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INTRODUCTION

The promise of filamentary composite materials, whose de-

velopment may be consiuered as entering its second generation,

continues to generate intense interest and applications activ-

ity. Such interest and activity are well-founded, since they

are based on the possibility of using relatively brittle mate-

rials with high modulus, high strength, but low density in

composites with good durability and high tolerance to damage

and which, when they do fail, do so in a non-catastrophic

manner. Fiber reinforced composite materials of this kind

offer substantially improved performance and potentially

lower costs for aerospace hardware.

Much progress has been achieved since the initial devel-

opments in the mid 1960's. Rather limited applications to

primary aircraft structure have been made, However, mainly in

a material-substitution mode on military aircraft, except for

a few experiments currently underway on large passenger air-

planes in commercial operation and a few military develop-

ments which have not seen service use,

To fulfill the promise of composite materials cc -,letely

requires a strong technology base. NASA and AFOSR recognize

the present state of the art to be such that to fully exploit

composites in sophisticated aerospace structures, the tech-

nology base must be improved. This, in turn, calls for ex-

panding fundamental knowledge and the mean3 by which it can

Le successfully applied in design and manufacture.

Sam.	
AL

PRECEDING PAGE BLANK NOT FILMEV 	 J
1



4

As the technilogy of composite materials and structures

moves toward fuller adoption into aerospace structures, some

of the problems of an earlier era are being solved, others

which seemed important are being put into perspective as

relatively minor, and still others unanticipated or put aside

are emerging as of high priority. The purpose of the FPI

program as funded by NASA and AFOSR has been to develop crit-

ical advanced technology in the areas of physical properties,

structural concepts and analysis, manufacturing, reliability

and life pre^._-tion.

Our approach to accomplishing these goals is through an

interdisciplinary program, unusual in at least two important

aspects for a university. First, the nature of the research

is comprehensive - from fiber and matrix constituent proper- :,	 -

ties research, through the integration of constituents into

composite materials and their characterization, the behavior

of composites as they are used in generic structural compo-

nents, their non-destructive and proof testing and, whare

the state of the art will be advanced by doing so, extending

the research effort into simulated service use so that the

composite structure's long-term integrity under conditions

pertinent to such use can be assessed. Inherent in the RPI

program is the motivation which basic research into the

structural aspects provides for research at the materials

level, and vice versa.
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Second, interactions among faculty contributing to pro-

gram objectives - which is a group wider than that supported

under the project - is on a day to day basis, regardless of

organizational lines. Program management is largely at the

working level, and administrative, scientific and technical

decisions are made, for the most part, independent of con-

siderations normally associated with academic departments.

Involvement of this kind includes - depending on the flow of

the research - faculty, staff and students from chemistry,

civil engineering, materials engineering and the department

of mechanical engi_n-e ying, aeronautical engineering and

mechanics.

Both of these characteristics of the NASA/AFOSR program

of research in composite materials and structures foster the

kinds of fundamental advances which are triggered by insights
4 t
s

into aspects beyond the narrow confines of an individual dis-

cipline. This is a program characteristic often sought in

many fields at a university, but seldom achieved.

Overall program emphasis is on basic, long-term research

in the following categories: (a) constituent materials, (b)

composite materials, (c) generic structural elements, (d)

processing science technology and (c) maintaining long-term

structural integrity. Emphasis has shifted, and can be ex-

pected to continue to shift from one time period to another,

among these areas depending on the states of composite mate-

rials and structures. Progress in the program will be

0j
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reported in the following pages under these headings. Those

computer methodology developments are also undertaken which

both support Rensselaer projects in composite materials and

structures researcn in the areas listed above and which also

represent research with the potential of widely useful re-

sults in their own right.

In short, the NASA/AFOSR Composites Aircraft Program is

a multi-faceted program planned and managed so that scien-

tists and engineers in a number of pertinent disciplines

will interact to achieve its goals. Research in the basic

composition, characteristics and processing science of com-

posite material- and their constituents is balanced against

the mechanics, conceptual design, fabrication and testing of

gen-:-ic structural elements typical of aerospace vehicles so

as to encourage the discovery of unusual solutions to pres-

ent and future problems. In the following sections, more

detailed descriptions of the progress achieved in the vari-

ous component parts of this comprehensive program are pre-

sented.

;b I

J1
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II-A MECHANICAL PROPERTIES OF HIGH PERFORMANCE CARBON
FIBERS

Senior Investigator: R. J. Diefendorf

1. Introduction

Transmission electron microscopy of carbon fibers re-

veals an undulating ribbon structure of graphitic basal

planes with higher axial alignment of the ribbons near the

surface and lower alignment toward the fiber's center because

of higher amplitude ribbon uneulations [1,2,3,4,5]* . Optical

activity and preferred orientation determinations from elec-

tron diffraction also appear_ to confirm the changes in

structure in carbon fibers with distance from the fiber cen-

ter	 TheseThese changes in preferred orientation through

fiber depth result in a modulus gradient, with the surface

material having a higher modulus and the core a mower modu-

lus[5,6,7].

The variation in axial preferred orientation also re-

sults in a gradient in the coefficient of thermal expansion

in the radial direction across the fiber's diameter. This

follows, since the basal plane direction of carbon filament

is transverse to Lhe fiber's longitudinal axis, and the co-

efficient of thermal expansion (CTE) transverse to the gra-

phite basal plane is higher than it is in the basal plane.

*	 i
Numbers in brackets in this section refer to the references
which are listea on page 27.

PRI;CEI)ING PAGE MANX NOT TIL;ITE]y
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It would, therefore, be expected that the fiber's interior,

having a higher amplitude/wavelength ribbon undulation ( see

Figure II-1), would have a higher CTE than near the fiber's

surface.

As the fiber cools from its processing temperature,

this variation of CTE places the restrained fiber core into

tension and the fiber surface into compression. The surface

compressive strength may account for the insensitivity of

carbon fibers to surface flaws in tension [ 819,10,111 , but

it may also degrade the compressive strength by initiating

[121microbucklin. Qualitative evidence of theg	 presence of

residual stress was obtained when it was observed that a

fiber curled when the surface layer on just one side was

[12,13]ion-milled awayy	 Preliminary quantitative dais taken

to evaluate the residual stress in high modulus carbon fibers

(Hercules HMS) showed values of the order of several GPa

axial compression at the surface [12] The tensile strength

of HMS fibers, however, is only 2 GPa (300 ksi). The effect

F of residual stresses on the performance of carbon fibers is

the basis of this report.

Carbon fibers can be considered, generally speaking,

as brittle materials, and Hooke's law can be applied. The

residual stress distribution within the fiber can be deter-

mined, in principle, by measuring the modulus gradient and
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Figure II-A-1. 3-D Model of High Modulus Carbon Fiber. (after Tokarskv^3^^i
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residual stra i n gradient. Accordingly, the course of the

subject investigation was set as follows:

a) A theoretical prediction of the magnitude of

radial, hoop and axial residual stress within

the fiber caused by cooling down from highs

heat treatment temperature (HTT).

b) A precision method for diameter measurement.

c) A technique for uniform etching of the fi-

bers.

d) A determination of Young ' s modulus gradient

with depth, along a fiber diameter.

e) A determination of residual strain as a

function of fiber diameter.
i

f) A study Of the effect of HTT on the magni-

tude of residual stress.	 '=

3. Progress During Report Period

Equation ( 1) is a general equation for the radial stress

(Cy r ) developed during cooling from processing temperature

levels, for a fiber with radial symmetry. It is expressed

as follows:

i
d z Q	 da	 i

r2 dr2 + Ar ar + BQr = C	 (1)

where

1	 _ E 8 	 E6
A = 3 + 1 — v6zVze 

vre + ^rz'zo Er^er — Er^ez^zr

rE e 	 d 1 - vezVze
+ 1 - vezVze dr	 E6
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V +v v	 E	 v +v v +1-v v
B = 1 + re rz ze _	 8	 er	 6z Zr	 rz zr

1 - v ez vze	 Er	 1 - vezvze

+	 rE8
	 d v O r + v 6z vzr _ 1 - vezvze

1 - vezvze dr	 Er	 Ee

T

	

r	 _	 _

C = 1 — Ee v	 (Er — Ee, ( v rz — '0z) I Ez E z,	 r drez za

d
I 	

o	 T+ 
rdr vez ( E Z - EZ,L

Solving Equation (1) requires knowledge of the varia-

tion of values of moduli (E 6 , Er ) , coefficients of thermal

expansion (ar , a e , az ) and Poisson's ratios (vrz' v z8' " ')

across the diameter of the fiber. We can reduce this to a

managable level of complexity by using a simplified model;

viz., a perfect onion skin model.

It is assumed that the material is homogeneous and has

the configuration of a perfectly- layered onion, as shown in

Figure II-2. Properties such as modulus, Poisson's ratio

etc., in the graphitic layer, are also assumed to be similar

to those of pyrolytic graphite. It follows that the stresses

in radial, hoop and longitudinal directions can be solved

using Equation (1), yielding the following relations:

a  = 168[1 - (R/Ro)"']ksi	
(2)

r-

^7



0.5

Q e = 168[1 - 1.5(R/Ro) J	 (3)

0.s

and	 a  = 82.4 - 103(R/Ro)	 (4)

f

Figure II-A-2. Onion Layered Model

The high compressive hoop stress on the surface will cause

a crenulated surface to form on the fiber. Both hoop and

radial stresses contribute to the development of longitudinal

stress in the fiber through Poisson's ratio effects, and so

they will also be compressive on the surface and tensile in-

side of the fiber. The radial stress within the fiber will

induce microcracks within it, and the stress relief due to

cracking reduces hoop, radial and longitudinal stresses.

Since the fiber is not homogeneous, however, another contri-

bution from inhomogeneity must be added to these stresses.
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Assume that the structure of the fibei

that of skin and core. Then, each of these constituents is

treated as having different size. spring rate and coefficient

of thermal expansion (CTE). The fiber model, therefore,

appears as a pair of parallel springs, as shown in Figure

II-A-3.

CORE
	 ,	 KIN

EC
	

ES

AC
	 As

aC	 as

Figure II-A-3. Parallei Spring Fiber Model

The residual stress on the surface of the fiber, esti-

mated from the para iel springs model, is compressive (.56 Pa

or 73.4 ksi) and in the core is tension (0.027 Pa or 3.8 ksi),

both as surmised from the earlier purely physical reasoning.

I
L 

L7
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The magnitude of these stresses will be compared with those

obtained in experiments.

The technique to determine the residual stress involves

the measurement of fiber modulus and residual strain as a

function of fiber diameter. The accuracy of values in the

past has been limited by diameter errors. In the current

work, however, the precision of fiber diameter measurements

was improved by using a laser diffraction technique [141

rather than a purely optical or electro-optical method.

As shown in Table II-1, the laser diffraction technique

provides better resolution than optical microscopy for cir-

cular fiber diameter measurements, and it is much faster.

However, the cross sections of some of the carbon fibers are

not round. For instance, T-300 fibers have cross sections

mainly of kidney, ellipse and other slightly irregular

shapes. To evaluate such fibers, a single filament is

mounted vertically in a rotating stage. The diffraction

pattern was measured repeatedly, after rotating the filament

cross section by steps every 0 degrees. The corresponding

widths were determined, and the total area was calculated.

The results are shown in Table II-2. In either kidney

shaped or elliptical cross sections, the maximum errors

(40-50%) arise from measuring one edge only (p = 1800),

while the minimum error (-1%) occurs at 36° of rotation.

Therefore, a rotating technique which used 0 = 36° was

selected as giving a very good representation of the true

diameter.

__O
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TABLE II-1

FIBER DIAM.FTER MEASUREMENT TECHNIQUES AND RESULTS

Mean	 Standard

	

Diameter Deviation	 Number of
01m)	 (um)	 Observations

A. Optical Microscopy

1) Edge
2) Vertical (bundle)
3) Vertical (single)
4) Oil immersion
5) Image analysis

B. Laser Diffraction

1) Photodetector
2) Visual

7.0 .45 200
7.81 .31 53
8.25 .25 55
8.37 .11 50
7.74 .52 53

8.03 .037 18
7.68 .08 30

TABLE 11.2

ROTATING TECHNIQUE FOR IRREGULAR AREA MEASUREMENT

Error	 (S. D.)_Percent
Rotating
Angle Set 1. Set 11.

180 37 50

90 -32(4.2) -34(2.2)

60 -11(1.8) -13(1.0)

45 -2.6(1.2) -4.8(.8)

36 1.5 (. 5) -.6(.3)

30 3.8(.3) 2.0(.5)

20 6.8(.1) 5.2(.6)

15 7.9(.2) 6.3(.3)

10 8.7 7.2

5 9.2 7.7
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The modulus and residual strain in carbon fibers were

measured by successively electrochemically milling away the

fiber surface [14] Electrochemical etching was found to re-

move the carbon fiber surface very uniformly in contrast

with air and wet oxidation (see Figure II-A-4).

The modulus distributions of HMS, HTS and AS carbon

fibers are shown in Figure II-A-5 [151
 ^ based on average values

for each radius ratio. HMS, as received, fiber has an aver-

age modulus of 370 GPa (54 Msi), which drops to 260 GPa

(38 Msi) as the radius of the fiber is etched away to 0.72

of the original radius. Further, the rate of range in modu-

lus has a higher value near the surface and the rate of

change is a more gradual decrease toward the center. This

is consistent with the modeling of skin/core heterogeneity

for Type I carbon fiber. As noted, the outside skin has

more oriented graphitic layers parallel to the fiber surface,

so that fibers which include this skin will have higher

average modulus than those which do not. As the outside

skin is etched away, the modulus of the remaining fiber de-

creases. HTS fibers with an average modulus of 267 GPa

(39 Msi) change to 240 GPa (35 Msi) at the radius ratio of

0.61. The change of modulus across the fiber diameter is

comparably smaller than that of HMS fiber. For AS fibers,

the moduli changes from 212 GPa (31 Msi! to 185 GPa (27 M.gi)

at the radius ratio of 0.61. Again, the smallar change in

moduli across the fiber diameter would be expected from the

i
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observation [161 that there is no skin/core heterogeneity in

Type II and Type A fibers. However, Morita et al. [171 meas-

ured large radial gradients of Young's modulus from 280 GPa

(41 Msi) to 171 GPs (25 Msi) for T-300 fibers (as shown in

Figure II-A-4, curve 1). To verify these measurements, a

bundle of T-300 fibers from Union Carbide was selected for

modulus gradient measurement. The results for this case are

also shown in Figure II-A-6 curvet. The modulus changes

from 205 GPa (30 Msi) to 178 GPa (26 Msi) at R/Ro = 0.58.

By neglecting three low values in the small R/Ro region, we

obtain curve 3, showing only a small change in modulus

across the fiber. This is similar to AS fibers. It is

noted that the cross section of T-300 fiber is not round,

therefore, larger measuring errors can be expected if it is

only measured with optical microscopy from the edge (see

Table II-2). Another fiber, Hercules AS-4, was also ex-

amined. The modulus changed from 240 GPa (35 Msi) to 219 GPa

(32 Msi) at R/Ro = 0.62. Again, the change of modulus is

small across the fiber, but significant.

In conclusion, modulus gradients in carbon fibers show

high values for HMS, low values for HTS, AS, T-300 and AS-4

fibers. These measurements are related to the observed mi-

crostructure. A skin/core structure will produce a sharp

modulus gradient, otherwise, only a small gradient exists.

Therefore, the following analysis of residual stress will

focus on hig:, modulus fiber only.

O^
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Measured axial contractions [141 as a function of the

radius of etched fiber for HMS fibers are shown in Figure

II-A-7.There is a large contraction as the surface is etched

away which implies the outside skin was under a compression

stress state before that layer was removed. The sharp drop

also is consistent with the skin/core fiber microstructure.

Knowing the measured fiber contraction function, e(r),

the measured average modulus function, Y(r), and the local

mo. ' ,is, E(r), and assuming that the actual strain gradient,

e(r), and its derivative are continuous, we then can deter-

mine e(r) using the following equation[14].

r
(de (r) JorE(r)dr

£ (r) _ - e (r) - dr	 rE (r)	 ( 5)

Here again, once the local modulus and local strain have

been established, the residual stress within carbon fibers

is observed to have a tensile axial residual stress in the

center of the fiber and a compressive axial stress at the

surface. The tensile residual stress in the middle of the

fiber is not very sensitive to the form of the functions

used for the modulus and strain gradients, provided the

function produces an unique derivative at the center of the

fiber. However, the calculated stress at the surface is

dependent upon the kind of function used. The calculated

residual compressive stress near the surface is about 0.55

GPa (80 ksi), but it rises rapidly to zero as depth below

the surface is gained (see Figure II-A-8).

23
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The residual stress predicted by the parallel springs

model on the surface of the fiber is .5 GPa (73.4 ksi) [com-

pression], which is very close to the experimental value,

i.e., .55 GPa (80 ksi) [compression].

To summarize, high surface compression minimizes the

effect of surface flaws [10] , but high axial tensile stress

in the interior may decrease strength by causing fracture to

initiate at flaws in the interior rather than at the surface

when the fiber is under tensile loads. Similarly, the high

axial compressive stresses in the outer layers of a fiber

may initiate buckling when the fiber is compressively loaded.

Modifications of the residual stress pattern might allow in-

creased tensile and/or compressive strengths to be obtained

in high modulus carbon fibers. In addition, the modulus 	 _,-1
varies across a fiber diameter, with the modulus of the sur-

face layers about twice the average fiber modulus and the

interior modulus only one-half the average, for HMS fibers.

This modulus gradient suggests that higher modulus carbon

fibers could be produced if the modulus at their interior

could be increased.

4. Plans for Upcoming Period

Much effort in the carbon fiber field has emphasized

modulus gradient and residual stress, while little study has

been done on tae strength of the fibers. The high axial

tensile stress in the interior may decreaFj strength by

; Vj
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causing fracture to initiate at flaws in the interior rather

than at the surface. In order to verify this statement, the

fracture surface of the fibers should be investigated. A

technique has been developed to catch the fracture ends of

tensilely failed fibers. Samples having different diameters,

with residual stresses relieved by varying amounts of elec-

trochemical etching, have been tested. The fracture ends

were caught and will be investigated with SEM. Some SEM

pictures show that for HMS, the fracture initiated from the

interior of the finer; other kinds of fibers fail from flaws

at the surface. A group of samples are under investigation,

and the results will be obtained within the next reporting

period.

Another important property, Poisson's ratio, is under

evaluation. If the longitudinal strain is 0.5% and the di-

amter of the fiber is about 8 Pm, then the resolution needed

to measure changes in diameter for a Poisson's ratio about

0.2 (to be evaluated) is about 0.8 pm. This is a very small

dimension. Fortunately, with laser diffraction techniques

such small dimensional changes appear to be within our meas-

uring capabilities. Tale, therefore, will attempt to deter-

mine Poisson's ratio directly.
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III-A FATIGUE IN COMPOSITE MATERIALS

Senior Investigator: E. Krempl

1. IntrodIACtion

The Oeformation and failure behavior of graphite/epoxy

tubes under biaxial (axial and torsion) loading is being

investigated. The aim of this research is to increase basic

understanding of and provide design information for the bi-

axial response of graphite/epoxy composites.

Manufacture of [0, t451 s graphit-e/epoxy (Gr/E) tubes

continued preparatory to undertaking a new series of tests,

and a review of fatigue damage the r^zies in composites was

be^;un.

3. Progress During Report Period

Preparation of two technical papers giving the static

elaEtic and strength properties and the biaxial fatigue per-

formance, respectively, of [±451 s Gr/E tubes continued.

Axial loading of [-_'451 s Gr/E tubes produced significant

time-dependent deformation (creep, relaxation and loading

rate sensitivity). Those findings were considered unusual

and probably due to insufficient curing and/or moisture

pick-up.

Prolonged drying is being performed on two specimens.

one will be subjected to a post-cuze treatment. These

pRECEDING ,AGE SLANY. NOT
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specially treated specimens will then be tested, in the next

reporting period, to ascertain whether their time-dependent

behavior has been altered by these treatments.

Two additional batches of six-layer [0, ±45] s Gr/E

tubes were manufactured, and some tests have been.completed.

A review of current fatigue theories fcr composites is

underway in an effort to develop a life-prediction method

for biaxial fatigue of composites.

4. Plans for Upcoming Period

The tasks outlined in Section 3 will be continued.

5. Current Publications or Presentations by
Professor Krempi on this Subject

"Biaxial In-Phase and Out-of-Phase Fatigue Behavior of Gra-
phite-Epoxy Tubes" 	 !

Presented at the ASTM meeting,(E-9) Committee on
Fatigue, May 11, 1983 and was given the "1982 E-09
Best Presented Paper Award"

"Inelastic Work and Thermomechanical Coupling in Visco-
plasticity"

Presented paper as a Topical Lecture at the Plas-
ticity Today Meeting, Udine, Italy, June 1983.



35

III-B EXPERIMENTAL STUDIES OF MOISTURE AND TEMPERATURE EF-
FECTS ON THE MECHANICAL PROPERTIES OF ;RAPHITE EPDXY
LAMINATES

Senior Investigator: S. S. Sternstein

1. introduction

This project is concerned with those properties of high

performance composites which are strongly dependent on the

physical properties of matrix resin.

Moisture is known to adversely affect the properties

of both neat epoxy resin and epoxy matrix composites. The

inhomogeneous swelling makes a major contribution to the

moisture degradation of mechanical properties, both in neat

epoxy resin and composite laminates. It is postulated that
a

the postcuring process can change structure-moisture inter-

action and alleviate its adverse effects. Such effects are

t^_	 being investigated.

2. Status

To date, specific investigations have included visco-

elastic characterization of the glass transition region in

both laminates and neat resins, delamination studies, mois-

ture interactions and inhomogeneous swelling phenomena.

3. Progress During Report Period

During the present report period, our objective has

been to further study the moisture interaction using
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postcured samples. Graphite/epoxy composite laminates with

0/90 stacking sequence, were postcured at 180°C for twelve

hours.

A set of these composite samples exposed to a boiling

water environment for various periods of time were tested

and the results of in-phase stiffness, M'(storage modulus),

with moisture content are shown in Figure III-B-1. The

values of M' are normalized both by the value of M' for the

dry sample and by the cube of the thickness for the wet

sample (as tested). It is clear that in-phase stiffness

does not change with moisture uptake. These results are

completely different: from those for as-cured samples. In

as-cured samples, there is a drastic change in slope around

2.5% moisture content. (For the readers convenience, M'

versus moisture content in as-cured samples is shown in Fig-

ure III-B-2.) Note that the maximum moisture uptake in

postcured samples is about 2% by weight, which is less than

that in as-cured samples (4.53) for the same environmental

conditions. This indicates that the postcuring process

changes the network structure and alters dramatically the

structure-moisture interaction, even though both the post-	 ;

cured and as-cured samples have the same chemistry to begin

with. As expected, the in-phase stiffness retraces its

path upon drying.

The loss factor, M"/M', for postcured composite samples

is given in Figure III-B-3. The ordinate represents the
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increase (or increment) in loss factor in a wet sample rela-

tive to a dry sample. The loss factors increase linearly

with increasing moisture uptake. If the sample is dried,

the loss factors decrease accordingly, i.e., a dried sample

would lie on the curve and not exhibit a large residual loss

factor. This indicates that moisture has plasticized the

epoxy matrix, and the mobility of the molecules has in-

creased; conversely, drying would decrease the mobility.

For comparison, Figure III-B-4 is a repeat of our previous

result on loss factor hysteresis for as-cured samples. It

suggests, once again, that structure-moisture interaction

for as-cured and postcured composites are very different.

A similar set of experiments using postcured neat epoxy

-resins were performed. As shown in Figure III-B-5, M' de-

creases linearly with increasing moisture content. This

indicates that the degree of softening is proportional to

the extent of swelling. Note that the maximum moisture con-

tent is 4.5%, which is much less than that for as-cured

samples (8%). In the as-cured samples, there is a drastic

change in slope at 6.5% moisture content, which was discussed

in a previous report. The loss factor for neat resin samples

is shown in Figure III-B-6; it increases linearly with

moisture content, and hysteresis effects do not occur. This

result is very similar to that for as-cured neat resins.

The polarized light microscope was used to further il-

lustrate the difference in moisture interaction between
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postcured and as-cured samples. A micrograph of a dry, thin

film (0.3mm) of as-cured epoxy is shown at 100 magnification

in Figure III-B-7. The light intensity pattern suggests

that ep,, ..y resin is not a homogeneous material. The bire-

fringence pattern produced after the postcuring process is

shown. in Figure III-B-8. The drastic difference between

those two patterns indicates that the postcuring process

induces a large variation in the network structure, and the

light intensity pattern for postcured samples (see Figure

III-B-8) bears no resemblance to the pattern for as-cured

samples (shown in Figure III-B-7). It is believed that fur-

ther crosslinking occurred during the postcuring process.

e

The birefringence pattern of a postcured epoxy resin

sample exposed to a six-hour boiling water environment is

shown in Figure III-B-9. The wet sample shows a pattern

with a higher intensity, yet the pattern retains the same

characteristics as that of the dry sample. This indicates

that the swelling process in the postcured sample is differ-

ent from that in the as-cured sample. In the as-cured case,

the light intensity pattern of wet samples is characterized

by a) the complete extinction along the polarizer and ana-

lyzer axis, b) approximate symmetry of the four quadrants,

c) maximum interfacial retardation and d) decay of retarda-

tion with distance from the interface (between precipitate

and surrounding matrix). All of this may be seen in Figure

III-B-10.

,I
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Exposed to Boi.linq Water for 6 Hours
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samples, when

III-B-11. The

reversibility

postcured sam-

ined in dynamic

The birefringence pattern of postcured

the samples are redried, is shown in Figure

variation in birefringence is minimal. The

and retention of light intensity pattern of

ples thus strongly support the results obta

mechanical testing as presented earlier.

47

The dynamic mechanical data and birefringence patterns

suggest that the effects of moisture and temperature on

mechanical performance of postcured samples are minimal.

The reversibility of moisture effects on mechanical proper-

ties of postcured samples suggests that plasticization an

swelling are the major processes which occur upon exposure

to moisture. All this suggests that the postcuring process

is beneficial and necessary, in the sense that mechanical

properties are retained under the same hostile environment

which reduces the mechanical performance of as-cured samples.

In order to confirm the phenomena observed for post-

cured samples, a similar set of experiments was performed

with postcured samples exposed for various periods of time

to 100°C in an environment with 100% relative humidity (as

opposed to a boiling water environment). The results are

shown in Figures III-B-1,3,5 and 6. The dynamic mechanical

data and polarized light micrographs indicate that the mois-

ture effects on mechanical properties of postcure'. samples

is the same regardless of the different states of moisture

environment (boiling water versus water vapor at 100°C).



48	
ORIGINAL PACE 15
OF POOK QUALITY

1O7fI 	100 X
Figure III-B-11. !tirt.fringr • nce Pattern of Kedried, Postcured Epoxy

4. Plans for Upcoming Period

It is clear that the struc' llre•-moisture interaction is

a complicated phenomenon. To further gvi.ntify structure-

moisture interactions, studies on the theorerical aspects of

inhomogeneous swelling upon moisture absorption will be

undertaken. The results to date suggest stronrily that in-

homogeneous swelling phenomena associated with the fiber-

matrix interface, especially for the as-cured matrix, are

the dominant effects g.verning moisture-induced damage in

carbon-epoxy laminates.

E
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5. Current Publications or Presentations
Professor Sternstein on this Subject

"Viscoelastic Characterization of Neat Resins and Composites"

Presented at Workshop on Toughening of Composites,
NASA/Langley, May 24-26, 1983.

"Mechanical Characterization of Neat Resins and Composites"
Presented at Cleveland Symposium on Macromolecules,
Case Western Reserve University, Cleveland, OH,
June 13-15, 1983.
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III-C. THEORY OF INHOMOGENEOUS SWELLING IN EPDXY RESIN

Senior Investigator: S. S. Sternstein

1. Introduction

The objective of this research is to develop analytical

procedures to predict the internal strain, stress and muiz-

ture fraction fields of inhomogeneous swelling produced by

absorption of water in epoxy and epoxy based materials.

The morphology of highly crosslinked, thermosetting network

polymers like zured epoxy resin is not homogeneous, and it

contains domains whose physical and/or chemical properties

are different than those of the surrounding regions. These

domains are mostly nodular regions of different crosslink

density and are produced during curing processes due to fac-

tors such as improper mixing of reagents, excessive intra-

nodular reaction, incipient formation of nodules before mac-

rogelation and thermodynamically directed partial segrega-

tion. Also, the network polymers contain microvoids, air

pockets, microcrystalline regions etc. When such a polymer

absorbs a solvent, swelling of the network is no longer ho-

mogeneous and isotropic but rather inhomogeneous. This in-
4

homogeneous swelling causes internal stress, strain and sol-

vent fraction fields in the epoxy resin. This work is aimed

at a quantitative evaluation of these effects.

2. Status

A detailed analysis of the nature of epoxy-water inter-

action has been conducted, and the intrinsically non'a'.inear

PRECEDING PAGE BLANK NOT FILMEI3 	 T^	 ;
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constitutive equation relating stress, strain and volume

fraction of liquid in the swollen polymer at equilibrium with

surrounding environment developed. Equations for inhomogen-

eous swelling in polymeric material with an isolated spher-

ical inhomogene;ty (see Figure III-C-1) were then derived

for the case of zero external load, using conditions of local

stress equilibrium. The inhomogeneity in this work is char-

acterized by a single material gradient parameter, p, de-

fined as a material propert y , of which the elastic and/or

mixing behavior of inhomogeneity are functions. The numer-

ical solution of the equations for Narmco 5208 epoxy resin
N:

(a resin mo-e or less representative of the various struc-

tural epoxies in current use, in equilibrium with surround-

ing atmosphere of 100% relative humidity at 25°C) was ob-

tained and results presented in the previous progress re-

port for positive and negative Gaussian structural fluctua-

tion fields and a positive Gaussian field dispersed in a

negative fluctuation field.

3. Progress Curing Report Period

Additional studies have now been conducted to further

investigate the effect of structural variation distributions

on stre:-s and water volume distributions. Figure III-C-2

shows some of these typical structural fluctuation fields,

and Figures III-C-3 and 4 show the corresponding tangential

and radial stress fields associated with those fluctuations.

(Please refer to the previous report for definition of reduced

radius and other details.)
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Figure III-C-6 shows the stress fields produced due to the

fluctuation field shown in Figure III-C-5. The stress fields

produced clearly tell us that both a large positive mean

normal stress causing cavitation, and octahedral shear stress

favoring shear yielding (if possible), are caused by these

fluctuation fields. These figures also show that the value

of stress at any point not only depends on the value of a

fluctuation parameter p(r) at that point but also on the

gradient of p(r) in a small region surrounding that point.

Figures III-C-7 and 9 show two oth%r kinds of inhomo-

geneities possible in epoxy or epoxy-based materials, and

Figures III-C-8 and 10, respectively, show the stress field

asscciated with these two kinds of inhomogeneities. It is

important to note here that interaction between swelling

fields of two inhomogeneities are not considered. As has

been shown by Lumban-Tobing, such considerations increase

the magnitudes of stress produced. The magnitude and nature

of these internal stresses are conducive to producing damage

by themselves or in combination with stresses due to rela-

tively small external loads (the two are not simple addi-

tive), and it is important to keep these facts in mind in

designing any structural component with epoxy or epoxy-based

materials.

"Finite Element Analysis of Moisture Effects in Graphite-
Epoxy Composites", F. E. R. Lumban-Tobing, M. Shephard and
S. Sternstein. Symposium on Advances and Trends in Struc-
tural and Solid Mechanics, Wash., D.C., Oct. 4, 1982. (Also
Computers and Structures, 16, Nos. 1-4, 1983, pp. 45;-469)

00
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Figure III-C-6. Stress Fields Associated With Fluctuation Fields
Shown in Figure III-C-5
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Figure III-C-7. Schematic of a Rigid, Nonswelling Inclusion Surrounded
by a Positive Gaussian Fluctuation Field
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-tric Positive Gaussian Fluctuation Field
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4. Plans for Upcoming Period

Although the present study is the best approximation

possible from the small amount of data available and within

the capabilities of presently developed fundamental theor-

ies, this work leads to the conclusion that much remains to

be done on both experimental and theoretical fronts in order

to understand the mechanism of inhomogene.ity formation and

water absorption in cured epoxy. Dynamic mechanical and

dielectric studies at low temperatures have a great potential

for throwing light in that direction. Also, a detailed and

carefully executed study to investigate the effects of tem-

perature on the nature of equilibrium isotherms is crucial.

Based on literature review and work in this laboratory, it

is felt that a proper mixing of epoxy resin and curing agent,

and postcuring of the epoxy will help to minimize the prob-

lems due to absorption of water. We do not anticipate fur-

ther work in this area, at this juncture, and upon publica-

tion of the conclusions summarized here, we plan to termi-

nate this phase of our research.

5. Current Publications or Presentations b
Professor Sternstein on this Subject

"Inhomogeneous Swelling Theory and Applications"

Presented at Gordon Conference on Thermosets, New
Hampton, NH, August 22-26, 1983.
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III-D NUMERICAL INVESTIGATION OF THE MICROMECHANICS OF
COMPOSITE FRACTURE

Senior Investigator: M. S. Shephard

1. Introduction

To understand the mechanisms of failure in composites,

it is necessary to develop insight into their micromechanical

behavior, including interactions between matrix and fibers

as the load is increased from zero to that corresponding to

failure. Investigating these phenomena, either experiment-

ally or numerically, is difficult. The purposes of this

project, being carried out by graduate student Nabil Yehia,

are to develop the nonlinear finite element analysis capa-

bility required for composites and to perform numerical in-

vestigations of significant examples of micromechanical

failure in them.

7	 Cl &. — 1 .....

A generalized program for the two dimensional analysis

of static crack growth problems is being developed. It is

being used to conduct a detailed examination of fracture cri-

teria and to develop new criteria needed to track cracks in

composites at the micromechanical level. In addition, filly

automatic finite element mesh generation techniques are

being integrated directly into the analysis functions. This

is an entirely new ap;)roach in program :structure; it is being

done to provide a means to automatically track discrete crack

growth.
w:
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3. Progress During Report Period

During the last reporting period, our effort concen-

trated on the (a) development of a new crack propagation

algorithm based on the T-criteria and (b) study of the ap-

plication of fracture criteria to debonding. In addition,

modifications, such as were required to allow the modified-

quadtree mesh generator to automatically generate mesh ge-

ometries appropriate for cracked geometries, were developed

and implemented. Final testing of the automatic meshing

algorithm, in the presence of a crack modification, is being

carried out, and this software is being integrated with the

analysis routines.

a. The Fracture Criteria for Crack Propagation

It was mentioned in the last progress report that the

maximum strain energy density criterion was found to be a

good alternative to the minimum strain energy density cri-

terion for the crack propagation history. Further investi-

gations during this period, however, led us to the conclu-
t

sion that the T-criterion,neither as initially presented(1l

nor as restated [2,31 ,can be directly used for this purpose.

These further investigations 
(41 

led to the modified T-criter-

ion for crack propagation tracking, which is outlined in the

following paragraphs.

This effort was carried out by graduate student Gary Burd
_	 under support external to the subject grant.

' k	 tNumbers in brackets in this section refer to the references
`	 which are listed on page 76.

i
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The total strain energy density, T, can be decomposed

to its two components as follows:

T = Td + Tv 	(1)

where:

Td = the distorsional strain energy density, and

Tv = the dilatational strain energy density.

By employing ralstions representing the singular stress

field at the crack tip, ona can express both T and Td for

plane stress as follows:

Td 

Sa r 

Lfx + fy - fxfy Y 3f^
XJ	 (2)

S 
	 1 Cv ^--	 ^ 2

Tv	 r	 r2a Lfx +fy

where:

C = (1+v)	 C = 1-2v
d	 3E	 v	 6E

E = Young's modulus; v = Poisson's ratio

fx K I I cos Z - -T sin 6 sin 26 J - KI 11 2sin 2 + L sin 6 cos 2

(	 l	 K	 t	 l
fy = K I I cos 2 + 2 sin 6 sin 6 I + 2 1 I sin 6 cos 

t

`(	
K	

(
1 	 l	 1	 C3)

fxy KI 
l"T 

sin 6 cos ^1 + —2I cos 2 - -f sin 6 sin ^I

$ I ,KII stress intensity factors of Mode I and Mode II
failures, respectively.

The T-criterion states that the crack propagation occurs in

the direction of maximum dilatational strain energy density,

evaluated on the elastic-plastic boundary curve. In the

present approach, the von Mises yielding criterion is

_	
iii/
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employed to obtain that boundary curve as follows:

C
rb ^^T f.+ + fy - fxfy + 3fxy 	(4)

do

The variation of the dilatational strain energy density along

this elastic-plastic boundary is given by the following rela-

tion:

2

T	 -	 CvTdo tx + f 	 (5)
virb - C f 2 + f 2. - f f + 3f2d(x	 y	 x 	 xy)

and the direction of crack propagation is defined by the fol-

lowing two conditions,

a T	 a2 T	 f

a 8 - 0	 and	 v< 0
ae

The T-criterion then states that the fracture will initiate

from the crack tip where t
vmax 

reaches the material critical

value Tvcr' It has been found (4] that the latter condition

is not a valid one for defining the fraction load, because

TvI
lr in Equation (5) is not a load-dependent variable and,
b

consequently, can not ne used to determine the fracture load.

To solve this problem, the modified T-criterion had been pro-

posed for use in determining the fracture load as well as

the crack propagation increment due to the current applied

load. Instead of looking at Tv as the controlling parameter

for fracture initiation, the modified T-criterion looks at

the distance from the crack tip to the elastic-p14stic
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boundary in the direction of propagation, i.e., r
b 	

as the
80

controlling parameter for fracture initiation and propaga-

tion. In other words, the second part of the T-criterion

will be modified to state that the fracture will initiate

from the crack tip when rb	 reaches the material critical
80

value rbcr' The modified T-criterion, denoted by R, is com-

pared to the minimum strain energy density criterion, S, in

Figure III-D-1, for predicting the fracture lucus under ten-

sion, and in Figure III-D-2, for predicting the fracture

load for a slant crack problem. It is interesting to note

that such curves for the modified T-criterion can not be ob-

tained from the original T-criterion statement [2 ' 31 . It is

also noted that the general trend of the R-curves is in

agreement with those of the S-curves obtained by using the

minimum strain energy criterion [51 . A complete comparison

will be available shortly[61.

Another comparison of the S-criterion and the modified

T-criterion, has been carried out for a slant crack problem.

The results appear in Figure III-D-3, where the angle a,

between the crack and the applied load, is taken as 40 de-

grees. The associated finite element mesh is shown in Fig-

ures III-D-4a nd 4b. Table III-D-1 summarizes the results

obtained for both cases when the applied load is tension and

compression. The followin g trends are noted from the data

in this table for the finite element mesh considered.
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Figure III-D-1. Fracture Loci for Slant Crick Problem
Under Remote Tension
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Figure III-D-3. Basic Geometry and Attributes for Slant Crack. Problem
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1) As the error in evaluating K  and K II increases,

so does the error in evaluating Ao.

2) As the error in evaluating K  and K II increases,

the error in evaluating the fracture load Pcr in-

creases, in the case of compression and de-

creases, in the ca-':	 'ension.

3) The error in ev­ urtinq the stress intensity fac-

tor, KI , using L	 displacement correlation

technique [71 is 9-eater than the error produced

using the displacement extrapolation techniquel8l.

In both cases, the error associated with evalua-

ting KII is much bigger than the error associ-

ated with KI.

b. Debonding at Bimaterial Interface

Debonding at a fiber-matrix interface may occur due to

(a) failure in the matrix material adjacent to the inter-

face, (b) failure in the fiber material adjacent to the in-

terface, or (c) debonding of the interface between fiber and

matrix. In some cases, this interface bonding material

could have been formed during the fabrication and curing

processes by adding a third, very thin homogeneous layer at

the interface 191 . In these circumstances, since it is most

likely that debonding will occur in this very thin layer,

one can use the above mentioned modified T-criterion to de-

termine the debonding distance at the interface, provided

the following assumptions are acceptable:

1) The bonding material is too thin to be repre-

sented in the finite element mesh.
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2) The stress intensity factors can be calculated

from the two major materials at the interface.

3) The thin bonding material is isotropic and is

only considered when studying the debonding

process.

4) There is an analogy between debonding at the

crack tip and the plastic zone in plastically

deformable materials. This assumption has been

successfully used in studying the damage zone

of glass-resin composites on the macro scale[10].

5) The crack can only propagate along the inter-

face and cannot change its axis to enter any of

the materials at the interface sides.

The last assumption is a restriction necessitated be-

cause the exact stress field at a crack tip in the neighbor-

hood of a bimaterial interface is not made use of in the
	 '. J

fracture criterion. This was also the reason for adopting

the third assumption.

If the above mentioned assumptions are acceptable, one

can determine the crack propagation distance along the in-

terface, i.e., the damage distance, using Equation (4) as:

where:

rd = 2^d (f22 + fy - f fy + 3f2
do 

Q2

	

t	 _

	

Tdo = 3	 or	 Tdo	 T 
y
a11

at : bonding material tensile strength

Tall' bonding material shear strength

(6)
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The critical damage zone distance rdcr can be obtained by

assuming the fracture is dominated by Mode I behavior at the
2

interface (i.e., K2 << 3).I n this case:

I

_ C 	 2
rdcr 2nTdo KIC

The crack along the interface will propagate if r d > rdcr'

It should be noted that at , Tall and K,C have been known

for the bonding material a priori. This last approach is

currently under investigation.

c. Automatic: Meshing in the Presence of Crack Growth
t

As indicated in the previous report, several modifica-

tions are being made to the modified-quadtree mesh gener-

[11]ator	 for use in tracking crack growth. Complete details

of the new meshing algorithms and the improved data struc-

tures are given in G. S. Burd's Masters Thesis [12) . Only an	
3'I

example demonstrating the resulting mesh is given here.

Figure III-D-5a snows a plate with a crack in it. Fig-

ure III-D-5b shows the mesh automatically generated for that

plate. The mesh generated includes a ring of singular ele-

ments around the crack tip and has the mesh grading away from

that point. Figure III-D-6 shows the same plate and result-

ing mesh after the crack has been propagated.

(7)
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4. Plans for Upcoming Period

During the next repor`ing period, effort will concen-

trate on (a) finalizing the integration of the fully auto-

matic meshing algorithms with the analysis procedures ar.d

(b) carrying out additional micromechanics analyses.
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III-E FREE-EDGE FAILURES OF COMPOSITE LAMINATES

Senior Investigator: T. L. Sham

1. introduction

The failure of structural composite laminates is a very

complex phenomenon, because di.::`ferent mechanisms control the

failure events at different size scales. As one example,

failure can occur i-t the structural level as a result of the

catastrophic loss cf global stiffness of the structure at a

certain critical load. However, the same structural compos-

ite component may fail at the local level by delamination at

the ply interface, translaminar cracking and fiber splitting

etc. For structures under service conditions, these failure

mechanisms do not usually occur in isolation, but rather,

they are coupled in a very complicated way. For example,

interply delamination could lead to intralaminar cracking or

vice versa, or these failure mechanisms could take place in

a convoluted manner. The complexity and the interlocking

nature of the failure mechanisms in composite laminates pro-

hibit a comprehensive study of the detailed evolution of all

of these failure events. It can still be fruitful, however,

to treat each individual mechanism separately and to under-

stand the mechanics involved, be it at t:ha macroscopic or

microscopic level, for each failure mode.

The specific failure mechanism under study in this newly

initiated research is that of the free-edge delamination of
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graphite/epoxy composite laminates. Due to the presence of

steep stress gradients (especially in the thickness direc-

tion of the laminate), in localized regions where lamina

interfaces meet the traction free surface of the laminate,

together with the relatively low ductility of the matrix

material (resin), delaminat in from the free edge is one of

the more important modes of failure in compcsite laminates.

It is worth noting that free edges are present in almost

every composite structure; for example, a free edge is formed

whenever a hole is drilled. The immediate objective of this

research is to obtain global parameters that characterize

the initia ion of the free-edge delaminat;-on process.

2. Status

This is a new project and was started on May 1, 1983.

Recent theoretical stress analvses f1-31* of perfectly

bonded unidirectional laminae with different fiber orienta-

tions reveal that the stresses are singular at the point

where the interface intersects the free edge. Depending on

the fiber orientations e.a the stacking sequence of the la-

minae, the stress singu-Ltrities are of the power type (ex-

ceedingly weak) and/or the logarithmic type. However, it

does not seem plausible that a single-parameter characteri-

zation of the stress field near the free edge, in the same

spirit as the stress intensity factor of Linear Elastic

Fracture Mechanics (LEFM), could be judiciously chosen from

Numbers in brackets in this section refer to the references
which are listed on page 82.

Vii'
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the singular stress field. Further, the use of the amplitude

factors from the. singular stress field to characterize the

initiation of free edge delamination is further clouded by

the small region of dominance of the singular terms in the

field, which is of the order of the fiber thickness or less.

Another school of thought, as represented by Wang,

Crossman and co-workers [4-71 , takes the view that microflaws

are inherently present in composite laminates. A proper con-

tinuum idealization of a composite laminate would then in-

vole: not only the smearing-off of the discrete identities

of individual fibers and matrix material within the ply,

but also a representation of microflaws in the continuum

idealization. Hence, an empirically defined "effective"

crack size iF introduced, and the energy release rate con-

cept of LEFM is applied to the hypothetical crack to obtain

W_	 critical conditions for the onset of free-edge delamination.

The prediction of critical loads at the onset of free-edge

delamination is reported to correlate well with the experi-

ment. However, the choice of the "effective" size for the

hypothetical crack appears to be rather arbitrary.

_Progress During Report Period

A different viewpoint is taken by this investigator in

examining the initiation of free-edge delamination. The ap-

proach a 'opted is that of continuum mechanics, wi `_h each

lamina idealized as homogeneous and anisotrop.ic. The ply

'_ 4j
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interface is treated as a surface of discontinuity where the

components of the elasticity tensor, with respect to the

stressing direction, undergo a "jump". Continuity of the

Aisplacement vector and traction vector across the interface

is enforced. A generalized plane strain, elastic boundary

value problem has been set up on this basis, corresponding

to a composite laminate with symmetric lay-ups under in-

plane loading conditions. Energy variation with load and/or

geometry of such a body is being considered.

4. Plans for Upcoming Period

The analysis of the energy variation for the problem

formulated above will be continued during the next reporting

period.
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III-F ANALYSIS OF UNBALANCED LAMINATES

Senior Investigator: E. G. Brunelle*

1. Introduction

Unbalanced laminates are those whose properties are

such that loads of one kind result in deflections of another.

Examples include those for which bending moments result in

torsion deflections, or where axial loads cause torsional

deflections. There are many potentially useful applications

in aerospace vehicle structures. Stabilizing a swept-forward

wing against ;ending-torsion divergence, might use coupling

of the first kind noted above, passive RPM control of turbo-

fan blades or helicopter rotors mi q t wake use of the second.

c3-^4. -

Bending-torsion coupling is the subject of considerable

work aimed at the development of the forward swept wing.

This aspect in the analysis of unbalanced laminates will be

the subject of future work but is not discussed in this re-

port. Instead, the coupling between axial loads and torsion

has been chosen for analysis.

After examining several mathematical approaches, the

following sequential scheme was adopted:

a) Whitney's solution for the deflection of anti- 	 E

symmetric angle-ply laminates with S3 boundary

kconditions would be extended to find the Green's

functions for in-plane "spike" loadings (Dirac

Delta functions).

* On academic leave at the Air Force Institute of Technology
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b) Classical methods would then be used to construct

the response to axial loadings using the Green's

functions.

c) The plate idealization for the structure of in-

terest is then embedded in the larger S3 plate,

and by imposing distributed generalized loadings

about the blade periphery, the subject plate is

forced to assume the desired CL-F-F-F b—ndary

conditions typical of wing/turbine hlade/heli-

copter blade applications.

This research is being carried out as part of the doctoral

degree requirements of graduate student I-Horng Yang.

3. Progress During Report Period

The equations of motion for antisymmetric angle-ply

composite places with S3 boundary conditions have been solved

for the associated Green's function G ij (x,y;E,n). Note that

the first subscript, i, denotes the deflection direction,

for e.-.ample, ui (x,y), and that the second subscript, j, de-

notes the "spike" load direction, for example, f j (^,n), so

that nine Green's functions are generated.

The plate response to axial load has been formulated,

and some simple numerical checks are being performed. The

formulation for the boundary integral technique has been

completed and has been checked twice.

The paper by C. W. Pryor, Jr. and R. M. Barker entitled

"Finite Element Analysis of Bending-Extensional Coupling in

Laminated Composites" (J. Com . Materials, 4, October 1970)

n4 I
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predicts maximum deflection as u function of antisymmetric

angle-ply orientation for a graphite/epoxy square plate with

all edges clamped (Cl B.C.) under uniform transverse loads.	 =

The subject problem (which considers both in-plane loads and

transverse loads), then has been specialized so as to com-

pare directly with the Pryor/Barker results. That is, con-

sidering a simply-supported laminated plate, which has em-

bedded in it the Cl B.C. plate of Pryor/Barker (as described

above), the Pryor/Barker case has been solved using the

method under development. If we define (see Figure III-F-1)

NML = number of boundary mesh lengths,

NIP = number of internal load points,

M,N = number of Fourier terms and

W = maximum deflection,

then, the results obtained to date from the subject computa-

tional program using the 35 0 ply-orientation laminate in the

Pryor/Barker paper and evaluating various modelling aspects

can be presented as follows:

a) Influence c,i dumber of Fourier Terms

	

NML NIP M,N	 W	 Diff.

4	 25	 20	 2.1685 > 0.7625

4	 25	 40	 2.9310	 0.3383
4	 25	 60	 3.2693 > 02039

4	 25	 80	 3.4732 > 0.0453
4	 25	 85	 3.5185
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0 0 0 0 0

o n o 0 0

n o 0 0 0

o boundary point

o loading point	 -

Figure III-F-1. Plate Geometry Breakdown for Analysis

r+^
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b) Influence of Number of Mesh Elements

NML NIP M,N	 W	 Diff.

	

8	 64	 60	 4.689 > 1.9128

	

16	 64	 60 2.7762	 0.0909

	

20	 64	 60 2.6853 > 0.0503

	

32	 64	 60 2.635

c) Influence of Number of Internal Load Points

NMI, NIP M,N	 W	 Diff.

	

8	 25	 60	 4.7145 > 0.0255

	

8	 64	 60	 4.689

	

32	 64	 60	 2.635 > 0.0015

	

32	 100 60 2.6365

d) Influence of Combination of Mesh Elements and In-
ternal Load Points

NML NIP M,N	 W	 Diff.

	

8	 6E.	 60	 4.689	 1.9128

	

16	 64	 60	 2.7762	 0.1412

	

32	 64	 60	 2.635 > 0.0015

	

32	 100 60	 2.6365 > 0.02

	

40	 100 60	 2.6165

The maximum deflection in the Pryor/Barker paper is

2.76. It appears that the maximum displacement, W, c.in-

verges little by little to the value of 2.62, and that NML =

40, NIP = 100 provides the most accurate answer. For other

ply orientations, similar results were obtained.

4. Plans for Upcoming Period

Preliminary results for the complete problem should be

available at the end of the next period. Additionally, the

^.E

r_
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current affine transformations used in the governing equa-

tions are being compared with some other possible stretching

schemes.
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PART IV

GENERIC STRUCTURAL ELEMENTS

IV-A COMPACT LUG DESIGN

IV-B QUANTIFICATION OV SAINT-VENANT'S PRINCIPLE FOR A GEN-
ERAL PRISMATIC MEMBER

{
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IV-A COMPACT LUG DESIGN

Senior Investigator: D. B. Goetschel

1 0 Introduction

A critical aspect of many aerospace structural elements

is the load transfer that takes place between the connecting

lugs at the ends of the structure and the portions of the

structure wherein the loads are well-distributed if not uni-

form. Such lugs are often highly loaded and have very com-

plex stress states. Further, since they must mate with con-

necting parts, these lugs are usually designed within rather

stringent dimensional envelope constraints. As compared to

lugs which are made from high-strength steel, for example,

meeting the geometric constraints, even with a composite	 a

structural design making maximum use of unidirectional gra-	
s

phite-epoxy, has proven to be a difficult task. This re-

search is intended to solve the load-volume problem in favor

of composites rather than either reverting to designs using

200 ksi steel lugs attached to a composite strut or forcing

the dimensional constraLrits to be relaxed with a redesign of

the mating parts.

The drag strut of the Lockheed L-1011 is a specific

primary structure which has been taken as an example to in-

vestigate heavily loaded pinned connections. While it is

readily assumed that the column aspect of the structure (see

Figure IV-A-1) could be redesigned of graphite/epoxy, it is

PRECEDING PAGE BLANK NOT FUMED
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Figure IV-A-1. Lockheed L-1)11 Engine Crag Strut (Schematic)

not so c_ear as to whether a graphite/epoxy pinned lug con-

nection can be designed to withstand the design loads, given

the original geometric constraints.

Testing of various lug configurations has been completed.

Specimens with stress relief cuts were made in a configura-

tion that forced net tensile failure. These specimens showed

a 21% increase in strength due to the slots. Further tests

were performed on capstrip configurations. Problems encoun-

tered in fabricating capstrip configurations were solved with
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the use of a specially designed jig. No significant increase

in strength was found; various changes in the failure modes

resulted, however, indicating that capstrips would probably

be useful in some lug configuratir.ns. These studies were

the work of graduate student Matt Cackett.

3. Progress During Report Period

Preliminary investigations were carried out to evaluate

a new failure criterion for handling stress concentrations

in composite pezts with general, complicated geometries and

loadings and to complete a very extensive literature review.

All the available papers which were pertinent to this work

were identified and evaluated. Where contradictions exist,

conclusions were drawn as to what procedure appears to be

best. This review is available [561 . Some of the conclu-

sions from this review follow.

a. Literature Survey

As a result of the literature survey, a large number of

parameters that influence strength in terms of average stress

for the general case of mechanically fastened connections

were identified. Of particular interest is the fact that

absolute hole diameter and absolute thickness emerged, since

these are unimportant parameters in the case of conventional

aerospace joints. It is concluded that , ,,enerali.zed

Numbers in brackets in this section refer to the references
which are misted on page 112.

P
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empirical description of composite joint strength cannot

readily be obtained.

The stress analysis of a loaded hole in an orthotropic

plate is most often performed using the finite element method.

Several levels of sophistication in finite element modeling

of the problem are presented in the literature. The most

rigorous model of the physical case would include effects due

to friction, the contact angle, pin bending, clearance and

interlaminar stresses. Although no model containing all of

these effects was found, a representation by Wilkinson, et

al. [181 is considered to be the most siphisticated.

b. Failure Theory

A finite element program has been prepared to analyze

the stress around a loaded hole in an orthotropic member.

These results will now be applied using an appropriate fail-

ure theory to predict the ultimate strength of the joint.

The application of joint strength analysis has typically fol-

lowed the procedu-e:

1) Determination of basic lamina strength,

2) Determination of joint stress distribution and

3) Prediction of strength and failure modes.

A quick review of each of these steps emphasizes the diffi-

culty involved in accurately predicting joint strength.

The basic laminar material strengths are necessary para-

meters in any failure analysis. In particular, the tensile

and compressive strength in the direction of and transverse

to the fibers and the ply shear strength are all required,

$61
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in general. Given variations in the materials themselves,

in cure cycles, environmental factors, scaling effects and

testing methods, determining strength indeces with accuracy

is an ambitious task in itself. The fact that different re-

searchers use different physical failure criteria (e.g.,

maximum load, first peak in the load/extension plot, load at

which cracks become visible etc.) complicates matters fur-

ther and results in inconsistent published data [42] Uri-

touched laminate strengths are found using these basic lam-

inar material properties in conjunction with some failure

criterion for the laminate.

The prediction of strength, in both notched and un-

notched laminates is still an unsettled area of research.

No particular failure criterion has been found to be accurate

over a wide range of load cases and material systems[43].

Among the traditional criteria that have been used in con-

junction with mechanical joint strength analysis are "maxi-

,,[371 stress" [37] , "maximum strain" [32,33] ^ • distortion en-

ergy" [28]
 and the "tensor polynomial failure criterion" [361

These criteria tend to be extremely conservative when ap-

plied to peak stress near a loaded hole.

The work of Whitney and Nuismer [20] ,in 1974, involving

the technique of stress averaging over local regions of high

stress concentration, led to the development of the two-

parameter strength models presently in use. A two-parameter

model predicts failure by using the unnotched laminate strength

r
IW 10

r
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and some form of a characteristic distance. The latter is

found to be reasonably constant for a given material system

regardless of stress distribution.

The motivation for using a two-parameter criterion in-

stead of simply using unnotched laminate strengths and peak

stresses is provided by three facts. First, the finite ele-

ment and theory of elasticity solutions for the stress dis-

tributions around a joint assume ideal, linear elastic mate-

rial behavior to failure. Even with this assumption, the

peak stresses calculated from the finite element model are

also dependent on mesh refinement and may become singular

near a discontinuityC331.

Second, the actual stress distribution near a hole is

both non-linear and non-singular. This is due to plas`.ic 	
^_ t

deformation which is found to occur in regions of high stress

concentration in the typically brittle composites of inter-

est. Plastic deformation typically occurs in the form of

fiber breakage and shear transfer through the matrix. This

localized yielding has the effect of redistributing stresses

near the hole and blunting the peak stress concentration.

This effect has long been recognized in ductile materials

but was ide:itified with brittle fiber/matrix systems only in

the past ten years. A plot of strength reduction against

W/D for materials of various ductilities is reproduced in

Figure IV-A-2.
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The third point, and the physical conceptualization of

the criterion, is derived from Griffith's critical flaw

theory, "in particular, brittle failure of a body under a

given stress field is generally attributed to the existence

of inherent flaws of various dimens'Gns distributed through-

out the body" [44) . The implication of this is that, if a

high level of stress is maintained over a longer distance

from the loaded hole, then failure is more probable. This

is similar to -the well-known composite hole size effect [8,451
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wherein unloaded holes of different sizes will have equal

peak stresses, but since the larger hole will have a higher

stress over a larger area, as its stress profile decays more

slowly, it is more likely to fail. This may be applied to

volumetric considerations also, as a greater volume under

equivalent average stress will tend to fail sooner.

This critical flaw phenomenon is thought of as occur-

ring only within a material-dependent characteris-ic dimen-

sion. This dimension may take the form of an averaging dis-

tance, a point stress distance, a poiL stress curve or an

assumed crack length. The particular choice among these

two-parameter models is not as important as using some appro-

priate dimension in lieu of a one-parameter criterion[46]

In this study, a variation on the Whitney-Nuismer stress

averaging criteria was used. The original form was developed

by them [20] to explain the aforementioned hole-size effect.

In that case, the line of failure (net tension) was known be-

forehand. The failure-inducing stress component, cr y , was

also known, and its profile described by a classical isotro-

pic elasticity solution. This case is shown in Figure IV-A-3,

where:

R 0 hole radius,

y distance from the center of the hole,
measured in the direction of tae load,

NOTE: by these definitions, the abscissa
(y-R) is the distance a point is, 4 n LIie
load direction, from the edge of the hole.
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a 1vx

Figure IV-A-3. Stress Profile for an Unloaded Hole in an Isotropic Plate [201

a 	 stress normal to the direction of load andx

a average of stress a x on the cross section.

The average stress criterion is implemented using the

following formulation:

fRo +ao

a 	
ax(y'0)dy

0 R0

where:

a 
'L the characteristic dimension.0

Failure is said to occur when the average net tensile stress,

i

i

s
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ax , reaches the unnotched laminate strength. Note that the

peak tensile stress at the hole edge is (by definition) no

longer a ritical quantity in the failure calculation. Simi-

larly, the exact stress profile is not critical so long as

the numerically determined profile is reasonably close. The

averaging tends to reduce distribution errors, while a point

stress formulation would be sensitive to small deviations 4n

the stress profilej451.

General application of the Whitney-Nuismer concept has

not been rigorously tested. Several obstacles to its wider

use seem clear. Complex states of stress are not readily

dealt with. Cases where the line of failure is not well-

defined also defy straightforward application of the aver-

aging technique. Nuismer has stated that rather than gen-

eralize the criteria -nd sacrifice its simplicity it may be

necessary to develop "...a failure theory that takes into

account the role of damage and stress redistribution in fail-

ure in a load path-dependent, incremental way" 1453 . In the

case of a slanted crack, he chose to find an equivalent

straight crack definition rather than apply the averaging

technique to the general stress field.

Validity of the averaging technique, however, has been

shown in predicting strength at discontinuities under compres-

sive loading [47] . It was found that laminates are less sensi-

tive to compressive stress concentrations than to tensile stress

concentrations. As a result, the characteristic dimension

lut
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(defined aob for bearing) is larger than that for tensile

loading ( ao t ). For the AS/3501-5 system, the values a0 
b 

=

0.244 inches and ao = 0.09 inches were found to correlate
t

well with experimental data. However, it must again be

noted that the load was uniaxial and the line of failure

known in advance, allowing simple application of the stress

averaging technique.

Application of this technique to the case of a mechan-

ical connection was apparently first published by Agarwa1[32]^

in 1980. His approach was to extend the technique so as to

average certain stress components along the characteristic

distance in a radial direction from the hole edge. This

averaging scheme is shown in Figure IV-A-4. The me id is

as follows, " fir tension failure the stresses normal to the

radial direction are averaged over a distance, a  , along
t

several radial lines. Failure is predicted along the line

where the average stress reaches the laminate tensile strength

in the direction tangent to the point on the circumference

under consideration ( lines AB )" [321 . A similar procedure is

used for bearing and shear failure except the stresses in

line with the averaging line are averaged rather than those

normal to the radial line.

Although Agarwal shows reasonable correlation with ex-

perimental data, some predictions are conservative by as

much as fifty percent for angle-ply and cross -ply laminates	 -

in graphite /epoxy. The nonlinear response of these
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particular laminates may have contributed to the discrepancy.

This author believes, however, that there are at least four

inadequacies to this approach. The first three were postu-

lated by Goetschel [481 and developed under U. S. Army fund-

ing [57j . These points are related to the direction and }

nature or the averaged stresses. First, the averaging of
t

stresses normal to a given radial line is considered arbi-

trary. Second, the stress tensor, in each ply, would seem

to require full evaluation, not merely a given average com-

ponent. Third, interaction of stress components should also

be accounted for in a failure theory of general applicability.

The fourth point is that the averaging scheme should be more

general rather than restricting failures to propagate along

radial lines only.
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An improved two-parameter model developed at the Univer-

sity of Michigan [311 remains to be reviewed before the cri-

teria developed in this study are presented.

Chang et al. [311 have developed a general finite element

analysis package, "BOLT", which includes a failure analysis

postprocessor. In it, the point stress criterion, also pro-

posed by Whitney [201, has been generalized to account for a

continuous variation in potential failure mode from ne ,t ten-

sion to shear-out to bearing. The point stress characteris-

tic curve and its analytical form are shown in Figure IV-A-5.

This has been obtained using the Yamada strength theory to

x

Figure IV-A-5. Characteristic Curve for Point Stress Scheme of "BOLT" 131]

V 

AffiNA



determine the unnotched strength of each ply. That is:

Q 2	 Qx 2	 e< 1 No failure.

X
x 

+ S = e 2

c	 e > 1 Failure.

where:

X = ply strength in x direction and

Sc = ply shear strength.

When the Yamada criteria is reached (e = 1) at any point

along the characteristic curve for any ply, the joint is said

to have failed along a radial line to that point. The mode

of failure is then associated with the relative location of

the failure point. This has an added advantage over Agarwal's

scheme in that ply stress^_s (which may be of significantly

different distribution) are evaluated instead of simply using

the average laminate stresses.

This method still seems inadequate since it also assumes,

by virtue of its characteristic curve, a radial line of max-

imum average stress. This would preclude, for example, iden-

tifying a Nigh average line of shear stress along the shear

plane for a typical characteristic shear dimension, ao (as

defined by Agarwal). While -the Yamada failure theory in-

cludes shear stress effects, which is more rigorous than

Agarwal's use of the maximum strain criterion, a fiber strain

failure criterion would seem to have greater physical signi-

ficance and would also account for effects on a ply by ply

level.
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i) The min:.mum-gradient fiber strain criterion. A dis-

cussion of the application of the fiber strain criterion

should r^ introduced by some consideration: of its range of

validity. The fiber strain failure criterion states that

the laminate will fail when any fiber is strained beyond its

maximum strain limit. Failures of the matrix are neglected

assuming that they will not influence the ultimate strength

of the laminate. Thus, this failure theory is only valid

for application to those laminates where incipient matrix

failures will not cause catastro phic failures of the lami-

nate. The fiber strain criterion should, it is emphasized,

be applied to laminates having at least three widely spaced

ply orientations, i.e., [0/±45] s . Despite such limitations,

the fiber strain criterion is seen as useful for many com-

posite structures and, for such cases, does define good de-

sign practice "9].

The fiber str,iin failure criterion is easily applied to

an interactive finite element postprocessor, such as "FELOOK"

of the "POPES" system developed at RPI. Contours of fiber

strain are mapped out for any component ply orientation. A

new variation of this averaging technique is now being used.

Instead of averaging fiber strain over various radial lines,

it is averaged over the line of minimum-gradient fiber strain

from the point of highest peak fiber strain (see Figure IV-A-

6). This allows failure lines extending in any direction

from the hole to be identified. As in Agarwal's scheme, the
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failure mode is inferred from the location of the maximum

average line.

The characteristic dimensions aot, 
a°b 

and aos are ex-

changed.in favor of ao 
T 

and a0 c . The latter pair corresponds

to characteristic dimensions for fiber strain tension and

compression, respectively. They will have to be experimen-

tally determined for a given material system. It is assumed,

at this point, that they are constant for any geometry using

a given material system. They will probably vary with mate-

rial systems, but it is hoped that they will be shown to be

independent of lay-up and geometry.

At present, the location of the line of minimum-gradient

fiber strain is being identified visually, and contour values

are read along that line and recorded. The data is then

fitted with a curve of polynomial form using a reduced-order,

curve fit algorithm. The empirically determined strain pro-

file is then integrated exactly over the appropriate charac-

teristic distance. Although this method can be used without

great difficulty, an automated postprocessing routine would

greatly enhance its accessibility and eliminate error due to

eye-balling the contours (<5%).

The modified postprocessor FELOOK can also plot contours

of ply stress should it be found more accurate to use a fail-

ure criterion based on lamina stress. Similarly, contours

of strength ratio could be plotted with another modification.

I U'Pi
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Complete verification of this failure theory was con-

sidered beyond the scope of the research reported here. The

method is appealing, however, because of the physical basis

of its interpretation and its ability to predict nonradial

failure lines. Correlation with experimental data can be

readily accomplished by using a series of finite element

models corresponding to published data [501 for T300/SP286

graphite/epoxy. Preliminary verification using limited ex-

perimental data was performed and the results are presented

in Table IV-A-1. As can be seen, the error is about 10% as

compared with 33% to 40% for predictions based on peak

strain.

C. Conclusion s

For purposes of strength prediction, a work-equivalent

cosine normal load

a new variation of

ure criterion as V

pact lug designs.

strain, shows good

sults.

distribution was used in conjunction with

the Whitney-Nuismer stress averaging fail-

ze most useful approach for evaluating com-

The new criterion, minimum-gradient fiber

correlation with limited experimental re-

A parametric study for the drag strut lug led to a re-

design for the full scale part. It was shown that scaling

effects were very significant in the range of the redesign.

Several other quarter-scale design concepts, including stress

relief cuts, unidirectional capstrips and steel bushings,

were tested. These designs were found to be slightly
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stronger than the [0/±45] laminate designs, but the improve-

ments werE not considered substantial enough for this par-

ticular lug geometry to justify the manufacturing complica-

tions involved.

In summary, it is clear that a heavily loaded mechan-

ical joint, in an orthotropic composite laminate, can be de-

signed with a strength to weight ratio greater than that of

steel, if geometric constraints do not interfere. When con-

straints force a compact lug design, the practicality of

composites appears to be a matter to be decided on a case

by case basis.

4. Plans for Upcoming Period

This work is being concluded with this report, although

a paper is planned for submission to an appropriate journal.
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IV-B QUANTIFICATION OF SAINT-VENANT'S PRINCIPLE FOR A GEN-
ERAL PRISMATIC MEMBER

Senior Investigator: D. B. Goetschel

1. Introduction

Saint-Venant's principle states that all statically

equivalont systems of load on a body will produce nearly

identical stress fields in regions that are remote from the

loaded area. An alternative statement is that the stress

fields resulting from self-equilibrated systems of load de-

cay to zero in regions remote from the loaded area. These

are equivalent statements for a linear elastic material,

because any load system can be considered to be made up of a

statically equivalent loading plus an appropriate set of

self-equilibrated loads. This allows the solution for a

simple loading to be used in place of the solution for a

complex loading except in the immediate vicinity of the

loadeu area, if only a small fraction of the surface is

acted on by tractions or a small fraction of the volume is

subjected to body forces. The importance of Saint-Venant's

principle is that it is the basis for justifying many widely

useful technical theories, e.g., the Bernoulli-Euler beam

theory.

Until recently, Saint-Venant's principle was only a qual-

itative statement. It's quantification existed only in very
approximate rules of thumb that were based on past experi-

ence. The increasing use of anisotropic materials and
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inhomogeneous construction has dramatized the need for a

more reliable theoretical quantification of Saint,Venant's

principle for prismatic members loaded only on the ends. A

semianalytic finite element method will be described that

will be capable of handling any arbitrary cross-sectional

geometries and material properties. The material proper-

ties can be both inhomogeneous and anisotropic.
*

Toupin Ill , in 1965, and Knowles [21 , in 1966, indepen-

dently presented theorems for upper bond estimates of the

strain energy in a part of a body as a function of the dis-

tance away from the region of applied tractions. The main

result of their theorems is a strain energy decay inequality

in the form

V 	 < V(0) * exp(-2Yx)	 (1)	 .f

where:

Y is the characteristic decay rate,

V(0) is the total strain energy and

V(x) is the strain energy in that part of the

body beyond x.

Because of the quadratic nature of strain energy in terms of

the mechanical variables, an immediate consequence is the

capability for pointwise estimates of displacement, strain

and stress, in the forms

Numbers in brackets in this section refer tc the references
which are listed on page 136.

1$111
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,w

u  (x) " ui (0) *exp (-Yx)

	

^ij (x) S 
ti] 

(0) * exp(-Yx)	 (2)

Tij (x) ^ 'Cij (0) * exp(-Yx)

Horgan 13 ' 41 extended Knowles' analysis to plane

problems with anisotropic izaterials. Choi and Horgan 15,61

went farther to obtain exact solutions for the decay rates

for two general cases of plates in plane strain, i.e., a

homogeneous anisotropic plate and a sandwich plate. These

solutions employ the Airy stress function, 0, which - in

accordance with compatibility - leads to a generalized bi-

harmonic governing equation. For the rectangular region,

the solution form is taken as a product function of an expo-

nential decay away from the loaded region and an undeter-

mined function ir the transverse direction.

	

0 (X, y) = F (y) * exp (-Y x)
	

(3)

This solution form enables the eigenvalue problem to be re-

duced to a fourth order ordinary differential equation in

F(y), The eigenvalue, Y, with the smallest real part, charac-

K.. terizes the dominant (slowest) exponential decay rate.

Dong and Goetschel [71 developed a method for finding the

decay rates of edge effects in a plate compo-,.;a of an arbi-

trary number of anisotropic layers. For handling any type of

laminate construction, a semianalytic finite element approach

was employed. Instead of the Airy stress function, the

1
C	 ^
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in-plane displacements were adopted as the primary dependent

variables. One-dimensional finite element polynomial inter-

polation functions were used to model the behavior through

the thickness of the plate. The behavior away from the

loaded edge was assumed to be an exponential decay. A second

order eigenvalue problem emerged, whose roots are the char-

acteristic decay rates. The corresponding eigenvectors are

the displacement distributions through the thickness of the

plat.=.

For the isotropic cylinder an upper bound inequality for

the exponential decay was established by Knowles and Hor-

gan [8j . The exact solution to the end problem for isotropic

circular cylinders has been dealt with by numerous investi-

gators, e.g., [9,10,11]. The case of transversely isotropic

circular cylinders, limited to torsionless axisymmetric load- 	 i

ing, is considered in [12,13,14]. Solutions for more general

cases of prismatic members are not available.

Numerous investigators [15,16,171 have used finite element

and finite difference techniques to examine edge and end ef-

fects for composite structural elements, but these have all

been a standard static analysis for particular loadings or

boundary conditions. The type of analysis discussed above

and proposed here finds the general solutions to the end ef-

fect problem for any leading. Suitable restrictions on the

finite element degrees of freelom allow the program to solve

the plate edge effect problem, including displacements

122
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parallel to the edge. This is an expansion on the carlabil-

it.ies of the work reported by Dong and Goetschel[71.

Saint-Venant's principle underlies nearly all structural

analysis, yet this principle has neve.c been quantified for

the casa of the general prismatic member. The research re-

ported here was undertaken to rectify this potentially

troublesome situation. End effects are bear.>ni-a even more

important with the increasing use of laminated composite

materials which are so sensitive to interlaminar stresses.

2. State s

Previous to this reporting pericd, the method described

had been concept»al:ly developed, the governing equations

formulated and the implementing .omputer program written

but only partially debugged.

The governing equations can be formula-ked using a vari-

ational method 171 , however, a different but equivalent

method is reviewed here. This alternate approach was chosen

because it is mathematically simpler and provides greater

physical insight into the problem. The semianalytic rinite

element formulation assumes a displacement field of the form

u(x ,Y, z ) = P (Y, z ) *exp(-Yx)	 (4)

where:

P(y,z) is the polynomial interpolation across

the cross section,

exp(-yx) is the exponential decay along the

length of the member and
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y is, in this formulation, the unknown

decay rate,

As a visual aid, consider the simple prismatic finite

element in Figure IV-B-1. The small arrows, marked 1 through

12, are finite element degrees of freedom. The activation

of any one of these degrees of freedom will define a displace-

ment field throughout the element. This displacement field

can be differentiated to provide the stress field throughout

the element. Evaluation of this stress field on the end and

side surfaces of this element will provide the surface trac-

tion distributions that would have to exist to maintain this

displacement field. The stress field can also be differen-

tiated throughout the volume of the element to obtain the

body force field that would have to exist to satisfy equi-

librium throughout the volume of the element for this dis-

placement field to exist

	

TT	 + f = 0

	

. 	 i• 

If these surface traction distributions and volume body force

fields are integrated using the displacement field corres-

ponding to.any displacement degree of freedom, the finite

element force field corresponding to that degree of freedom

is obtained. If this is done using th ,: displacement field

for each displacement degree of freedom as a weighting func-

tion, one column of the finite element stiffness matrix is

obtained. If this procedure is followed for the stress

(5)

of
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fields corresponding to each displacement degree of freedom,

then the entire stiffness matrix is obtained

[k] {u} = {f}	 (6)

where:

[k] is the stiffness matrix,

{u} is a vector of the displacement degrees of

freedom and

{f} is a vector of the corresponding force

degrees of freedom.

Now this stiffness matrix can actually be viewed as be-

ing composed of three parts resulting from (i) the integra-

tion of surface tractions over the end of the element, (ii)

integrating the tractions over the four sides of the ele-

ment and (iii) integrating the body forces over the volume

of the element

[', l = [ke l + [ks ] + [ kv ]	 (7)

where the subscripts e, s and v denote end, side and volume,

respectively.

The problem under consideration requires that there not

be any tractions on the sides or body forces within the in-

terior of the element. The mathematical equivalent of this 	 .

statement, using the finite element discretization, is

[ (ks ) + (kv) ] {u} = W	 (8)

The partial stiffness matrix contained within the paren-

thesis in Equation (8) is actually made up of three different

^ J
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matrices with different powers of y

( [ks I + [kVI) = (Y [k2 ] + [k1 ] + Y [k0 l )	 (9)

These factors of y result from the differentiation with res-

pect to x of Equation (4). Inserting Equation (9) into Equa-

tion (8) and multiplying through by y gives

(y2 [k2 ] + y [k1 1 + [k0 ]) {u) = {0}	 (10)

This is now a second order eigenproblem whose solution is

the desired one. Equation (10) is for a single element, but

multiple elements can be assembled together in the conven-

tional way. Using capital letters to denote an assemblage

of elements, the equivalent of Equation (10) would be

(y2 [K2 ] + Y [ K1 ] + [KD]) {U} = {0} 	 (11)

The matrices [K2 ] and [K0 ] are symmetric and [K 1 ] is anti-

symmetric. The eigenvalue and eigenvector solutions to this

equation are, in general, complex quantities.

This problem is mathematically similar to the problem of

damped free-vibration structural dynamics. Note that the

tractions on the end of the member do not enter the solu-

tions for decay rate; they correspond to the initial dis-

placements and velozities. The x dimension corresponds to

time, and y correspond: to the natural frequency for the

structural dynamics problem. Similarly, [K 2 ] , [K 1] and [.°.0]

correspond to the mass, damping and stiffness matrices in

the dynamics problem.

ut^
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The decay rate Y can also be viewed as the inverse of

the decay length. To be precise, it is only the real part

of Y that should be interpreted as the decay rate or inverse

of the decay rate. The inverse of the real part of Y is the

distance in whist irregular stresses will decay by a factor

of 2.7 -the base of the natural logarithm.

3. Progress During Report Period

For verification of the numerical method and computer

code, an isotropic plate and a homogeneous graphite-epoxy

composite plate were analyzed since exact solutions exist

'	 for these cases.

Choi and Horgan 
[51 show the characteristic equation for

the decay rate, Y, for an isotropic plate with unit half-

thickness, to be

sin 2Y t 2Y = 0	 (12)

where + and - refer to symmetric and antisymmetric modes,

respectively. Table IV-B-1 contains the analytic and numer-

ical results. Numerical results using several different

mesh refinements are given. As can be seen, the agreement

is excellent, and the method converges rapidly.

Units of length are not given for geometry dimensions or

decay rates because the numbers would not change for any

consistent units. The units for the decay rates are the in- 	 1

verse of the units for geometry dimensions.
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TABLE IV-B-1

DECAY RATES (Y) FOR A 2-UNIT THICK -SOTROPIC PLATE

Computed From Computed From Computed From
2 Elements 8 Elements 8 Elements

Analytic with 2 x 3 with 2 x 2 with 2 x 3
Mode Solution Nodes Nodes Nodes

1st 2.1062 2.0771 2.1180 2.1067
Symm. ±1.1254i ±1.2218i ±1.1389i ±1.1256i

1st 3.7489 3.9694 3.8807 3.7545Anti- ±1.38441 ±1.3637i ±2.39151 ±1.3843isymm.

2nd 5.3563 ----- ----- 5.3665
Symm. ±1.55161 ----- ----- ±1.54441

2nd
Anti- 6.9500 ----- - 7.0535

±1.67611 ----- ----- ± 1.6428isymm.

To test the sensitivity of the method to material ortho-

tropy, a homogeneous, unidirectional graphite /epoxy plate

was analyzed. Again, a unit half-thickness was used, and

material properties were taken as in References [5] and [7);

i.e.,

EL = 137.92 x 10 9 Pa	 ET = 6.896 x 10 9 Pa

GLT 	 GTT	 4.138 x 10 9 Pa	 vLT	 VTT = 0.25

Results from the above references and from the current

work are given in Table IV-B-2. The excellent agreement

shows that the method has little trouble with highly ortho--

tropic material properties.
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TABLE IV-B-2

DECAY RATES (y) FOR A 2-UNIT THICK HOMOGENEOUS ANISOTROPIC PLATE

Computed From
8 Elements

Analytic Computed From with 2 x 3
Mode Solution Reference 171 Nodes

1st 0.564288 0.564288 0.56445
Symm. ±O.Oi ±O.Oi ±O.Oi

1st
Anti- 0.796485 0.796485 0.79710

±O.Oi ±O.Oi ±O.Oisymm.

2nd 1.13448 1.134479 1.13890
Symm. ±O.Oi ±O.Oi ±O.Oi

2nd
Anti- 1.369816 1.369817 1.38120

±O.Oi ±O.Oi ±O.Oisymm.

Cross section geometry and material anisotropy are the

two factors that determine a structure's natural decay rates.

To investigate these effects, results are given for various

cross-sectional geometries for homogeneous isotropic mate-

rial properties and various nonhomogeneous, anisotropic com-

posite lay-ups. Figure IV-B-2 shows the three-beam cross

sections considered. The area moments of inertia about a

horizontal neutral axis are the same for each cross section.

The various material properties are also indicated. Figure

IV-B-3 shows two composite skin-stringer constructions which

have been considered. These same skin-stringer geometries
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were also analyzed for a purely homogeneous isotropic mate-

rial. The various composite lay-ups use the graphite/epoxy

properties listed above.

Tables IV-B-3 and 4 contain the calculated results for

these various cases. Several general observations can be

made. Any of the thin-walled cross sections show a much

lower decay rate than the solid rectangular section. The

most dramatically slow decay rates are associated with the

open sections, particularly the I-beam. The slowest decay

rates for the isotropic I-beam and rectangular beam are,

respectively, .0703 and .9286, so an isotropic I-beam can

have a decay rate thirteen times slower than that of a ,solid

rectangular beam. It can also be seen that the higher modes

for the I-beam decay only twice as slowly as for the rectan-

gular beam, so for careful selection of boundary conditions,

the unfavorable ratio for the I-beam could be reduced to a

factor of about two.

Anisctropy has an important effect on decay rate. It

can lower it by a factor of three or four. For unidirectional

composite structures, the box-beam shows the greatest effect

in comparison with isotropic structures. Looking at the

first mode for each, a comparison between .3140 and .0704

gives a 4.46 slower decay rate. For a typical lam-i nated com-

posite lay-up, a comparison with the isotropic case for the

Z-section skin-stringer panel shows an effect of anisotropy

of only twenty percent (i.e., .1648 versus .1364). For the

J



TABLE IV-B«3
FIRST FOUR DECAY RATES (Y) FOR VARIOUS BEAMS

Cross Section

Material	 I-Beam	 Box-Beam	 Rect.-Beata
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Isotropic 0.0703
0.5717± 1.1627i
0.64392
0.8925 ±0.4874i
0.0194
0.1844
0.2857
0.3266
0.0255
0.2667 ±0.3302i
0.4003 ±0.2419i
0.4506

0.3140
0.6459
0.7367
1.0157 ±0.4378i
0.0704 ±1.4573i
0.1348{ 0.0711i
0.1847
0.2299
0.1710 ±0.6718i
0.1760 ±0.23341
0.2024± 0.2769i
0.3042

0.9286
1.0652 ±0.5828i
1.2348± 0.1763i
1.8285 ±0.5674i
0.2432
0.3018
0.4105
0.4466
(horizontal
laminations)
0.3886
0.4142
0.6130 ±0.2222i
0.9063 ±0.18,50i
(vertical
laminations)
0.7168± 0.4839i
0.7772 ±0.0464i
0.8372± 0.3634i
0.8873

Unidirec-
tional
Composite

Laminated
composite

TABLE IV-B-4
FIRST FOUR DECAY RATES (y) FOR SKIN-STRINGER PANELS

Cross Section

Z-Section Hat-Section
Material Skin-Stringer Skin-Stringer

Isotropic 0.1648 0.2269 ±0.10301
0.2284 ±0.10131 0.3346
0.3361 0.4488 ±0.1676i
0.4175 ±0.1867i 0.6055 ±0.2169i

Laminated 0.1364 0.1203 ±0.21101
Composite 0.1550 0.1732

0.2581 ±0.060li 0.1986
0.3791 0.3101 t0.0439i

Isotropic 0.1512
Stringer Only 1.4756 ±0.8272i
(no skin) 1.6351 ±1.0892i

2.9159 ±1.0703i

__ $_' 
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I-beam, however, the laminated composite lry-up decays near-

ly as slowly as for unidirectional composites; almost three

times slower than for isotropic materials.

It should be re-emphasized that the lowest decay rates

discussed here are the slowest possible for any boundary con-

dition. A modal superposition could be performed to vary

the degree of participation of the first (or any other) mode

for any particular boundary conditions.

In summary, a general finite element method for quanti-

fying Saint-Venant's principle for prismatic members has

been described. A second-order eigenproblem results, whose

eigenvalues - are the natural decay rates and whose eigenvec-

tors are the cross-sectional response modes. It should be

kept in mind that the resulting decay rates are the natural 	 r

tendencies of the cross section, independent of the support

or boundary conditions used. If one were interested in the

stress redistribution due to particular support conditions,

a normal finite element analysis or a modal superposition

using the method described here, could be performed. The

types of results given above can be thought of as indicating

general tendencies that may, for example, be of use for pre-

liminary design purposes.

4. Plans for Upcoming Period

Effort will be expended in an attempt to extend the

method so as to perform modal superposition to find solu-

tions for specific end boundary conditions. In addition, a
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paper is being submitted to the Journal of Applied Mechanics

on the material discussed above.
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V-A VARIATION OF RESIN PROPERTIES THROUGH THE THICKNESS OF
CURED SAMPLES

Senior Investigator: B. Wunderlich

1. Introduction

It is the purpose of this work to gain knowledge of

glassy materials and to study the homogeneity and curing

progress of composite materials. We intend to link the

glass transition quantitatively with the presence of a given

material (through the glass transition temperature T  and

the increase in heat capacity ACpj . Superposition of refer-

ence materials should enable sample characterization. The

limits of this somewhat nove l_ approach are planned to be

teste3 using the equipment and techniques developed in our

ATHAS (Advanced Thermal Analysis) laboratory. The project

will have the support of postdoctoral fellow J. Grebowicz

and research assistant L. Judovits.

2. Status

This is a new project and was started on May 1, 1983.

Earlier work on epoxy model compounds was carried out by

graduate student N. Gjaja.

Numerous compounds known under the generic name of epoxy

resins have great practical importance in industrial appli-

cations. Through many different chemical reactions, epoxy

resin molecules car, be interconnected into polymeric three-

PRECEDING PACE BLANK NOT FILNfW
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dimensional networks. There are two major groups of reac-

tions which are capable of crosslinking epoxy resins.

Eith=•r a crosslinking agent is used where a different mole-

cult is built into the epoxy network connecting two or more

epoxy resin molecules, or a crosslinking catalyst is used

where the entire resulting network is essentially built out

of epoxy molecules mutually interconnected.

It is believed that epoxy crosslinked networks, result-

ing from certain catalytic reactions, form into a hetero-

generous structure. That is, particles of high crosslink

density form and grow in the matrix of uncrosslinked or

sparsely crosslinked material. As the crosslinking reaction

advances, these gel particles become interconnected into a

global network, but the intrinsic heterogeneity remains.

Further, the gradual decrease in mobility of reacting mole-

cules causes the network built at the end of the reaction to

be considerably lower in crosslink density than that which

was formed initially.

The two distinctly different crosslink densities have

associated with them two respective glass transition tem-

peratures.

Using differential scanning calorimetry (DSC), measure-

ments of heat capacity have been made to provide a basis for

accurate study of the glass transition region. Such heat

capacity measurements on uncrosslinked, partially crosslinked

and fully crosslinked epoxy resins have provided insight into
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basic mobility changes of the molecules. Knowledge of heat

capacity at the glass transition yields an estimate of mo-

bile units in the molecule. Coupled with information about

the coefficient of expansion, compressibility and group and

skeletal vibrations, this provides an understanding of the

behavior of the epoxy resin molecule.

On this basis, we believe that study of changes in heat

capacity, with the z.vancement of crosslinking, provides a

moans for characterizing polymeric networks.

Although there i3 a large body of literature concerning

crosslinked epoxy resins, there appears to be no data avail-

able on heat r.-pacities of these epoxy materials as such.

Studies which, h . .,re bean made are limited to reactions which

occur when these formulations are crosslinked to *_mechanical,

thermal and other application oriented properties of result-

ing networks.

This work is expected to make a significant contribution

to a deeper understanding of a large family of materials

which are widely used in structural laminates.

There are three other areas of possible advancement from

this study, First, the heterogeneous nature of crosslinked

resin networks may become better understood. Second, the

ability to change the glass transition with advancing cross-

linking may add further detail to our knowledge of glass

transition phenomena in general. Third, some new details in

the technique of using thermal analysis for study of other

heterogeneous granular microstructures may evo1ve.



3. Progress During Report Period

a. Approach

The earlier work, outline4 in Section 2 - Status, was

reviewed and will be completed in the next half-year period.

Three uncured samples and two cared samples of epoxy

resins were supplied by Dr. R. J. Diefendorf to initiate the

planned analyses. The uncured resins were:

1. Fiberite 979,

2. Hercules 1908 and

3. Hercules 3501-6.

The cured resins were:

1. Fiberite 979 and

2. Hercules 3501-6.

The chemical structures of the major constituents of these

epoxies are given in Table V-A-11'3'4] 	 The curing reac-	 i

tion for the Hercules 3501-6 resin is given in Table V-A-2 [2].

b. Results

Various DSC scans using the DuPont 990 have been per-

formed in order to establish the glass transition tempera-

tures of the provided epoxies. Only endo- and exothermic

peaks were nosed for the samples measured. However, macro-

scopic observation of the uncured samples revealed that, if

brought to ambient temperature, the uncured epoxy resin would

go from a hard glassy state to a rubbery state. Further

scans of the cured Fiberite sample showed an endotherm

Numbers in brackets in this section refer to the references
which are listed on page 147.

t
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TABLE V—A-1

CHEMICAL STRUCTURES OF THE MAJOR CONSTITUENTS
OF MATRIX RESINS

Hercules 3501-6 Resin

Prepolymer

M Y 7 20 [ N, N, N'N ' - Tetraglycidyl - 4 , 4 -m ethylenebisenzenamine)

0	 0
CH2 CH-CH2 N O CH2 O -N [CH2-CFI=CH22	 2

4,4 Diaminodiphenylsulphone (DDS)

0

H2N-a

11
ll
S O N H2
0

Catalyst	 -

B F 3- C 2 H 50 H

Fi beri to 979 Resin	 i

Resin, Epoxylated phenol- formaldehyde novalac

0	 0	 0
CH/  CH-CH 2 -O	 O-CI-CH CH 2 O-CI-CH CH2

t "	 I	 1

0- C 
1-12- -	 - CH2 - - O

nF

Curiag Agent, Dicyandiamide -(DICY)

NH

H 2 N-C -NH-CN

.1
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TABLE V—A-2

CURING REACTIONS FOR HERCULES 3501-6 RESIN

b+

At—NH2

	

Ar—NH 2 + — HC --- CH— — Slew	 —HC --- CH—
O	 O a-

Ar — NH2	 Ar— NH
I	 I	H C--- CH, — FAgt	 ~HC --- CH-I	 I

O	 OH

Ar 
= —0—

OH
O`	 OH	 CH2—CH—CH2'-'

	

CH 2—CH --CH 2 --- + H 2 N	 — CH I —CH2—N

	

I	 I

	

R	 R	 OH

	

H 2N	 N—CHz CH—CHr
— CH 2 — CH—CH2I

OH
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starting at 120°C followed by an exotherm beginning at 160°C.

After repeated scans, a glass transition (T g) of 142°C was

clearly seen without the accompany2.ng exother:n. Since cur-

ing does not take place below the glass transition tempera-

ture [61 , the moment the sample is heated above the T  region

curing begins. Thus, the endotherm covers the glass transi-

tion of the not fully cured epoxy. This transition region

was about 135 °C.

4. Plans for Upcoming Period

The work of graduate student N. Gjaja, outlined under

Part 3.b., Results, should be completed within the next re--

porting period. In addition, model substances closer to

those used in composite structures are to be developed which,

however, do not show the complication Df superposition of

curing reaction and glass transition. A third approach will

be to follow closely the actual use of epoxies in composite

formation and to model that process in the DSC equipment.
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V-B INITIAL SAILPLANE PROJECT: THE RP-1

Senior Investigators: F. P. Bundy
R. J. Diefendorf
H. Hagerup
H. Scaiton

1. Status

Recognizing that the resins in composite materials can

change properties somewhat with aging and exposure to tem-

perature/moisture cycles, the wing/fuselage ensemble struc-

ture of the RP-1 glider has been static tested about once a

year since its initial fabrication in 1 79-'80. This initial

series of tests consisted of simple vertical bending, and

the last of this series was done on August 5, 1981. That

test consisted of simple bending using a distributed load

up to a maximum of 590 pounds per wing, which corresponds
	

f`

to a little over 4 g's for average pilot weight.

Some changes were made in the wing beam " carry-through"

structure of the RP-2 glider, in the summer of 1982, with an

eye to making it stronger and more fail-proof. In subsequent

tests of the RP-1 glider, the wing -fuselage assembly was

subjected not only to simple vertical bending, as in pre-

vious years but, in addition, to a bending -torsion test with

fore-aft bending components, which would simulate the stresses

in a high speed pull-out.

In the simple bending tests, the fuselage was held in a

horizontal position and the weights were laid directly over

1(b̂Jl



W

150

the wing beam. In the bending/torsion tests, the fuselage

was positioned on a ten degree slant (nose low, tail :sigh,

inverted) and the weights placed on a line fourteen centi-

meters aft of the wing beam. Thus, both torsion and fore-

aft bending were induced, in addition to vertical bending.

These two static tests were survived very successfully.

With the achievement during the summer of 1982 of sus-

tained thermal soaring of the RP-1 on two separate occasions,

the first all-composite glider built under this program has

been set aside. Some additional flights may be undertaken

in the future for demonstration purposes, to stimulate stu-

dent interest in the program, to maintain an experienced

flight crew, to test ideas for further aerodynamic refine-

ment and for their influence on structural life; none, how-

ever, were conducted in 1983,

2. Progress During Report Period

In addition to static tests of the complete RP-1 air-

frame, tests have also been conducted on structural elements

of two different kinds, typical of those used on the RP-1

and hidden from vi:.w, in the falls of 1 81, '82. Five of

each kind were tested each year.

This kind of test was repeated in September 1983. Con-

figurations of the test specimens are shown, as they were in

earlier progress reports, in Figure I'-B-1. The results of

the latest round of testing are shown with those of the two

earlier rounds, in Figure V-B-2.



Type A (open foam)

1/8" Blue Foam
( medium density

1/2" Plywood B
( test fixture )

1/8" Blue Foam
( medium density

1/8'1  Vied Foa rn
(hi density)

Glass (2 sides)

Kevlar (2 sides)

V-40/828 with
Cotton Flux

^r	
151

ORIGINAL PAGE 19
OF POOR QUALITY

Glass (2 sides)

v­ 40/828 with
Cotton Flux

I / 8 " Red Foam
(open face) (hi density)

Kevlar ( I side)

Type B (closed foam)

Figure V-B-1. Two Types of Structural Joints Used in the
RP-1 (lightly-loaded, low-cost composite
structures)
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It appears that the conclusion reached earlier., nam,^1.y,

"degradation with time is well-within the spread in strength

due to fabrication or materials quality", is also supported

by the most recent data.
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SECOND SAILPLANE PROJECT: THE RP-2

Senior Investigators: F. P. Bundy
R. J. Diefendorf
H. Hagerup
H. Scarton

-.A-_A...-

The aircraft, as rebuilt following damage sustained in

failures at 95% of combined bending-torsion, design ultimate

loading and with structural modifications installed, was

made ready for structural proof tests.

The wings were rebuilt using carbon spar cap splicing

techniques that were developed in a series of experiments.

Structural modifications included an improved wing spar,

"carry-through" design which utilized two major shear pins

to link the stubs of the port and starboard wing spars. The

affected part of the fuselage structure was also rebuilt.

This incorporated a much stronger carbon fiber tubular com-

pression strut between the front wing pins, to better resist

the forward deflection of the wings. "Window" openings in

the "elephant tusk" side beam members of the fuselage struc-

ture, through which the wing beam stubs pass to form the

"carry-through" linkage, had to be enlarged to accommodate

the larger, thicker, female wing stub member. (See earlier

progress reports for more graphic descriptions of the air-

craft.) The clearances between the male and female members

of the "carry-through" were also increased so that the only

"leverage contacts" that could occur between them would be

.tf
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at the two major she r pins. Thus, there could be no local

contact forces transmitted to the open end of the female

stub.

2. Progress During Report Period

The RP-2 aircraft was assembled in an inverted posi-

tion, in the CAPGLIDE workroom area, high Lay section of the

Jonsson Engineering Center on June 21-22, 1983. The fuse-

lage supports were placed at the pilot's seat and the (norm-

ally) top face of the "junction box" (into which the tail

boom and the .wing pins connect). Sand bags were placed on

the wing to simulate the aerodynamic lift on the wing in

flight. In the simple bending test, the bags were placed

directly over the main wing spar, one 10-1b. bag every 10

inches. The span density of loading was tapered off toward

the outboard ends to account for chord taper and spanwise

load reduction due to induced effects near the wing tips.

The pitch attitude was set such that the tail boom was hori-

zontal, which, in the inverted position, corresponds to a

23 0 down pitch of the wing chord (the angle of incidence of

the wing relative to the fuselage is set at +22°). The

physical setup is illustrated in Figure V-C-1.

Arrangements were made for deflection measurements at

six positions along the leading edge and six positions along

the trailing edge, as shown in Figure V-C-2 - looking down.

The structure was monitored using acoustic emission
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instrumentation for "acoustic events" during the test. This

was done by applying microphones to the wing skins at four

points at the inboard edges adjacent to the carbon fiber

cap strips of the wing beams, top and bottom. To provide

their electronic recording system with a "loading signal",	 -

strain gauges were bonded to the inside surfaces of the

carbon cap strips of the male wing beam stub. The output

of these gauges was nearly proportional to the bending mo-

ment at the inboard end of the wing. This loading record

against time made it possible to correlate any recorded

sonic events with the level of loading.

At each loading step, the pullout of the aft wing pins

from their receptacles in the fuselage was measured by in-

serting feeler gauge strips in the gaps. In the simple

bending test at the full specified loading, the strain gauge

installed on the inside surface of the (normally) upper cap

strip read 0.325% strain at the maximum loading, and there

were no hints of incipient failure. The wings were unloaded

by sand bag layer steps, with deflection readings being made

at each step. The strain gauge in question read 0.001%

at the unloaded state, which was considered a good return

to "zero".

Concerning the torsion test, review of the Air Force

pitching moment characteristics and the flight envelope (Fig-

ure V-C-3) showed that in upright flight at 79 mph the tor-

sion moment at the wing root about the spar axis would be

'
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about 1445 #-in, nose up. This is the net of 3920 #-in

due to the lift acting at the quarter chord, hence nose up,

and -2475 #-in moment associated with the airfoil's carr.:.)er

which is nose down.

The worst torsion case occurs at the negative g, high-

speed corner of the flight envelope (-3.77 g's; 96.2 mph)

for which the total torque per wing is predicted to be about

-6900 *-in (nose down). This torque could be induced by

loading sand bags on the inverted wing aft of the spar with

the glider in its inverted position. In an actual flight

condition with negative g's, however, the upper wing surface

and spar caps would be subjected to tension; in an inverted

static test with sand bags aft of the _leading edge, spar

bending would be in the opposite direction. Since the spar

had already been tested to 6 g's in positive simple bending,

it was decided to conduct the torsion test to about -7000 #-

in, while restraining the wing from the full bending that

such loading would produce.

Thus, the test was conducted by placing the sand bags

along a line 30 cm (11.81") aft of the spar on the constant

chord (inboard) part of the wing. On the tapered (outboard)

part of the wing, the sand bags were laid along a line ex-

tending from 30 cm aft of the spar at the inboard end to

15 cm aft of the spar at the wing tips. This is illustrated

in Figure V-C-4. This arrangement provided a realistic span

distribution of the applied torque (as in flight), with about

(De
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57% of the total torque contributed by the constant chord

part and 43% by the tapered chord sections. For the first

1.5-g loading of the spar, the wing was allowed to bend slow-

ly. From that loading on, the safety supports, positioned

spanwise as shown in Figure V-C-1, and bearing fulcrums of

styrofoam backed by wood 2 x 4 1 s, were set so that the sty-

rofcam fulcrums contacted the wing at the chord position of

the spar. Similar load-bearing fulcrums were also put under

the wing spars at about the one-third span positions. Thus,

loadings beyond 1.5 g's produced more torque about the spar

but not more bending.

As in the bending tests, vertical deflection measure-

ments re taken at the 12 stations shown in Figure V-C-2. 	 i

In addition, at the same stations, scales were set up to

measure horizontal deflections. At given loading levels

readings of vertical and horizontal deflections were made

and recorded for the twelve stations. The pull out of the

aft wing pins was observed and measured as in the simple

bending test, and, again, acoustic emissions were monitored.

The structure withstood the torsion test without any indi-

cation of overstrain or damage.

The vertical deflections measured in the simple bending

test at the various stations and at the different stages of

loading are shown graphically in Figure V-C-5. The wing tip

deflection at the heaviest loading was a little over 60 cm.

This corresponds to a tip-deflection semispan ratio of .09,
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which is quite stiff for a cantilever beam. The data also

shows that the inboard ends of the wings moved slightly

relative to the laboratory floor (which was the reference).

Since the wing pins engaged the fuselage at these inboard

measuring stations, this inboard deflection must have been

due to compression of the supports under the fuselage. At

the heaviest loading it was about 1 cm, or roughly 1.7% of

the tip amplitude.

When the wing was unloaded, the inboard station readings

returned to the initial values within one or two millimeters,

but the outboard station readings indicated some permanent

distortion. Figure V-C-6 shows the differences between the

initial and the final readings, unloaded. The distribution

of the net deflection spanwise suggests two things: (i)
	

a

that the whole aircraft rolled very slightly (about 0.1°)

during the test, and (ii) that there may have been a per-

manent "set" which, at the wing tips, was about 1 cm. This

appears to have been an "additional dihedral" due to distor-

tion in the "carry-through" zone, also amounting to about

0.1°. This is not seen as serious, since this was the first

time these wings and "carry-through" linkages had been

heavily loaded, and there was no visible or other evidence

of difficulty.

The "pull out" of the aft wing pins from the receptacles

in the fuselage is plotted in Figure V-C-7 as a function of

the loading. The magnitude of the pull out seems to be

1$
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about proportional to the loading up to the 700 pounds per

wing value. Additional loading to 850 pounds per wing pro-

duced no further gapping. Possibly the pins jmiubed or locked

in the sockets, or clearance in the ball joints "bottomed"

and tensile reactions were generated across the fuselage

"junction box". The pull out was not measured during un-

loading, but it was observed that when unloading was complete,

the pins were back in their ir.tial positions. This rela-

tively large amount of pull out of the aft pins is a result

of the forward thrust component on the wings and suggests

that, even with the stronger and stiffer carbon compression

strut between the forward pins, the leverage isn't enough to

prevent the wing from bending forward an appreciable amount.

Possibly the forward inboard wing skins are not stiff and

strong enough to prevent the forward bend.

Vertical deflections were observed at the measuring

stations during the torsion test, done on Jirie 22, 1983.

As stated earlier, the wing was restrained from additional

W_.

applied.

the same for

loadings.

ing (i.e., one

simple bend

bending after the first layer of sand bags was

Consequently, the deflections shown are nearly

the first, second and third layers of sand bag

The amount of bending due to the 22 bags per w,

layer) is consistent with that observed in the

test at 26 bags per wing.

The observed twist deformations of the wings are sum-

marized in Figura V-C-8. The starboard wing apparently

O
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twists more than the left one. Differences in wing twist

angle increase as the measurement stations approach the tip.

The average of the two wings'torsional deflections are shown

for the three layers of loading. The wings Pppear to have

twisted elastically, as the amount of twist increased in

near proportion to the applied torque and, upon unloaaing,

returned nearly to the initial angle. These data show that

the port wing took on a permanent twist deformation of 0.23°,

while the starboard wing "set" by about 0.57', as measured

at the wing tips. If these values for permanent twist "set"

are real, the "washout angle" of the wings, built in at 120,

will now be about 2' (which is still satisfactory). It is

possible that some of the difference in response of the two

wings may have been due to inaccuracy in placing the support

fulcrums exactly under the wing beams, with different errors

on the two wings.

The magnitude of the twist may be compared with that

based on the torsion measurements made on an 0.8 meter long

test section of the wing on September 24-26, 1981. The tor-

sional compliance estimated from those test results was 1.72

X 10
-4
 deg/#-in/ meter. Applying this value to the actual

wing geometry and allowing for the outboard tapered section

of the wing to have a single layer of kevlar skin, the cal-

culated twist distribution corresponding to the applied

torque came out as shown in Figure V-C-8. It seems, from a

comparison with the average of the two wings' torsion



170

deflections, that the twist response is about what it should

be.

The acoustic event instrumentation showed no significant

acoustic events except on the tension side of the female

wing "carry-through" transition zone (i.e., at the inboard

master rib station). A total of 487 events were recorded,

with 12 large amplitude events of over 75 db occurring during

the simple bending test. No continuous emission was observed

at the maximum loading during a short hold period. Although

frictional "stick-slip" acoustic events were possible at

this position, the observed acoustic events were probably

caused by benign adjustments normally encountered for a vir-

gin structure. No high-amplitude acoustic events occurred

during the torsion test.

In summary, the June 1983 static tests and subsequent

data analysis lead to the following conclusions:

a) The RP-2 air frame structure withstood both the simple

bending and the torsion tests without failure and without

any visible evidence of damage.

b) In the simple bending test, at 850 pounds per wing load-

ing (approx. 6 g's), the deflection of the wings was very

close to that calculated using the loading pattern, the di-

mensions of the cap strips and a linear modulus of 14 x 106

psi for the carbon fiber cap strips. The magnitude of de-

flection also agreed closely with those observed in the

bending test of October 22, 1981.

I A

J
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c) The calculated strain in the cap strips at the root was

.31% as compared to that observed on the strain gauges of

.325% at the maximum loading.

d) Upon unloading the wing tips returned to within 1 cm of

their initial (virgin) position. This amount of "set" is

reasonable after the first major loading cycle of a comoos-

ite structure.

e) The obseL ved twisting response of the wings in the tor-

sion test was very close to that calculated using the stiff-

-ness constant derived from torque tests made in September

1981 on a special 80 cm long test section of the constant

chord (95 cm) section of the wing. The starboard wing

showed more twist than the port wing. Both wings had about

"° angular "set" after the test.

f) The new carbon fiber tube compression strut between the

forward wing pins showed no signs of over stress. However,

the rear wing pins puled out of their bushings nearly

3/16" at the maximum loading in the bending test. This, to-

gether with the known strength and rigidity of the carbon

compression strut at the forward pins, suggests that the

forward inboard wing skin is yielding considerably under the

foniard bending moment on the wings.

3) The cause of the acoustic event and audible snap, that
occurred at 700 lb/wing loading has not been identified.

The most probable cause was a partial break of bonding be-

tween the tension cap strip and the U-plates added to the
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female "carry-through" structure on the port wing. At this

point there is an abrupt change of section, which could have

caused high local stresses in the bonded joint; it may have

been an "accommodation adjustment". At this point, there

was a step in the deflection at the starboard wing tip, but

it was in the wrong direction to be due to yielding.

h) Purina the torsion test, the strain gauge on the male

spar cap read an unbelievably high value of 0.6 to 0.7%.

There were no acoustic events of significance or evidence of

overstressed parts. Upon unloading, the gauge returned to a

zero reading, and test loads of 30 pounds on the wing tips

yielded reasonable readings around .03%. This strange be-

havior of the strain gauge and the structure is not explained.

3. Plans for Upcoming Period

To r-.aedy the problems seen as associated with the for-

ward bending of the wings, it see.--G likely that a tension

"carry-through" linkage should be installed near the rear

wing pins. This arrangement would have a much larger lever

arm with respect to the front wing pins than the wing spar

"carry-though" structure, and this could much more effec-

tively restrain the forward bending deflections of the

wings. Such a structure will be considered and, if practi-

cal, designed, fabricated and installed in the RP-2.

After installation, the full, 6-g bending test will be

repeated to determine whether the 700 pound/wing snap

er
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phenomenon reoccurs, and whether the wing stru:ture takes on

any more "set". The degree to which the "gapping" at the

rear root pins occurs will also be assessed. With the suc-

cessful completion of such a test, the wing/fuselage struc-

ture will. be considered airworthy.

4. Current Publications or Presentations b
Professor Scarton on this Subject

"Acoustic Emission Proof Testing of Composite Sail-Planes",
with G. Bobal.

Prescr:ed at the 1st International Symposium on
Acoustic Emission from Reinforced Plastics, CARP,
San Francisco, CA, July 19-21, 1983.

i=

^J^
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Technical meetings, on- and off-campus, provide impor-

tant opportunities for interchange of technical information.

Because of the large number of composites meetings, a cen-

tral catalog with upcoming meetings is being maintained and

distributed periodically. In this way we help to assure

that a Rensselaer faculty/staff member can participate in

important meetings. The calendar for this reporting period

is shown in Table VI-1. Meetings attended by RPI composites

program faculty/staff/students during the reporting period

are shown in Table VI-2. Some meetings particularly rele-

vant to composites, held on-campus with special speakers,

are listed in Table VI-3. A list of composite-related vis-

its to re'-vant organizations by RPI faculty/staff/students,

with the purpose of each visit outlined, is presented in

Table VI-4.

A continuing education special course, an outgrowth of

the composite materials and structures program, was pre-

sented for graduate engineers in industry and government,

for the fourth time: "Advanced Composite Matarials and

Structures" during the week of July 11-15. The course lasted

one week, and the level of the material was again planned to

be particularly useful to managers of engineering structures

activities who are involved in technical work, but who may

not have taken courses for several years. Because of the

wide variety of special courses available throughout the

United States dealing with this subject matter, only rather.

PRECEDING• PAGE BLANK NOT FLLMUD'
	 -NKL4MWWALLV MAN
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TABLE VI-1

CALENDAR OF COMPOSITES-RELATED MEETINGS

(April 30, 1983 through September 30, 1983)

24th Structures, Structural Dynamics and Materials
Conference, Lake Tahoe, NV. Sponsored by AISS/
ASME/ASCE/AHS.

39th Annual Forum and Technical Display, St. Louis,
MO. Sponsored by AHS.

Annual Meeting and Technical Display, Long Beach,
CA. Sponsored by AIAA.

Conference on Physics of Composite Interfaces,
Pasedena, CA. Sponsored by California Institute of
Technology.

5th Metal Matrix Composites Materials Conference,
Silver Springs, MD. Sponsored by DOD,'MMCIAM.

Spring National Convention, Philadelphia, PA.
Sponsored by ASCE.

4th Engineering Mechanics Division Special Confer-
ence, Purdue University, Lafayette, IN. Sponsorec,
by ASCE.

Workshop on Toughening of Composites, Langley Re-
search Center. Sponsored by NASA.

Thermophysics Conference, Montreal, Canada. Spon-
sored by AIAA.

2nd U.S./Japan Composites Materials Conference,
NASA/Langley, VA. Sponsored by NASA and ASTM Coms.
E-9 and D-30.

Symposium on Dynamics and Control of Large Struc-
tures, B l acksburg, VA. Sponsored by VPI and SU/AIAA.

6th International Symposium on Air Breathing End., :,..s,
Paris, France. Sponsored by AIAA.

Conference on Macromolecules, Cleveland, OH. Spon-
sored by Case western Reserve University.

Materials and Structures Technical Conference,
White Oak, MD. Sponsored by DOD.

5/2-4

5/8-11

5/10-12

5/10-12

5/17-19

5/19

5/24

5/24-25

6/1-3

6/6-8

6/6-8

6/6-11

6/13-15

6/14-16

11

^I
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TABLE VI-1 continued

6/22	 91st Annual Conference, Rochester Institute of
Technology, Rochester, NY. Sponsored by ASEE.

6/27-29 19th Joint Propulsion Conference, Seattle, WA.
Sponsored by AIAA/SAE/ASME.

6/27-7/1 International Symposium on Plasticity Today,
Udine, Italy.

7/12-13 Symposium on Environmental Effects in Fiber Rein-
forced Plastics, Imperial College, London, England.
Sponsored by Aerr. Department, Imperial College and
Royal Aircraft Establishment.

7/18-21 1st International Symposium on Acoustic Emission
from Reinforced Composites, San Francisco, CA.
Sponsored by Society of Plastics Industry.

7/18-22 16th Biennial Conference on Carbcn, San Diego, CA.
Sponsored by the American Carbon Society.

7/25-27 Lighter-Than-Air Systems Conference, Anaheim, CA. 	 }
AIAA.

8/22-26 Gordon Conference on Thermosets, New Hampton, NH.
°r

8/23-26 International Conference on Structural Mechanics
in Reactor Technology, Chicago, IL.

9/7	 Forum of Flexible Spacecraft Dynamics, Massachusetts
Institute of Î -chnology, Cambridge, MA. Sponsored
by AFOSR.

9/14-15 Testing, Evaluation and Quality Control of Compos-
ites, Surrey, England. Sponsored by Surrey Univer-
sity.

9/26	 Symposium on Solid Modeling by Computers, Detroit,
MI. Sponsored by General Motors Research Labs.

^# 1

-- J
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TARTM UT-7

COMPOSITES-RELATED TECHNICAL MEETINGS ATTENDED OFF-CAMPUS

(April 3C, 198" through September 30, 1983)

5/2-4	 24th Structures, Dynamics and Materials Conference
(Prof. Loewy), Lake Tahoe, NV.

Professor Loewy presented the paper:
"Effect of Shaft Flexibility on the Struc-
tural Dynamics of Bladed Drive Assemblies".

5/10-12 Conference on the Physics of Composite Interfaces
(Prof. Diefendorf), California Institute of Tech-
nology, Pasedena, CA.

Professor Diefendorf presented the paper:
"The Physical Chemistry of Fiber./Matrix
Interactions in Composite Materials".

5/19	 ASCE Spring National Convention (Prof. Shephard),
Philadelphia, PA.

Professor Shephard Chaired a Session:
"Computer Graphics Application and Design".

5/24	 4th Engineering Mechanics Division Special Confer-
ence (Prof. Shephard), Purdue University, Layfay-
ette, IN.	 t

Professor Shephad presented the paper:
"Computer Graphics in the Development of
an Automatic Three-Dimensional Mesh Gen-	 1
erator"

6/6-9	 ASTM/NASA 2nd US/Japan Conference on Composite
Materials (Prof. Diefendorf), Langley Research Cen-
ter.

6/13-15 Cleveland Conference on Macromolecules (Prof. Stern-
stein), Case Western Reserve University, Cleveland,
OH.

Professor Sternstein presented the paper:
"Mechanical Characterization of Neat Resins
and Composites".

6/22	 ASEE 91st F,nnual Conference (Prof. Shepherd), Ro-
chester Institute cif Technology, Rochester, NY.

Professor Shephard presented the paper:
"RPI's Industrial Associates Program in
Computer Graphics and CAD/CAM".

r^
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TABLE VI-2 continued

6/27-7/1 Tnternational Symposium on Plasticity Today (Prof.
{rempl), Udine, Italy.

Professor Krempl presented the Topical Paper:
"Inelastic Work and Thermo Mechanical
Coupling in Viscoplasticity".

7/18-22 American Carbon Society 16th Biennial Conference
on Carbon (Prof. Diefendorf), San Diego, CA.

Professor Diefendorf made 13 presentations
related to pitch precursor carbon fibers
and carbon fiber composites, plus a Plenary
Lecture, "The Physical Chemistry of Pitch
Mesophase Formation".

8/18-21 1st International Symposium on Acoustic Emission
from Reinforced Composites (Prof. Scarton), San
Francisco, CA.

Professor Scarton presented the paper:
"Acoustic Emission Proof Testing of Com-
posite Sail-Planes", with G. Bobal.

8/22-26 Gordon Conference on Thermosets (Frof. Sternstein),
New Hampton, NH.

Professor Sternstein gave a Lecture!
"Inhomogeneous Swelling Theory and Appli-
cations".

8/23-26 International Conference on Structural Mechanics
in Reactor Technology (Prof. Krempl), Chicago, IL.

Professor Krempl was a Session Chairman.

9/7	 AFOSR Forum of Flexible Spacecraft Dynamics (Prof.
Loewy), Massachusetts Institute of Technology,
Cambridge, MA.

9/26	 General Motors Research Labs. Symposium on Solid
Modeling by Composites (Prof. Shephard), Detroit,
MI.

Professor Shephard presented the paper:
"Finite Element Mesh Generation for Use
with Solid Modeling and Adaptive Analysis",
with M. A. 'Merry.
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TABLE VI-3

COMPOSITES-RELATED MEETINGS TALKS HELD AT RPI

(April 30, 1983 through September 30, 1983)

Topic Date Speaker(s)

Steering Committee 7/26-28 Host:	 Prof. S. Sternstein,
Meeting "Toughness and RPI
Damage Tolerance of
Composites", Sponsor:
NASA/Langley

Direct-ions Currently 8/18 Workshop Coordinator: Prof.
being Taken by the CICG M. Shephard, RPI
Finite Element Group
(Albany-Hilton)

Tomographic Evaluation 51' Dr. A. Sawczuk
of Internal Damage in Polish Academy of Sciences,
Plastically Deformed Warsaw, Poland and
Solids University of Aix-Marseille

III, France

The Constitutive Law in 9/20 Prof. Dr. Ing. T'-. Lehmann
Thermoplasticity - Ruhr-Univeritit
Theoretical Considera- Boehum, West Germany
tir.ns and Experimental
Results

Mechanics of Brittle; 9/22 Prof. Zenon Mroz
Plastic Materials Polish Academy of Sciences,

Warsaw, Poland

,(Vj
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TABLE VI-4

COMPOSITES-RELATED VISITS TO R.ELEVAZ.T ORGANIZATIONS

by RPI Faculty/Staff/StLdents

(April 30, 1983 through September 30, 1983)

Visited Date By Purpose	 j

Owens-Corning ►/7 Prof.	 S. S. Presented a lecture,
Research, OH Sternstein "Mechanical Prope::-

ties of Composites"	 5

Boeing•Vertol 7/29 Prof.	 R. G. Progress report on a
Company Loewy contract to study
Essington, PA tension-compression 	 I

fatigue in Gr/E, G/E
and Y/E tubes 4nd
tapered members

W. R. Grace Co. 9/2 Prof. R. J. Presented a lecture,
Columbia, MD Diefendcrf "Ceramic Matrix Co.a-

posites"

McDonnell-Doug- 9/15 Prof. R. J. Presented a lecture,
las Company Liefendorf "The Effects of the
St. Louis, MO Physical Chemistry of

Fiber/Matrix Inter-
faces or the roughness
of Composites"
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unique aspects justify additional offerings in these areas.

Our programs were planned from the outset to be unusual in

the respect that "hands-on" experiences were inherent and

required for completion of each course, These aspects have

continued to develop and such development was evident in our

fourth-year offering. Use of personal computers, applica-

tion of optin. nation programs using computer graphics, lay-

up and cure of a simple part in graphite epoxy and testing

tensile, shear and compressions coupons to failure were all

part of the course.

It was gratifying to note that government research

laboratories; the Army, Navy and Air Force; both large and

small industrial firms and other universities were repre-

sented among those who took the course, and that their post-

course questionnaires were, once again, overwhelmingly

favorable.

Faculty-staff and attendees for the courses were as

follows:

Composite Materials and Structures

July 11-15, 1983

Prc4ram . actor:

R. G. Loewy
Institute Professor
Rensselaer Polytechnic Institute

Faculty:

R. Judd Diefendorf
Professor, Materials Eng.
Rensselaer Polytechnic Inst.

H. Gunther Helwig
Design Specialist
Composites Group
Dornier Svstem Gmb H



S. Leigh Phoenix	 Dick E. Wilk_ s
Associate Professor	 Sr. Eng. Specialist
Mechanical and Aeronautical	 General Dynamics
Engineering	 Fort Worth
Cornell University

Stephen W. Tsai
Chief, Mechanics and Sur-
face Interactions Branch
Air Force Materials Lab.
Wright-Patterson AFB

185

Students:

Les Bevans Luis J. Lozano
Design Engineer Quality Assurance Manager
Sundstrand Corp. Anaconda Metal Hose
4747 Harrison Avenue 698 South Main Street
Rockland, IL	 61125 Waterbury, CT	 06706

Michael Carroll Thomas J. Mallets
Sr. Engineer Project Manager.
Harris Corp. AF Logistics Command
Div. GASD Process Eng. & Tech. Div.
P. O. Box 37 AFLC/MAXT
Milbourne; FL	 32901 Wright-Patterson AFB

Michael P. Clark OH	 45433

Mechanical Engineer William B. Matkin
GTE Products Corp. Mechanical Engineer
520 Winter Street DRSMI-RLC
Waltham, MA	 02254 Commander, U. S. Army

Major Mark H. Davis Missile Command

Assistant Profess^r ATTN:	 DRSMI-RLC, W. B.
Dept. of Mechanics Matkin, Redstone Arsenal

W. S. Military Academy AL 35898

West Point, NY	 10996 John T. McVickar
John Emmel Principal Engineer

Engineer II Measurement Analysis Corp.

Northrop Corp. 23852 Madison Street

J	 8900 E. Washington Blvd. Torrance, CA	 90505

Pico Rivera, CP	 90660 Glenn O'Hara

Captain Joser:L W. Hager Mechanical Engineer

Assistant Professor U. S. Army Watervliet

U. S. Air Force Academy/DFEM Arsenal

Dept. of Eng. Mechanics ATTN:	 SAR;,'V-PTT

Colorado Springs, CO	 80840 Watervliet, NY	 12189

James E. Kozicki S. Philip Oyoung
Member Erg,. Staff Analytical Engineer
RCA Amer. Com ., Inc. Surdstrand Corp.

400 College Road East 47,1 Harrison Avenue

Princeton, NJ	 08540 Rockford, IL	 61125
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ct,

Joseph Perez
Director., Tech.. Services
SICMA America Inc
6926 NW 46th Street
Miami, FL 33166

George Pflegl
Mechanical Engineer
U. S. Army Watervliet

Arsenal
ATTN: SAPWV-PTT
Watervliet, NY 12189

Richard Polanic
Development Engineer
Goodyear Aerospace
ATTN: 392-WFL•
1210 Massillcn Road
Akron, Oli 44315

Craig Rix
Research Analyst
Lockheed
P. O. Box 551
Burbank, CA 91520

Mohammed A. Sattar
Sr. Analytical Engineer
Pratt & Whitney Aircraft
400 rlain Street
M. S. 165-13
East Hartford, CT 06108

Peter M. Switchenko
Engineer
General Electric Company
Aircraft Enqine Bus. Group
MO 14508 1000 Western Av.
Lynn, MA 01910

Thomas Talboys, PE
President
Talboys Engineering Corp.
1 Palisade Avenue
Emerson, NJ 07630

Terry L. Vandiver
Mechanical Engineer
DRSMI-RLC
Commander, U. S. Army
Missle Command

ATTN: DRSMI-RLC, W. B.
Matkin, Redstone Arsenal

AL 35898

For the last several years, as the diversity of the

research conducted within this program has increased, once-

a-week luncheon programs have been held to insure informa-

tion transfer among the faculty and graduate students in-

volved (listed in Part VIA - Personnel of this report).

These meetings are held continuously when classes are in

session and are known as "Brown Bag Lunches" (BBL's), since

att=ndees bring their own. Each BBL is an opportunity for

graduate students and faculty to present briefly plans for,

problems encountered in and recent results from their indi-
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individual projects. These sessions also are occasions for

brief administrative reports, usually on the part of one of

the Co-Principal Investigators, and for brief reports on

what transpired at off-campus meetings attended by one of

the participants (as listed in Tables VI-2 and VI-4 of this

report). Visitors from off campus, who are at RPI during

a BBL day are often invited to "sit in". A calendar of

internal, oral progress reports as they were given during

the last reporting period at BBL's is listed in Table VI-5.

I.
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COMPOSITE MATERIALS AND STRUCTURES PROGRAM

BROWN BAG LUNCH (BBL) SCHEDULE

(April 30, 1983 through September 30, 1983)

Responsible
Date Topic Faculty

4/15 Administrative Report J. Diefendorf

Generic Structural Components D. Goetschel

Free Edge Failures of Laminates S. Sham

4/22 Report on AGARD Meeting R. Loewy

Resin-Fiber Interface Research J. Diefendorf

4/29 Administrative Report R. Loewy

Composites Fatigue Research E. Krempl

Computer Aided Design and Analysis M. Shephard

5/6 Report on 24th SDM Conference R. Loewy

Matrix Characterization and Environmental S. Sternstein
Effects

9/16 Administrative Report R. Loewy

Report on Vertol Research R. Loewy

9/23 Administrative Report J. Diefendorf

Generic Structural Components D. Goetschel

Computer Aided Design and Analysis M. Shephard

9/30 Administrative Report R. Loewy

Fabrication Technology Experiments F. Bundy
H. Hagerup
V. Paeeeit

Static Test Review
	 H. Scarton

i-
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PERSONNEL

Co-Principal Investigators

Ansell, George S., Ph.D.

Loewy, Robert G., Ph.D.

Wiberley, Stephen E., Ph.D.

Senior Investigators

Dean, School of Engineering

Institute Professor

Professor of Chemistry

Brunelle, E. J., Jr., Sc.D. 	 Associate Professor of
(Aeroelastic and structural 	 Aeronautical Engineering
design and analysis, applied
mechanics of composite
structures)*

Bundy, F. P., Ph.D.
(Physical chemistry and
structures testing)*

Diefendorfl , R. J., Ph.D.
(Fabrication, resin matrix,
fiber behavior, interfaces)*

Feeserl . L. J., Ph.D.
(Computer applications and
graphics, computer-aided
design, optimization)*

Goetschel, D. B., Ph.D.
(Structural analysis design
and testing)*

Research Professor of Mate-
rials Engineering

Professor of Materials
Engineering

Professor of Civil Engineering

Assistant Professor of
Mechanical Engineering

Hager,ip, H. J. , Ph.D.
(Aerodynamics, configura-
tion, pilot accomodation,
flight testing)*

Krempl, E., Dr.Ing.
(Fatigue studies, failure
criteria)*

Associate Professor of
Aeronautical Engineering

Professor of Mechanics and
Director of Cyclic Strain
Laboratory

Scarton, H., Ph.D.	 Associate Professor of Me-
(Acoustic emission NDE)* 	 chanical Engineering and Me-

chanics

*
Fields of Speciality

1Member of Budget Committee together. with Co-Principal Inves-
tigators

PRECEDING PAGE BLANK NOT FILMEU
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Senior Investigators

Sham, T-L., Ph.D.
(Fracture mechanics, com-
posites)*

Shephard, M. S., Ph.D.
(Computer graphics, finite
element methods)*

Sternstein, S. S., Ph.D.
(Failure analysis, matrix
behavior, moisture effects)*

Wunderlich, B., Ph.D.
(Processing science, con-
stituent material charac-
teristics)'

ResBarch Staff

Assistant Professor of Mechan-
ical Engineering

Associate Director, Center for
Interactive Computer Graphics
and Assistant Professor of
Civil Engineering

William Weightman Walker
Professor of Polymer Engineer-
ing

Professor of Chemistry

Manager & Master Technician, Composites Laboratory

Paedelt, Volker

Visiting Scholar

Brouer, R., B.S., Free University of Brussels	
i

Graduate Assistants

Anderson, Stephen, B.S.

Baxter, Scott, B.S.

Bertolazzi, Andrew, B.S.

Burd, Gary, B.S.

Cackett, Matthew, B.S.

Chen, Kuong-jung, B.S.

DeMint, Thomas, B.S.

Father, Philip, B.S.

Helmer, James, B.S.

Hu, Tsay-hsin, M.S.

Judovits, Lawrence, B ,

Liu, Shiann-hsing, M.S.

Sing, Sachchica, B.Tech.

Srinivasan, Krishna, B.S.
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