574 research outputs found

    Mobility prediction and multicasting in wireless networks : performance and analysis

    Get PDF
    Handoff is a call handling mechanism that is invoked when a mobile node moves from one cell to another. Such movement may lead to degradation in performance for wireless networks as a result of packet losses. A promising technique proposed in this thesis is to apply multicasting techniques aided by mobility prediction in order to improve handoff performance. In this thesis, we present a method that uses a Grey model for mobility prediction and a fuzzy logic controller that has been fine-tuned using evolutionary algorithms in order to improve prediction accuracy. We also compare the self-tuning algorithm with two evolutionary algorithms in terms of accuracy and their convergence times. Our proposed method takes into account signal strengths from the base stations and predicts the signal strength of the next candidate base station in order to provide improved handover performance. The primary decision for mobility prediction is the accurate prediction of signal strengths obtained from the base stations and remove any unwanted errors in the prediction using suitable optimisation techniques. Furthermore, the model includes the procedures of fine-tuning the predicted data using fuzzy parameters. We also propose suitable multicasting algorithms to minimise the reservation of overall network resource requirements during handoff with the mobility prediction information. To be able to efficiently solve the problem, the situation is modelled using a multicast tree that is defined to maintain connectivity with the mobile node, whilst ensuring bandwidth guarantees and a minimum hop-count. In this approach, we have tried to solve the problem by balancing two objectives through putting a weight on each of two costs. We provide a detailed description of an algorithm to implement join and prune mechanisms, which will help to build an optimal multicast tree with QoS requirements during handoff as well as incorporating dynamic changes in the positions of mobile nodes. An analysis of how mobility prediction helps in the selection of potential Access Routers (AR) with QoS requirements - which affects the multicast group size and bandwidth cost of the multicast tree -- is presented. The proposed technique tries to minimise the number of multicast tree join and prune operations. Our results show that the expected size of the multicast group increases linearly with an increase in the number of selected destination AR's for multicast during handoff. We observe that the expected number of joins and prunes from the multicast tree increases with group size. A special simulation model was developed to demonstrate both homogeneous and heterogeneous handoff which is an emerging requirement for fourth generation mobile networks. The model incorporates our mobility prediction model for heterogeneous handoff between the Wireless LAN and a cellular network. The results presented in this thesis for mobility prediction, multicasting techniques and heterogeneous handoff include proposed algorithms and models which aid in the understanding, analysing and reducing of overheads during handoff

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    The 6th Conference of PhD Students in Computer Science

    Get PDF

    Performance modelling of network management schemes for mobile wireless networks

    Get PDF

    Network delay control through adaptive queue management

    Get PDF
    Timeliness in delivering packets for delay-sensitive applications is an important QoS (Quality of Service) measure in many systems, notably those that need to provide real-time performance. In such systems, if delay-sensitive traffic is delivered to the destination beyond the deadline, then the packets will be rendered useless and dropped after received at the destination. Bandwidth that is already scarce and shared between network nodes is wasted in relaying these expired packets. This thesis proposes that a deterministic per-hop delay can be achieved by using a dynamic queue threshold concept to bound delay of each node. A deterministic per-hop delay is a key component in guaranteeing a deterministic end-to-end delay. The research aims to develop a generic approach that can constrain network delay of delay-sensitive traffic in a dynamic network. Two adaptive queue management schemes, namely, DTH (Dynamic THreshold) and ADTH (Adaptive DTH) are proposed to realize the claim. Both DTH and ADTH use the dynamic threshold concept to constrain queuing delay so that bounded average queuing delay can be achieved for the former and bounded maximum nodal delay can be achieved for the latter. DTH is an analytical approach, which uses queuing theory with superposition of N MMBP-2 (Markov Modulated Bernoulli Process) arrival processes to obtain a mapping relationship between average queuing delay and an appropriate queuing threshold, for queue management. While ADTH is an measurement-based algorithmic approach that can respond to the time-varying link quality and network dynamics in wireless ad hoc networks to constrain network delay. It manages a queue based on system performance measurements and feedback of error measured against a target delay requirement. Numerical analysis and Matlab simulation have been carried out for DTH for the purposes of validation and performance analysis. While ADTH has been evaluated in NS-2 simulation and implemented in a multi-hop wireless ad hoc network testbed for performance analysis. Results show that DTH and ADTH can constrain network delay based on the specified delay requirements, with higher packet loss as a trade-off

    An investigation into dynamical bandwidth management and bandwidth redistribution using a pool of cooperating interfacing gateways and a packet sniffer in mobile cloud computing

    Get PDF
    Mobile communication devices are increasingly becoming an essential part of almost every aspect of our daily life. However, compared to conventional communication devices such as laptops, notebooks, and personal computers, mobile devices still lack in terms of resources such as processor, storage and network bandwidth. Mobile Cloud Computing is intended to augment the capabilities of mobile devices by moving selected workloads away from resource-limited mobile devices to resource-intensive servers hosted in the cloud. Services hosted in the cloud are accessed by mobile users on-demand via the Internet using standard thick or thin applications installed on their devices. Nowadays, users of mobile devices are no longer satisfied with best-effort service and demand QoS when accessing and using applications and services hosted in the cloud. The Internet was originally designed to provide best-effort delivery of data packets, with no guarantee on packet delivery. Quality of Service has been implemented successfully in provider and private networks since the Internet Engineering Task Force introduced the Integrated Services and Differentiated Services models. These models have their legacy but do not adequately address the Quality of Service needs in Mobile Cloud Computing where users are mobile, traffic differentiation is required per user, device or application, and packets are routed across several network domains which are independently administered. This study investigates QoS and bandwidth management in Mobile Cloud Computing and considers a scenario where a virtual test-bed made up of GNS3 network software emulator, Cisco IOS image, Wireshark packet sniffer, Solar-Putty, and Firefox web browser appliance is set up on a laptop virtualized with VMware Workstation 15 Pro. The virtual test-bed is in turn connected to the real world Internet via the host laptop's Ethernet Network Interface Card. Several virtual Firefox appliances are set up as endusers and generate traffic by launching web applications such as video streaming, file download and Internet browsing. The traffic generated by the end-users and bandwidth used is measured, monitored, and tracked using a Wireshark packet sniffer installed on all interfacing gateways that connect the end-users to the cloud. Each gateway aggregates the demand of connected hosts and delivers Quality of Service to connected users based on the Quality of Service policies and mechanisms embedded in the gateway. Analysis of the results shows that a packet sniffer deployed at a suitable point in the network can identify, measure and track traffic usage per user, device or application in real-time. The study has also demonstrated that when deployed in the gateway connecting users to the cloud, it provides network-wide monitoring and traffic statistics collected can be fed to other functional components of the gateway where a dynamical bandwidth management scheme can be applied to instantaneously allocate and redistribute bandwidth to target users as they roam around the network from one location to another. This approach is however limited and ensuring end-to-end Quality of Service requires mechanisms and policies to be extended across all network layers along the traffic path between the user and the cloud in order to guarantee a consistent treatment of traffic

    Efficient spectrum-handoff schemes for cognitive radio networks

    Get PDF
    Radio spectrum access is important for terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations. The services offered by terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations have evolved due to technological advances. They are expected to meet increasing users' demands which will require more spectrum. The increasing demand for high throughput by users necessitates allocating additional spectrum to terrestrial wireless networks. Terrestrial radio astronomy observations s require additional bandwidth to observe more spectral windows. Commercial earth observation requires more spectrum for enhanced transmission of earth observation data. The evolution of terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations leads to the emergence of new interference scenarios. For instance, terrestrial wireless networks pose interference risks to mobile ground stations; while inter-satellite links can interfere with terrestrial radio astronomy observations. Terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations also require mechanisms that will enhance the performance of their users. This thesis proposes a framework that prevents interference between terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations when they co-exist; and enhance the performance of their users. The framework uses the cognitive radio; because it is capable of multi-context operation. In the thesis, two interference avoidance mechanisms are presented. The first mechanism prevents interference between terrestrial radio astronomy observations and inter-satellite links. The second mechanism prevent interference between terrestrial wireless networks and the commercial earth observation ground segment. The first interference reductionmechanism determines the inter-satellite link transmission duration. Analysis shows that interference-free inter-satellite links transmission is achievable during terrestrial radio astronomy observation switching for up to 50.7 seconds. The second mechanism enables the mobile ground station, with a trained neural network, to predict the terrestrial wireless network channel idle state. The prediction of the TWN channel idle state prevents interference between the terrestrial wireless network and the mobile ground station. Simulation shows that incorporating prediction in the mobile ground station enhances uplink throughput by 40.6% and reduces latency by 18.6%. In addition, the thesis also presents mechanisms to enhance the performance of the users in terrestrial wireless network, commercial earth observations and terrestrial radio astronomy observations. The thesis presents mechanisms that enhance user performance in homogeneous and heterogeneous terrestrial wireless networks. Mechanisms that enhance the performance of LTE-Advanced users with learning diversity are also presented. Furthermore, a future commercial earth observation network model that increases the accessible earth climatic data is presented. The performance of terrestrial radio astronomy observation users is enhanced by presenting mechanisms that improve angular resolution, power efficiency and reduce infrastructure costs

    Avaliação de controlo de sessões multicast em redes com contexto

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesOs utilizadores pretendem aceder, cada vez mais, a serviços multimédia com requisitos mais exigentes e personalizados. As limitações impostas pelos ambientes existentes (internet, 3G) para fornecer estes serviços levam à procura de melhores soluções, nomeadamente uma gestão eficaz das sessões multiparty. Neste tipo de soluções é normalmente utilizado o multicast, já que este permite reduzir os recursos utilizados, diminuindo o número de pacotes na rede. Contudo, o multicast não está consistente ao nível dos cenários de mobilidade, fundamentais nas redes de próxima geração. Actualmente existe uma vasta gama de tecnologias de acesso sem fios como WiFi, GPRS, UMTS e WiMAX. No futuro estas tecnologias diferentes complementar-se-ão convergindo numa infra-estrutura heterogénea capaz de fornecer um melhor serviço aos utilizadores, denominadas de redes 4G. A evolução dos terminais móveis também permitirá que estes se liguem simultaneamente a várias redes de acesso. Para uma melhor distribuição dos serviços dos utilizadores pelas redes de acesso disponíveis são necessários novos mecanismos de selecção. Uma nova selecção da rede baseada em informação de contexto (entidades e ambiente) tem tido grande relevo na comunidade científica. Assim, aplicações e rede reagem a alterações de contexto para uma melhor selecção da mesma. A dissertação apresentada encontra-se no âmbito do transporte multiparty com informação de contexto e reserva de recursos, permitindo a entrega do conteúdo de uma forma personalizada e com Qualidade de Serviço a vários utilizadores móveis, independentemente da tecnologia de acesso de cada um e da própria tecnologia da rede. Em suma, é utilizada uma arquitectura de rede baseada em informação de contexto e que reage eficazmente a alterações do mesmo. De forma a implementar a proposta apresentada recorreu-se à criação de várias entidades no simulador de redes NS-2. Os resultados foram obtidos usando diferentes cenários, avaliando a influência de cada parâmetro individualmente. Demonstrou-se que a arquitectura implementada permite suportar uma entrega dos conteúdos de uma maneira personalizada e independente da tecnologia utilizada. Obteve-se ainda uma boa gestão dos recursos da rede e uma melhoria na experiência percepcionada pelo utilizador através da selecção total da rede com base numa entidade de controlo central. A introdução do overlay de transporte multiparty melhora o comportamento geral da rede, minimizando as reconfigurações frequentes necessárias.Nowadays, more and more users want to access multimedia services with strong and personalized requirements. The limitations intrinsic to current environments (Internet and 3G) to provide this type of services motivate the research for an efficient management of multiparty sessions. The solution can also be based on multicast implementation, since it reduces resources utilization, decreasing the number of packets in the network. However, current multicast is not a strong solution in mobility scenarios, essential in next generation networks. Currently there is a wide range of wireless access technologies such as WiFi, GPRS, UMTS and WiMAX. In the future, these different technologies will converge in a complementary manner forming a heterogeneous infrastructure able to offer a better service to its users, usually named 4G. The evolution of mobile terminals will also allow them to connect simultaneously to several access networks. In order to a better distribution of the users services throughout available access networks, new selection mechanisms are required. A new network selection based on context information (entities and environments) is having a relevant role in scientific community. So, applications and networks react according to context changes, improving network selection. This Thesis is in the scope of context-aware multiparty transport with resources allocation, allowing the delivery of content in a personalized way with Quality of Service to several users, independently of the technology and the network. Resuming, the solution implements a context-aware network architecture that reacts efficiently to its changes. In order to implement this architecture, new entities were created in the network simulator NS-2. The results were obtained using different scenarios, evaluating the influence of each parameter independently. It was demonstrated that the integration of several components, allows a delivery of contents in a personalized manner and independently of the technology. The results showed a better management of the network resources and users experience, throughout the total network selection, based on a central control unit. The multiparty transport overlay improves the network behaviour, minimizing the necessary frequent reconfigurations

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains
    corecore