116,844 research outputs found

    Fast and Efficient Classification, Tracking, and Simulation in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are composed of large numbers of resource-lean sensors that collect low-level inputs from the physical world. The applications present challenges for programmers. On the one hand, lightweight algorithms are required given the limited capacity of the constituent devices. On the other, the algorithms must be scalable to accommodate large networks. In this thesis, we focus on the design and implementation of fast and lean (yet scalable) algorithms for classification, simulation, and target tracking in the context of wireless sensor networks. We briefly consider each of these challenges in turn. The first challenge is to achieve high precision classification of high-level events in-network using limited computational and energy resources. We present in-network implementations of a Bayesian classifier and a condensed kd-tree classifier for identifying events of interest on resource-lean embedded sensors. The first approach uses preprocessed sensor readings to derive a multi-dimensional Bayesian classifier used to classify sensor data in real-time. The second introduces an innovative condensed kd-tree to represent preprocessed sensor data and uses a fast nearest-neighbor search to determine the likelihood of class membership for incoming samples. Both classifiers consume limited resources and provide high precision classification. To evaluate each approach, two case studies are considered, in the contexts of human movement and vehicle navigation, respectively. The classification accuracy is above 85% for both classifiers across the two case studies. The second challenge is to achieve high performance parallel simulation of sensor network hardware. This is achieved by reducing the synchronization overhead among distributed simulation processes. Traditional parallel simulation strategies introduce significant synchronization overhead, reducing the simulation speed. We present an optimistic simulation algorithm with support for backtracking and re-execution. The algorithm reduces the number of synchronization cycles to the number of transmissions in the network under test. Concretely, we implement SnapSim, an extension to the popular Avrora simulator, based on this algorithm. The experimental results show that our prototype system improves the performance of Avrora by 2 to 10 times for typical network-centric sensor network applications, and up to three orders of magnitude for applications that use the radio infrequently. The third challenge is to efficiently track a moving target in a network. The difficulty again lies in the conflict between the limited resource capacity of typical sensors and the significant processing requirements of typical tracking algorithms. We introduce an in-network object tracking framework for tracking mobile objects using resource-lean sensors. The framework is based on a distributed, dynamically scoped tracking algorithm which adaptively scopes the event detection region based on object speed. A leader node records the samples across an event region (without the aid of time synchronization) and estimates the object\u27s location in situ. To minimize the number of radio transmissions, the location snapshotting rate is also adjusted based on the object speed. In this dissertation, focusing on the above challenges, we present the design, implementation, and evaluation of classification, simulation, and tracking contributions

    Linear Fresnel mirror solar concentrator with tracking

    Get PDF
    Solar energy is the most abundant, widely distributed and clean renewable energy resource. Since the insolation intensity is only in the range of 0.5 - 1.0 kW/m2, solar concentrators are required for attaining temperatures appropriate for medium and high temperature applications. The concentrated energy is transferred through an absorber to a thermal fluid such as air, water or other fluids for various uses. This paper describes design and development of a 'Linear Fresnel Mirror Solar Concentrator' (LFMSC) using long thin strips of mirrors to focus sunlight on to a fixed receiver located at a common focal line. Our LFMSC system comprises a reflector (concentrator), receiver (target) and an innovative solar tracking mechanism. Reflectors are mirror strips, mounted on tubes which are fixed to a base frame. The tubes can be rotated to align the strips to focus solar radiation on the receiver (target). The latter comprises a coated tube carrying water and covered by a glass plate. This is mounted at an elevation of few meters above the horizontal, parallel to the plane of the mirrors. The reflector is oriented along north-south axis. The most difficult task is tracking. This is achieved by single axis tracking using a four bar link mechanism. Thus tracking has been made simple and easy to operate. The LFMSC setup is used for generating steam for a variety of applications

    Research on High-performance and Scalable Data Access in Parallel Big Data Computing

    Get PDF
    To facilitate big data processing, many dedicated data-intensive storage systems such as Google File System(GFS), Hadoop Distributed File System(HDFS) and Quantcast File System(QFS) have been developed. Currently, the Hadoop Distributed File System(HDFS) [20] is the state-of-art and most popular open-source distributed file system for big data processing. It is widely deployed as the bedrock for many big data processing systems/frameworks, such as the script-based pig system, MPI-based parallel programs, graph processing systems and scala/java-based Spark frameworks. These systems/applications employ parallel processes/executors to speed up data processing within scale-out clusters. Job or task schedulers in parallel big data applications such as mpiBLAST and ParaView can maximize the usage of computing resources such as memory and CPU by tracking resource consumption/availability for task assignment. However, since these schedulers do not take the distributed I/O resources and global data distribution into consideration, the data requests from parallel processes/executors in big data processing will unfortunately be served in an imbalanced fashion on the distributed storage servers. These imbalanced access patterns among storage nodes are caused because a). unlike conventional parallel file system using striping policies to evenly distribute data among storage nodes, data-intensive file systems such as HDFS store each data unit, referred to as chunk or block file, with several copies based on a relative random policy, which can result in an uneven data distribution among storage nodes; b). based on the data retrieval policy in HDFS, the more data a storage node contains, the higher the probability that the storage node could be selected to serve the data. Therefore, on the nodes serving multiple chunk files, the data requests from different processes/executors will compete for shared resources such as hard disk head and network bandwidth. Because of this, the makespan of the entire program could be significantly prolonged and the overall I/O performance will degrade. The first part of my dissertation seeks to address aspects of these problems by creating an I/O middleware system and designing matching-based algorithms to optimize data access in parallel big data processing. To address the problem of remote data movement, we develop an I/O middleware system, called SLAM, which allows MPI-based analysis and visualization programs to benefit from locality read, i.e, each MPI process can access its required data from a local or nearby storage node. This can greatly improve the execution performance by reducing the amount of data movement over network. Furthermore, to address the problem of imbalanced data access, we propose a method called Opass, which models the data read requests that are issued by parallel applications to cluster nodes as a graph data structure where edges weights encode the demands of load capacity. We then employ matching-based algorithms to map processes to data to achieve data access in a balanced fashion. The final part of my dissertation focuses on optimizing sub-dataset analyses in parallel big data processing. Our proposed methods can benefit different analysis applications with various computational requirements and the experiments on different cluster testbeds show their applicability and scalability

    Measuring and Managing Answer Quality for Online Data-Intensive Services

    Full text link
    Online data-intensive services parallelize query execution across distributed software components. Interactive response time is a priority, so online query executions return answers without waiting for slow running components to finish. However, data from these slow components could lead to better answers. We propose Ubora, an approach to measure the effect of slow running components on the quality of answers. Ubora randomly samples online queries and executes them twice. The first execution elides data from slow components and provides fast online answers; the second execution waits for all components to complete. Ubora uses memoization to speed up mature executions by replaying network messages exchanged between components. Our systems-level implementation works for a wide range of platforms, including Hadoop/Yarn, Apache Lucene, the EasyRec Recommendation Engine, and the OpenEphyra question answering system. Ubora computes answer quality much faster than competing approaches that do not use memoization. With Ubora, we show that answer quality can and should be used to guide online admission control. Our adaptive controller processed 37% more queries than a competing controller guided by the rate of timeouts.Comment: Technical Repor

    VirtFogSim: A parallel toolbox for dynamic energy-delay performance testing and optimization of 5G Mobile-Fog-Cloud virtualized platforms

    Get PDF
    It is expected that the pervasive deployment of multi-tier 5G-supported Mobile-Fog-Cloudtechnological computing platforms will constitute an effective means to support the real-time execution of future Internet applications by resource- and energy-limited mobile devices. Increasing interest in this emerging networking-computing technology demands the optimization and performance evaluation of several parts of the underlying infrastructures. However, field trials are challenging due to their operational costs, and in every case, the obtained results could be difficult to repeat and customize. These emergingMobile-Fog-Cloud ecosystems still lack, indeed, customizable software tools for the performance simulation of their computing-networking building blocks. Motivated by these considerations, in this contribution, we present VirtFogSim. It is aMATLAB-supported software toolbox that allows the dynamic joint optimization and tracking of the energy and delay performance of Mobile-Fog-Cloud systems for the execution of applications described by general Directed Application Graphs (DAGs). In a nutshell, the main peculiar features of the proposed VirtFogSim toolbox are that: (i) it allows the joint dynamic energy-aware optimization of the placement of the application tasks and the allocation of the needed computing-networking resources under hard constraints on acceptable overall execution times, (ii) it allows the repeatable and customizable simulation of the resulting energy-delay performance of the overall system; (iii) it allows the dynamic tracking of the performed resource allocation under time-varying operational environments, as those typically featuring mobile applications; (iv) it is equipped with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for data rendering, and (v) itsMATLAB code is optimized for running atop multi-core parallel execution platforms. To check both the actual optimization and scalability capabilities of the VirtFogSim toolbox, a number of experimental setups featuring different use cases and operational environments are simulated, and their performances are compared

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Cloud Index Tracking: Enabling Predictable Costs in Cloud Spot Markets

    Full text link
    Cloud spot markets rent VMs for a variable price that is typically much lower than the price of on-demand VMs, which makes them attractive for a wide range of large-scale applications. However, applications that run on spot VMs suffer from cost uncertainty, since spot prices fluctuate, in part, based on supply, demand, or both. The difficulty in predicting spot prices affects users and applications: the former cannot effectively plan their IT expenditures, while the latter cannot infer the availability and performance of spot VMs, which are a function of their variable price. To address the problem, we use properties of cloud infrastructure and workloads to show that prices become more stable and predictable as they are aggregated together. We leverage this observation to define an aggregate index price for spot VMs that serves as a reference for what users should expect to pay. We show that, even when the spot prices for individual VMs are volatile, the index price remains stable and predictable. We then introduce cloud index tracking: a migration policy that tracks the index price to ensure applications running on spot VMs incur a predictable cost by migrating to a new spot VM if the current VM's price significantly deviates from the index price.Comment: ACM Symposium on Cloud Computing 201
    • …
    corecore