549 research outputs found

    Towards Lattice Quantum Chromodynamics on FPGA devices

    Get PDF
    In this paper we describe a single-node, double precision Field Programmable Gate Array (FPGA) implementation of the Conjugate Gradient algorithm in the context of Lattice Quantum Chromodynamics. As a benchmark of our proposal we invert numerically the Dirac-Wilson operator on a 4-dimensional grid on three Xilinx hardware solutions: Zynq Ultrascale+ evaluation board, the Alveo U250 accelerator and the largest device available on the market, the VU13P device. In our implementation we separate software/hardware parts in such a way that the entire multiplication by the Dirac operator is performed in hardware, and the rest of the algorithm runs on the host. We find out that the FPGA implementation can offer a performance comparable with that obtained using current CPU or Intel's many core Xeon Phi accelerators. A possible multiple node FPGA-based system is discussed and we argue that power-efficient High Performance Computing (HPC) systems can be implemented using FPGA devices only.Comment: 17 pages, 4 figure

    A highly parameterized and efficient FPGA-based skeleton for pairwise biological sequence alignment

    Get PDF

    Fine-grained parallelization of fitness functions in bioinformatics optimization problems: gene selection for cancer classification and biclustering of gene expression data

    Get PDF
    ANTECEDENTES: las metaheurísticas se utilizan ampliamente para resolver grandes problemas de optimización combinatoria en bioinformática debido al enorme conjunto de posibles soluciones. Dos problemas representativos son la selección de genes para la clasificación del cáncer y el agrupamiento de los datos de expresión génica. En la mayoría de los casos, estas metaheurísticas, así como otras técnicas no lineales, aplican una función de adecuación a cada solución posible con una población de tamaño limitado, y ese paso involucra latencias más altas que otras partes de los algoritmos, lo cual es la razón por la cual el tiempo de ejecución de las aplicaciones dependerá principalmente del tiempo de ejecución de la función de aptitud. Además, es habitual encontrar formulaciones aritméticas de punto flotante para las funciones de fitness. De esta manera, una paralelización cuidadosa de estas funciones utilizando la tecnología de hardware reconfigurable acelerará el cálculo, especialmente si se aplican en paralelo a varias soluciones de la población. RESULTADOS: una paralelización de grano fino de dos funciones de aptitud de punto flotante de diferentes complejidades y características involucradas en el biclustering de los datos de expresión génica y la selección de genes para la clasificación del cáncer permitió obtener mayores aceleraciones y cómputos de potencia reducida con respecto a los microprocesadores habituales. CONCLUSIONES: Los resultados muestran mejores rendimientos utilizando tecnología de hardware reconfigurable en lugar de los microprocesadores habituales, en términos de tiempo de consumo y consumo de energía, no solo debido a la paralelización de las operaciones aritméticas, sino también gracias a la evaluación de aptitud concurrente para varios individuos de la población en La metaheurística. Esta es una buena base para crear soluciones aceleradas y de bajo consumo de energía para escenarios informáticos intensivos.BACKGROUND: Metaheuristics are widely used to solve large combinatorial optimization problems in bioinformatics because of the huge set of possible solutions. Two representative problems are gene selection for cancer classification and biclustering of gene expression data. In most cases, these metaheuristics, as well as other non-linear techniques, apply a fitness function to each possible solution with a size-limited population, and that step involves higher latencies than other parts of the algorithms, which is the reason why the execution time of the applications will mainly depend on the execution time of the fitness function. In addition, it is usual to find floating-point arithmetic formulations for the fitness functions. This way, a careful parallelization of these functions using the reconfigurable hardware technology will accelerate the computation, specially if they are applied in parallel to several solutions of the population. RESULTS: A fine-grained parallelization of two floating-point fitness functions of different complexities and features involved in biclustering of gene expression data and gene selection for cancer classification allowed for obtaining higher speedups and power-reduced computation with regard to usual microprocessors. CONCLUSIONS: The results show better performances using reconfigurable hardware technology instead of usual microprocessors, in computing time and power consumption terms, not only because of the parallelization of the arithmetic operations, but also thanks to the concurrent fitness evaluation for several individuals of the population in the metaheuristic. This is a good basis for building accelerated and low-energy solutions for intensive computing scenarios.• Ministerio de Economía y Competitividad y Fondos FEDER. Contrato TIN2012-30685 (I+D+i) • Gobierno de Extremadura. Ayuda GR15011 para grupos TIC015 • CONICYT/FONDECYT/REGULAR/1160455. Beca para Ricardo Soto Guzmán • CONICYT/FONDECYT/REGULAR/1140897. Beca para Broderick CrawfordpeerReviewe

    TPU as Cryptographic Accelerator

    Full text link
    Polynomials defined on specific rings are heavily involved in various cryptographic schemes, and the corresponding operations are usually the computation bottleneck of the whole scheme. We propose to utilize TPU, an emerging hardware designed for AI applications, to speed up polynomial operations and convert TPU to a cryptographic accelerator. We also conduct preliminary evaluation and discuss the limitations of current work and future plan

    Accelerating 128-bit Floating-Point Matrix Multiplication on FPGAs

    Full text link
    General Matrix Multiplication (GEMM) is a fundamental operation widely used in scientific computations. Its performance and accuracy significantly impact the performance and accuracy of applications that depend on it. One such application is semidefinite programming (SDP), and it often requires binary128 or higher precision arithmetic to solve problems involving SDP stably. However, only some processors support binary128 arithmetic, which makes SDP solvers generally slow. In this study, we focused on accelerating GEMM with binary128 arithmetic on field-programmable gate arrays (FPGAs) to enable the flexible design of accelerators for the desired computations. Our binary128 GEMM designs on a recent high-performance FPGA achieved approximately 90GFlops, 147x faster than the computation executed on a recent CPU with 20 threads for large matrices. Using our binary128 GEMM design on the FPGA, we successfully accelerated two numerical applications: LU decomposition and SDP problems, for the first time.Comment: 12 pages, 8 figure

    Digital neuromorphic auditory systems

    Get PDF
    This dissertation presents several digital neuromorphic auditory systems. Neuromorphic systems are capable of running in real-time at a smaller computing cost and consume lower power than on widely available general computers. These auditory systems are considered neuromorphic as they are modelled after computational models of the mammalian auditory pathway and are capable of running on digital hardware, or more specifically on a field-programmable gate array (FPGA). The models introduced are categorised into three parts: a cochlear model, an auditory pitch model, and a functional primary auditory cortical (A1) model. The cochlear model is the primary interface of an input sound signal and transmits the 2D time-frequency representation of the sound to the pitch models as well as to the A1 model. In the pitch model, pitch information is extracted from the sound signal in the form of a fundamental frequency. From the A1 model, timbre information in the form of time-frequency envelope information of the sound signal is extracted. Since the computational auditory models mentioned above are required to be implemented on FPGAs that possess fewer computational resources than general-purpose computers, the algorithms in the models are optimised so that they fit on a single FPGA. The optimisation includes using simplified hardware-implementable signal processing algorithms. Computational resource information of each model on FPGA is extracted to understand the minimum computational resources required to run each model. This information includes the quantity of logic modules, register quantity utilised, and power consumption. Similarity comparisons are also made between the output responses of the computational auditory models on software and hardware using pure tones, chirp signals, frequency-modulated signal, moving ripple signals, and musical signals as input. The limitation of the responses of the models to musical signals at multiple intensity levels is also presented along with the use of an automatic gain control algorithm to alleviate such limitations. With real-world musical signals as their inputs, the responses of the models are also tested using classifiers – the response of the auditory pitch model is used for the classification of monophonic musical notes, and the response of the A1 model is used for the classification of musical instruments with their respective monophonic signals. Classification accuracy results are shown for model output responses on both software and hardware. With the hardware implementable auditory pitch model, the classification score stands at 100% accuracy for musical notes from the 4th and 5th octaves containing 24 classes of notes. With the hardware implementation auditory timbre model, the classification score is 92% accuracy for 12 classes musical instruments. Also presented is the difference in memory requirements of the model output responses on both software and hardware – pitch and timbre responses used for the classification exercises use 24 and 2 times less memory space for hardware than software
    corecore