166,771 research outputs found
ICAN sensitivity analysis
A computer program called Integrated Composite Analyzer (ICAN) was used to predict the properties of high-temperature polymer matrix composites. ICAN is a collection of NASA Lewis Research Center-developed computer codes designed to carry out analysis of multilayered fiber composites. The material properties used as input to the program were those of the thermoset polyimide resin PMR-15 and the carbon fiber Celion 6000. The sensitivity of the predicted composite properties to variations in the resin and fiber properties was examined. In addition, the predicted results were compared with experimental data. In most cases, the effect of changes in resin and fiber properties on composite properties was reasonable. However, the variations in the composite strengths with the moisture content of the PMR-15 resin were inconsistent. The ICAN-predicted composite moduli agreed fairly well with experimental values, but the predicted composite strengths were generally lower than experimental values
PLA/WOOD BIOCOMPOSITES: IMPROVING COMPOSITE STRENGTH BY CHEMICAL TREATMENT OF THE FIBERS
A resol type phenolic resin was prepared for the impregnation of wood particles used for the reinforcement of PLA. A preliminary study showed that the resin penetrates wood with rates depending on the concentration of the solution and on temperature. Treatment with a solution of 1 wt% resin resulted in a considerable increase of composite strength and decrease of water absorption. Composite strength improved as a result of increased inherent strength of the wood, but interfacial adhesion might be modified as well. When wood was treated with resin solutions of larger concentrations, the strength of the composites decreased, first slightly, then drastically to a very small value. A larger amount of resin results in a thick coating on wood with inferior mechanical properties. At large resin contents the mechanism of deformation changes; the thick coating breaks very easily leading to the catastrophic failure of the composites at very small loads
Electron and proton absorption calculations for a graphite/epoxy composite model
The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit
Process for improving mechanical properties of epoxy resins by addition of cobalt ions
A resin product useful as an adhesive, composite or casting resin is described as well as the process used in its preparation to improve its flexural strength mechanical property characteristics. Improved flexural strength is attained with little or no change in density, thermal stability or moisture resistance by chemically incorporating 1.2% to 10.6% by weight Co(3) ions in an epoxidized resin system
RF shielded connectors
Gap, where cable joins connector housing, is shielded effectively by composite RF shielding made from suitable potting resin material (fumed silica, thixotropic prepolymer composition), conductive coating (silver-filled, flexible, polyurethane resin), and protective jacket (wax coated housing formed around another wax form having contours shaped to match configuration)
Composite structural materials
Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes
Honeycomb-laminate composite structure
A honeycomb-laminate composite structure was comprised of: (1) a cellular core of a polyquinoxaline foam in a honeycomb structure, and (2) a layer of a noncombustible fibrous material impregnated with a polyimide resin laminated on the cellular core. A process for producing the honeycomb-laminate composite structure and articles containing the honeycomb-laminate composite structure is described
Imide modified epoxy matrix resins
High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F
Perbandingan Kekuatan Tekan (Compressive Strength) Resin Komposit Nanofill dengan Teknik Bulk Fill pada Ketebalan yang Berbeda
The nanofill composite resin have a mechanical strength equal to hybrid composite resin and a polish quality equal to microfill composite. Compressive strength is one of the most important mechanical factor, due to its role in countering the force produced by mastication in the restoration process. To improve the compressive strength, resin application and material thickness have a significant influence. Bulk fill technique is engineering application of composite resin simultaneously into the cavity. Bulk fill technique is the most frequently used because more efficient and easy. This study is aimed to determine the compressive strength difference of the nanofill composite resin in various thicknesses. This study uses 30 samples of composite resin and divided to 3 groups with a 6 mm diameter. Group I uses nanofill composite resin samples with a thickness of 2 mm, group II uses nanofill composite resin sampels with a thickness of 4 mm and group III uses nanofill composite resin samples with a thickness 6 mm. Samples were soaked in aquades and incubated for 24 hours in a temparature of 370 C. A universal testing machine (UTM) were used to test their compressive strength. Obtained data were analyzed using one-way ANOVA with a 95% CI. The results showed a significant difference between the groups with a p value of 0,000 (p<0,05). The 2 mm thickness nanofill composite resin had the highest compressive strength. We concluded that the 2 mm thickness nanofill composite resin is superior in terms of compressive strength compared to the 4 and 6 mm thickness composite resin
Vacuum infusion of natural fibre composites for structural applications
Numerous methods of manufacturing natural fibre composites have been reported in the literature, including compression moudling, often in conjunction with a hot press. Other forms of composite manufacture include 'Vacuum Assisted Resin Transfer Moulding' (VATRM) and the 'Seemann Composite Resin Infusion Moulding Process' (SCRIMP). These methods have been reported to produce natural fibre composies with reasonable mechanical properties [1-2]. In this paper, a vacuum infusion rig is described that has been developed to produce consistent quality composite plates for studies into optimising natural fibre composites. The process aims to harness the benefits of vacuum infusion and compression moulding, where vacuum infusion encourages the removal of trapped air in the system and hence avoid reduction, and additional compression moulding can help to achieve high volume fractions that are otherwise difficult in other processes
- …
