195 research outputs found

    A Survey on platoon-based vehicular cyber-physical systems

    Get PDF
    Vehicles on the road with some common interests can cooperatively form a platoon-based driving pattern, in which a vehicle follows another one and maintains a small and nearly constant distance to the preceding vehicle. It has been proved that, compared to driving individually, such a platoon-based driving pattern can significantly improve the road capacity and energy efficiency. Moreover, with the emerging vehicular adhoc network (VANET), the performance of platoon in terms of road capacity, safety and energy efficiency, etc., can be further improved. On the other hand, the physical dynamics of vehicles inside the platoon can also affect the performance of VANET. Such a complex system can be considered as a platoon-based vehicular cyber-physical system (VCPS), which has attracted significant attention recently. In this paper, we present a comprehensive survey on platoon-based VCPS. We first review the related work of platoon-based VCPS. We then introduce two elementary techniques involved in platoon-based VCPS: the vehicular networking architecture and standards, and traffic dynamics, respectively. We further discuss the fundamental issues in platoon-based VCPS, including vehicle platooning/clustering, cooperative adaptive cruise control (CACC), platoon-based vehicular communications, etc., and all of which are characterized by the tight coupled relationship between traffic dynamics and VANET behaviors. Since system verification is critical to VCPS development, we also give an overview of VCPS simulation tools. Finally, we share our view on some open issues that may lead to new research directions

    An empirical study of Unfairness and Oscillation in ETSI DCC

    Get PDF
    International audience—Performance of Vehicular Adhoc Networks (VANETs) in high node density situation has long been a major field of studies. Particular attention has been paid to the frequent exchange of Cooperative Awareness Messages (CAMs) on which many road safety applications rely. In the present paper, se focus on the European Telecommunications Standard Institute (ETSI) Decentralized Congestion Control (DCC) mechanism, particularly on the evaluation of its facility layers component when applied in the context of dense networks. For this purpose, a set of simulations has been conducted over several scenarios, considering rural highway and urban mobility in order to investigate unfairness and oscillation issues, and analyze the triggering factors. The experimental results show that the latest technical specification of the ETSI DCC presents a significant enhancement in terms of fairness. In contrast, the stability criterion leaves room for improvement as channel load measurement presents (i) considerable fluctuations when only the facility layer control is applied and (i.i) severe state oscillation when different DCC control methods are combined

    Channel-Aware Congestion Control in Vehicular Cyber-Physical Systems

    Get PDF
    In vehicular cyber-physical systems, cars are connected to create a mobile network called a vehicular ad hoc network (VANET) to perform various functions, including improved awareness of the surrounding environment. Moving vehicles continually broadcast beacon signals containing information such as position, heading, acceleration, steering angle, vehicle size, and accident notification. However, channel congestion in dense traffic conditions adversely affects network performance. To resolve congestion in VANETs, several works in the literature have studied congestion control. However, they have considered packet loss only as an indication of channel congestion regardless of channel condition. In this paper, we present a channel-aware congestion control algorithm (CACC) that controls the transmission power and data rate. We take into account the received signal strength (RSS) when diagnosing packet loss to determine channel conditions, such as severe fading or channel congestion. In the case of severe fading, we decrease the data rate for a more robust modulation and coding scheme. Additionally, we adjust the transmission power to maintain a desirable packet error rate. Our simulation results show that CACC significantly outperforms other distributed congestion control algorithms by reducing the packet loss rate and increasing the packet delivery ratio.1

    Ant-inspired Interaction Networks For Decentralized Vehicular Traffic Congestion Control

    Get PDF
    Mimicking the autonomous behaviors of animals and their adaptability to changing or foreign environments lead to the development of swarm intelligence techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) now widely used to tackle a variety of optimization problems. The aim of this dissertation is to develop an alternative swarm intelligence model geared toward decentralized congestion avoidance and to determine qualities of the model suitable for use in a transportation network. A microscopic multi-agent interaction network inspired by insect foraging behaviors, especially ants, was developed and consequently adapted to prioritize the avoidance of congestion, evaluated as perceived density of other agents in the immediate environment extrapolated from the occurrence of direct interactions between agents, while foraging for food outside the base/nest. The agents eschew pheromone trails or other forms of stigmergic communication in favor of these direct interactions whose rate is the primary motivator for the agents\u27 decision making process. The decision making process at the core of the multi-agent interaction network is consequently transferred to transportation networks utilizing vehicular ad-hoc networks (VANETs) for communication between vehicles. Direct interactions are replaced by dedicated short range communications for wireless access in vehicular environments (DSRC/WAVE) messages used for a variety of applications like left turn assist, intersection collision avoidance, or cooperative adaptive cruise control. Each vehicle correlates the traffic on the wireless network with congestion in the transportation network and consequently decides whether to reroute and, if so, what alternate route to take in a decentralized, non-deterministic manner. The algorithm has been shown to increase throughput and decrease mean travel times significantly while not requiring access to centralized infrastructure or up-to-date traffic information

    Design of an adaptive congestion control protocol for reliable vehicle safety communication

    Get PDF
    [no abstract

    Proceedings of the Third Edition of the Annual Conference on Wireless On-demand Network Systems and Services (WONS 2006)

    Get PDF
    Ce fichier regroupe en un seul documents l'ensemble des articles accéptés pour la conférences WONS2006/http://citi.insa-lyon.fr/wons2006/index.htmlThis year, 56 papers were submitted. From the Open Call submissions we accepted 16 papers as full papers (up to 12 pages) and 8 papers as short papers (up to 6 pages). All the accepted papers will be presented orally in the Workshop sessions. More precisely, the selected papers have been organized in 7 session: Channel access and scheduling, Energy-aware Protocols, QoS in Mobile Ad-Hoc networks, Multihop Performance Issues, Wireless Internet, Applications and finally Security Issues. The papers (and authors) come from all parts of the world, confirming the international stature of this Workshop. The majority of the contributions are from Europe (France, Germany, Greece, Italy, Netherlands, Norway, Switzerland, UK). However, a significant number is from Australia, Brazil, Canada, Iran, Korea and USA. The proceedings also include two invited papers. We take this opportunity to thank all the authors who submitted their papers to WONS 2006. You helped make this event again a success

    Statistical priority-based uplink scheduling for M2M communications

    Get PDF
    Currently, the worldwide network is witnessing major efforts to transform it from being the Internet of humans only to becoming the Internet of Things (IoT). It is expected that Machine Type Communication Devices (MTCDs) will overwhelm the cellular networks with huge traffic of data that they collect from their environments to be sent to other remote MTCDs for processing thus forming what is known as Machine-to-Machine (M2M) communications. Long Term Evolution (LTE) and LTE-Advanced (LTE-A) appear as the best technology to support M2M communications due to their native IP support. LTE can provide high capacity, flexible radio resource allocation and scalability, which are the required pillars for supporting the expected large numbers of deployed MTCDs. Supporting M2M communications over LTE faces many challenges. These challenges include medium access control and the allocation of radio resources among MTCDs. The problem of radio resources allocation, or scheduling, originates from the nature of M2M traffic. This traffic consists of a large number of small data packets, with specific deadlines, generated by a potentially massive number of MTCDs. M2M traffic is therefore mostly in the uplink direction, i.e. from MTCDs to the base station (known as eNB in LTE terminology). These characteristics impose some design requirements on M2M scheduling techniques such as the need to use insufficient radio resources to transmit a huge amount of traffic within certain deadlines. This presents the main motivation behind this thesis work. In this thesis, we introduce a novel M2M scheduling scheme that utilizes what we term the “statistical priority” in determining the importance of information carried by data packets. Statistical priority is calculated based on the statistical features of the data such as value similarity, trend similarity and auto-correlation. These calculations are made and then reported by the MTCDs to the serving eNBs along with other reports such as channel state. Statistical priority is then used to assign priorities to data packets so that the scarce radio resources are allocated to the MTCDs that are sending statistically important information. This would help avoid exploiting limited radio resources to carry redundant or repetitive data which is a common situation in M2M communications. In order to validate our technique, we perform a simulation-based comparison among the main scheduling techniques and our proposed statistical priority-based scheduling technique. This comparison was conducted in a network that includes different types of MTCDs, such as environmental monitoring sensors, surveillance cameras and alarms. The results show that our proposed statistical priority-based scheduler outperforms the other schedulers in terms of having the least losses of alarm data packets and the highest rate in sending critical data packets that carry non-redundant information for both environmental monitoring and video traffic. This indicates that the proposed technique is the most efficient in the utilization of limited radio resources as compared to the other techniques

    Fairness, engagement, and discourse analysis in AI-driven social media and healthcare

    Get PDF
    This thesis addresses the critical concerns of fairness, accountability, transparency, and ethics (FATE) within the context of artificial intelligence (AI) systems applied to social media and healthcare domains. First, a comprehensive survey examines existing research on FATE in AI, specifically focusing on the subdomains of social media and healthcare. The survey evaluates current solutions, highlights their benefits, limitations, and potential challenges, and charts out future research directions. Key findings emphasize the significance of statistical and intersectional fairness in ensuring equitable healthcare access on social media platforms and highlight the pivotal role of transparency in AI systems to foster accountability. Building upon the survey, this thesis delves into an analysis of social media usage by healthcare organizations, with a specific emphasis on engagement and sentiment forecasting during the COVID-19 pandemic. Data collection from Twitter handles of pharmaceutical companies, public health agencies, and the World Health Organization enables extensive analysis. Natural language processing (NLP)-based topic modeling techniques are applied to identify health-related topics, while sentiment forecasting models are employed to gauge public sentiment. The results uncover the impact of COVID-19-related topics on public engagement, highlighting the varying levels of engagement across diverse healthcare organizations. Notably, the World Health Organization exhibits dynamic engagement patterns over time, necessitating adaptable strategies. The thesis further presents latest sentiment forecasting models, such as autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average with exogenous factors (SARIMAX), which enable organizations to optimize their content strategies for maximum user engagement. Furthermore, discourse analysis is conducted to unravel the factors that shape the content of tweets by healthcare organizations on Twitter. [...
    corecore