24 research outputs found

    Multi-Tenant Provisioning for Quantum Key Distribution Networks with Heuristics and Reinforcement Learning: A Comparative Study

    Get PDF
    Quantum key distribution (QKD) networks are potential to be widely deployed in the immediate future to provide long-term security for data communications. Given the high price and complexity, multi-tenancy has become a cost-effective pattern for QKD network operations. In this work, we concentrate on addressing the online multi-tenant provisioning (On-MTP) problem for QKD networks, where multiple tenant requests (TRs) arrive dynamically. On-MTP involves scheduling multiple TRs and assigning non-reusable secret keys derived from a QKD network to multiple TRs, where each TR can be regarded as a high-security-demand organization with the dedicated secret-key demand. The quantum key pools (QKPs) are constructed over QKD network infrastructure to improve management efficiency for secret keys. We model the secret-key resources for QKPs and the secret-key demands of TRs using distinct images. To realize efficient On-MTP, we perform a comparative study of heuristics and reinforcement learning (RL) based On-MTP solutions, where three heuristics (i.e., random, fit, and best-fit based On-MTP algorithms) are presented and a RL framework is introduced to realize automatic training of an On-MTP algorithm. The comparative results indicate that with sufficient training iterations the RL-based On-MTP algorithm significantly outperforms the presented heuristics in terms of tenant-request blocking probability and secret-key resource utilization

    Multipoint-Interconnected Quantum Communication Networks

    Get PDF
    As quantum computers with sufficient computational power are becoming mature, the security of classical communication and cryptography may compromise, which is based on the mathematical complexity. Quantum communication technology is a promising solution to secure communication based on quantum mechanics. To meet the secure communication requirements of multiple users, multipoint-interconnected quantum communication networks are specified, including quantum key distribution networks and quantum teleportation networks. The enabling technologies for quantum communication are the important bases for multipoint-interconnected quantum communication networks. To achieve the better connection, resource utilization, and resilience of multipoint-interconnected quantum communication networks, the efficient network architecture and optimization methods are summarized, and open issues in quantum communication networks are discussed

    Quantum Computing and Communications

    Get PDF
    This book explains the concepts and basic mathematics of quantum computing and communication. Chapters cover such topics as quantum algorithms, photonic implementations of discrete-time quantum walks, how to build a quantum computer, and quantum key distribution and teleportation, among others

    Characterizing and Utilizing the Interplay between Quantum Technologies and Non-Terrestrial Networks

    Get PDF
    Quantum technologies have been widely recognized as one of the milestones towards the ongoing digital transformation, which will also trigger new disruptive innovations. Quantum technologies encompassing quantum computing, communications, and sensing offer an interesting set of advantages such as unconditional security and ultra-fast computing capabilities. However, deploying quantum services at a global scale requires circumventing the limitations due to the geographical boundaries and terrestrial obstacles, which can be adequately addressed by considering non-terrestrial networks (NTNs). In the recent few years, establishing multi-layer NTNs has been extensively studied to integrate space-airborne-terrestrial communications systems, particularly by the international standardization organizations such as the third-generation partnership project (3GPP) and the international telecommunication union (ITU), in order to support future wireless ecosystems. Indeed, amalgamating quantum technologies and NTNs will scale up the quantum communications ranges and provide unprecedented levels of security and processing solutions that are safer and faster than the traditional offerings. This paper provides some insights into the interplay between the evolving NTN architectures and quantum technologies with a particular focus on the integration challenges and their potential solutions for enhancing the quantum-NTN interoperability among various space-air-ground communications nodes. The emphasis is on how the quantum technologies can benefit from satellites and aerial platforms as an integrated network and vice versa. Moreover, a set of future research directions and new opportunities are identified

    Physical-Layer Security, Quantum Key Distribution and Post-quantum Cryptography

    Get PDF
    The growth of data-driven technologies, 5G, and the Internet place enormous pressure on underlying information infrastructure. There exist numerous proposals on how to deal with the possible capacity crunch. However, the security of both optical and wireless networks lags behind reliable and spectrally efficient transmission. Significant achievements have been made recently in the quantum computing arena. Because most conventional cryptography systems rely on computational security, which guarantees the security against an efficient eavesdropper for a limited time, with the advancement in quantum computing this security can be compromised. To solve these problems, various schemes providing perfect/unconditional security have been proposed including physical-layer security (PLS), quantum key distribution (QKD), and post-quantum cryptography. Unfortunately, it is still not clear how to integrate those different proposals with higher level cryptography schemes. So the purpose of the Special Issue entitled “Physical-Layer Security, Quantum Key Distribution and Post-quantum Cryptography” was to integrate these various approaches and enable the next generation of cryptography systems whose security cannot be broken by quantum computers. This book represents the reprint of the papers accepted for publication in the Special Issue

    Quantum for 6G communication: a perspective

    Get PDF
    In the technologically changing world, the demand for ultra-reliable, faster, low power, and secure communication has significantly risen in recent years. Researchers have shown immense interest in emerging quantum computing (QC) due to its potentials of solving the computing complexity in the robust and efficient manner. It is envisioned that QC can act as critical enablers and strong catalysts to considerably reduce the computing complexities and boost the future of sixth generation (6G) and beyond communication systems in terms of their security. In this study, the fundamentals of QC, the evolution of quantum communication that encompasses a wide spectrum of technologies and applications and quantum key distribution, which is one of the most promising applications of quantum security, have been presented. Furthermore, various parameters and important techniques are also investigated to optimise the performance of 6G communication in terms of their security, computing, and communication efficiency. Towards the end, potential challenges that QC and quantum communication may face in 6G have been highlighted along with future directions

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    White Paper on Digital and Complex Information

    Get PDF
    Information is one of the main traits of the contemporary era. Indeed there aremany perspectives to define the present times, such as the Digital Age, the Big Dataera, the Fourth Industrial Revolution, the fourth Paradigm of science, and in all ofthem information, gathered, stored, processed and transmitted, plays a key role.Technological developments in the last decades such as powerful computers, cheaperand miniaturized solutions as smartphones, massive optical communication, or theInternet, to name few, have enabled this shift to the Information age. This shift hasdriven daily life, cultural and social deep changes, in work and personal activities,on access to knowledge, information spreading, altering interpersonal relations orthe way we interact in public and private sphere, in economy and politics, pavingthe way to globalizationPeer reviewe
    corecore