(x∗S)
≤ z1−β −

t2
σ(x∗S)

−
z1−β
σ2(x∗S)

(m2
4t1√
n2

+
m2

4t
2
1

n2
+ 16m4

√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2)

))
−
C(log p)ρ̄ ‖∇x∗(s∗)‖22 (ε(t1, n2))2

t22
− C log p

t21

by (D.36), (D.39) and (D.40).

To deal with the first probability term, we recall the Berry-Esseen theorem. There exists some

universal constant C such that

sup
t∈R
|Pξ1:n2

(√n2(Ĥ(x∗S)−H(x∗S))

σ(x∗S)
≤ t
)
− Φ(t)| ≤

CEF [|h(x∗S , ξ)−H(x∗S)|3]

σ3(x∗S)
√
n2

where Φ is the cumulative distribution function for the standard normal. Noting that EF [|h(x∗S , ξ)−
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H(x∗S)|3] ≤ m3
4 and that Φ has a bounded derivative, we further bound the confidence level as

Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

≥ Φ
(
z1−β −

t2
σ(x∗S)

−
z1−β
σ2(x∗S)

(m2
4t1√
n2

+
m2

4t
2
1

n2
+ 16m4

√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2)

))
− Cm3

4

σ3(x∗S)
√
n2

−
C(log p)ρ̄ ‖∇x∗(s∗)‖22 (ε(t1, n2))2

t22
− C log p

t21

≥ 1− β − C
( t2
σ(x∗S)

+
z1−β
σ2(x∗S)

(m2
4t1√
n2

+
m2

4t
2
1

n2
+ 16m4

√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2)

))
− Cm3

4

σ3(x∗S)
√
n2

−
C(log p)ρ̄ ‖∇x∗(s∗)‖22 (ε(t1, n2))2

t22
− C log p

t21
.

Arranging terms gives

1− β − Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

≤ C
( t2
σ(x∗S)

+
z1−β
σ2(x∗S)

(m2
4t1√
n2

+
m2

4t
2
1

n2
+ m4

√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2)

)
+

m3
4

σ3(x∗S)
√
n2

+
(log p)ρ̄ ‖∇x∗(s∗)‖22 (ε(t1, n2))2

t22
+

log p

t21

)
≤ C

( z1−β
σ2(x∗S)

(m2
4t1√
n2

+
m2

4t
2
1

n2
+ m4

√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2)

)
+

m3
4

σ3(x∗S)
√
n2

(D.41)

+

(
(log p)ρ̄

)1/3 ‖∇x∗(s∗)‖2/32 (ε(t1, n2))2/3

σ2/3(x∗S)
+

log p

t21

)
by minimizing the bound over t2

≤ C
( z1−β
σ2(x∗S)

(m2
4t1√
n2

+ m4
√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2)

)
+

m3
4

σ3(x∗S)
√
n2

+

(
(log p)ρ̄

)1/3 ‖∇x∗(s∗)‖2/32 (ε(t1, n2))2/3

σ2/3(x∗S)
+

log p

t21

)

where in the last inequality we leave out the terms
m2

4t
2
1

n2
because when t1√

n2
≤ 1 it holds that

t21
n2
≤ t1√

n2
hence the former can be absorbed into the latter. Previously we assume that

m2
4t1√
n2

+
m2

4t
2
1

n2
+

16m4
√
ρ̄ ‖∇x∗(s∗)‖2 ε(t1, n2) ≤ σ2(x∗S)/4. This is without loss of generality, because otherwise the

first error term in (D.41) is of constant order which makes the upper bound trivial. Now expanding
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the ε(t1, n2) we further bound the error as follows

1− β − Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

≤ C
(z1−βm

2
4

σ2(x∗S)

( t1√
n2

+
[ ρ̄(1 + z1−β)2

c∗2n2

]1/2
t1
)

+
m3

4

σ3(x∗S)
√
n2

+
[(log p)ρ̄(1 + z1−β)2m2

4

σ2(x∗S)c∗2n2

]1/3
t
2/3
1 +

log p

t21

)
≤ C

(z1−βm
2
4

σ2(x∗S)

(
1 +

√
ρ̄(1 + z1−β)

c∗
) t1√

n2
+ (log p)1/3

[ m4

σ(x∗S)

(
1 +

√
ρ̄(1 + z1−β)

c∗
) t1√

n2

]2/3

+
m3

4

σ3(x∗S)
√
n2

+
log p

t21

)
≤ C

((z1−βm4

σ(x∗S)
+ (log p)1/3

)[ m4

σ(x∗S)

(
1 +

√
ρ̄(1 + z1−β)

c∗
) t1√

n2

]2/3
+

m3
4

σ3(x∗S)
√
n2

+
log p

t21

)
since it can be assumed

m4

σ(x∗S)

(
1 +

√
ρ̄(1 + z1−β)

c∗
) t1√

n2
≤ 1

≤ C
((1 + z1−β)5/3(log p)1/3m3

4

σ3(x∗S)n
1/3
2

(
1 +

√
ρ̄

c∗
)2/3

t
2/3
1 +

log p

t21
+

m3
4

σ3(x∗S)
√
n2

)
since m4 ≥ σ(x∗S)

≤ C
((1 + z1−β)5/3(log p)1/3m3

4

σ3(x∗S)n
1/3
2

(
1 +

√
ρ̄

c∗
)2/3

t
2/3
1 +

log p

t21

)
(D.42)

where in the last inequality we drop the last term since it’s dominated by the first when t1 ≥ 1.

Note that (D.42) holds only under the condition (D.38). It is straightforward to see that the bound

(D.42) is minimized at

t∗1 :=
(log p)1/4σ9/8(x∗S)n

1/8
2

(1 + z1−β)5/8m
9/8
4 (1 +

√
ρ̄/c∗)1/4

by equating the two error terms. Consider t̃1 := (log p)1/4n
1/8
2 . It is clear that t̃1 = t∗1(1 +

z1−β)5/8
(

m4
σ(x∗S)

)9/8
(1 +

√
ρ̄/c∗)1/4 > t∗1, and hence the first term dominates at t1 = t̃1. Therefore

when (D.38) is satisfied at t1 = t̃1, we have

1− β − Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ) ≤ C(1 + z1−β)

5
3
( m4

σ(x∗S)

)3(
1 +

√
ρ̄

c∗
) 2

3
((log p)2

n2

) 1
4 .

The desired bound is obtained by replacing 5
3 with 2 as the exponent of 1 + z1−β. �
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D.5.2 Linear Chance Constraints

Consider linear chance constraints in the form of PF (a′kx ≤ bk for k = 1, . . . ,K) ≥ 1 − α. We

assume the following isotropy condition:

Assumption D.5.4 (Isotropy) There exist constants D2, D3 such that for all unit vector ν ∈ Rd

and all ak, 1 ≤ k ≤ K, the random variable a′kν has a sub-Gaussian norm at most D2, i.e.,

E
[

exp
((a′kx

D2

)2)] ≤ 2, and has a density bounded above by D3. Each bk is a non-zero constant.

This assumption stipulates that each ak has variability of constant order in all directions, and it

trivially holds when each ak is standard Gaussian.

We have the following finite-sample performance bounds for linear chance constraints:

Theorem D.5.3 (Finite-sample CCP feasibility guarantee) Consider (5.12) with a linear

chance constraint h(x, ξ) = 1(a′kx ≤ bk for k = 1, . . . ,K) and 0 < α < 1
2 . Suppose Assump-

tions 5.4.1, 5.4.6-5.4.8, and D.5.3-D.5.4 hold, and {s1, . . . , sp} ∩ {s̃1, . . . , s̃M−1} = ∅. Recall the

notations εS and c∗ from Theorem D.5.1. For any t > 0 such that

2εS < err(p, n2, t) :=
6(1 + z1−β)

c∗ ‖∇x∗(s∗)‖2

(√α log(4pt)

n2
+

log(4pt)

n2

)
<
δ

2

it holds for the parameter ŝ∗ output by Algorithm 11 that

Pξ1:n2

(
|ŝ∗ − s∗| > 2err(p, n2, t)

)
≤ 1

t
.

If

2εS <
6(1 + z1−β)

c∗ ‖∇x∗(s∗)‖2

(√α log(pn2)

n2
+

log(pn2)

n2

)
<
δ

2

we have

Pξ1:n2
(x∗(ŝ∗) is feasible for (5.12))

≥1− β − C(1 + z1−β)2
(
1 +

√
C̃K

(
log(max

{
3,
n2

C̃

}
)
) 1

4
)((log(pn2))3

αn2

) 1
4

(D.43)
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where C is a universal constant and

C̃ =
D2

2D3

√
log(2K/α)

c∗min1≤k≤K |bk|
.

To get a sense of the effect of the dimension d on the finite-sample error (D.43), suppose that

D2, D3,K, {bk, k = 1, . . . ,K} are all numbers of constant order and we focus on the number c∗.

The latter is the derivative of the satisfaction probability P (x∗(s)) with respect to the parameter

s when the solution path is reparameterized to move at a unit speed. Therefore a proxy for the

finite-sample performance of Algorithm 11 is the sensitivity of the satisfaction probability along the

direction of the solution path. The more sensitive it is, the better is the finite-sample performance.

Note that this sensitivity does not explicitly depend on the dimension.

Here we provide the proof Theorem D.5.3: Proof of Theorem D.5.3. The proof follows the

same line of argument as that of Theorem D.5.1, but uses a different set of deviation inequalities

tailored to bounded random variables. To avoid repetition, we focus on the derivation of these

deviation inequalities.

We need the following concentration inequalities for the sample mean and sample variance:

Lemma D.5.4 (Adapted from Maurer and Pontil (2009)) Suppose Xi, i = 1, . . . , n are i.i.d.

[0, 1]-valued random variables, σ2 = Var(X1), and σ̂2 is the sample variance. Then we have for

every ε ∈ (0, 1) that

P
(∣∣ 1
n

n∑
i=1

Xi − E[X1]
∣∣ >√2σ2 log(2/ε)

n
+

log(2/ε)

3n

)
≤ ε

and

P
(
|σ̂ − σ| >

√
2 log(2/ε)

n− 1

)
≤ ε.

Proof of Lemma D.5.4. Theorem 3 in Maurer and Pontil (2009) gives the following Bennett’s

inequality

P
( 1

n

n∑
i=1

Xi < E[X1]−
(√2σ2 log(1/ε)

n
+

log(1/ε)

3n

))
≤ ε.
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Applying the above inequality to 1−Xi, i = 1, . . . , n and noting that Var(1−X1) = Var(X1), we

have

P
( 1

n

n∑
i=1

Xi > E[X1] +
(√2σ2 log(1/ε)

n
+

log(1/ε)

3n

))
≤ ε.

The first inequality in the lemma then comes from a union bound. The second inequality in the

lemma is a direct consequence of Theorem 10 from Maurer and Pontil (2009). �

Let Hj := PF (a′kx
∗(sj) ≤ bk for all k = 1, . . . ,K) be the satisfaction probability at x∗(sj), and

σ2
j := Hj(1 − Hj) be the variance. Applying Lemma D.5.4 to each 1(a′kx

∗(sj) ≤ bk for all k =

1, . . . ,K) gives

|Ĥj −Hj | ≤

√
2Hj(1−Hj) log(2/t1)

n2
+

log(2/t1)

3n2

with probability at least 1− t1, and

|σ̂j − σj | ≤

√
2 log(2/t1)

n2 − 1

with probability at least 1− t1. Using a union bound, we have

|Ĥj −Hj | ≤

√
2Hj(1−Hj) log(2p/t1)

n2
+

log(2p/t1)

3n2
for all j = 1, . . . , p (D.44)

with probability at least 1− t1, and that

|σ̂j − σj | ≤

√
2 log(2p/t1)

n2 − 1
for all j = 1, . . . , p (D.45)

with probability at least 1− t1. When (D.45) happen, we also have

σ̂j ≤ σj + |σ̂j − σj | ≤
√
Hj(1−Hj) +

√
2 log(2p/t1)

n2 − 1
for all j = 1, . . . , p.
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Together with (D.44), we can conclude that, with probability at least 1− 2t1, for all j = 1, . . . , p

|Ĥj −
z1−βσ̂j√

n2
−Hj |

≤
z1−β√
n2

(√
Hj(1−Hj) +

√
2 log(2p/t1)

n2 − 1

)
+

√
2Hj(1−Hj) log(2p/t1)

n2
+

log(2p/t1)

3n2

≤ 2
(
z1−β +

√
log(2p/t1)

)(√Hj(1−Hj)

n2
+

√
log(2p/t1)

n2

)
≤ 2(1 + z1−β)

√
log(2p/t1)

(√Hj(1−Hj)

n2
+

√
log(2p/t1)

n2

)
(D.46)

if we assume that p ≥ 2 so that log(2p/t1) > 1.

Deviation bounds (D.45) and (D.46) are CCP counterparts of (D.34) and (D.35). Now we try to

derive the CCP counterpart of (D.36). For any ε < δ and every parameter value sj ∈ [s∗− ε, s∗+ ε]

we have by differentiability

|a′kx∗(sj)− a′kx∗S | = |
∫ sj

s∗
a′k∇x∗(s)ds| ≤

∫ sj

s∗
|a′k∇x∗(s)|ds ≤ ηk(ε) :=

∫ s∗+ε

s∗−ε
|a′k∇x∗(s)|ds.

Note that the sub-Gaussian norm ‖·‖ψ2
: {X is a random variable : ‖X‖ψ2

<∞} → R is a convex

mapping, therefore by Jensen’s inequality

‖ηk(ε)‖ψ2
≤
∫ s∗+ε

s∗−ε

∥∥a′k∇x∗(s)∥∥ψ2
ds ≤

∫ s∗+ε

s∗−ε
D2 ‖∇x∗(s)‖2 ds ≤ 4D2 ‖∇x∗(s∗)‖2 ε.

With the above bound of ηk(ε), we want to quantify the closeness of the linear chance constraint
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at the solutions x∗(sj) and x∗S . We apply a union bound to obtain

|1(a′kx
∗(sj) ≤ bk for all k = 1, . . . ,K)− 1(a′kx

∗
S ≤ bk for all k = 1, . . . ,K)|

≤
K∑
k=1

|1(a′kx
∗(sj) ≤ bk)− 1(a′kx

∗
S ≤ bk)|

≤
K∑
k=1

1(a′kx
∗(sj) ≤ bk < a′kx

∗
S or a′kx

∗(sj) > bk ≥ a′kx∗S)

≤
K∑
k=1

1(a′kx
∗
S − ηk(ε) ≤ bk < a′kx

∗
S or a′kx

∗
S + ηk(ε) > bk ≥ a′kx∗S)

≤
K∑
k=1

1(|a′kx∗S − bk| ≤ ηk(ε)).

Noting that difference of two indicator functions takes values in {−1, 0, 1}, we have

EF
[(

1(a′kx
∗(sj) ≤ bk for all k = 1, . . . ,K)− 1(a′kx

∗
S ≤ bk for all k = 1, . . . ,K)

)2]
= EF

[
|1(a′kx

∗(sj) ≤ bk for all k = 1, . . . ,K)− 1(a′kx
∗
S ≤ bk for all k = 1, . . . ,K)|

]
≤

K∑
k=1

PF (|a′kx∗S − bk| ≤ ηk(ε)). (D.47)

In order to derive an upper bound for each of the K probabilities above, we first need a lower

bound for ‖x∗S‖2. If there are some k̃ ∈ {1, 2, . . . ,K} such that bk̃ < 0, then

1− α = PF (a′kx
∗
S ≤ bk for all k = 1, . . . ,K) ≤ PF (a′

k̃
x∗S ≤ bk̃) ≤ 2 exp

(
− mink|bk|2

D2
2

∥∥x∗S∥∥2

2

)

where in the last inequality Assumption D.5.4 is used. This forces ‖x∗S‖2 ≥
mink|bk|

D2

√
log(2/1−α)

. Other-

wise if all bk > 0 then

α = PF ( max
k=1,...,K

a′kx
∗
S − bk > 0) ≤

K∑
k=1

PF (a′kx
∗
S > bk) ≤ 2K exp

(
− mink|bk|2

D2
2

∥∥x∗S∥∥2

2

)

which forces ‖x∗S‖2 ≥
mink|bk|

D2

√
log(2K/α)

. When α > 1/2, the second lower bound dominates hence

‖x∗S‖2 ≥
mink|bk|

D2

√
log(2K/α)

always holds. Now we go back to (D.47) and notice that for each k and
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every c > 0

PF (|a′kx∗S − bk| ≤ ηk(ε)) ≤ PF (ηk(ε) > ε) + PF (|a′kx∗S − bk| ≤ ε)

≤ PF (ηk(ε) > c) + PF (|a′kx∗S − bk| ≤ c)

≤ 2 exp
(
− c2

16D2
2 ‖∇x∗(s∗)‖

2
2 ε

2

)
+

2D3c∥∥x∗S∥∥2

≤ 2 exp
(
− c2

16D2
2 ‖∇x∗(s∗)‖

2
2 ε

2

)
+

2D2D3

√
log(2K/α)c

mink|bk|
.

With c = 4D2 ‖∇x∗(s∗)‖2 ε ·
√

log
(

max
{
e, mink|bk|

D2
2D3‖∇x∗(s∗)‖2

√
log(2K/α)ε

})
, the above bound gives

PF (|a′kx∗S − bk| ≤ ηk(ε)) ≤ 10ε̃

√
log
(

max{e, 1

ε̃
}
)

where ε̃ :=
D2

2D3‖∇x∗(s∗)‖2
√

log(2K/α)ε

mink|bk| . From the union bound (D.47) it follows that

EF
[(

1(a′kx
∗(sj) ≤ bk for all k = 1, . . . ,K)− 1(a′kx

∗
S ≤ bk for all k = 1, . . . ,K)

)2]
≤ σ2

ε := 10Kε̃

√
log
(

max{e, 1

ε̃
}
)

(D.48)

for all sj ∈ [s∗ − ε, s∗ + ε]. In particular, σ2
ε is a valid upper bound for the variance of each

h̃(x∗(sj), ξ) := 1(a′kx
∗(sj) ≤ bk for all k = 1, . . . ,K) − 1(a′kx

∗
S ≤ bk for all k = 1, . . . ,K) since the

second moment always upper bounds the variance. Note that (h̃(x∗(sj), ξ) + 1)/2 is [0, 1]-valued,

hence applying Lemma D.5.4 to (h̃(x∗(sj), ξ) + 1)/2 reveals that for all sj ∈ [s∗ − ε, s∗ + ε]

|Ĥj −Hj − (Ĥ(x∗S)−H(x∗S))| ≤

√
2σ2

ε log(2/t2)

n2
+

2 log(2/t2)

3n2

with probability at least 1− t2, therefore

max
j:|sj−s∗|≤ε

|Ĥj −Hj − (Ĥ(x∗S)−H(x∗S))| ≤

√
2σ2

ε log(2p/t2)

n2
+

2 log(2p/t2)

3n2
(D.49)

with probability at least 1− t2, a counterpart of (D.36).
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As in the proof of Theorem D.5.1, we first derive the deviation inequality for ŝ∗. Based on (D.46),

we would like to find H such that, with high probability, for all Hj ≤ H we have Ĥj−
z1−β σ̂j√

n2
< 1−α,

as well as H such that all Hj ≥ H satisfies Ĥj−
z1−β σ̂j√

n2
> 1−α. Given the bound (D.46), it suffices

to H and H such that

H − 2(1 + z1−β)
√

log(2p/t1)
(√H(1−H)

n2
+

√
log(2p/t1)

n2

)
> 1− α, for all H ≥ H(D.50)

H + 2(1 + z1−β)
√

log(2p/t1)
(√H(1−H)

n2
+

√
log(2p/t1)

n2

)
< 1− α, for all H ≤ H.(D.51)

For (D.50), since we must have H > 1− α, it holds that H(1−H) < α(1− α) < α for all H ≥ H.

Therefore H := 1 − α + 2(1 + z1−β)
√

log(2p/t1)
(√

α
n2

+

√
log(2p/t1)

n2

)
satisfies (D.50). For (D.51),

since the left hand side is monotonic in H, we only need to find a H for which the inequality in

(D.51) holds true. If

(1 + z1−β)
√

log(2p/t1)
(√ α

n2
+

√
log(2p/t1)

n2

)
<

√
2

4
α (D.52)

then one can verify that H := 1−α−2
√

2(1+z1−β)
√

log(2p/t1)
(√

α
n2

+

√
log(2p/t1)

n2

)
satisfies (D.51)

by noting that H > 1 − 2α and hence H(1 − H) < 2α. In order for (D.52) to hold, we consider

p, t1, n2 satisfying the following counterpart of (D.38)

2εs < ε(p, t1, n2) :=
6(1 + z1−β)

√
log(2p/t1)

c∗ ‖∇x∗(s∗)‖2

(√ α

n2
+

√
log(2p/t1)

n2

)
<
δ

2
. (D.53)

We explain why (D.53) implies (D.52). Assumption D.5.3 stipulates that 1 ≥ H(x∗(s∗ + δ)) ≥

H(x∗S) + 1
2∇H(x∗S)′∇x∗(s∗)δ = 1−α+ 1

2c
∗ ‖∇x∗(s∗)‖2 δ, which leads to c∗ ‖∇x∗(s∗)‖2 δ ≤ 2α. The

second inequality in (D.53) then gives (1 + z1−β)
√

log(2p/t1)
(√

α
n2

+

√
log(2p/t1)

n2

)
< α/6 <

√
2α/4.

Similar to the proof of Theorem D.5.1, when (D.53) holds and (D.46) happens, we must have

ŝ∗ ∈ [s∗ − 2ε(p, t1, n2), s∗ + 2ε(p, t1, n2)]. Therefore under the condition (D.53)

Pξ1:n2

(
|ŝ∗ − s∗| > 2ε(p, t1, n2)

)
≤ 2t1. (D.54)
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Now we proceed to deal with the finite sample confidence error. Following the same steps of

bounding the feasibility confidence level, we have

Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

≥ Pξ1:n2

(√n2(Ĥ(x∗S)−H(x∗S))

σ(x∗S)
+

√
n2

σ(x∗S)
max

j:|sj−s∗|≤2ε(p,t1,n2)

∣∣Ĥj −Hj − (Ĥ(x∗S)−H(x∗S))
∣∣+

z1−β
σ(x∗S)

max
j:|sj−s∗|≤2ε(p,t1,n2)

|σ(x∗S)− σ̂j | ≤ z1−β, |ŝ∗ − s∗| ≤ 2ε(p, t1, n2)
)
.

We bound the deviation of sample standard deviation as follows

max
j:|sj−s∗|≤2ε(p,t1,n2)

|σ(x∗S)− σ̂j | ≤ max
j:|sj−s∗|≤2ε(p,t1,n2)

|σ(x∗S)− σj |+ max
j=1,...,p

|σj − σ̂j |

≤ max
j:|sj−s∗|≤2ε(p,t1,n2)

|
√
α(1− α)−

√
Hj(1−Hj)|+ max

j=1,...,p
|σj − σ̂j |.

The second error is taken care of by (D.45). To bound the first error, we note that by Assump-

tion D.5.3 we have maxj:|sj−s∗|≤2ε(p,t1,n2)|Hj − (1 − α)| ≤ 2c∗ ‖∇x∗(s∗)‖2 · 2ε(p, t1, n2) = 24(1 +

z1−β)
√

log(2p/t1)
(√

α
n2

+

√
log(2p/t1)

n2

)
. Therefore if 24(1 + z1−β)

√
log(2p/t1)

(√
α
n2

+

√
log(2p/t1)

n2

)
≤

α/2, it follows from applying mean value theorem that

max
j:|sj−s∗|≤2ε(p,t1,n2)

|
√
α(1− α)−

√
Hj(1−Hj)| ≤

1√
α

24(1+z1−β)
√

log(2p/t1)
(√ α

n2
+

√
log(2p/t1)

n2

)
.

Similar to (D.40), we can argue that 24(1 + z1−β)
√

log(2p/t1)
(√

α
n2

+

√
log(2p/t1)

n2

)
≤ α/2 can be

assumed without loss of generality so that the above bound can be assumed to hold. Together with

(D.45), we have

max
j:|sj−s∗|≤2ε(p,t1,n2)

|σ(x∗S)− σ̂j |

≤ 24√
α

(1 + z1−β)
√

log(2p/t1)
(√ α

n2
+

√
log(2p/t1)

n2

)
+

√
2 log(2p/t1)

n2 − 1
for all j = 1, . . . , p(D.55)



APPENDIX D. TECHNICAL PROOFS FOR CHAPTER 5 363

with probability at least 1− t1. Now we can further bound the confidence level

Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

≥Pξ1:n2

(√n2(Ĥ(x∗S)−H(x∗S))

σ(x∗S)
+

1

σ(x∗S)

(√
2σ2

2ε(p,t1,n2) log(2p/t2) +
2 log(2p/t2)

3
√
n2

)
+

24z1−β
σ(x∗S)

√
α

(1 + z1−β)
√

log(2p/t1)
(√ α

n2
+

√
log(2p/t1)

n2

)
+

z1−β
σ(x∗S)

√
2 log(2p/t1)

n2 − 1
≤ z1−β

)
− t2 − 3t1 by (D.49), (D.54) and (D.55).

Like in the proof of Theorem D.5.1, applying Berry-Esseen theorem to the first probability on the

right hand side and absorbing various constants into the universal constant C give

1− β − Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

≤ C
( 1
√
αn2

+
1√
α

(√
2σ2

2ε(p,t1,n2) log(2p/t2) +
2 log(2p/t2)

3
√
n2

)
+
z1−β
α

(1 + z1−β)
√

log(2p/t1)
(√ α

n2
+

√
log(2p/t1)

n2

)
+
z1−β√
α

√
2 log(2p/t1)

n2
+ t1 + t2

)
≤ C

( 1√
α

(√
σ2

2ε(p,t1,n2) log(2p/t2) +
log(2p/t2)
√
n2

)
+ (1 + z1−β)2

√
log(2p/t1)

αn2
+ t1 + t2

)
by keeping dominant terms only

≤ C
( 1√

α

(√
σ2

2ε(p,1/n2,n2) log(pn2) +
log(pn2)
√
n2

)
+ (1 + z1−β)2

√
log(pn2)

αn2
+

1

n2

)
by taking t1 = t2 =

2

n2

≤ C
(√ log(pn2)

α
σ2ε(p,2/n2,n2) + (1 + z1−β)2 log(pn2)

√
αn2

)
≤ C

(√ log(pn2)

α
σ2ε(p,2/n2,n2) + (1 + z1−β)2 log(pn2)

√
αn2

)
.

It remains to bound the σ2ε(p,2/n2,n2) term which by the definition (D.48) can be expressed as

σ2ε(p,2/n2,n2) =
√

20Kε̃(p, n2)
(

log(max{e, 1

2ε̃(p, n2)
})
) 1

4
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where

ε̃(p, n2) =
6(1 + z1−β)D2

2D3

√
log(2K/α)

c∗mink|bk|
(√α log(pn2)

n2
+

log(pn2)

n2

)
.

Note that 1
2ε̃(p,n2) ≤

c∗mink|bk|n2

D2
2D3

√
log(2K/α)

= n2

C̃
, hence using this upper bound in the logarithm we have

σ2ε(p,2/n2,n2) ≤ 11

√
(1 + z1−β)KC̃

(
log(max

{
e,
n2

C̃

}
)
) 1

4
(√α log(pn2)

n2
+

log(pn2)

n2

) 1
2

≤ 11

√
(1 + z1−β)KC̃

(
log(max

{
e,
n2

C̃

}
)
) 1

4
[(α log(pn2)

n2

) 1
4 +

( log(pn2)

n2

) 1
2
]

where the second inequality follows because
√
a+ b ≤

√
a +
√
b for any a, b ≥ 0. Substituting

σ2ε(p,2/n2,n2) with its upper bound gives

1− β − Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ)

≤ C
([

(1 + z1−β)2 +

√
(1 + z1−β)KC̃

(
log(max

{
e,
n2

C̃

}
)
) 1

4
] log(pn2)
√
αn2

+

√
(1 + z1−β)KC̃

(
log(max

{
e,
n2

C̃

}
)
) 1

4
(log(pn2))3/4

(αn2)1/4

)
≤ C(1 + z1−β)2

(
1 +

√
C̃K

(
log(max

{
e,
n2

C̃

}
)
) 1

4
)((log(pn2))3/4

(αn2)1/4
+

log(pn2)
√
αn2

)
≤ C(1 + z1−β)2

(
1 +

√
C̃K

(
log(max

{
e,
n2

C̃

}
)
) 1

4
)(log(pn2))3/4

(αn2)1/4

where the last inequality follows because (log(pn2))3/4

(αn2)1/4
≤ log(pn2)√

αn2
if (log(pn2))3/4

(αn2)1/4
≤ 1. Note again

that this bound is valid when (D.53) is satisfied at t1 = 2
n2

. Replacing e, the base of the natural

logarithm, with 3 gives the desired bound. �

D.6 Applying Univariate Gaussian Validator to Formulations with

Multidimensional Conservativeness Parameters

We consider the case of multidimensional conservativeness parameter, i.e., S ⊂ Rq for some q ≥ 2,

and present the asymptotic performance guarantees of the univariate Gaussian validator. We

assume the following counterpart of Assumption 5.4.6:
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Assumption D.6.1 (Piecewise uniformly continuous solution curve) The parameter space

S ⊂ Rq is compact, and there exist M connected and open subsets S1, . . . , SM of S such that (i)

Si ∩ Si′ = ∅ for all i 6= i′; (ii) m(∪Mi=1Si) = m(S) where m(·) denotes the Lebesgue measure on Rq;

and (iii) for each i = 1, . . . ,M , the optimal solution x∗(s) of OPT (s) exists and is unique for all

s ∈ Si, and x∗(s) as a function of s is uniformly continuous on Si.

Similar to the case of scalar parameter, the solution curve x∗(s) on each piece Si can be con-

tinuously extended to the closure Si := ∩S′ is closed, Si⊆S′S
′ under this piecewise uniform continu-

ity assumption. Specifically, for every parameter value s ∈ S\ ∪Mi=1 Si, we define the extended

parameter-to-solution mapping to be

x∗(s) := { lim
s′∈Si,s′→s

x∗(s′) : s ∈ Si, i = 1, . . . ,M}.

Accordingly, the optimal solution set and optimal parameter set associated with the solution path

are defined as

X ∗S := argmin{f(x) : H(x) ≥ γ, x = x∗(s) for s ∈ ∪Mi=1Si or x ∈ x∗(s) for some s ∈ S\ ∪Mi=1 Si}

(D.56)

and

S∗ := {s ∈ ∪Mi=1Si : x∗(s) ∈ X ∗S} ∪ {s ∈ S\ ∪Mi=1 Si : x∗(s) ∩ X ∗S 6= ∅}.

We also assume uniqueness of the optimal solution:

Assumption D.6.2 (Unique optimal solution) The optimal solution set X ∗S defined in (D.56)

is a singleton {x∗S}.

Note that in the case of scalar s, uniqueness of the optimal solution is a consequence (Proposition

5.4.3) of several more elementary assumptions among which monotonicity of the robust feasible

set with respect to the parameter (Assumption 5.4.8) plays the key role. However, such notion of

monotonicity does not completely carry to the mutidimensional case. For example, one may have

a formulation OPT (s) such that the robust feasible set satisfies Sol(s) ⊆ Sol(s′) whenever s′ ≤ s
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component-wise, but Sol(s) and Sol(s′) are in general not comparable.

We also assume the following counterpart of Assumption 5.4.9:

Assumption D.6.3 For every ε > 0 there exists an s ∈ ∪Mi=1Si such that H(x∗(s)) > γ and

‖x∗(s)− x∗S‖2 < ε, where x∗S is the unique optimal solution from Assumption D.6.2.

We then have the following asymptotic performance guarantees for Algorithm 11:

Theorem D.6.1 (Asymptotic joint feasibility-optimality guarantee) Suppose Assumptions

5.4.1-5.4.5 hold for (5.1). Also suppose that Assumptions D.6.1-D.6.3 hold for the formulation

OPT (s), and that {s1, . . . , sp} ⊆ ∪Mi=1Si. Denote by εS := sups∈S infj=1,...,p ‖s− sj‖2 the mesh size,

and by x∗S be the unique optimal solution from Assumption D.6.2. Conditional on Phase one, as

Phase two data size n2 →∞, we have for the output of Algorithm 11 that (i) limn2→∞,εS→0 x
∗(ŝ∗) =

x∗S and limn2→∞,εS→0 d(ŝ∗,S∗) = 0 almost surely; and (ii) lim infn2→∞,εS→0 Pξ1:n2
(H(x∗(ŝ∗)) ≥

γ) ≥ 1− β if H(x∗S) = γ, and limn2→∞,εS→0 Pξ1:n2
(H(x∗(ŝ∗)) ≥ γ) = 1 if H(x∗S) > γ.

Proof of Theorem D.6.1. The proof is the same as that of Theorem 5.4.4 with straightforward

modifications. In particular, {s̃1, . . . , s̃M} shall be replaced by S\ ∪Mi=1 Si and the solution set XS

is now defined as XS := {x∗(s) : s ∈ ∪Mi=1Si} ∪
(
∪s∈S\∪Mi=1Si

x∗(s)
)
. �

In order to establish an asymptotically tight feasibility confidence level like in Theorem 5.4.5,

we further assume uniqueness of the optimal parameter:

Assumption D.6.4 (Unique optimal parameter) The optimal parameter set S∗ is a singleton

{s∗}, and s∗ ∈ Si∗ for some i∗ = 1, . . . ,M .

We then have the following guarantee:

Theorem D.6.2 (Asymptotically tight feasibility guarantee) In addition to the conditions

of Theorem D.6.1, suppose Assumption D.6.4 holds. Suppose also that the parameter-to-objective

mapping v(s) satisfies v(s) < v(s′) whenever s < s′ component-wise and that H(x∗S) = γ. For each

j = 1, . . . , p, let

j̃ := argminj′{
∥∥sj − sj′∥∥2

: sj′ < sj component-wise, sj′ lies on the same piece as sj}
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and if there is no such feasible j′ simply let j̃ := j. If the mesh is such that

max
j=1,...,p

|H(x∗(sj))−H(x∗(sj̃))| = o
( 1
√
n2

)
(D.57)

then we have for the output of Algorithm 11 that limn2→∞,εS→0 s.t. (D.57) holds Pξ1:n2
(H(x∗(ŝ∗)) ≥

γ) = 1− β.

Proof of Theorem D.6.2. The proof follows exactly that of Theorem 5.4.5 with straightforward

modifications. For example, when bounding Ĥ(x∗(ŝ∗))−z1−β
σ̂(ŝ∗)√
n2

in the proof of Theorem 5.4.5 we

replace the parameter value si
∗
j∗ output by the algorithm with si

∗
j∗−1 and use the condition (5.21),

whereas now we shall replace the output parameter value ŝ∗ = sj∗ with sj̃∗ and then use (D.57) to

obtain the same bound. �
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