15 research outputs found

    Resolving Multi-party Privacy Conflicts in Social Media

    Get PDF
    Items shared through Social Media may affect more than one user's privacy --- e.g., photos that depict multiple users, comments that mention multiple users, events in which multiple users are invited, etc. The lack of multi-party privacy management support in current mainstream Social Media infrastructures makes users unable to appropriately control to whom these items are actually shared or not. Computational mechanisms that are able to merge the privacy preferences of multiple users into a single policy for an item can help solve this problem. However, merging multiple users' privacy preferences is not an easy task, because privacy preferences may conflict, so methods to resolve conflicts are needed. Moreover, these methods need to consider how users' would actually reach an agreement about a solution to the conflict in order to propose solutions that can be acceptable by all of the users affected by the item to be shared. Current approaches are either too demanding or only consider fixed ways of aggregating privacy preferences. In this paper, we propose the first computational mechanism to resolve conflicts for multi-party privacy management in Social Media that is able to adapt to different situations by modelling the concessions that users make to reach a solution to the conflicts. We also present results of a user study in which our proposed mechanism outperformed other existing approaches in terms of how many times each approach matched users' behaviour.Comment: Authors' version of the paper accepted for publication at IEEE Transactions on Knowledge and Data Engineering, IEEE Transactions on Knowledge and Data Engineering, 201

    Resolving Multi-party Privacy Conflicts in Social Media

    Get PDF
    Items shared through Social Media may affect more than one user's privacy --- e.g., photos that depict multiple users, comments that mention multiple users, events in which multiple users are invited, etc. The lack of multi-party privacy management support in current mainstream Social Media infrastructures makes users unable to appropriately control to whom these items are actually shared or not. Computational mechanisms that are able to merge the privacy preferences of multiple users into a single policy for an item can help solve this problem. However, merging multiple users' privacy preferences is not an easy task, because privacy preferences may conflict, so methods to resolve conflicts are needed. Moreover, these methods need to consider how users' would actually reach an agreement about a solution to the conflict in order to propose solutions that can be acceptable by all of the users affected by the item to be shared. Current approaches are either too demanding or only consider fixed ways of aggregating privacy preferences. In this paper, we propose the first computational mechanism to resolve conflicts for multi-party privacy management in Social Media that is able to adapt to different situations by modelling the concessions that users make to reach a solution to the conflicts. We also present results of a user study in which our proposed mechanism outperformed other existing approaches in terms of how many times each approach matched users' behaviour

    Policy resolution of shared data in online social networks

    Get PDF
    Online social networks have practically a go-to source for information divulging, social exchanges and finding new friends. The popularity of such sites is so profound that they are widely used by people belonging to different age groups and various regions. Widespread use of such sites has given rise to privacy and security issues. This paper proposes a set of rules to be incorporated to safeguard the privacy policies of related users while sharing information and other forms of media online. The proposed access control network takes into account the content sensitivity and confidence level of the accessor to resolve the conflicting privacy policies of the co-owners

    Adversarial Privacy-preserving Filter

    Full text link
    While widely adopted in practical applications, face recognition has been critically discussed regarding the malicious use of face images and the potential privacy problems, e.g., deceiving payment system and causing personal sabotage. Online photo sharing services unintentionally act as the main repository for malicious crawler and face recognition applications. This work aims to develop a privacy-preserving solution, called Adversarial Privacy-preserving Filter (APF), to protect the online shared face images from being maliciously used.We propose an end-cloud collaborated adversarial attack solution to satisfy requirements of privacy, utility and nonaccessibility. Specifically, the solutions consist of three modules: (1) image-specific gradient generation, to extract image-specific gradient in the user end with a compressed probe model; (2) adversarial gradient transfer, to fine-tune the image-specific gradient in the server cloud; and (3) universal adversarial perturbation enhancement, to append image-independent perturbation to derive the final adversarial noise. Extensive experiments on three datasets validate the effectiveness and efficiency of the proposed solution. A prototype application is also released for further evaluation.We hope the end-cloud collaborated attack framework could shed light on addressing the issue of online multimedia sharing privacy-preserving issues from user side.Comment: Accepted by ACM Multimedia 202

    Privacy preservation in social media environments using big data

    Get PDF
    With the pervasive use of mobile devices, social media, home assistants, and smart devices, the idea of individual privacy is fading. More than ever, the public is giving up personal information in order to take advantage of what is now considered every day conveniences and ignoring the consequences. Even seemingly harmless information is making headlines for its unauthorized use (18). Among this data is user trajectory data which can be described as a user\u27s location information over a time period (6). This data is generated whenever users access their devices to record their location, query the location of a point of interest, query directions to get to a location, request services to come to their location, and many other applications. This data could be used by a malicious adversary to track a user\u27s movements, location, daily patterns, and learn details personal to the user. While the best course of action would be to hide this information entirely, this data can be used for many beneficial purposes as well. Emergency vehicles could be more efficiently routed based on trajectory patterns, businesses could make intelligent marketing or building decisions, and users themselves could benefit by taking advantage of more conveniences. There are several challenges to publishing this data while also preserving user privacy. For example, while location data has good utility, users expect their data to be private. For real world applications, users generate many terabytes of data every day. To process this volume of data for later use and anonymize it in order to hide individual user identities, this thesis presents an efficient algorithm to change the processing time for anonymization from days, as seen in (20), to a matter of minutes or hours. We cannot focus just on location data, however. Social media has a great many uses, one of which being the sharing of images. Privacy cannot stop with location, but must reach to other data as well. This thesis addresses the issue of image privacy in this work, as often images can be even more sensitive than location --Abstract, page iv

    Smart Home Personal Assistants: A Security and Privacy Review

    Get PDF
    Smart Home Personal Assistants (SPA) are an emerging innovation that is changing the way in which home users interact with the technology. However, there are a number of elements that expose these systems to various risks: i) the open nature of the voice channel they use, ii) the complexity of their architecture, iii) the AI features they rely on, and iv) their use of a wide-range of underlying technologies. This paper presents an in-depth review of the security and privacy issues in SPA, categorizing the most important attack vectors and their countermeasures. Based on this, we discuss open research challenges that can help steer the community to tackle and address current security and privacy issues in SPA. One of our key findings is that even though the attack surface of SPA is conspicuously broad and there has been a significant amount of recent research efforts in this area, research has so far focused on a small part of the attack surface, particularly on issues related to the interaction between the user and the SPA devices. We also point out that further research is needed to tackle issues related to authorization, speech recognition or profiling, to name a few. To the best of our knowledge, this is the first article to conduct such a comprehensive review and characterization of the security and privacy issues and countermeasures of SPA.Comment: Accepted for publication in ACM Computing Survey

    Desen: Specification of Sociotechnical Systems via Patterns of Regulation and Control

    Get PDF
    We address the problem of engineering a sociotechnical system (STS) with respect to its stakeholders’ requirements. We motivate a two-tier STS conception comprising a technical tier that provides control mechanisms and describes what actions are allowed by the software components, and a social tier that characterizes the stakeholders’ expectations of each other in terms of norms. We adopt agents as computational entities, each representing a different stakeholder. Unlike previous approaches, our framework, Desen, incorporates the social dimension into the formal verification process. Thus, Desen supports agents potentially violating applicable norms—a consequence of their autonomy. In addition to requirements verification, Desen supports refinement of STS specifications via design patterns to meet stated requirements. We evaluate Desen at three levels. We illustrate how Desen carries out refinement via the application of patterns on a hospital emergency scenario. We show via a human-subject study that a design process based on our patterns is helpful for participants who are inexperienced in conceptual modeling and norms. We provide an agent-based environment to simulate the hospital emergency scenario to compare STS specifications (including participant solutions from the human-subject study) with metrics indicating social welfare and norm compliance, and other domain dependent metrics

    “I thought you were okay”: Participatory Design with Young Adults to Fight Multiparty Privacy Conflicts in Online Social Networks

    Get PDF
    International audienceWhile sharing multimedia content on Online Social Networks (OSNs) has many benefits, exposing other people without obtaining permission could cause Multiparty Privacy Conflicts (MPCs). Earlier studies developed technical solutions and dissuasive approaches to address MPCs. However, none of these studies involved OSN users who have experienced MPCs, in the design process, possibly overlooking the valuable experiences these individuals might have accrued. To fill this gap, we recruited participants specifically from this population of users, and involved them in participatory design sessions aiming at ideating solutions to reduce the incidence of MPCs. To frame the activities of our participants, we borrowed terminology and concepts from a well known framework used in the justice systems. Over the course of several design sessions, our participants designed 10 solutions to mitigate MPCs. The designed solutions leverage different mechanisms, including preventing MPCs from happening, dissuading users from sharing, mending the harm, and educating users about the community standards. We discuss the open design and research opportunities suggested by the designed solutions and we contribute an ideal workflow that synthesizes the best of each solution. This study contributes to the innovation of privacy-enhancing technologies to limit the incidences of MPCs in OSNs
    corecore