340 research outputs found

    Guidance Notes for Cloud Research Users

    No full text
    There is a rapidly increasing range of research activities which involve the outsourcing of computing and storage resources to public Cloud Service Providers (CSPs), who provide managed and scalable resources virtualised as a single service. For example Amazon Elastic Computing Cloud (EC2) and Simple Storage Service (S3) are two widely adopted open cloud solutions, which aim at providing pooled computing and storage services and charge users according to their weighted resource usage. Other examples include employment of Google Application Engine and Microsoft Azure as development platforms for research applications. Despite a lot of activity and publication on cloud computing, the term itself and the technologies that underpin it are still confusing to many. This note, as one of deliverables of the TeciRes project1, provides guidance to researchers who are potential end users of public CSPs for research activities. The note contains information to researchers on: •The difference between and relation to current research computing models •The considerations that have to be taken into account before moving to cloud-aided research •The issues associated with cloud computing for research that are currently being investigated •Tips and tricks when using cloud computing Readers who are interested in provisioning cloud capabilities for research should also refer to our guidance notes to cloud infrastructure service providers. This guidance notes focuses on technical aspects only. Readers who are interested in non-technical guidance should refer to the briefing paper produced by the “using cloud computing for research” project

    Network Service Orchestration: A Survey

    Full text link
    Business models of network service providers are undergoing an evolving transformation fueled by vertical customer demands and technological advances such as 5G, Software Defined Networking~(SDN), and Network Function Virtualization~(NFV). Emerging scenarios call for agile network services consuming network, storage, and compute resources across heterogeneous infrastructures and administrative domains. Coordinating resource control and service creation across interconnected domains and diverse technologies becomes a grand challenge. Research and development efforts are being devoted to enabling orchestration processes to automate, coordinate, and manage the deployment and operation of network services. In this survey, we delve into the topic of Network Service Orchestration~(NSO) by reviewing the historical background, relevant research projects, enabling technologies, and standardization activities. We define key concepts and propose a taxonomy of NSO approaches and solutions to pave the way towards a common understanding of the various ongoing efforts around the realization of diverse NSO application scenarios. Based on the analysis of the state of affairs, we present a series of open challenges and research opportunities, altogether contributing to a timely and comprehensive survey on the vibrant and strategic topic of network service orchestration.Comment: Accepted for publication at Computer Communications Journa

    Scalable Distributed Computing Hierarchy: Cloud, Fog and Dew Computing

    Get PDF
    The paper considers the conceptual approach for organization of the vertical hierarchical links between the scalable distributed computing paradigms: Cloud Computing, Fog Computing and Dew Computing. In this paper, the Dew Computing is described and recognized as a new structural layer in the existing distributed computing hierarchy. In the existing computing hierarchy, the Dew computing is positioned as the ground level for the Cloud and Fog computing paradigms. Vertical, complementary, hierarchical division from Cloud to Dew Computing satisfies the needs of high- and low-end computing demands in everyday life and work. These new computing paradigms lower the cost and improve the performance, particularly for concepts and applications such as the Internet of Things (IoT) and the Internet of Everything (IoE). In addition, the Dew computing paradigm will require new programming models that will efficiently reduce the complexity and improve the productivity and usability of scalable distributed computing, following the principles of High-Productivity computing

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    ACTiCLOUD: Enabling the Next Generation of Cloud Applications

    Get PDF
    Despite their proliferation as a dominant computing paradigm, cloud computing systems lack effective mechanisms to manage their vast amounts of resources efficiently. Resources are stranded and fragmented, ultimately limiting cloud systems' applicability to large classes of critical applications that pose non-moderate resource demands. Eliminating current technological barriers of actual fluidity and scalability of cloud resources is essential to strengthen cloud computing's role as a critical cornerstone for the digital economy. ACTiCLOUD proposes a novel cloud architecture that breaks the existing scale-up and share-nothing barriers and enables the holistic management of physical resources both at the local cloud site and at distributed levels. Specifically, it makes advancements in the cloud resource management stacks by extending state-of-the-art hypervisor technology beyond the physical server boundary and localized cloud management system to provide a holistic resource management within a rack, within a site, and across distributed cloud sites. On top of this, ACTiCLOUD will adapt and optimize system libraries and runtimes (e.g., JVM) as well as ACTiCLOUD-native applications, which are extremely demanding, and critical classes of applications that currently face severe difficulties in matching their resource requirements to state-of-the-art cloud offerings

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results
    • …
    corecore