18,202 research outputs found

    Evaluating Resilience of Electricity Distribution Networks via A Modification of Generalized Benders Decomposition Method

    Full text link
    This paper presents a computational approach to evaluate the resilience of electricity Distribution Networks (DNs) to cyber-physical failures. In our model, we consider an attacker who targets multiple DN components to maximize the loss of the DN operator. We consider two types of operator response: (i) Coordinated emergency response; (ii) Uncoordinated autonomous disconnects, which may lead to cascading failures. To evaluate resilience under response (i), we solve a Bilevel Mixed-Integer Second-Order Cone Program which is computationally challenging due to mixed-integer variables in the inner problem and non-convex constraints. Our solution approach is based on the Generalized Benders Decomposition method, which achieves a reasonable tradeoff between computational time and solution accuracy. Our approach involves modifying the Benders cut based on structural insights on power flow over radial DNs. We evaluate DN resilience under response (ii) by sequentially computing autonomous component disconnects due to operating bound violations resulting from the initial attack and the potential cascading failures. Our approach helps estimate the gain in resilience under response (i), relative to (ii)

    Moving from a "human-as-problem" to a "human-as-solution" cybersecurity mindset

    Get PDF
    Cybersecurity has gained prominence, with a number of widely publicised security incidents, hacking attacks and data breaches reaching the news over the last few years. The escalation in the numbers of cyber incidents shows no sign of abating, and it seems appropriate to take a look at the way cybersecurity is conceptualised and to consider whether there is a need for a mindset change.To consider this question, we applied a "problematization" approach to assess current conceptualisations of the cybersecurity problem by government, industry and hackers. Our analysis revealed that individual human actors, in a variety of roles, are generally considered to be "a problem". We also discovered that deployed solutions primarily focus on preventing adverse events by building resistance: i.e. implementing new security layers and policies that control humans and constrain their problematic behaviours. In essence, this treats all humans in the system as if they might well be malicious actors, and the solutions are designed to prevent their ill-advised behaviours. Given the continuing incidences of data breaches and successful hacks, it seems wise to rethink the status quo approach, which we refer to as "Cybersecurity, Currently". In particular, we suggest that there is a need to reconsider the core assumptions and characterisations of the well-intentioned human's role in the cybersecurity socio-technical system. Treating everyone as a problem does not seem to work, given the current cyber security landscape.Benefiting from research in other fields, we propose a new mindset i.e. "Cybersecurity, Differently". This approach rests on recognition of the fact that the problem is actually the high complexity, interconnectedness and emergent qualities of socio-technical systems. The "differently" mindset acknowledges the well-intentioned human's ability to be an important contributor to organisational cybersecurity, as well as their potential to be "part of the solution" rather than "the problem". In essence, this new approach initially treats all humans in the system as if they are well-intentioned. The focus is on enhancing factors that contribute to positive outcomes and resilience. We conclude by proposing a set of key principles and, with the help of a prototypical fictional organisation, consider how this mindset could enhance and improve cybersecurity across the socio-technical system

    Evaluating Cascading Impact of Attacks on Resilience of Industrial Control Systems: A Design-Centric Modeling Approach

    Full text link
    A design-centric modeling approach was proposed to model the behaviour of the physical processes controlled by Industrial Control Systems (ICS) and study the cascading impact of data-oriented attacks. A threat model was used as input to guide the construction of the CPS model where control components which are within the adversary's intent and capabilities are extracted. The relevant control components are subsequently modeled together with their control dependencies and operational design specifications. The approach was demonstrated and validated on a water treatment testbed. Attacks were simulated on the testbed model where its resilience to attacks was evaluated using proposed metrics such as Impact Ratio and Time-to-Critical-State. From the analysis of the attacks, design strengths and weaknesses were identified and design improvements were recommended to increase the testbed's resilience to attacks

    Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems, cyber risk at the edge

    Get PDF
    The Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer to the cyber security target that matches the generic security requirements of an organisation. The research paper studies and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT cyber risk posture

    Refining the PoinTER “human firewall” pentesting framework

    Get PDF
    PurposePenetration tests have become a valuable tool in the cyber security defence strategy, in terms of detecting vulnerabilities. Although penetration testing has traditionally focused on technical aspects, the field has started to realise the importance of the human in the organisation, and the need to ensure that humans are resistant to cyber-attacks. To achieve this, some organisations “pentest” their employees, testing their resilience and ability to detect and repel human-targeted attacks. In a previous paper we reported on PoinTER (Prepare TEst Remediate), a human pentesting framework, tailored to the needs of SMEs. In this paper, we propose improvements to refine our framework. The improvements are based on a derived set of ethical principles that have been subjected to ethical scrutiny.MethodologyWe conducted a systematic literature review of academic research, a review of actual hacker techniques, industry recommendations and official body advice related to social engineering techniques. To meet our requirements to have an ethical human pentesting framework, we compiled a list of ethical principles from the research literature which we used to filter out techniques deemed unethical.FindingsDrawing on social engineering techniques from academic research, reported by the hacker community, industry recommendations and official body advice and subjecting each technique to ethical inspection, using a comprehensive list of ethical principles, we propose the refined GDPR compliant and privacy respecting PoinTER Framework. The list of ethical principles, we suggest, could also inform ethical technical pentests.OriginalityPrevious work has considered penetration testing humans, but few have produced a comprehensive framework such as PoinTER. PoinTER has been rigorously derived from multiple sources and ethically scrutinised through inspection, using a comprehensive list of ethical principles derived from the research literature

    SPARCS: Stream-processing architecture applied in real-time cyber-physical security

    Get PDF
    In this paper, we showcase a complete, end-To-end, fault tolerant, bandwidth and latency optimized architecture for real time utilization of data from multiple sources that allows the collection, transport, storage, processing, and display of both raw data and analytics. This architecture can be applied for a wide variety of applications ranging from automation/control to monitoring and security. We propose a practical, hierarchical design that allows easy addition and reconfiguration of software and hardware components, while utilizing local processing of data at sensor or field site ('fog computing') level to reduce latency and upstream bandwidth requirements. The system supports multiple fail-safe mechanisms to guarantee the delivery of sensor data. We describe the application of this architecture to cyber-physical security (CPS) by supporting security monitoring of an electric distribution grid, through the collection and analysis of distribution-grid level phasor measurement unit (PMU) data, as well as Supervisory Control And Data Acquisition (SCADA) communication in the control area network

    Resilience of multi-robot systems to physical masquerade attacks

    Full text link
    The advent of autonomous mobile multi-robot systems has driven innovation in both the industrial and defense sectors. The integration of such systems in safety-and security-critical applications has raised concern over their resilience to attack. In this work, we investigate the security problem of a stealthy adversary masquerading as a properly functioning agent. We show that conventional multi-agent pathfinding solutions are vulnerable to these physical masquerade attacks. Furthermore, we provide a constraint-based formulation of multi-agent pathfinding that yields multi-agent plans that are provably resilient to physical masquerade attacks. This formalization leverages inter-agent observations to facilitate introspective monitoring to guarantee resilience.Accepted manuscrip

    Cyber Insurance, Data Security, and Blockchain in the Wake of the Equifax Breach

    Get PDF
    • …
    corecore