1,532 research outputs found

    Electronic interaction and bipolar resistive switching in copper oxide-multilayer graphene hybrid interface: Graphene as an oxygen ion storage and blocking layer

    Get PDF
    This study reports a bipolar resistive switching device based on copper oxide (CuO)-multilayer graphene (MLG) hybrid interface in complete contrast to the ohmic and rectifying characteristics of junctions based on individual MLG and CuO layers. The observed shift and the occurrence of additional O1s, Cu2p, and C1s core level peaks indicate electronic interaction at the hybrid interfacial layer. Large changes in the resistive switching parameters on changing the ambient conditions from air to vacuum establish the important role of MLG as oxygen ion storage and blocking layer towards the observed resistive switching effect

    2D semiconductor nanomaterials and heterostructures : controlled synthesis and functional applications

    Get PDF
    Two-dimensional (2D) semiconductors beyond graphene represent the thinnest stable known nanomaterials. Rapid growth of their family and applications during the last decade of the twenty-first century have brought unprecedented opportunities to the advanced nano- and opto-electronic technologies. In this article, we review the latest progress in findings on the developed 2D nanomaterials. Advanced synthesis techniques of these 2D nanomaterials and heterostructures were summarized and their novel applications were discussed. The fabrication techniques include the state-of-the-art developments of the vapor-phase-based deposition methods and novel van der Waals (vdW) exfoliation approaches for fabrication both amorphous and crystalline 2D nanomaterials with a particular focus on the chemical vapor deposition (CVD), atomic layer deposition (ALD) of 2D semiconductors and their heterostructures as well as on vdW exfoliation of 2D surface oxide films of liquid metals

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor

    Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride

    Get PDF
    Insulating films are essential in multiple electronic devices because they can provide essential functionalities, such as capacitance effects and electrical fields. Two-dimensional (2D) layered materials have superb electronic, physical, chemical, thermal, and optical properties, and they can be effectively used to provide additional performances, such as flexibility and transparency. 2D layered insulators are called to be essential in future electronic devices, but their reliability, degradation kinetics, and dielectric breakdown (BD) process are still not understood. In this work, the dielectric breakdown process of multilayer hexagonal boron nitride (h-BN) is analyzed on the nanoscale and on the device level, and the experimental results are studied via theoretical models. It is found that under electrical stress, local charge accumulation and charge trapping/detrapping are the onset mechanisms for dielectric BD formation. By means of conductive atomic force microscopy, the BD event was triggered at several locations on the surface of different dielectrics (SiO2, HfO2, Al2O3, multilayer h-BN, and monolayer h-BN); BD-induced hillocks rapidly appeared on the surface of all of them when the BD was reached, except in monolayer h-BN. The high thermal conductivity of h-BN combined with the one-atom-thick nature are genuine factors contributing to heat dissipation at the BD spot, which avoids self-accelerated and thermally driven catastrophic BD. These results point to monolayer h-BN as a sublime dielectric in terms of reliability, which may have important implications in future digital electronic devices.Fil: Jiang, Lanlan. Soochow University; ChinaFil: Shi, Yuanyuan. Soochow University; China. University of Stanford; Estados UnidosFil: Hui, Fei. Soochow University; China. Massachusetts Institute of Technology; Estados UnidosFil: Tang, Kechao. University of Stanford; Estados UnidosFil: Wu, Qian. Soochow University; ChinaFil: Pan, Chengbin. Soochow University; ChinaFil: Jing, Xu. Soochow University; China. University of Texas at Austin; Estados UnidosFil: Uppal, Hasan. University of Manchester; Reino UnidoFil: Palumbo, Félix Roberto Mario. Comisión Nacional de Energía Atómica; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lu, Guangyuan. Chinese Academy of Sciences; República de ChinaFil: Wu, Tianru. Chinese Academy of Sciences; República de ChinaFil: Wang, Haomin. Chinese Academy of Sciences; República de ChinaFil: Villena, Marco A.. Soochow University; ChinaFil: Xie, Xiaoming. Chinese Academy of Sciences; República de China. ShanghaiTech University; ChinaFil: McIntyre, Paul C.. University of Stanford; Estados UnidosFil: Lanza, Mario. Soochow University; Chin

    Graphene-Based Junction Devices for Hydrogen Sensors

    Get PDF
    Graphene is quite a robust material for sensing hydrogen and other gases at room temperature as well as at elevated temperatures with high efficiency. This chapter deals with different junction devices based on graphene for hydrogen sensing. Graphene has excellent electronic attributes that make it suitable for gas sensor devices. However, till date, the research on graphene-based junction devices is not many. In this chapter, we present different types of graphene junction devices suitable for hydrogen sensing. Hydrogen sensor response of these junctions is analyzed, and the sensing mechanism is presented. The temperature- and atmosphere-dependent inversion of n-type to p-type conductivity in graphene is highlighted for hydrogen sensing. Moreover, the two dimensional nature of graphene makes it very convenient for device miniaturization. This chapter provides relevant information on the growth of graphene, the fabrication of different graphene junction devices, and hydrogen sensor applications. Also, the sensor-related concerns such as cross-sensitivity, signal drift, stability, and interference of humidity during hydrogen sensing are thoroughly discussed in this chapter

    An account of Natural material based Non Volatile Memory Device

    Full text link
    The development in electronic sector has brought a remarkable change in the life style of mankind. At the same time this technological advancement results adverse effect on environment due to the use of toxic and non degradable materials in various electronic devices. With the emergence of environmental problems, the green, reprogrammable, biodegradable, sustainable and environmental-friendly electronic devices have become one of the best solutions for protecting our environment from hazardous materials without compromising the growth of the electronic industry. Natural material has emerged as the promising candidate for the next generation electronic devices due to its easy processing, transparency, flexibility, abundant resources, sustainability, recyclability, and simple extraction. This review targets the characteristics, advancements, role, limitations, and prospects of using natural materials as the functional layer of a resistive switching memory device with a primary focus on the switching/memory properties. Among the available memory devices, resistive random access memory (RRAM), write once read many (WORM) unipolar memory etc. devices have a huge potential to become the non-volatile memory of the next generation owing to their simple structure, high scalability, and low power consumption. The motivation behind this work is to promote the use of natural materials in electronic devices and attract researchers towards a green solution of hazardous problems associated with the electronic devices.Comment: 32 pages, 8 figures, 2 table
    corecore