

Digital Neuromorphic Auditory Systems

by

Ram Kuber Singh

A dissertation submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Supervisor: Professor André van Schaik

 Co-Supervisor: Professor Sue Denham

 Associate Professor Tara Julia Hamilton

 Associate Professor Gregory Cohen

International Centre for Neuromorphic Systems (ICNS),

The MARCS Institute for Brain, Behaviour and Development,

Western Sydney University

Werrington South, NSW, Australia

2020

i

Statement of Authentication

The work presented in this dissertation is, to the best of my knowledge and belief, original

except as acknowledged in the text. I hereby declare that I have not submitted this material,

either in full or in part, for a degree at this or any other institution.

(Ram Kuber Singh)

ii

To Śrīla Prabhupāda, Śri-Śri Gaura-Nitāi, and Śri-Śri Rādhā-Kṛṣṇa

iii

Acknowledgements

I would like to offer my thanks to my principal PhD supervisor, André van Schaik, for

mentoring me. Under his tutelage, I have been encouraged to think analytically as a

researcher and an engineer – a trait, which I have used on other students. I wish to thank my

co-supervisor, Sue Denham, for steering me in solving problems and presenting ideas from

an alternative perspective besides the neuromorphic lens. I also want to thank Tara Hamilton

for her guidance from technical issues to conference selection to just spewing jokes. My final

thanks to my supervisory panel go to Greg Cohen, who encouraged me on surviving the

PhD journey through his own experiences. My sincere thanks to all of you for your

willingness to guide me and tolerating my peculiarities.

I would also like to thank Mark Wang for his help on getting me up to speed with FPGA-

related development and Upul Gunawardana for sharpening my presentation skills by

allowing me to be his teaching assistant. I also wish to thank the following good people for

their support and acquaintances: Kate Stevens, Paul Breen, Gaetano Gargiulo, Yossi

Buskila, Ganesh Naik, Travis Monk, Andrew Nicholson, Gough Lui, James Wright, Chetan

Singh, Patrick Kasi, Ying Xu, Elham Shabanivaraki, David Karpul Saeed Afshar, Hossein

Moinzadeh, Titus Jayarathna, Mohd Atiqul, Nick Ralph, Sally Longmore, Grahame Andrews,

Colin Symons, Paras Karki. My thanks to my two examiners, Shihab Shamma and Richard

F. Lyon for their comments to further improve the contents of my PhD dissertation.

I am grateful to my sister, Laj, and her husband, Joseph, and her family, who helped

with my accommodation during my PhD journey. I am deeply thankful to my mother,

Bhasanthy Singh, for her love and steadfast support to make this academic journey possible.

Finally, a special and heart-felt thank you to my spiritual teacher, Śrīla Prabhupāda,

whose wisdom and teachings kept me going on regularly (and still does), Śri-Śri Gaura-Nitāi,

and Śri-Śri Rādhā-Kṛṣṇa for their transcendental support, who made this endeavour possible

for me to achieve.

iv

Abstract

This dissertation presents several digital neuromorphic auditory systems. Neuromorphic

systems are capable of running in real-time at a smaller computing cost and consume lower

power than on widely available general computers. These auditory systems are considered

neuromorphic as they are modelled after computational models of the mammalian auditory

pathway and are capable of running on digital hardware, or more specifically on a field-

programmable gate array (FPGA). The models introduced are categorised into three parts: a

cochlear model, an auditory pitch model, and a functional primary auditory cortical (A1)

model. The cochlear model is the primary interface of an input sound signal and transmits

the 2D time-frequency representation of the sound to the pitch models as well as to the A1

model. In the pitch model, pitch information is extracted from the sound signal in the form of

a fundamental frequency. From the A1 model, timbre information in the form of time-

frequency envelope information of the sound signal is extracted.

Since the computational auditory models mentioned above are required to be

implemented on FPGAs that possess fewer computational resources than general-purpose

computers, the algorithms in the models are optimised so that they fit on a single FPGA. The

optimisation includes using simplified hardware-implementable signal processing algorithms.

Computational resource information of each model on FPGA is extracted to understand the

minimum computational resources required to run each model. This information includes the

quantity of logic modules, register quantity utilised, and power consumption. Similarity

comparisons are also made between the output responses of the computational auditory

models on software and hardware using pure tones, chirp signals, frequency-modulated

signal, moving ripple signals, and musical signals as input. The limitation of the responses of

the models to musical signals at multiple intensity levels is also presented along with the use

of an automatic gain control algorithm to alleviate such limitations.

With real-world musical signals as their inputs, the responses of the models are also

tested using classifiers – the response of the auditory pitch model is used for the

classification of monophonic musical notes, and the response of the A1 model is used for the

classification of musical instruments with their respective monophonic signals. Classification

accuracy results are shown for model output responses on both software and hardware.

With the hardware implementable auditory pitch model, the classification score stands at

100% accuracy for musical notes from the 4th and 5th octaves containing 24 classes of notes.

With the hardware implementation auditory timbre model, the classification score is 92%

accuracy for 12 classes musical instruments. Also presented is the difference in memory

requirements of the model output responses on both software and hardware – pitch and

timbre responses used for the classification exercises use 24 and 2 times less memory

space for hardware than software.

v

Contents

Statement of Authentication ... i

Acknowledgements ... iii

Abstract... iv

Contents ... v

Abbreviations .. ix

List of Figures .. xii

List of Tables ... xv

1. Introduction .. 1

1.1. Aims and Chapter Synopses ... 2

1.2. Bibliography .. 5

2. The Auditory Pathway: A Modelling Perspective .. 7

2.1. A Survey of Auditory Pathway Models .. 7

2.1.1. MAP Model .. 10

2.1.2. CAR-FAC Model .. 16

2.1.3. Model Selection ... 20

2.2. Auditory Pitch .. 21

2.2.1. Pitch Perception ... 21

2.2.2. A Survey of Auditory Pitch Models ... 27

2.3. Auditory Timbre .. 35

2.3.1. Timbre Perception ... 36

2.3.2. A Survey of Auditory Cortical Models ... 37

2.4. Chapter Summary and Conclusion ... 42

2.5. Bibliography .. 42

3. CAR-Lite: A Multi-Rate Cochlear Model ... 54

3.1. Motivation ... 54

3.2. A Multi-Rate Cochlear Model .. 54

3.2.1. CAR Model Revisited ... 55

3.2.2. CAR-Lite .. 55

3.2.3. Fixed-Point Implementation ... 58

3.2.4. FPGA Implementation .. 61

3.2.5. Software Floating-point vs. Hardware Fixed-point .. 65

3.2.6. CAR vs. CAR-Lite .. 66

3.2.7. Response to Log Chirp .. 68

vi

3.2.8. Response to Music .. 73

3.3. Encoding Sound Intensity (SI) ... 77

3.3.1. CAR-Lite-SI ... 78

3.3.2. The New Auditory Nerve Algorithm .. 78

3.3.3. Fixed-Point Implementation ... 81

3.3.4. FPGA Implementation .. 83

3.3.5. Response to Pure Tones ... 88

3.3.6. Iso-Intensity Response .. 89

3.3.7. Noise Effect on Real-World Signals ... 91

3.4. Chapter Summary and Conclusion ... 95

3.5. Bibliography .. 95

4. Auditory Pitch Model: Autocorrelogram Generation .. 102

4.1. Motivation ... 102

4.2. Algorithm Characteristics .. 103

4.3. General Model Characteristics .. 106

4.4. CAR-Lite-ACF Model .. 108

4.4.1. FPGA Implementation .. 110

4.4.2. Response to Complex Tones ... 121

4.4.3. Response to Missing Fundamental Frequency .. 126

4.4.4. Response to Harmonics Phase Change .. 128

4.5. Chapter Summary and Conclusion ... 130

4.6. Bibliography .. 130

5. A Functional Primary Auditory Cortical Model .. 133

5.1. Motivation ... 133

5.2. CAR-Lite-A1 Model ... 134

5.2.1. Input Sampling Rate .. 135

5.2.2. Filter Configuration Survey for Spectro-Temporal Modulation Filters 136

5.3. Spectro-Temporal Modulation Directionality .. 152

5.3.1. NSL Model ... 152

5.3.2. CAR-Lite-A1 Model .. 153

5.4. Circuit ... 159

5.5. Fixed-Point Implementation .. 161

5.5.1. Filter Stability ... 162

5.6. FPGA Implementation ... 165

5.6.1. Operation of Modules ... 168

5.6.2. Hardware Resource Utilisation ... 169

vii

5.6.3. Software Floating-Point vs. Hardware Fixed-Point 170

5.7. Model Responses ... 171

5.7.1. Response to Moving Ripple ... 174

5.7.2. Response to Frequency-Modulated and Log Chirp Signals.......................... 180

5.8. Chapter Summary and Conclusion ... 184

5.9. Bibliography .. 184

6. Pitch Estimation and Classification of Musical Notes .. 189

6.1. Pathway to Pitch Estimation: Model Settings and Ground Truth.......................... 189

6.2. Pitch (f0) Estimation from Autocorrelogram (AC) ... 191

6.2.1. Peak-Picking .. 193

6.2.2. Weighting High Peaks .. 195

6.2.3. Threshold-Bound Search ... 197

6.2.4. Summary of Algorithms .. 199

6.2.5. Classifier Algorithm .. 200

6.2.6. FPGA Implementation .. 200

6.3. Results and Evaluation ... 203

6.3.1. Accuracy of Pitch Estimation (0 dBFS Intensity Level) 204

6.3.2. Varying Intensity and Noise Levels .. 208

6.3.3. Autocorrelogram File Sizes .. 213

6.3.4. Comparison with Other Models: Accuracy ... 214

6.4. Summary and Conclusion ... 216

6.5. Bibliography .. 216

7. Classification of Musical Instruments .. 219

7.1. Timbre Representation ... 219

7.2. Musical Notes Selection .. 220

7.2.1. Timbre Invariance .. 220

7.2.2. Dynamics and Articulation.. 221

7.3. Feature Representation .. 222

7.3.1. Temporal Invariance .. 222

7.3.2. Summary Profiles .. 223

7.4. Input Similarity and Classification Algorithms .. 225

7.4.1. 2D Correlation Coefficient (CC).. 225

7.4.2. Timbre Distance (TD) ... 227

7.4.3. Classification.. 230

7.4.4. FPGA Implementation .. 230

7.4.5. Application to Musical Signals .. 233

viii

7.5. Results and Evaluation ... 235

7.5.1. Accuracy Comparison of 0 dBFS Input Signals .. 236

7.5.2. Varying Intensity and Noise Levels .. 241

7.5.3. In-model Comparison: 4D and 2D Matrix File Sizes 247

7.5.4. Comparison with Other Models: Accuracy ... 248

7.6. Summary and Conclusion ... 250

7.7. Bibliography .. 251

8. Summary, Conclusion, and Future Work .. 255

8.1. Summary and Conclusion ... 255

8.2. Future Work .. 257

8.3. Publications .. 259

8.4. Bibliography .. 259

A. Automatic Gain Control (AGC) ... 261

Bibliography .. 263

B. Classification of Musical Notes (0 dBFS, No Noise) ... 264

C. Classification of Musical Notes based on Varying Intensity and SNR Levels 267

D. Classification of Musical Instruments (0 dBFS, No Noise) .. 277

E. Classification of Musical Instruments based on Varying Intensity and SNR Levels 289

ix

Abbreviations

A1 Primary Auditory Cortex

AAC AND-Accumulate

ACF Autocorrelation Function

AF Apoyando / Finger

AGC Automatic Gain Control

ALM Adaptive Logic Module

ALU Arithmetic Logic Unit

AM Amplitude Modulation

AN Auditory Nerve

ANN Artificial Neural Network

AP Apoyando / Pick

AR Asymmetric Resonator

ASA Acoustical Society of America

ASIC Application-Specific Integrated Circuit

BF Best Frequency

BM Basilar Membrane

BPF Bandpass Filter

CAR-FAC Cascade of Asymmetric Resonator with Fast Acting Compression

CC Correlation Coefficient

CF Centre Frequency

CN Cochlear Nucleus

CPU Central Processing Unit

DRNL Dual resonance nonlinear

DSP Digital Signal Processor

ERB Equivalent Rectangular Bandwidth

f0 Fundamental Frequency

FIR Finite Impulse Response

x

fMRI Functional Magnetic Resonance Imaging

FSM Finite State Machine

HN Hard mallet / Normal

HPF High-Pass Filter

HSR High Spontaneous Rate

HWR Half-Wave Rectifier

HT Harmonic Template

IC Inferior Colliculus

IHC Inner Hair Cell

IIR Infinite Impulse Response

LF Legato / Finger

LFSR Linear Feedback Shift Register

LIF Leaky-integrate-and-fire

LP Legato / Pick

LPF Low-pass Filter

LSR Low Spontaneous Rate

MAC Multiply-Accumulate

MFCC Mel-Frequency Cepstral Coefficient

MIC Musical Instruments Classification

MNC Musical Notes Classification

MOC Medial Olivo-Cochlear

MRSAC Multiply, Right-Shift, and Accumulate

MSR Medium Spontaneous Rate

MTF Modulation Transfer Function

NLF Nonlinear Function

NO Normal

OPC Octave Processing Control

OS Operating System

xi

PBNG Pseudorandom Binary Number Generator

PCA Principal Component Analysis

PEQ Peaking Equaliser

PN Normal / Pick

PZ Pole-Zero

QMHT Quadrature Mirror Hilbert Transformer

RF Al aire / Finger

RMS Root-Mean-Square

RP Al aire / Pick

SH Slapping thumb

SI Sound Intensity

SN Soft mallet / Normal

SP Spiccato

SPC Section Processing Control

SR Spontaneous Rate

ST Staccato

STRF Spectro-Temporal Receptive Field

SVM Support Vector Machine

TI Temporal Integration

TO Tonguing

VCN Ventral Cochlear Nucleus

VLSI Very Large-Scale Integrated

WTA Winner-Take-All

ZC Zero-Crossings

xii

List of Figures

Figure 1-1: Flowchart of chapters in this dissertation... 3

Figure 2-1: Initial stages of the human auditory pathway. .. 8

Figure 2-2: Sound energy transmitted from the outer ear to the inner ear. 9

Figure 2-3: Monoaural auditory models reviewed in this chapter. .. 9

Figure 2-4: Outer and middle ear filters. .. 10

Figure 2-5: Travelling wave of the basilar membrane (BM). .. 11

Figure 2-6: A dual resonant nonlinear (DRNL) filter. .. 12

Figure 2-7: Inner hair cell (IHC) cilia bundle motion ... 13

Figure 2-8: Neurotransmitter release model. ... 15

Figure 2-9: The CAR-FAC model. ... 17

Figure 2-10: The CAR model. ... 18

Figure 2-11: CAR-FAC digital inner hair cell (IHC) model. ... 19

Figure 2-12: Automatic gain control (AGC) loop-filter. ... 20

Figure 2-13: Pitch siren experiment setup used by Seebeck [44] and Strutt [45]. 22

Figure 2-14: Pulses recorded from Seebeck’s siren experiment. ... 22

Figure 2-15: Residue theory demonstration. ... 25

Figure 2-16: Residue pitch from fine-structured temporal waveform. 27

Figure 2-17: Virtual pitch model. ... 29

Figure 2-18: Filterbank of autocorrelation functions (ACFs)... 31

Figure 2-19: Operation of an autocorrelation function (ACF). .. 32

Figure 2-20: The SPINET model. .. 34

Figure 2-21: An abstract of the temporal modulation model. ... 39

Figure 2-22: The multiresolution spectro-temporal auditory cortical model. 41

Figure 3-1: The CAR-Lite model. .. 57

Figure 3-2: BM signal gain response. .. 60

Figure 3-3: BM gain response similarity. ... 60

Figure 3-4: Architecture of the CAR-Lite model implemented on FPGA. 62

Figure 3-5: FPGA output vector waveforms of the CAR-Lite model. 63

Figure 3-6: Octave processing map. ... 64

Figure 3-7: Gain difference between floating-point and fixed-point responses. 66

Figure 3-8: 16 bits AR coefficients. .. 67

Figure 3-9: 8 bits AR coefficients... 68

Figure 3-10: BM and BMd gain and phase responses. .. 70

Figure 3-11: New BMd gain response. .. 71

Figure 3-12: BMd and IHC responses. .. 72

Figure 3-13: AN spike response. ... 72

Figure 3-14: Musical signal at various intensities. ... 74

Figure 3-15: AGC effect on BM responses. ... 75

Figure 3-16: AGC effect on clipped amplitudes. .. 76

Figure 3-17: Bit widths of the BM signal at multiple intensities. ... 77

Figure 3-18: The CAR-Lite-SI model. .. 78

Figure 3-19: Spontaneous-rate (SR) – auditory nerve (AN) algorithm. 79

Figure 3-20: FPGA architecture of the CAR-Lite-SI model. ... 84

Figure 3-21: FPGA output vector waveform of the CAR-Lite-SI model. 85

Figure 3-22: Linear feedback shift register (LFSR). ... 86

Figure 3-23: Cochleagram representation of an IHC signal. .. 88

xiii

Figure 3-24: SR-AN spike response. ... 89

Figure 3-25: Iso-intensity responses. .. 91

Figure 3-26: Sound intensity representation of real-world sound signals. 93

Figure 3-27: Signal-to-noise (SNR) ratio of real-world signals. .. 94

Figure 4-1: Bit width differences of elements in coincidence matrices. 105

Figure 4-2: (a) The CAR-Lite-ACF model. ... 109

Figure 4-3: LIF neuron firing threshold. ... 110

Figure 4-4: FPGA architecture of the CAR-Lite-ACF (MAC) model. 112

Figure 4-5: FPGA output vector waveforms of the CAR-Lite-ACF (MAC) model. 113

Figure 4-6: Simulation of a MAC-based ACF algorithm. .. 116

Figure 4-7: SystemVerilog simulation of a MAC-based ACF algorithm. 117

Figure 4-8: FPGA architecture of the CAR-Lite-ACF (AAC) model. 118

Figure 4-9: FPGA output vector waveforms of the CAR-Lite-ACF (AAC) model. 119

Figure 4-10: Simulation of an AAC-based ACF algorithm. ... 120

Figure 4-11: SystemVerilog simulation of the AAC-based algorithm. 121

Figure 4-12: Autocorrelogram matrices. .. 122

Figure 4-13: Magnified temporal profiles. .. 125

Figure 4-14: Degrees of similarity between autocorrelograms. .. 126

Figure 4-15: Autocorrelogram representation of a harmonic signal. 127

Figure 4-16: Stimulus with (a) sine (0°) phase, and (b) alternating (90°) phase. 129

Figure 4-17: Temporal profiles of sine-phase and alternating-phase stimuli. 129

Figure 5-1: The CAR-Lite-A1 model. ... 135

Figure 5-2: 2nd-order IIR standard bandpass filter (BPF) direct-form-1 configuration. 140

Figure 5-3: 2nd -order IIR peaking equaliser filter. .. 141

Figure 5-4: 2nd-order cascade LPF-HPF BPF. ... 143

Figure 5-5: 4th-order cascade LPF-HPF BPF. .. 144

Figure 5-6: Coupled-form configuration of a 2nd-order asymmetric resonator. 146

Figure 5-7: Gain and phase responses of a rate filterbank. ... 146

Figure 5-8: Gain and phase responses of a scale filterbank. ... 147

Figure 5-9: Seed functions. ... 150

Figure 5-10: Pole-zero (PZ) map of the rate filterbank. .. 151

Figure 5-11: Pole-zero (PZ) map of the scale filterbank. ... 152

Figure 5-12: Quadrature mirror Hilbert transformer (QMHT) configuration. 157

Figure 5-13: Gains and phases of a 2 Hz QMHT using a 1st-order LPF and HPF. 157

Figure 5-14: Gains and phases of a 32 Hz QMHT using a 1st-order LPF and HPF. 158

Figure 5-15: Gain and phase responses of a modified rate QMHT. 159

Figure 5-16: Gain and phase responses of a modified scale QMHT. 159

Figure 5-17: CAR-Lite-A1 model circuit. .. 160

Figure 5-18: A1 neuron directionality filter. .. 161

Figure 5-19: PZ map of a 2nd-order AR with 9 bits coefficients. ... 163

Figure 5-20: PZ map of a 2nd-order HPF with 16 bits coefficients. 164

Figure 5-21: Magnified region of the unit circle in the PZ map. .. 165

Figure 5-22: FPGA architecture of the CAR-Lite-A1 model. .. 166

Figure 5-23: FPGA vector waveform of the CAR-Lite-A1 model. 167

Figure 5-24: Degree of similarity between CAR-Lite-A1 model responses. 171

Figure 5-25: Degree of similarity between 2D summary profiles. 171

Figure 5-26: CAR-Lite-A1 4D response. .. 172

Figure 5-27: CAR-Lite-A1 response of a downward moving ripple signal. 177

xiv

Figure 5-28: CAR-Lite-A1 response of an upward moving ripple signal. 178

Figure 5-29: Summary profiles calculated using sum-absolute operations. 180

Figure 5-30: CAR-Lite-A1 response of an FM signal. .. 182

Figure 5-31: CAR-Lite-A1 response of a log chirp signal. .. 183

Figure 6-1: Starting point locations to calculate an autocorrelogram (AC). 192

Figure 6-2: Starting points comparison to calculate an AC. ... 192

Figure 6-3: Autocorrelogram (AC) response of an A4 piano note. 193

Figure 6-4: Temporal profile of an A4 piano note. ... 195

Figure 6-5: Temporal profile of an E4 piano note. ... 197

Figure 6-6: Temporal profile of a D#4 piano note. ... 199

Figure 6-7: Demonstration of temporal profile peak detection on FPGA. 202

Figure 6-8: FPGA output vector waveform of the AC 𝑓0 estimation and classifier. 203

Figure 6-9: Classification of musical notes in octave groups 2 and 3. 206

Figure 6-10: Classification of musical notes in octave groups 4 and 5. 206

Figure 6-11: Classification of musical notes in octave groups 6 and 7. 207

Figure 6-12: Classification of musical notes across all three-octave groups. 207

Figure 6-13: AC representation of low pitch (C2) and high pitch (C7). 208

Figure 6-14: AGC effect on CAR-Lite-ACF response. ... 211

Figure 6-15: Pitch estimation and classification across multiple intensity levels. 212

Figure 6-16: Pitch estimation and classification for varying SNR levels. 212

Figure 6-17: Mean of the standard deviation of classification accuracy scores. 213

Figure 6-18: AC file sizes. ... 214

Figure 7-1: CAR-Lite-A1 summary profiles of an A3 piano note. 224

Figure 7-2: Approximation results of calculating correlation coefficients (CCs). 227

Figure 7-3: FPGA output vector waveform of the timbre distance and KNN classifier........ 233

Figure 7-4: Algorithm for classifying musical instruments. ... 235

Figure 7-5: Confusion matrix from the classification of musical instruments. 239

Figure 7-6: AGC effect on CAR-Lite-A1 response. .. 244

Figure 7-7: Accuracy scores of varying intensity levels. .. 245

Figure 7-8: Accuracy scores of varying SNR levels. .. 246

Figure 7-9: Mean of the standard deviation of the classification accuracy. 247

Figure 7-10: File sizes of the CAR-Lite-A1 output response. ... 248

Figure A-1: Demonstration of the AGC algorithm on a speech signal. 263

xv

List of Tables

Table 2-1: Summary of computational models of the auditory pathway. 21

Table 2-2: Summary of auditory pitch models. .. 35

Table 2-3: Summary of auditory timbre models. .. 42

Table 3-1: Performance of cochlear filters on FPGA. .. 65

Table 3-2: Sub-sampling factors in the SR-AN stage. ... 82

Table 3-3: CAR-Lite-SI model settings. ... 83

Table 3-4: General performance of cochlear filters. ... 87

Table 3-5: Mean spike rate of each AN fibre. .. 89

Table 3-6: Coincidence matching ratio of a speech signal. .. 95

Table 3-7: Coincidence matching ratio of a musical signal. ... 95

Table 4-1: Survey of computational resources. ... 106

Table 4-2: Settings of the CAR-Lite-ACF model. ... 107

Table 4-3: FPGA computational resources used by the CAR-Lite-ACF model. 121

Table 4-4: Phase insensitivity effect on an autocorrelogram. ... 129

Table 5-1: 2nd-order filter coefficients. ... 139

Table 5-2: A review of four filter configurations.. 148

Table 5-3: Latencies of modules in the CAR-Lite-A1 model. ... 169

Table 5-4: FPGA computational resources used by A1 models. .. 169

Table 5-5: Input signal settings. .. 174

Table 6-1: Point-based hierarchically structured algorithms. ... 199

Table 6-2: Demonstration of the AC 𝑓0 estimation and classification algorithms. 201

Table 6-3: Comparison of the results of classifying musical notes. 215

Table 7-1: Twelve classes of musical instruments. .. 222

Table 7-2: Computational resources used by the timbre distance and KNN classifier. 231

Table 7-3: Summary of classifying musical instruments with a linear classifier. 240

Table 7-4: Summary of classifyng musical instruments with a KNN classifier. 241

Table 7-5: Comparison of the classification of musical instruments. 250

Table 7-6: Features used for the classification of musical instruments. 250

Table B-1: Classification of musical notes for octaves 2 and 3. ... 265

Table B-2: Classification of musical notes for octaves 4 and 5. ... 266

Table B-3: Classification of musical notes for octaves 6 and 7. ... 266

Table C-1: Pitch estimation for musical notes without white Gaussian noise. 267

Table C-2: Pitch estimation for musical notes with 20 dB SNR and AGC disabled. 269

Table C-3: Pitch estimation for musical notes with 20 dB SNR and AGC enabled. 270

Table C-4: Pitch estimation for musical notes with 0 dB SNR and AGC disabled. 272

Table C-5: Pitch estimation for musical notes with 0 dB SNR and AGC enabled. 273

Table C-6: Pitch estimation for musical notes with -20 dB SNR and AGC disabled. 275

Table C-7: Pitch estimation for musical notes with -20 dB SNR and AGC enabled. 276

Table D-1: Linear classification of musical instruments (floating-point). 279

Table D-2: Linear classificaton of musical instruments (fixed-point). 282

Table D-3: KNN classification of musical instruments (floating-point). 285

Table D-4: KNN classification of musical instruments (fixed-point). 288

Table E-1: Classification of musical instruments without noise. ... 289

Table E-2: Classification of musical instruments at 20 dB SNR. .. 291

Table E-3: Classification of musical instruments at 0 dB SNR. .. 292

Table E-4: Classification of musical instruments at -20 dB SNR. 294

1

1. Introduction

Carver Mead first suggested the term ‘neuromorphic’ for analogue circuits that mimicked

biological systems. Since their inception, neuromorphic circuits, have also encompassed

digital circuits as well as a mix of analogue-digital circuits into its paradigm. Biological

systems that have been translated to neuromorphic systems include vision pathway (see),

auditory pathway (hear), olfactory pathway (smell), and tactile pathway (touch). The first

neuromorphic auditory system was an analogue electronic circuit developed by Lyon and

Mead, which mimicked a mammalian cochlea [1]. The characteristics of this circuit were

backed up by a computational model developed by Lyon [2]. Other notable works in

analogue circuits by van Schaik [3], Hamilton [4] and others [5], [6] have shown that

neuromorphic auditory systems provide an alternative and intuitive platform for studying

biological auditory pathway in real time besides the conventional manner of using software-

based computational auditory models [7].

Digital electronic circuits have also been used to build neuromorphic auditory systems

[8]–[10]. Although analogue circuits are lower-powered and have smaller areas than the

former, as well as having mismatches contributing to biological signal processing, they are

not used widely as they do not perform robustly under changing environmental conditions as

opposed to digital electronic circuits [11]. Digital electronic circuits range from general-

purpose central processing units (CPU) on computers capable of running sophisticated

auditory models to customised digital circuitry capable of running a scaled-down auditory

model. The difference between these two circuit types is that the general-purpose CPU uses

more computational resources such as memory and faster clock speed, but enables models

to be customised quicker than a customised digital circuit. In contrast, the operation of a

customised digital circuitry is often simulated on a computer before being fabricated as an

application-specific integrated circuit (ASIC) chip. As its name suggests, ASIC chips are

designed and developed for specific use in research as well as commercial applications.

Some of these applications include hearing prostheses [12], coding strategies improvement

[13] to increase the sensitivity of hearing prostheses to musical signals in addition to speech

signals [14], [15], and audio computing processors for multimedia and entertainment [16].

One major advantage of ASIC chips is their low power consumption, which enables

mobile devices to have long battery lifetimes and reduces the cost of power utilities for

electronic devices connected to the power grid [17]. Another advantage is the small size

dimensions of the chips, which enables portability of electronic devices due to their light

weights. The auditory models running on ASIC chips should ideally be stripped of complex

operations and maintain only basic operations to minimise the size and power consumed by

the ASIC chip. However, this may mean sacrificing functionalities that may significantly

lessen a model’s impact. To alleviate this situation, one can adopt the Occam’s Razor

principle – when two theories can capably describe some observed data, the simpler theory

is selected [18], [19]. Using Occam’s Razor principle on models [20], [21], digital

neuromorphic auditory systems can be designed and developed using simplified abstract

methods instead of complex operations. This notion means that functionalities that may

otherwise be required to be omitted can be implemented in digital hardware with reduced

computational resources as opposed to significant resources that are required using

sophisticated methods.

2

1.1. Aims and Chapter Synopses

In this research project, I aim to develop and investigate the performance of hardware-

implementable auditory models adapted from existing computational models. Here,

hardware refers explicitly to a field-programmable gate array (FPGA), and the computational

model refers to a biologically inspired auditory model implemented solely on software such

as Matlab. The hardware used is an Altera Cyclone V GX starter kit because it is an

affordable and off-the-shelf FPGA, which is readily acquirable for model reproducibility.

FPGA implementation of the auditory models in this dissertation provides a feasible platform

to demonstrate that these models are fully implementable on ASIC chips. Although an FPGA

consumes more power and has more speed limitation than an ASIC chip, it is reconfigurable

[22]. This attribute is advantageous when working with models that require constant tuning of

variables. The FPGA enables changes to be introduced at a shorter development time than

an ASIC chip. Moreover, the emphasis of the hardware implementation of the models is

based on the optimisation of conventional algorithms from software models. Thus, the

emphasis is on the comparison of power consumption between the hardware

implementation of the optimised and conventional algorithms rather than between FPGA and

ASIC implementations.

Since an FPGA has limited computational resources, including logic modules, registers,

and clock speed, it is necessary to design auditory models to run on an FPGA with limited

computational resources. Hence, this limitation enforces auditory models to be optimally

designed to use as few computational resources as possible, to conserve FPGA logic

elements. If this notion is adhered, then an ASIC chip implementation of the optimally

designed circuit of an auditory model will be of small size and consume low power leading to

running cost savings as opposed to the outcome of a non-optimally designed auditory

model. Hence, Occam’s Razor principle plays a significant role in the design of the auditory

models, i.e. when two models can characterise some observed data satisfactorily, the model

with ‘simpler’ algorithm is selected for implementation on hardware. Here, ‘simpler’ refers to

algorithms requiring fewer computational resources to run on an FPGA as opposed to

algorithms requiring significant computational resources to run on the same platform.

3

Figure 1-1: Flowchart of chapters in this dissertation.

The auditory models will include various stages of a mammalian auditory pathway

capable of generating responses for pitch estimation as well as loudness and timbre

representations. Figure 1-1 displays the chapters in the structure of this dissertation. The

aims are further broken down based on the following chapter numbers:

Chapter 2: This chapter presents a survey of auditory computational models for hardware

implementation. The models presented are based on three stages of the mammalian

auditory pathway as follows: cochlear models, auditory pitch models, and auditory timbre

models. The cochlea (inner ear) is the first interface in our hearing that receives sound with

the exception of the outer and middle ear. It comprises the functionality of a basilar

membrane, inner hair cells, and auditory nerves that converts sound to a 2D time-frequency

representation and sends this information higher in the auditory pathway for processing. In

the higher regions of the auditory pathway, pitch and timbre information are extracted, which

are described by the auditory pitch models and timbre models, respectively. From the

models reviewed for each of the three stages, one model is selected for hardware

implementation.

Chapter 3: This chapter presents a simple cochlear model capable of running on hardware

(FPGA). In the first half of this chapter, a cochlear model selected from chapter 2 is modified

with reduced computational resources to run on hardware. This notion results in a cochlear

model running at multiple sampling rates and using nine times fewer coefficients than a

model running at a single sampling rate. The limitation of the dynamic range of the model is

presented with musical signals at multiple intensity levels, and an automatic gain control

4

algorithm (AGC) is utilised to improve this dynamic range. In the second half of this chapter,

the model is fitted with several biologically inspired algorithms to understand if the new

cochlear model is capable of characterising auditory features. One algorithm is the use of

binary spike trains at multiple firing thresholds for the representation of sound intensity to

depict loudness information on hardware. The new model is tested with real-world signals

such as speech and music. For both models, computational resource usage on hardware is

also presented.

Chapter 4: This chapter presents a system that, using the new cochlear model introduced in

the first half of chapter 3, is capable of extracting pitch information using time and frequency

information of a sound signal on an FPGA-based (hardware-based) auditory model. This is

achievable by using the cochlear model from the first half of chapter 3 with a pitch model

reviewed in chapter 2 to produce a hardware-implementable model. The pitch model

generates an autocorrelogram by using correlations over time per cochlear section for the

entire range of cochlear sections. Computation of the autocorrelogram requires significant

computational resources. A similar autocorrelogram can be generated using a binary spiking

algorithm, as used in the model generating sound intensity response in the second half of

chapter 3. This novel model uses fewer computational resources than originally defined in

the computational model. Hence, this chapter also presents how many computational

resources these novel algorithms conserve on hardware as opposed to the conventional

computation of the original model to generate an autocorrelogram.

Chapter 5: This chapter presents the extraction of modulating envelopes of a sound signal

on an FPGA-based (hardware-based) system. From the first half of chapter 3, the new

simple cochlear model is used with a mammalian functional primary auditory cortical (A1)

model (also known as auditory timbre model). The A1 model comprises modulation

filterbanks that extract temporal and spectral envelope information from a sound signal as

well as spectral directional envelope changes describing either frequency increase or

decrease, which are all essential to timbre. Changes are required to accommodate this new

model on hardware. Hence, the temporal and spectral filterbanks are replaced as the original

filterbanks do not possess hardware-implementable attributes. As such, this chapter

presents a survey of hardware-implementable filter configurations to be used in place of the

original. The results of the new model are also presented, which includes its computational

resource utilisation on hardware.

Chapter 6: In this chapter, two exercises are performed to understand how the hardware-

based (FPGA-based) pitch model from chapter 4 performs with real-world sound signals.

The first of the chapter presents algorithms for extracting pitch information represented by

fundamental frequency estimation. A classification algorithm is also presented to determine if

the estimated fundamental frequency matches the ground truth fundamental frequency of a

musical note calculated with an equation. Both the fundamental frequency estimation and

classification algorithms are implementable on hardware (FPGA). The second half of the

chapter presents the results of the classification of musical notes from several musical

instruments. Pitch is estimated from the autocorrelogram response of the model from

chapter 4 before being classified. Then a comparison of classification accuracies based on

software and hardware implementations of the models is made. To showcase the effects of

the limitation and the improvement of the dynamic range of the model’s responses on pitch

estimation and classification performance, musical signals at multiple intensity levels are

used with and without an automatic gain control algorithm (AGC). Performance impact

5

based on noise in the musical signals is also presented. Finally, the significant difference in

memory sizes for storing the output responses of both the software- and hardware-

implemented models are presented. This attribute is essential, as a reduced memory size

lowers power consumption during runtime as well as operational costs corresponding to

hardware and power utilities.

Chapter 7: This chapter demonstrates how the hardware-based (FPGA-based) mammalian

functional auditory cortical model from chapter 5 performs with real-world sound signals by

using its representation of musical notes from various musical instruments for the

classification of these instruments. The responses of the cortical model are divided into two

different sets based on different manufacturers. So, each set contains the same notes from

the same instruments but from different manufacturers. The notes are further divided based

on intensity and pitch levels. Two separate classification algorithms are then used to classify

the musical instruments. One is a software-based classifier, and the other is a hardware-

based (FPGA-based) classifier. Classification accuracies are presented based on the

responses of the software- and hardware-implemented cortical models. Also, the impact of

the variation of intensity levels of the musical signals on classification is presented similar to

the classification of musical notes in chapter 6. This exercise is performed with the musical

signals conditioned with and without an automatic gain control (AGC) algorithm.

Classification performance is also presented with various noise levels added to the musical

signals. Lastly, the difference in memory sizes for storing the output responses of both the

software- and hardware-implemented models are presented because a lower memory usage

reduces runtime power consumption and operational costs.

Chapter 8: This chapter presents a summary and conclusion of this dissertation, where the

main results are summarised. Additionally, recommendations are also presented here for

future research along with publications from work presented in this dissertation.

1.2. Bibliography

[1] R. F. Lyon and C. Mead, “An Analog Electronic Cochlea,” IEEE Trans. Acoust., vol.
36, no. 7, pp. 1119–1134, 1988, doi: 10.1109/29.1639.

[2] R. F. Lyon, “A Computational Model of Filtering, Detection, and Compression in the
Cochlea,” in Acoustics, Speech, and Signal Processing, IEEE International
Conference on ICASSP ’82., 1982, pp. 1282–1285, doi:
10.1109/ICASSP.1982.1171644.

[3] A. van Schaik, “Analogue VLSI Building Blocks for an Electronic Auditory Pathway,”
École Polytechnique Fédérale de Lausanne, 1997.

[4] T. J. Hamilton, “Analogue VLSI Implementations of Two Dimensional , Nonlinear ,
Active Cochlea Models,” The University of Sydney, 2008.

[5] J. Lazzaro, J. Wawrzynek, and A. Kramer, “Systems Technologies for Silicon Auditory
Models,” IEEE Micro, vol. 14, no. 3, pp. 7–15, 1994, doi: 10.1109/40.285219.

[6] R. Sarpeshkar, M. W. Baker, C. D. Salthouse, J.-J. Sit, L. Turicchia, and S. M. Zhak,
“An Analog Bionic Ear Processor with Zero-Crossing Detection,” in Solid-State
Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE
International, 2005, pp. 2004–2005, doi: 10.1109/ISSCC.2005.1493877.

[7] A. van Schaik, T. J. Hamilton, and C. Jin, “Silicon Models of the Auditory Pathway,” in

6

Computational Models of the Auditory System, vol. 35, R. Meddis, E. A. Lopez-
Poveda, R. R. Fay, and A. N. Popper, Eds. New York, Dordrecht, Heidelberg, London:
Springer, 2010, pp. 261–276.

[8] S. Mandal, S. M. Zhak, and R. Sarpeshkar, “A Bio-Inspired Active Radio-Frequency
Silicon Cochlea,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1814–1828, 2009,
doi: 10.1109/JSSC.2009.2020465.

[9] M. Yang, C. Chien, T. Delbruck, and S.-C. Liu, “A 0.5 V 55 μW 64 × 2 Channel
Binaural Silicon Cochlea for Event-Driven Stereo-Audio Sensing,” IEEE J. Solid-State
Circuits, vol. 51, no. 11, pp. 2554–2569, 2016, doi: 10.1109/JSSC.2016.2604285.

[10] S. Wang, T. J. Koickalt, G. Enemali, L. Gouveia, L. Wang, and A. Hamilton, “Design of
a Silicon Cochlea System with Biologically Faithful Response,” in 2015 International
Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–7, doi:
10.1109/IJCNN.2015.7280828.

[11] Y. Xu, “A Digital Neuromorphic Auditory Pathway,” Western Sydney University, 2018.

[12] B. S. Wilson, E. A. Lopez-Poveda, and R. Schatzer, “Use of Auditory Models in
Developing Coding Strategies for Cochlear Implants,” in Computational Models of the
Auditory System, R. Meddis, E. A. Lopez-Poveda, R. R. Fay, and A. N. Popper, Eds.
New York, Dordrecht, Heidelberg, London: Springer, 2010, pp. 237–260.

[13] D. Pressnitzer, J. Bestel, and B. Fraysse, “Music to Electric Ears: Pitch and Timbre
Perception by Cochlear Implant Patients,” Neurosci. Music II From Percept. to
Perform., vol. 1060, no. 1, pp. 343–345, 2005, doi: 10.1196/annals.1360.050.

[14] M. Yitao and X. Li, “Music and Cochlear Implants,” J. Otol., vol. 8, no. 1, pp. 32–38,
2013, doi: 10.1016/S1672-2930(13)50004-3.

[15] S. M. Prentiss, D. R. Friedland, T. Fullmer, A. Crane, T. Stoddard, and C. L. Runge,
“Temporal and spectral contributions to musical instrument identification and
discrimination among cochlear implant users,” World J. Otorhinolaryngol. Neck Surg.,
vol. 2, no. 3, pp. 148–156, 2016, doi: 10.1016/j.wjorl.2016.09.001.

[16] S. Jones, R. Meddis, S. C. Lim, and A. R. Temple, “Toward a Digital Neuromorphic
Pitch Extraction System,” IEEE Trans. Neural Networks, vol. 11, no. 4, pp. 978–987,
2000, doi: 10.1109/72.857777.

[17] D. Chinnery and K. Keutzer, “Introduction,” in Closing the Power Gap Between ASIC
and Custom: Tools and Techniques for Low Power Design, D. Chinnery and K.
Keutzer, Eds. NY,USA: SpringerScience, 2007, pp. 1–10.

[18] P. Gibbs, “What is Occam’s Razor?,” 1996.
http://math.ucr.edu/home/baez/physics/General/occam.html (accessed Jul. 30, 2019).

[19] J. Sheffer, “Occam’s Razor,” Biomed. Instrum. Technol., vol. 48, no. 2, p. 1, 2014.

[20] L. L. Beranek and T. J. Mellow, Acoustics: Sound Fields and Transducers. Academic
Press, 2012.

[21] J. B. J. Smeets, E. Brenner, and J. Martin, “Grasping Occam’s Razor,” in Progress in
Motor Control, D. Sternad, Ed. Springer, 2009, pp. 499–522.

[22] A. Amara, F. Amiel, and T. Ea, “FPGA vs. ASIC for low power applications,”
Microelectronics J., vol. 37, no. 8, pp. 669–677, 2006, doi:
10.1016/j.mejo.2005.11.003.

7

2. The Auditory Pathway: A Modelling Perspective

This chapter presents a review of the mammalian biophysical sensory and perceptual

stages of the auditory pathway in three sections. Section 2.1 describes the early stage of

audition, with two computational models of the mammalian auditory pathway. Section 2.2

covers pitch perception studies and models for calculating pitch information. Finally, section

2.3 covers timbre perception studies and models for calculating timbre features.

From the models reviewed in each section, a model is selected to be implemented on

FPGA, which is covered from chapters 3 to 5. The capabilities of the pitch and timbre models

described in chapters 4 and 5, respectively, are further explored in chapter 6 for the

classification of monophonic musical notes and in chapter 7 for the classification of musical

instruments.

2.1. A Survey of Auditory Pathway Models

Figure 2-1 illustrates a cutaway diagram of the frontend auditory pathway of a human,

comprising an outer ear, a middle ear, and an inner ear (cochlea). Figure 2-2 illustrates the

transmission of sound energy from the outer ear to the middle ear and to the inner ear, the

latter known alternatively as a cochlea. These three components form the initial stages of the

auditory pathway. In the following two subsections, a description of the auditory pathway is

presented using two models with a focus on the initial stages for implementation on the

FPGA. These models include the Matlab Auditory Periphery (MAP) model and a model

comprising a cascade of asymmetric resonators with fast-acting compression (CAR-FAC).

The MAP model is considered as it is used for extracting pitch information, which serves one

of my research aims of extracting pitch from monophonic signals. The CAR-FAC model is

reviewed as it has been developed primarily for machine hearing applications. Its design is

ideal for bridging the gap between a software [1]–[3] and digital hardware implementation of

a functional cochlear model [4]–[6].

Figure 2-3 depicts the auditory pathway (AP) stages covered by the two models, each

demarcated with a unique coloured box. The intricacies of each stage within the models is

explored in the next three subsections with subsection 2.1.3 discussing the model selected

for FPGA implementation.

8

Figure 2-1: The outer ear (yellow), middle ear (green), and inner ear (blue) forming the initial stages of the
auditory pathway of a human. Modified from Pickles [7].

9

Figure 2-2: Transmission of sound energy from the outer ear to the basilar membrane (BM) in the inner ear via
the tympanic membrane (depicted as a crescent shape) and the three bones in the middle ear. The BM is coiled
in the inner ear as illustrated in Figure 2-1, but for illustration of sound transmission within the auditory pathway,
the BM is shown as uncoiled in this figure. The region shaded in pink represents fluid-filled cochlea. Adapted
from Matthews [8].

Figure 2-3: Monoaural auditory models reviewed in this chapter.

10

2.1.1. MAP Model

The Matlab Auditory Periphery (MAP) model is a biophysical model describing the

mammalian auditory pathway, which has been developed by Meddis and his colleagues at

the University of Essex in the UK. Besides comprising the outer and middle ear stages, the

model has a unique BM filter that characterises auditory phenomenon such as two-tone

suppression, whereby the presence of a salient component in a stimulus reduces the

responses of a less salient component in the same stimulus. This characteristic is

advantageous in increasing the contrast between the two components in the context of

sound source segregation [9]. Another essential trait of the model is auditory nerve spiking

which is beneficial in explaining pitch and timbre in terms of spike rate and spatial placement

in the auditory nerves.

Sound arriving at the outer ear is channelled via the ear canal and vibrates the tympanic

membrane (eardrum) [7]. The outer ear amplifies sound at a specific frequency range to the

tympanic membrane with the aid of the pinna and the concha [10], as illustrated in Figure

2-1. The MAP model characterises this increased pressure effect on the tympanic

membrane displacement in the range of 1 kHz to 4 kHz in two stages. Firstly, a sound signal

is input to a 2nd-order bandpass filter made of two parallel branches. One branch contains a

1st-order low-pass filter (LPF) with a cut-off of 1 kHz, and the other branch has a high-pass

filter (HPF) with a cut-off of 4 kHz. In the second stage, the resonances in this range are

added to the original sound.

The tympanic membrane vibration displaces three bones held in conjunction in the

middle ear comprising malleus, incus, and stapes [7]. The middle ear functions as a

mechanical impedance matching transformer that relays sound signals to a higher

impedance fluid-filled cochlea. It is an essential feature without which much of the sound is

reflected out to the outer ear. The displacement of the three bones in the middle ear is

modelled using an LPF with a 50 Hz cut-off that converts sound pressure from the tympanic

membrane stage to displacement. The LPF is cascaded with an HPF with a cut-off at 2 kHz

to reflect the stiffness of the basilar membrane (BM) as the input sound is transmitted from

the stapes bone to the cochlea [11]. Figure 2-4 illustrates the outer and middle ear stages in

the MAP model.

Figure 2-4: Outer and middle ear filters characterised in the MAP model. Adapted from Singh [12].

The mechanical motion of the stapes, which is dependent on stimulus frequencies [13],

propagates the mechanical sound vibrations to the oval window disturbing the cochlea fluids

within the cochlea. This characteristic mechanically influences the basilar membrane (BM)

and induces a travelling wave along its coiled trapezoidal length of approximately 35mm for

11

humans, as illustrated in Figure 2-5. The BM is thick at the base (connected to the oval

window) and gradually thins at the apex. High frequency sound mechanically vibrates the

BM closer to the base, while low frequency mechanically vibrates the BM closer to the apex.

Hence, for sounds with both high and low frequency, the vibrations start at the base. They

travel to specific locations along the BM with increasing amplitudes before ending at the

apex. Each of these locations on the BM corresponds and reacts to a specific frequency

component present in the sound. Every BM location along the length of the BM has a bell-

shaped curve response with the peak of the curve corresponding to a unique best frequency

(BF) and bandwidth. Each response slope has a gradual pre-BF rise and a steep post-BF fall

and its sidebands overlap with response curves of adjacent BF sites [14]. Hence, the BM is

considered as a spectrum analyser, where the travelling waves capture the attributes of a

time-varying input sound and represent them in two dimensions (2D) in time and frequency

[15].

Figure 2-5: Travelling wave of the basilar membrane (BM) from the base to the apex. Adapted from van Schaik
[16].

In the MAP model, BM displacement is modelled using a bank of dual resonant

nonlinear (DRNL) filters [17] as displayed in Figure 2-6. Each DRNL filter has two parallel

paths comprising a linear and nonlinear branch. The linear pathway has a cascade of three

1st-order gammatone filter with an impulse response of:

 ℎ(𝑡) = 𝑘𝑡𝑛−1exp(−2𝜋𝐵𝑡) cos(2𝜋𝑓𝑐𝑡 + 𝜑) (2-1)

where 𝑛 is the filter order; 𝐵 is the filter bandwidth; 𝜑 is the filter phase; 𝑘 is the filter gain.

The nonlinear pathway has two sets of three cascaded 1st-order gammatone filters such

as the one for the linear pathway, i.e. two 3rd-order gammatone filters. In between these two

3rd-order filters in the nonlinear pathway, there is an input level-dependent and memoryless

compressive function, which results in a nonlinear signal:

 ℎ(𝑡) = 𝑠𝑖𝑔𝑛[𝑥(𝑡)] ∙ min[𝑎|𝑥(𝑡)|, 𝑏|𝑥(𝑡)|𝑐] (2-2)

where 𝑥(𝑡) and 𝑦(𝑡) are the input and output of the nonlinear function; 𝑎, and 𝑏 are

frequency dependent constants; 𝑐 is a constant set at 0.25. The two pathways are summed,

12

resulting in BM displacement. The advantage of the DRNL is its capability to characterise

level dependence depicting shifts in best frequency (BF) responses based on sound

intensity. At very low and high sound levels, the linear pathway dominates the DRNL

responses while outside this range, the nonlinear pathway dominates the responses.

Figure 2-6: A dual resonant nonlinear (DRNL) filter that characterises a discrete point along the basilar
membrane. The top parallel branch is the linear pathway, and the bottom parallel branch is the nonlinear
pathway. Adapted from Meddis et al. [2].

In humans, there are approximately 3,500 inner hair cells (IHC) and 12,000 outer hair

cells (OHC) situated along the length of the BM spanning from its base to its apex [18]. The

IHCs transmit the mechanical vibration information of the travelling wave on the BM to the

auditory afferent nerve (AN) fibres in the spiral ganglion, where the information is then

transmitted to the auditory brainstem [9]. On top of an IHC, there is a bundle of hair-like

structure of gradually increasing length called cilia. The travelling wave of the BM deflects

the cilia on IHCs. When the cilia move in the direction of the longest cilium strand, ions flow

into the IHC via the tips of the cilia. When the cilia move in the direction of the shortest cilium

strand, potassium ions are prohibited from flowing into the IHC [19]. The high concentration

of potassium in the ions flowing into an IHC leads to a rise of intracellular potential in the

IHC. This rise enables the release of neurotransmitters from the base of the IHC and

enables the excitation of auditory neurons, thus generating spike trains as seen in Figure

2-7. While the IHCs detect the motion of the BM, the OHCs adjust the motion of the BM by

efferent input connections descending from the higher regions of the auditory brainstem to

the cochlea. In the presence of loud sounds, the OHCs reduce the amplitudes of the BM

travelling waves and in the presence of soft sounds, the OHCs increase the amplitudes of

the BM travelling wave [20], [21].

13

Figure 2-7: The motion of a bundle of cilia on top of an inner hair cell (IHC) [in pink] (A) towards the longest cilium
strand leading to an increase in action potentials (voltage spikes) output from an auditory neuron (AN) fibre due
to a build-up of potassium ions in the IHC; (B) towards the shortest cilium leading to a decrease in action
potentials output from an AN fibre due to the stoppage of potassium ion flow into the IHC. Adapted from
Matthews [8].

In the MAP model, the output of the DRNL filter is the input to a biophysical model of an

IHC [1]. The first stage includes a high–pass filter (HPF) that characterises fluid-cilia

coupling describing IHC cilia bundle motion in phase with BM displacement at high

frequencies and cilia motion in phase with BM velocity at low frequencies. The cilia

displacement affects the potassium ion levels in the IHC, which in turn affects the

intracellular potential. When the cilia deflect to the direction of its longest cilium strand,

incoming potassium ions increase intracellular potential. The deflection in the opposite

direction stops the flow of incoming potassium ions, decreasing intracellular potential. This

behaviour is modelled with an analogue circuit and the intracellular potential, 𝑣𝑚 is,

calculated using Kirchhoff current law by rearranging the following formula accordingly in

terms of 𝑣𝑚:

𝐶𝑚

𝑑𝑣𝑚(𝑡)

𝑑𝑡
+ 𝐺(𝑢)(𝑣𝑚(𝑡) − 𝐸𝑡) + 𝐺𝑘 (𝑣𝑚(𝑡) − (𝐸𝑘 + 𝐸𝑡

𝑅𝑝

𝑅𝑡 + 𝑅𝑝
)) = 0 (2-3)

where 𝐶𝑚 is the IHC capacitance at 4 pF; 𝐺𝑘 is potassium conductance at 20 nS; 𝐸𝑡 and 𝐸𝑝

are endocochlea and potassium potentials, respectively; 𝑅𝑡 and 𝑅𝑝 are epithelium and

endocochlea resistances, respectively.

14

Neurotransmitters are released from the base of an IHC across a small area known as

synaptic cleft to the auditory nerve. This release is dependent on the intracellular potential of

the IHC and the release of calcium ions [22]. The calcium current is a measure of the

concentration of calcium ions, which is analogous to intracellular potential and is determined

by:

 𝐼𝐶𝑎(𝑡) = 𝐺𝐶𝑎
𝑚𝑎𝑥 ∙ 𝑚𝐼𝐶𝑎

3 (𝑡) ∙ (𝑣𝑚(𝑡) − 𝐸𝐶𝑎) (2-4)

where 𝐸𝐶𝑎 is the reversal potential of calcium; 𝐺𝐶𝑎
𝑚𝑎𝑥 is the calcium conductance in the

synapse and; 𝑚𝐼𝐶𝑎
 is the ratio of opened calcium channels. The calcium concentration

variable, [𝐶𝑎2+](𝑡) is established with a first-order low-pass filter (LPF):

𝜏𝐶𝑎

𝑑[𝐶𝑎2+](𝑡)

𝑑𝑡
+ [𝐶𝑎2+](𝑡) = 𝐼𝐶𝑎(𝑡) (2-5)

where 𝜏𝐶𝑎 is the filter time constant. The neurotransmitter release rate can then be

calculated as a probability variable by:

 𝑘(𝑡) = 𝑚𝑎𝑥 (([𝐶𝑎2+]3(𝑡) − [𝐶𝑎2+]𝑡ℎ𝑟
3)𝑧, 0) (2-6)

where [𝐶𝑎2+]𝑡ℎ𝑟 is a threshold constant; 𝑧 is a scalar for converting calcium concentration

levels to release rate.

Neurotransmitter flow across the synapse and evoke a corresponding auditory nerve to

fire an action potential. This flow is modelled as a bidirectional flow of neurotransmitter at the

synaptic cleft [23] as illustrated in Figure 2-8. It relies on the availability of a finite amount of

neurotransmitter made available by the reuptake process from the synapse to the IHC and

new neurotransmitter from a neurotransmitter factory that compensates lost ones across the

synapse. Synaptic adaptation occurs when there are insufficient neurotransmitter in the free

transmitter pool to be released, rendering the auditory nerve unable to fire [24]. The amount

of neurotransmitters in the free transmitter pool is defined by:

 𝑑𝑞

𝑑𝑡
= 𝑦(1 − 𝑞(𝑡)) + 𝑥𝑤(𝑡) − 𝑘(𝑡)𝑞(𝑡) (2-7)

where 𝑞(𝑡) is a time-varying amount of neurotransmitter in the free transmitter pool; 𝑤(𝑡) is a

time-varying amount of neurotransmitters in the reprocessing store; 𝑥 is the transfer rate

between the reprocessing store and the free transmitter pool; 1 − 𝑞(𝑡) is the new

neurotransmitter release rate from the factory; 𝑘(𝑡) is the neurotransmitter release rate

derived from equation (2-6). The amount of neurotransmitter in the synapse is determined by

the difference between the time-varying release and the numbers lost as well as recycled

ones:

 𝑑𝑐

𝑑𝑡
= 𝑘(𝑡)𝑞(𝑡) − 𝑙𝑐(𝑡) − 𝑟𝑐(𝑡) (2-8)

15

where 𝑙 is the amount of neurotransmitters lost in the synaptic cleft; 𝑟 is the reuptake

(recycle) rate of the neurotransmitters from the synapse to the reprocessing store. The

amount of neurotransmitters in the reprocessing store is defined by:

 𝑑𝑤

𝑑𝑡
= 𝑟𝑐(𝑡) − 𝑥𝑤(𝑡) (2-9)

Figure 2-8: Neurotransmitters release model. Adapted from Meddis et al [23].

Neurotransmitters release generates a spike in an auditory nerve (AN) fibre [25]. There

are two manners of generating spikes: a quantal model resulting in precise spike generation

with high computational cost and a probabilistic model resulting in spikes approximation at

low computational cost. The probabilistic model is described herein over the quantal model

to maintain low computational cost. The amount of neurotransmitters residing in the synapse

determines the spiking rate at the auditory nerve:

𝐴𝑁𝑓𝑟 =

𝑐(𝑡)

𝑑𝑡
 (2-10)

The refractory period is 0.75 ms, which indicates that a spike signal can only be generated

after 0.75 ms from the hyperpolarisation of the preceding spike. The probability of

occurrence of a spike is dependent on the release of a neurotransmitter and if 𝑝(𝑡) is larger

than a random number between 0 and 1:

 𝑝(𝑡) = 1 − 𝑐𝑟 ∙ 𝑒𝑥𝑝(−(𝑡 − 𝑡𝑙 − 𝑅𝐴)/𝑠𝑟) (2-11)

where 𝑐𝑟 is the maximum relative refractory period at 0.55 ms; 𝑅𝐴 is the absolute refractory

period at 0.75 ms; 𝑡𝑙 is the time of occurrence of the preceding spike; 𝑠𝑟 is the refraction time

constant at 0.8 ms.

The generated spikes are used as part of a hypothetical model of a mammalian sub-

cortical region for the gain control of stapes motion at the middle ear as well as the basilar

membrane motion via the outer hair cell. The subsequent destinations of the spike trains

from the AN fibres are the ventral cochlear nucleus (VCN) and inferior colliculus (IC), which

are subjected to temporal and rate modulation transfer functions (MTFs) [26]. Firstly, the

spike trains from the AN fibres are low-pass filtered with temporal-MTF. After that, another

temporal-MTF representing VCN chopper units condition the signals. At this stage, low-level

signals are low-pass filtered, and for other levels, they are bandpass filtered. At the IC stage,

the signals are conditioned by a final temporal-MTF, whereby low-level signals are low-pass

filtered and medium and high-level signals are filtered with a broadly tuned bandpass filter.

16

Additionally, a rate MTF shapes the signals with sharply tuned bandpass filters at low and

medium signal levels. At high levels, flat-shaped bandpass filters shape the signals.

Low spontaneous rate (LSR) fibre output signals from the IC stage are summed, and

smoothed with an LPF and finally scaled to generate an acoustic reflex gain, 𝐴𝑅𝑡, which is

applied to the stapes displacement calculation at the middle ear stage:

 𝐴𝑅𝑡 = 1 − 0.008𝑧𝑡
(1)

 (2-12)

where 𝑧𝑡
(1)

 is the summed IC output filtered through a LPF with a 0.6 Hz cut-off. Alternatively,

the summed LPF-smoothed, and scaled IC stage output signal is used to generate a medial

olivo-cochlear (MOC) reflex gain, 𝑀𝑂𝐶𝑡, which is applied as a feedback to attenuate BM

displacement via the outer hair cell (OHC) [27]. This gain is applied to the start of the

nonlinear pathway of the DRNL filter, as illustrated in Figure 2-6 and is calculated as:

 𝑀𝑂𝐶𝑡 = 1 − 0.00625𝑧𝑡
(2)

 (2-13)

where 𝑧𝑡
(2)

 is the summed IC signal filtered through a LPF with a cut-off at 6 Hz.

2.1.2. CAR-FAC Model

The cascade of asymmetric resonators with fast-acting compression (CAR-FAC) model

encompasses BM, IHC, outer hair cell (OHC) and automatic gain control (AGC) segments. It

does not characterise the outer and middle ear like the more biologically plausible MAP

model. Instead, it emphasises on the characteristics of critical functional components of the

cochlea (inner ear) and the cochlear nucleus crucial for extracting features from a sound

signal.

The CAR-FAC model can be divided into two halves, as displayed in Figure 2-9: (a)

CAR (b) FAC [3]. The CAR model is the primary interface to an incoming sound signal. It

characterises the BM motion travelling only in the forward direction from the base of the

cochlea to its apex and not its reflective motion travelling in the opposite direction. A

transmission-line model characterises such bidirectional BM motions. Hence, the CAR

model is an abstract of a transmission-line structure [28]. The CAR model is capable of

depicting wave mechanics more accurately and efficiently, albeit with more complexity than

a gammatone filterbank such as the ones used in the DRNL filterbank of the MAP model

[29]. Each filter section is characterised by a pole-zero-filter-cascade, which is a 2nd-order

filter with two poles and two zeros and has the following transfer function:

𝐻(𝑧) =

𝑌

𝑋
= 𝑔 (

𝑧2 + (−2𝑎 + ℎc)𝑟𝑧 + 𝑟2

𝑧2 − 2𝑎𝑟𝑧 + 𝑟2
) (2-14)

where 𝑥 and 𝑦 are the inputs and outputs, respectively; 𝑎 and 𝑐 are the real and imaginary

components of a complex signal represented by 𝑧 = 𝑎 ± 𝑗𝑐, whereby 𝑎 = cos 𝜃𝑅 and 𝑐 =

sin 𝜃𝑅; 𝜃𝑅 is the normalised pole ringing frequency or the pole angle in the 𝑧-plane; 𝑔 is the

overall gain; ℎ represents the proximity of poles from zeros, i.e. low ℎ means zeros are

closer to poles resulting in a higher degree of asymmetry in response peak and vice versa.

Generally, ℎ is set to 𝑐 resulting in zeros maintained at approximately half octave above pole

frequencies.

17

Figure 2-9: The CAR-FAC model. Adapted from Lyon et al. [30].

The travelling wave amplitudes of the BM generated from the CAR model is modulated

by a fast-acting compression (FAC), referring to rapid BM gain damping. This characteristic

is achieved by modulating 𝑟 in the transfer function of the CAR model in equation (2-14) by

the outer hair cell (OHC) block, as illustrated in Figure 2-10. The rate of change of the

internal state of a linear filter in the CAR model, 𝑣, is varied by a nonlinear function, 𝑁𝐿𝐹 and

scaled by gains 𝑑𝑟𝑧 and 1 − 𝑏. The term, 𝑑𝑟𝑧, defines the rate at which 𝑁𝐿𝐹 influences the

pole radius 𝑟, thereby resulting in a compressive gain change in the linear filter of the CAR

model while the term, 1 − 𝑏, is an AGC feedback that is capped at 1 indicating saturation in

the hair cell. The 𝑁𝐿𝐹 is characterised by an inverse-square law that saturates at zero:

𝑁𝐿𝐹(𝑣) =

1

1 + (𝑣 ∙ 𝑠𝑐𝑎𝑙𝑒 + 𝑜𝑓𝑓𝑠𝑒𝑡)2
 (2-15)

where 𝑠𝑐𝑎𝑙𝑒 = 0.1 and 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.04. The saturation of the 𝑁𝐿𝐹 is analogous to

transduction with sigmoidal nonlinearity whereby, the response of the 𝑁𝐿𝐹 approaches zero

as it saturates either positively or negatively. This saturation describes two-tone

suppression, whereby one tone suppresses another tone [31]. Therefore, the OHC exhibits

active undamping whereby, it increases its energy feedback to the BM exciting the

magnitude of the travelling waves at low levels, and for loud sounds, the OHC suppresses

the magnitude of the travelling waves.

18

Figure 2-10: The CAR model representing (a) travelling wave response from a discretely located spot along the
BM appended with (b) OHC algorithm. Adapted from Lyon et al. [32].

The output of the CAR model is conditioned by an IHC algorithm illustrated in Figure

2-11. The IHC is modelled with four first-order infinite impulse response (IIR) low pass filters

(LPF). The first LPF implements a high pass filter (HPF) subtracted from unity. It serves the

purpose of removing quadratic distortion below 20 Hz that mimics the helicotrema

suppressing BM mechanical wave propagation at the apex. The motion of hair-like cilia

bundle motion atop an IHC, which is affected by the BM travelling wave, is nonlinear. It is

depicted as an NLF (nonlinear function) block in Figure 2-11 and has different characteristics

from the NLF defined by equation (2-15) for the OHC. The IHC nonlinearity is defined by a

soft rectifying rational-function sigmoid characterised by a cascade of equations from (2-16)

to (2-19). The first equation in the cascade is a half-wave rectified (HWR) form of the high-

pass filtered BM motion, 𝑥, which signifies the unidirectional effect of the deflection of the

cilia atop an IHC to the longest cilium:

 𝑧 = 𝐻𝑊𝑅(𝑥 + 0.175) (2-16)

The HWR output, 𝑧, is then placed in a rational function comprising cubic polynomials, which

indicates the electrical conductance of an IHC:

𝑔 =

𝑧3

𝑧3 + 𝑧2 + 0.1
 (2-17)

The conductance, 𝑔, is scaled by a gain defined by the voltage across a capacitor, 𝑣, which

produces an output current, 𝑦:

 𝑦 = 𝑔𝑣 (2-18)

The output current, 𝑦, is then used for updating the capacitor voltage, 𝑣+:

19

 𝑣+ = 𝑣 − 𝑐𝑂𝑈𝑇𝑦 + 𝑐𝐼𝑁(1 − 𝑣) (2-19)

where 𝑐𝑂𝑈𝑇 and 𝑐𝐼𝑁 are the discharge and recharge rates of a capacitor used in a

Schroeder-Hall hair cell analogue model [33], respectively. The output current, 𝑦 is

smoothened by two LPFs generating neural activity patterns that are potentially observed at

the auditory nerve.

Figure 2-11: CAR-FAC digital inner hair cell (IHC) model. Adapted from Lyon et al. [34].

The output of the IHC algorithm drives an automatic gain control (AGC) loop-filter

representing the mediating gain response of the medial olivo-cochlear (MOC). It consists of

four LPFs with four distinct time constants illustrated in Figure 2-12(a). These are known as

temporal smoothing filters (SFs), structured in a parallel-of-cascades form to ensure that the

response of the AGC is fast, stable and non-ringing over a wide range of conditions. The

transfer function is given by:

𝐻(𝑠) =

𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0

4096 + 𝜏1
4𝑠4 + 5440𝜏1

3𝑠3 + 1428𝜏1
2𝑠2 + 85𝜏1𝑠 + 1

 (2-20)

where 𝜏 is the time constant of an LPF. Solving equation (2-20) for poles and zeros location

result in:

 𝑃𝑜𝑙𝑒𝑠 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛: [−
1

𝜏1
, −

1

4𝜏1
, −

1

16𝜏1
, −

1

64𝜏1
] (2-21)

𝑍𝑒𝑟𝑜𝑠 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛: [−

1

1.54𝜏1
, −

1

7.20𝜏1
, −

1

24.59𝜏1
] (2-22)

With the zeros and poles interleaved, the filter has a moderate roll-off slope and phase

shift over a wide frequency range. Also, the AGC loop-filter operates at lower sampling rates

than the CAR model. Through decimation, the fastest AGC stage is only updated every

eighth sample period, and subsequent stages are updated less often at factors of two. The

AGC filter-loop also encompasses spatial smoothing filters, where the gains of adjacent

channels are maintained close to each other while reducing its dynamic range. A smoothing

filter is implemented with a 3-point finite impulse response (FIR) smoothing filter, which is

integrated with the earlier mentioned first-order temporal smoothing LPF as displayed in

Figure 2-12(b). Coefficients 𝑐 is the temporal smoothing LPF time constant, and 𝑔 is the

20

input gain, while 𝑎 and 𝑏 are weights that define the degree of influence of the left and the

right neighbouring temporal smoothing LPFs.

Figure 2-12: (a) Automatic gain control (AGC) loop-filter of the CAR-FAC model. (b) Connection of each of the

four nodes in (a) is made to a spatial smoothing filter. Adapted from Lyon [35].

2.1.3. Model Selection

Table 2-1 summarises the features of the two auditory models presented above. To

select one of the two auditory models to be implemented on FPGA, the Occam’s Razor

principle is invoked, which states that when two models are capable of describing some

observed data, the less complicated model is selected. The following compares the features

of the two models to understand the complexities of both models:

1) A DRNL filter in the MAP model requires eight parameters to generate the output of

one cochlear section, while a CAR filter in the CAR-FAC model requires only six.

2) According to Saremi [36], the CAR-FAC model is capable of reproducing

experimental data more frequently than the MAP model.

3) Also, according to Saremi [36], the CAR-FAC model has quicker computation time

than the MAP model.

The three factors above place the CAR-FAC model in an advantageous position over

the MAP model over selection. However, the CAR-FAC model has already been

implemented on the FPGA [4]–[6], [37], which rules it out of contention for implementation on

an FPGA. The MAP model is only implemented in software in Matlab [38] and C [39], [40]

but not on FPGA. Nonetheless, according to Saremi [36], the linear gammatone filter, which

makes up the DRNL filter structure in the MAP model, can capture excitation patterns of a

mammalian cochlea and is, therefore, capable of representing features in a sound signal.

Inspired by this finding, a similar arrangement can be made by using only the linear filters in

the CAR segment of the CAR-FAC model. Although the CAR model has already been

implemented on FPGA [4], further modifications are performed to simplify its design and

more importantly, reduce its size in terms of filter coefficients utilisation and storage in

21

accordance with the Occam Razor’s principle. The details of this implementation are

presented in chapter 3.

Cochlear Models Features

MAP BM modelled with parallel gammatone filterbank with memoryless
nonlinear compression [17].

Nonlinear biophysical cochlea model capable of characterising
psychophysical features [24].

Capable of computing pitch from simple sound [41].

Real-time software implementation [39], [40] bridges the gap to
hardware implementation.

CAR-FAC BM modelled with “transmission-line” cascade filterbank
simulating travelling wave of BM [3].

Amplitude-level dependent automatic gain control (AGC) to
regulate the amplitude of BM response [42].

Accounts for psychophysical features such as two-tone
suppression and cubic distortion tone and as such can potentially
be used for general sound processing as well as biologically
inspired research.

Hardware implementation is available [4]–[6], [37] and can be
integrated with subcortical and cortical filters.

Table 2-1: Summary of computational models of the auditory pathway.

2.2. Auditory Pitch

Pitch is defined as the auditory sensation, where sounds are ordered on a scale used

for melody in music. Alternatively, the pitch of a sound may also be described by the

frequency of a pure tone at a specific sound pressure level that is perceived by a listener to

match the perceived pitch of a complex sound [43]. In the next two subsections, two aspects

of pitch are presented: studies of human pitch perception and pitch perception models.

2.2.1. Pitch Perception

Pitch perception studies are reviewed in this subsection to appreciate the inner workings

of pitch perception models. The following paragraphs offer a brief history of early pitch

perception experiments, which advocates algorithms used in current pitch perception

models.

One early pitch perception experiment was conducted by Seebeck, who used sirens to

produce pitched sounds [44]. His first of two experiments included rotating a disk with

equidistant-spaced holes near its circumference and channelling air through the holes as

illustrated in Figure 2-13. He concluded that pitch is determined by the time it took for the

compressed air to blow through from one hole to the next as the disk rotated. This duration

is known as the period, and the inverse of this is the pitch of the sound perceived. When the

amount of holes was doubled, the frequency of the siren also doubled, and the perceived

pitch was an octave higher (first column of Figure 2-14A and Figure 2-14B). In the second

half of his experiment, he used a disc with non-equidistantly spaced holes, such that the

durations between the air puffs were regulated in the following order t1, t2, t1, t2, etc. He

noticed that the pitch was equal to its highest periodicity (T = t1 + t2), as observed in the first

column of Figure 2-14C. This attribute corresponds to the lowest perceivable periodic

frequency known as the fundamental frequency (1/T Hz). However, the power at the

22

fundamental frequency was not significant to define the pitch. He concluded that the period

of a sound signal is more dominant in determining pitch than its fundamental frequency.

Figure 2-13: Pitch siren experiment setup used by Seebeck [44] and Strutt [45].

Figure 2-14: Pulses recorded from Seebeck’s siren experiment corresponding to the perceived pitch in the first
column on the left, and Ohm’s application of Fourier transform showing the power spectrum of the frequency

components in the second column on the right.

Ohm devised the acoustical law [46] to explain the observations of Seebeck as seen in

the second column of Figure 2-14. He applied Fourier’s theorem to decompose the

waveform into frequency components and showed the power spectra of the components

matched the periodic components Seebeck had observed. However, Seebeck maintained

23

that the low power spectra of the fundamental frequency determined by Ohm’s acoustical

law was insufficient in explaining the strong pitch he perceived in the second half of his

experiment as observed in the second column of Figure 2-14C (labelled as ‘1/T’) [47]. Ohm

later called this effect an acoustical illusion [48]. Helmholtz attributed this effect to a

superposition of nonlinear distortion introduced to the waveforms in the cochlea [49], which

can be applied to the three types of stimuli in Figure 2-14. For a pure tone stimulus in Figure

2-14A, nonlinear distortion is added to the sole frequency component, which enhances the

perceived pitch. The same applies to the stimulus in Figure 2-14B. For the third stimulus

containing two frequencies in Figure 2-14C, nonlinear distortion is added to the difference in

frequency of the two components, i.e. 1/T. This characteristic means that the perceived pitch

would still be significant at the fundamental frequency even if the fundamental frequency

component itself is weak. For a complex periodic tone comprising multiple harmonic pure

tones, the addition of nonlinearity to the frequency difference between any two neighbouring

frequency components would still be at 1/T. In other words, a large harmonic content would

ensure a considerable power added at the fundamental frequency.

Fletcher devised an electronic circuit to repeat Seebeck’s experiments and filtered out

low harmonics [49]. He found the perceived pitch to match the fundamental frequency as

well as the frequency difference, thus reinforcing Seebeck’s and Helmholtz’s findings as well

as putting forth the issue of weak fundamental frequency. Helmholtz’s theory was further

strengthened indirectly by von Békésy’s observation of travelling waves on the basilar

membranes (BM) in cadavers [50]. However, Schouten disprove Helmholtz’s frequency-

difference nonlinear distortion hypothesis to perceived pitch, described in the preceding

paragraph. He generated a waveform from pulses with a filtered fundamental frequency of

200 Hz and a 206 Hz pure tone. Based on Helmholtz’s frequency-difference hypothesis, a 6

Hz repetitive beat is expected to be heard. Instead, no beats were heard, and the perceived

pitch was still at 200 Hz. Furthermore, Schouten found that Helmholtz’s frequency-difference

hypothesis also cannot account for shifted frequency components. He used an amplitude-

modulated waveform with components at 1,000 Hz, 1,200 Hz, and 1,400 Hz, and reported

the pitch is perceived to be at 200 Hz. When the components were shifted upwards by 40 Hz

(1,040 Hz, 1,240 Hz, and 1,440 Hz), it was found that the pitch also shifted upwards to 205

Hz [51]. This attribute was further validated by Ritsma, who mapped several conditions for

pitch shifts [52], [53].

Licklider’s two experiments further weakened Helmholtz’s nonlinear distortion

hypothesis. In the first experiment, he developed a stimulus comprising only high harmonics,

without any fundamental frequency component. A Fourier analysis of the stimulus confirmed

the presence of only the high harmonic components and no indication of the fundamental

frequency component. Despite the missing fundamental frequency, low pitch was still

perceived from the complex tone of high harmonics. In the second experiment, Licklider

formed a simple melody by changing the frequencies of the individual component of the high

harmonics. He then added low frequency noise to the stimulus to mask nonlinear distortion

effects that may have been contributed by the missing fundamental frequencies of the

sequence of complex tones, forming the melody. He used Fourier analysis to ensure the

absence of the missing fundamental frequencies. Despite the high-intensity levels of the

noise, a low pitch melody can still be perceived [54]. He concluded that the frequency

components found using Fourier transform, while valid in defining the spectral composition of

a sound, is insufficient in defining perceived pitch, notably when fundamental frequencies

24

are missing. The results of Licklider’s experiment have been repeated and reinforced by

Thurlow [55] and Patterson [56].

Schouten used von Békésy’s findings of the mammalian basilar membrane (BM) to

explain the phenomenon of missing fundamental frequency [57]. This explanation is known

as the residue pitch theory, which comprises two stages. The first stage is the BM stage,

where low frequency components of a complex sound are perceived as separate pure tones

as opposed to complex tones at high frequency. The frequency resolution of the BM is lesser

at high frequencies than at low frequencies, which means that a BM filter at low centre

frequency has a narrower bandwidth than a BM filter at high centre frequency. As a result,

low frequency components of a complex tone are output from the BM filters, which are close

to pure tones because the narrow bandwidths of these BM filters profoundly suppress

frequency components outside their respective centre frequency (CF) ratings. Therefore,

sinusoidal signals output from BM filters at low frequency are resolved – one sinusoidal

signal output from a single unique BM filter. On the contrary, high frequency components are

unresolved. This notion is valid because BM filters at high frequencies have large

bandwidths that integrate unsuppressed high frequency components close to their

respective CF ratings.

The temporal patterns in the output of the BM filters are also maintained in the auditory

nerve firings, which are transmitted to the next stage. This stage of the mammalian auditory

pathway comprises the cochlear nucleus, the primary auditory cortex as well as other

cortical centres for pitch processing. How each cortical centre works individually to contribute

to pitch perception has yet to be discovered, but there are several hypotheses on the

collective operation between the cortical centres. Schouten’s explanation is one such

hypothesis [57]. He explains that the temporal patterns in the unresolved components,

known as residual components, which are preserved as fine-coded information from the

auditory nerve firings interact with one another to formulate a periodicity in the cortical

centres corresponding to the perceived pitch. In other words, this interaction of residual

components results in a single combined output signal, and the perceived pitch is the

inverse of the time duration between two significant peaks found in this output signal. Based

on Schouten’s explanation whereby, since the temporal patterns are maintained throughout

the cochlear and cortical centres, one may use the temporal pattern in an input sound signal

directly for pitch perception analysis.

An example of the residue pitch theory is illustrated in Figure 2-15, with a fine-structured

waveform of a complex tone comprising 4th (800 Hz), 5th (1 kHz), and 6th (1.2 kHz)

harmonics of a missing fundamental frequency of 200 Hz. By taking the inverse of the time

between the two highest peaks in Figure 2-15(a), the residue pitch is calculable. This

calculation equals to the missing fundamental frequency of 200 Hz. In Figure 2-15(c), when

all the harmonic components are shifted slightly upwards (frequency increased slightly),

using the same principle, the pitch is defined by t2. A secondary pitch, t1, is also perceived

due to the proximity between its highest peak and second highest peak. The distances of the

highest peak with smaller peaks also contributes to perceived pitch away from the

fundamental frequency. However, the dominant pitch is defined primarily by the highest

peaks. Hence, Schouten’s residue pitch theory is capable of addressing cases where

fundamental frequency is missing in sound, as well as the perceived pitch shift effect.

25

Figure 2-15: Residue theory using the time duration between peaks of a complex sound to determine pitch: (a)
Sound waveform missing its fundamental frequency with 3 harmonics and its (b) Fourier frequency components
unable to indicate the fundamental frequency; (c) Sound waveform missing its fundamental frequency with shifted
harmonic components and its (d) shifted Fourier frequency components not showing the fundamental frequency.
Adapted from Wightman et al. [58].

A fundamental frequency calculated with residue pitch theory, using a fine-structured

temporal waveform, is affected when the phase of a sound signal changes. This effect is

observable from the waveform in Figure 2-16, which is made up of signals ranging from 5th

(1,000 Hz) to 10th (2,000 Hz) harmonics with a fundamental frequency of 200 Hz. The

harmonic signals with cosine phases are added to produce the bottom-placed waveform in

Figure 2-16(a). Figure 2-16(b) displays the effect of adding random-phased harmonic

signals. Using the residue theory, the pitches of the relative phase of these two waveforms

are different. However, Patterson reported that the pitch perceived is the same despite

relative phase changes, although the sound roughness altered accordingly [59]. Wightman

had the same findings and developed a pitch model to explain the relative phase

phenomenon over the residue theory [60]. Carlyon and Shackleton further found that this

phase insensitivity is relegated only to low and mid-level harmonics, and when high-level

harmonics above 3.9 kHz are introduced at alternating phase, the pitch doubled [61]. Meddis

proceeded to explain these new findings as well as the phase sensitivity phenomenon, with

the auditory model described in section 2.1.1 (MAP model) equipped with an autocorrelation

function [62], which is presented in subsection 2.2.2.2. Meddis also designed a hypothetical

physiological model [41], described in subsection 2.2.2.1, in an attempt to explain the

capability of the auditory-autocorrelation model to showcase pitch perception information.

An alternative pitch perception theory to residue pitch theory is global pitch, which

contributes to the missing fundamental frequency, 𝑓0 as well as pitch shift effect. According

to Brunstrom and Roberts, global pitch is the 𝑓0, of a periodic complex tone that best fits a

harmonic template containing a distribution of resolved frequency components [63]. The

harmonic template is a central pitch mechanism in the mammalian brain that is used as a

reference for matching the harmonic content of a sound stimulus [64]–[66]. In terms of a

missing 𝑓0, Bendor and Wang showed there exist pitch selective neurons in marmoset

26

monkeys that react to a pure tone as well as to a complex tone with missing 𝑓0

corresponding to the pure tone frequency [67]. These neurons reside in the anterolateral

border of the marmoset’s primary auditory cortex that are also found in humans [68]. The

experiments of Bendor and Wang suggest that the activations of pitch-selective neurons

corresponding to the missing 𝑓0 occur from the presence of the resolved harmonic contents

in the stimulus. The resolved harmonics in the stimulus evoke harmonic-selective neurons in

a template, which also collectively evokes the neurons corresponding to the 𝑓0 regardless of

the presence of 𝑓0 in the stimulus.

Regarding the pitch shift effect, Lin and Hartmann conducted several psychoacoustic

pitch matching experiments and found that the perceived 𝑓0 is changed when a harmonic of

the 𝑓0, known as a partial, is mistuned [69]. They concluded that the pitch shift perceived is

due to a mismatch between the stimulus with mistuned partial and a tuned partial in a

harmonic template in the brain. These pitch-shift effects have also been reported extensively

by Roberts and Brunstrom [63], [70]–[72]. These psychoacoustic results have been

reinforced by Feng and Wang [73], who found harmonic template-sensitive neurons in

marmoset monkeys. Regarding computational models, an early model of the central

processing of pitch template was suggested by Goldstein, who used complex tones stimuli

[74]. Duifhuis et al. used Goldstein’s model on speech stimuli [65]. Scheffer modified

Goldstein’s model to adhere to auditory frequency analysis [66]. Shamma and Klein

attempted to model the central processing of harmonic templates using the contents of the

cross-correlation between cochlear filter outputs [75]. An alternative central processing of

pitch template is the SPINET model [76], which is described in subsection 2.2.2.3.

27

Figure 2-16: Residue pitch from fine-structured temporal waveform (bottom plots labelled as ‘Sum’) effect due to
harmonic signals added in (a) cosine phase, and (b) random phase. Adapted from Wightman et al. [58].

2.2.2. A Survey of Auditory Pitch Models

Pitch perception models can be categorised into two theories: spectral and temporal

[77]. The spectral theory of pitch perception translates the place coding of the basilar

membrane to account for the extraction of pitch information. Temporal theory involves the

calculation of distances between peaks in the conditioned output signals represented in the

time-domain from a cochlear model.

Carlyon and Shackleton found that temporal models are better equipped than spectral

models to extract pitch information from high-numbered harmonics, while spectral models

are more capable of extracting pitch from low-numbered harmonics [61]. Their findings agree

with Licklider’s proposal of determining pitch with a duplex model [54]. Sounds with low

frequency components in the range of low pitch perceptual limit of 30 Hz [78], [79] and high

perceptual pitch limit of 800 Hz are resolved and pitch can be determined by place coding

attributes of spectral theory. When the fundamental frequency is weak or missing, a

temporal model can be used to extract pitch from the harmonics. For resolved harmonics in

the range of 100 Hz to 400 Hz, pitch information can be reliably extracted from 3rd to 5th

harmonics [80]. This range is known as the dominant region of pitch perception. The amount

28

of harmonics required to determine pitch increases beyond this range, which includes

unresolved harmonics [81]. Despite the differences between spectral and temporal models

of pitch perception, three such models are reviewed in the subsections below for

consideration to be implemented on FPGA.

2.2.2.1. Computational Physiological Model of Virtual Pitch

Temporal regularity or periodicities can characterise virtual pitch or periodicity pitch in a

sound signal as part of temporal pitch theory. A physiological model of virtual pitch [41] uses

the auditory nerve (AN) signal as an input signal generated from the MAP cochlear model

described in subsection 2.1.1. The model comprises four stages, as shown in Figure 2-17.

Thirty AN fibres are connected to a ventral cochlear nucleus (VCN) units, and ten VCN units

are connected to a single inferior colliculus (IC) unit, which are all corresponding to a unique

best frequency (BF). The VCN unit enhances the periodicities in the sound signal, and the IC

unit contains coincidence units that fire when it receives synchronous inputs from the VCN.

At the final stage, the rate-based spikes are integrated to project the overall periodicity

present in the sound signal.

29

Figure 2-17: Virtual pitch model showing (a) 4 stages from the auditory nerve (AN) to the cross-BF integrators,
and (b) the connection between the cochlear nucleus (CN) and the inferior colliculus (IC) units. Adapted from
Meddis et al. [41].

Each VCN unit contains multiple chop-S type chopper neurons [82], each of which fires

at a fixed rate. Chopper neurons at the cochlear nucleus are also connected to onset

neurons that contribute to timbre attributes, but the latter has been omitted from this model

to ensure exclusivity to pitch extraction. The chopper neurons have thirty discrete chopping

rates that are equally spaced between 60 and 350 spikes/s, and each chopper neuron is

characterised by a simplified Hodgkin-Huxley model [83] of spike generation using a point

neuron model [84]. The point neuron is influenced by four variables [85]: (2-23)

transmembrane potential as a deviation from the cell resting potential; (2-24) a potassium

conductance; (2-25) the time-varying threshold; (2-26) a binary spiking variable.

Aside from the potassium levels, the parameters in the point neuron model are also

heavily influenced by results from in vitro experiments, where stellate cells response in the

cochlear nucleus are obtained by injecting electrical current to the AN fibres [86], [87]. With

respect to the applied electrode input current, the change in the potential of a stellate

chopper cell is calculated as:

 𝑑𝐸(𝑡)

𝑑𝑡
=

−𝐸(𝑡) + {𝑉(𝑡) + 𝐺𝑘(𝑡)[𝐸𝑘 − 𝐸(𝑡)]}

𝜏𝑚
 (2-23)

where 𝐸(𝑡) is the instantaneous cell-membrane potential above resting level 𝐸0; 𝐺𝑘 is the

cell potassium conductance; τm is the membrane time constant; 𝐸𝑘 is the equilibrium

30

potential of potassium conductance with respect to the cell resting level; 𝑉(𝑡) is the

instantaneous change in voltage due to an applied or synaptic current.

The second variable, potassium conductance, is defined by:

 𝑑𝐺𝑘(𝑡)

𝑑𝑡
=

−𝐺𝑘(𝑡) + (𝑏𝑠)

𝜏𝐺𝑘
 (2-24)

where 𝑏 is the delayed rectifier potassium conductance strength; 𝑠 is a binary spiking

variable either at 0 or 1; 𝜏𝐺𝑘 is the time constant of potassium conductance decay. The third

variable is the rise in the time-varying threshold:

 𝑑𝑇ℎ

𝑑𝑡
=

−[𝑇ℎ(𝑡) − 𝑇ℎ0] + 𝑐𝐸(𝑡)

𝜏𝑇ℎ
 (2-25)

where 𝑇ℎ(𝑡) is the time-varying threshold of the cell; 𝑇ℎ0 is the resting threshold; 𝑐 is an

accommodation constant; 𝜏𝑇ℎ is the time constant of the threshold rise. The fourth variable

is the main output, which is a combination of transmembrane potential and the binary spiking

variable:

 𝑝(𝑡) = 𝐸(𝑡) + 𝑠[𝐸𝑏 − 𝐸(𝑡)] (2-26)

where 𝐸𝑏 is the reversal potential of the cell such that

𝑠 = {

0, 𝐸(𝑡) < 𝑇ℎ
1, 𝐸(𝑡) > 𝑇ℎ

 (2-27)

To attain the different fixed spike rates, the frequency of firing is adjusted by changing either

the potassium conductance (𝜏𝐺𝑘or 𝑏), membrane time constant, 𝜏𝑚, or the accommodation

term, 𝑐.

The VCN units of the same chopping rates are connected to a single IC unit, which is

made up of the same algorithm as the VCN but with different parameters. Each IC unit has a

coincidence detector, which upon receiving synchronous spike inputs from the ten

channelled inputs connected to the VCN units, fire a spike. A single 10-VCN-to-1-IC module

as shown in Figure 2-17(b) corresponds to a peak modulation gain at a specific best-

modulation frequency that is usually characterised by a bandpass filter if the signals are not

spike-based [26]. The final stage of the model is equipped with integrators that sum the

spike-based output signals from the IC units to a single dimension waveform. This waveform

projects the periodicities in the sound signal, where the reciprocal of time duration between

peak magnitudes indicate fundamental frequencies corresponding to pitch attributes present

in the sound.

2.2.2.2. Auditory - Autocorrelation Function (ACF) Model

Under the temporal pitch theory, periodicity pitch can be determined using delays and

coincidence detection as proposed by Licklider [88]. This mathematical method is known as

the autocorrelation function (ACF) and is highly similar to Meddis’s physiological model used

for deriving virtual pitch described in subsection 2.2.2.1 and in [41]. A variant of the ACF is

31

the cancellation model where multiplication operation in the ACF is replaced with a

subtraction operation [89].

In terms of biological evidence, a delay line with coincidence detection has been found

for sound localisation [90], [91] but not for pitch detection. Phase interactions between

cochlear sections might account for synthesised delays of resolved partials but not for

unresolved partials [92]. Hence, the ACF suffers from the lack of convincing biological

evidence to support its hypothesis for its use in the brain for pitch detection, specifically with

the use of the delay mechanism. Though, the virtual pitch model [41], described in

subsection 2.2.2.1, surmises that the delays are attributable to the slow responses of

chopper neurons in the cochlear nucleus.

Regardless of the lack of biological support, the ACF model is used as an analytical tool

in speech [93] and music [94] signal processing. In speech processing, vowel identification

requires delays at approximately 10 ms [95], [96], and the ACF is an ideal algorithm for this

task. It has also been used in computational auditory scene analysis, especially to find

multiple fundamental frequencies in polyphonic musical signals from multiple sound sources

at an instance [97]–[99].

The input to the ACF model can either be a single vector sound signal or a two-

dimensional time-frequency sound image in the form of either a spectrogram (calculated

from Fourier transform) or a cochleagram (calculated from a cochlear model). Figure 2-18

depicts a filterbank of ACFs connected to a cochlear model, whereby every row of the

cochlear model is connected to a single ACF.

Figure 2-18: Filterbank of autocorrelation functions (ACFs) operating in parallel on the cochlear model output
(one ACF connected to one output section of the cochlear model). Adapted from Meddis et al. [62].

As my interest lies in auditory models, I will describe the operation of an ACF with

respect to inputs from a cochlear model [100]. An ACF defines the similarity or correlation of

a signal to the delayed version of itself. It is characterised by:

𝑟𝑝(𝑐, 𝑡, 𝜏) = ∑ 𝑝

𝑛+𝑁−𝜏

𝑡=𝑛

(𝑐, 𝑡) ∙ 𝑝(𝑐, 𝑡 + 𝜏) (2-28)

32

where 𝑝 is an input signal of a cochlear section c from a cochlear model; 𝜏 is the delay or lag

of the cloned original signal; 𝑁 is the total amount of output data points, 𝑟, corresponding to

the amount of lags that is encapsulated in a window. Hence, 𝑟𝑝(𝑐, 𝑡, 𝜏) is the output signal of

a single vector of samples pertaining to the delayed similarity at time, t. Stacking 𝑟𝑝(𝑐, 𝑡, 𝜏)

over one another from the first cochlear section to the last, results in a 2D image known as

an autocorrelogram or a stabilised auditory image. The ACF operation per cochlear section

is graphically illustrated in Figure 2-19.

Figure 2-19: Operation of an autocorrelation function (ACF). Vector of dark spots represents the original input
signal, whereas white spots represent the cloned original signal that undergoes a delay process. A downward

arrow represents a multiply operation, ‘x’ represents no operation and ‘Σ’ represents a sum operation.

The periodicity of a signal can be extracted from an autocorrelated signal by finding the

distance between adjacent peaks for every cochlear section. An alternative method is to use

a summarised ACF signal [100]. This signal can be calculated by averaging 𝑟𝑝(𝑐, 𝑡, 𝜏) across

the entire range of cochlear sections (totalling K), thereby generating a single temporal

profile instead of K amount of parallel temporal profiles for pitch extraction:

𝑟𝑠(𝑡, 𝜏) =
1

𝐾
∑ 𝑟𝑝(𝑐, 𝑡, 𝜏)

𝐾

𝑘=1

 (2-29)

With the use of summary autocorrelograms, pitch extraction is possible by two methods.

One method is by calculating the distance between either two significant neighbouring peaks

or one peak relative to the peak at 0 delay, which equates to the pitch periodicity and its

inverse is the pitch frequency [101]. The second method is to use a pitch matching algorithm

by calculating the squared Euclidean distance, D2, between a template summary

autocorrelograms containing pitch information reference and a summary autocorrelogram of

the input sound signal, where the required pitch possibly resides [62]:

𝐷2 = ∑(𝑟𝑠(𝑡, 𝜏) − 𝑟𝑠′(𝑡, 𝜏))
2

𝑏

𝑖=𝑎

 (2-30)

33

where 𝜏 = 𝑖 ∙ 𝑑𝑡; 𝑎 and 𝑏 are the range of lags used in the comparison. A small D2 specifies

that the pitch information in the two summary autocorrelograms is similar, whereas a large

D2 specifies dissimilarity between the two summary autocorrelograms.

2.2.2.3. SPINET Model

Spectral theories of pitch perception often use a central pattern recognition hypothesis

to match spectral templates [74], [102]–[104]. There is physiological evidence supporting this

hypothesis [73]. One model that characterises this hypothesis is the SPINET model by

Cohen et al. [76].

Figure 2-20 displays the seven stages of the SPINET model. In stages 1 and 2, the

model takes a sound signal as its input and streams the signal into a gammatone filterbank

simulating the characteristic of the basilar membrane (BM), as illustrated in Figure 2-20. In

stage 3, each gammatone filter output corresponding to a specific centre frequency is

averaged over a 5 ms window to generate a short-term energy spectrum. In stage 4, a broad

bandpass filter is then applied to the averaged values, which removes low and high

frequency components of the perceived hearing range akin to the outer and middle ear

filtering.

Stage 5 models the spatial interactions of channels, whereby channels in closer

proximity to a specific channel have a larger effect on that channel than channels further

away. The interactions between the channels are defined by:

𝑆(𝑓𝑖, 𝑛) = ∑ 𝑌(𝑓, 𝑛) (
|𝐻(𝑓𝑖, 𝑓𝑗, 𝜅𝑒𝑥)|

2

𝐴𝑒𝑥(𝑓𝑖)
−

|𝐻(𝑓𝑖, 𝑓𝑗, 𝜅𝑖𝑛)|
2

𝐴𝑖𝑛(𝑓𝑖)
)

𝐽

𝑗=1

 (2-31)

where 𝑛 is the sample number; 𝑓𝑖 is the centre frequency of the channel; 𝑓𝑗 is the centre

frequency of other gammatone filters; 𝐽 is the total number of gammatone filters; 𝜅𝑒𝑥 is the

excitatory region, and 𝜅𝑖𝑛 is the inhibitory region set as a constant of the equivalent

rectangular bandwidth (ERB) of a frequency channel; 𝐴𝑒𝑥 and 𝐴𝑖𝑛 are the areas of the

excitatory and inhibitory regions, which are power spectrums, |𝐻(𝑓𝑖, 𝑓𝑗, 𝜅𝑒𝑥)|
2
 and

|𝐻(𝑓𝑖, 𝑓𝑗, 𝜅𝑖𝑛)|
2
 summed over all the centre frequencies of the gammatone filterbank. The

power spectrum of a gammatone filter is calculated as:

|𝐻(𝑓𝑖, 𝑓𝑗, 𝜅)|
2

= [1 + (
(𝑓𝑗 − 𝑓𝑖)

𝜅𝑏(𝑓𝑖)
)

2

]

−4

 (2-32)

where 𝑏(𝑓𝑖) is the bandwidth of a gammatone filter. With a flat power spectrum, the

excitatory and inhibitory segments combine to output zero across the frequency spectrum,

simulating the equilibrium response of neurons.

Finally, in stages 6 and 7, a weighted harmonic summation is done:

𝑃(𝑝, 𝑛) = ∑[𝑆(𝑚𝑝, 𝑛)]+

𝑚

ℎ(𝑚) (2-33)

34

[𝑥]+ = {

𝑥, for 𝑥 > 0
 0, otherwise

 (2-34)

ℎ(𝑚) = {

1 − 𝑀 log2(𝑚) , for 𝑀 log2(𝑚) < 1
 0, otherwise

 (2-35)

where 𝑃 is the pitch strength; 𝑆(𝑚𝑝, 𝑛) is the non-negative spectral strength calculated in

stage 5 and weighted by the distance between nominal pitch 𝑝 and harmonic frequency 𝑚𝑝;

𝑀 defines the slope of the decay with harmonic number 𝑚.

The output of the model is the pitch with the strongest activation. In other words, pitch is

determined to be the value of 𝑝, with the largest pitch strength 𝑃.

Figure 2-20: The SPINET model. Adapted from Cohen et al. [76].

35

2.2.2.4. Model Selection

Table 2-2 presents a summary of the three pitch models. The virtual pitch model has

already been implemented in real-time on an analogue very large-scale integrated (VLSI)

chip [105] and so is not considered for FPGA implementation. Both the SPINET and

autocorrelation function (ACF) models are calculable on an FPGA. However, both models

are computationally intensive as they rely heavily on multiplication and accumulate (MAC)

operations.

The ACF and SPINET models differ in the way they use MAC operations. For the ACF

model, the multiply and accumulate operations are evoked consecutively for every input

sample. However, this is not the same for the SPINET model, as the equations for

calculating pitch combine multiply and accumulate operations are non-consecutively. In

other words, these two operations are distributed separately throughout the model and do

not appear in the order of the MAC sequence that is then processed iteratively. Iterative

MAC operations are crucial in model selection since an alternative method is presented in

chapter 4 to approximate MAC operations, which means the model with a higher iterative

MAC operations usage is required to demonstrate the difference in computational resource

utilisation between the MAC and the novel approximation operations. Thus, the ACF model

is selected over the SPINET model for FPGA implementation.

Although the ACF model is selected for FPGA implementation, its reliance on significant

MAC operations to calculate an autocorrelogram poses a problem. This heavy reliance on

MAC operations will undoubtedly, consume significant memory and power as well as utilise

significant digital signal processors (DSP) on an FPGA, mainly if parallel computation is

used. However, these computational resources can be minimised by pipelining the MAC

operations, instead of computing the operations in parallel. Furthermore, and more

importantly, a spike-based approach alleviates the use of MAC operations and offers a

cheaper computing alternative. These are addressed with respect to the ACF models in

chapter 4.

Pitch Model Features

Physiological Model Physiological model based on temporal pitch theory, which can
be regarded as a general pitch model.

Encompasses a chopper neuron algorithm to simulate a
functional part of the ventral cochlear nucleus (VCN) and a
functional part of the inferior colliculus (IC) to strengthen
periodicities across cochlear sections.

Autocorrelation Function
(ACF)

Mathematical equivalent of the virtual pitch physiological model.

Correlation across delayed samples per cochlear section for
every cochlear section.

SPINET model Based on spectral pitch theory and central template matching
hypothesis.

Pitch determined by the strongest frequency channel activation.
Table 2-2: Summary of auditory pitch models.

2.3. Auditory Timbre

According to the Acoustical Society of America (ASA) [106], timbre is defined as a

multidimensional auditory sensation that enables a listener to distinguish two non-identical

sounds of the same loudness, pitch, spatial location, and duration [107], [108]. It is an

essential cue in the identification of a sound source, e.g. musical instrument, human

36

speaker, animal, other natural and man-made sound sources [43]. The dimensions of timbre

are defined in subsection 2.3.1.

In the next subsections, two aspects of timbre are presented: studies of timbre

perception in subsection 2.3.1 and biologically-inspired auditory cortical models that may

influence timbre perception in subsection 2.3.2.

2.3.1. Timbre Perception

One of the earliest studies of timbre perception was by Helmholtz. He gave a descriptive

account of the physics of musical instruments, their playing styles and the types of tones

generated [109]. In his PhD dissertation, Lichte reported that the timbre of complex tones

has at least three dimensions: brightness, roughness, and fullness [110]. Brightness is the

midpoint of energy distribution in the frequency domain. It has similar physical properties as

sharpness [111], which is defined as the intensity levels of the high frequency components of

a sound signal [112]. Roughness is the perception of an unpleasant sound [113] due to the

presence of a low fundamental frequency component [114], [115], which produces a ripple in

its amplitude over time in the range of 20 Hz to 200 Hz. Fullness is the presence of a broad

range of frequency components, particularly at lower frequencies [116].

Timbre is also heavily influenced by the time-varying contour, especially at the onset

(attack) or initial transient of a signal [117], [118]. Using early digital computers and musical

notes from fourteen musical instruments, Luce found invariances in the attack phases

unique to each instrument. This response was validated by Grey [119], who found that

temporal cues such as attack as well as spectral cues such as brightness of monophonic

musical signals (signals originating from a single musical instrument) are necessary to define

timbre. However, Iversen found that by removing the attack phase of a monophonic musical

signal, musical instruments can be still be identified by human listeners [120]. In spite of the

progress of timbre perceptual research over time, it is beneficial to understand the

underlying mechanics of the mammalian auditory system that allows us to perceive timbre.

2.3.1.1. Modulation Filterbank

Since the envelope of a sound signal carries vital information of the temporal

dimensions of timbre, applying a temporal modulation filter is a sensible solution for

representing the envelope of a carrier signal. In psychoacoustical studies, it has been found

that low envelope frequencies with modulation peak rates of 3 to 4 Hz are associated with

sequence rates of words and frequencies up to 20 Hz are associated with rhythm [121].

From 10 Hz to 200 Hz, modulation components define the roughness of a sound signal

[122]. Such temporal modulation dynamics are found in a mammalian primary auditory

cortex (A1) [123]. In addition, the same cortical region is also reactive to spectral envelope

frequencies found in the range of 0.2 to 3 cycles/octave [124]. This form of spectral

modulation is analogous to cepstral representation [125], which is the inverse Fourier

transform of the logarithm of a sound signal spectrum. Spectral modulation is applied on a

local scale of the spectrum, whereas the cepstral calculation is applied to the entire

spectrum. It has been postulated by Shamma that the dimensions of spectral and temporal

(spectro-temporal) modulations form the basis of representing timbre [126].

Modulation filterbanks can also characterise the responses of a group of neuronal cells

in a mammalian primary auditory cortex (A1). The manner a group of A1 neuronal cells

37

respond to a stimulus is known as the spectro-temporal receptive field (STRF). The STRF

responses of A1 neuronal cells are related to the Fourier transform, i.e. cells that are tuned

broadly correspond to low ripple densities and cells that are sharply tuned are most sensitive

to high ripple densities [127]. Similarly, A1 cells that best respond to slower dynamics are

better tuned to low ripple velocities than cells sensitive to fast dynamics, which are tuned to

high ripple velocities. The STRFs can be modelled from a functional perspective as selective

modulation filters. Each filter is sensitive to a specific spectral resolution, known as scale, as

well as to a temporal modulation, known as rate. Together, these STRFs form a filterbank

corresponding to a wide range of psychoacoustical recordings of rate [128] and scale [129]

sensitivities found in humans [130], [131] and animals [132].

2.3.1.2. Effect of Stimulus Type on Modulation Filterbank Response

In an auditory computational model, the capability of a modulation filterbank emulating

A1 neuronal response is dependent on the type of stimulus used and the linearity of the

filterbank. In an experiment by Sahani and Linden [133], A1 neuronal responses of mice and

rats were recorded with a presentation of random chord stimuli to the animals’ outer ear.

Here, a random chord is a combination of pure tones with randomly selected frequencies

[134]. The researchers then compared the A1 neuronal responses from the animal with

responses from a linear STRF model. The input to the model was the same random chord

stimuli used in the animal experiment. The stimuli were transformed into a spectrogram,

which were then processed by the linear STRF modulation filters. It was found that the linear

STRF model could only account for 18% to 40% of the A1 neuronal responses recorded

from the animals. Using natural-sounding stimuli, inclusive of narrowband sound signals

such as cricket calls to broadband sound signals such as gurgling creek, Machens et al.

reported that only an average of 11% of the A1 neuronal responses of rats is accountable by

a linear STRF model [135].

Yet another stimulus type is a broadband signal with sinusoidally modulated spectro-

temporal envelopes called moving ripples. Moving ripples have identical functions as regular

sinusoids (pure tones) in measuring the transfer functions of linear filters [136]–[138]. The

exception is that moving ripples are two-dimensional, covering spectral and temporal

dimensions. They comprise a combination of pure tones having frequencies that are spaced

logarithmically. Shamma, Versnel, and Kowalski found that approximately 90% of selected

neurons in A1 of ferrets respond to moving ripples [136]. Transfer functions of an STRF

modulation filterbank are derived as a result of the experiment with moving ripples stimuli,

which are used in a predictive model to correlate the A1 neuronal response of ferrets in

another experiment using naturally- and artificially-voiced vowels as stimuli [139]. It was

found in the latter experiment that the moving ripple-derived transfer function of the STRF

filterbank is capable of accounting 71% of the selected A1 neuronal responses to moving

ripples. Aside from moving ripples, other selected methods of measuring A1 neuronal

response include naturally- and artificially-generated bird chirps [140].

2.3.2. A Survey of Auditory Cortical Models

Two biologically-inspired models of timbre perception are presented in this subsection to

represent signals for the recognition of sound sources. Both these models use wavelet

transform through a filterbank comprising of either multiple time or time-frequency

components to extract either a temporal or spectro-temporal multiresolution representation

of the envelopes present in the sound signal.

38

2.3.2.1. Dau’s Temporal Modulation Model

The temporal modulation model is a psychoacoustical model that utilises a temporal

modulation transfer function (TMTF) [128] to extract the envelope of an input sound signal at

multiple temporal modulation rates [141]. It is a functional abstract of a mammalian auditory

cortex determined from perceptual experiments. Figure 2-21 illustrates the model. The

bandpass characteristics of the basilar membrane (BM) is modelled using a gammatone

filterbank with centre frequencies ranging from 100 Hz to 4 kHz [142]. A gammatone filter is

used widely as auditory filters, which has impulse response shaped like gamma distribution

that mimics the response of a specific location on a BM [29], [143].

The output of each of the 24 gammatone filters is half-wave rectified and low-pass

filtered at 1 kHz to simulate inner hair cell (IHC) characteristics. This processing preserves

the envelope of high frequency components of the signal. The IHC output is transmitted to

the adaptation stage to reduce large-signal envelope variations. The adaptation stage is a

nonlinear model comprising five low-pass filters (LPFs) connected in series with a feedback

loop on each filter. The time constants are different for each filter ranging from 5 ms to 500

ms. The combined output of each of the five LPF fed back determines the amount of

attenuation applied to the input signal [144].

The output of each of the adaptation stages is connected to a modulation filterbank,

comprising 12 filters. The lowest modulation frequency filter is a low-pass filter (LPF) with a

2.5 Hz cut-off. All other filters are bandpass filters (BPFs). BPFs ranging from 0 to 10 Hz are

linearly scaled, and those between 10 Hz to 1 kHz are logarithmically scaled. The output of

the temporal modulation filterbank is interpreted as a three-dimensional representation of an

input sound signal, comprising amplitude, time and modulation centre frequency information.

Internal noise with a constant variance is added to each modulation filter output to

simulate the limitations of the resolution. This internal representation of the input sound

signal is cross-correlated with several pre-acquired internal representation of the sound

signal with high signal-to-noise (SNR). This form of optimal detector uses high correlation

coefficients as a decision device to match and predict the performances of subjects on a

trial-by-trial basis in a temporal modulation psychoacoustic experiment.

39

Figure 2-21: An abstract of the temporal modulation model. Adapted from Dau et al. [141].

2.3.2.2. Multiresolution Spectro-temporal NSL Model

The multiresolution spectro-temporal model [127] is an abstract formulation of

physiological recordings of the primary auditory cortex (A1) of the ferret [136], [145]. The

spectral and temporal modulation contents of the auditory spectrogram are extracted using a

modulation filterbank. The filterbank parameters correspond to spectro-temporal envelopes

ranging from slow to fast rates temporally and from narrow to broad scales spectrally. The

spectro-temporal receptive fields (STRF) are distributed at various frequencies along the

frequency axis as displayed in Figure 2-22. The STRF can be defined using seed functions

in the time domain, 𝑡, and frequency domain parameter, 𝑥, as follow:

 ℎ𝑡(𝑡) = 𝑡2𝑒−3.5𝑡 𝑠𝑖𝑛(2𝜋𝑡) (2-36)

 ℎ𝑠(𝑥) = (1 − 𝑥2)𝑒−𝑥2/2 (2-37)

where ℎ𝑡 is a gammatone function [146]; ℎ𝑠 is a second-order Gaussian Gabor-like function

that is usually used for describing spatial receptive field in vision literature [147]. For different

rates, 𝜔, and scales, 𝛺, the seed functions are:

 ℎ𝑡(𝑡; 𝜔) = 𝜔ℎ𝑡(𝜔𝑡) (2-38)

40

 ℎ𝑠(𝑥; 𝛺) = 𝛺ℎ𝑠(𝛺𝑥) (2-39)

The seed function, ℎ𝑡, is used in a temporal function, ℎ𝑖𝑟𝑡, and ℎ𝑠 is used in a spectral

function, ℎ𝑖𝑟𝑠. These temporal and spectral functions are each represented in an analytic

signal equation format, which comprises two real-valued terms: the output of the seed

function and a 90° phase-shifted output of the seed function. The temporal and spectral

functions are defined as:

 ℎ𝑖𝑟𝑡(𝑡; 𝜔, 𝜃) = ℎ𝑡(𝑡; 𝜔) 𝑐𝑜𝑠 𝜃 + ℎ̂𝑡(𝑡; 𝜔) 𝑠𝑖𝑛 𝜃 (2-40)

 ℎ𝑖𝑟𝑠(𝑥; 𝛺, ∅) = ℎ𝑠(𝑥; 𝛺) 𝑐𝑜𝑠 ∅ + ℎ̂𝑠(𝑥; 𝛺) 𝑠𝑖𝑛 ∅ (2-41)

where ℎ̂𝑡 and ℎ̂𝑠 represent Hilbert transform (90° phase-shifted) of the two seed functions, ℎ𝑡

and ℎ𝑠, respectively; 𝛺 and 𝜔 are the spectral density and temporal velocity parameters of

the filter defining discrete rates of change of spectral and temporal envelopes; Ø and 𝜃 are

characteristic phases. From ℎ𝑖𝑟𝑡 and ℎ𝑖𝑟𝑠, the complex temporal impulse response, ℎ𝐼𝑅𝑇, and

the complex spectral impulse response, ℎ𝐼𝑅𝑆, can then be defined as:

 ℎ𝐼𝑅𝑇(𝑡; 𝜔, 𝜃) = ℎ𝑖𝑟𝑡(𝑡; 𝜔, 𝜃) + 𝑗ℎ̂𝑖𝑟𝑡(𝑡; 𝜔, 𝜃) (2-42)

 ℎ𝐼𝑅𝑆(𝑥; Ω, ϕ) = ℎ𝑖𝑟𝑠(𝑥; Ω, ϕ) + 𝑗ℎ̂𝑖𝑟𝑠(𝑥; Ω, ϕ) (2-43)

These complex impulse responses are capable of representing excitatory and inhibitory

neuronal responses observed in a mammalian A1 [124], [136], [145]. The real components

of the product of equations (2-42) and (2-43) result in the STRF:

 𝑆𝑇𝑅𝐹 = ℛ𝑒{ℎ𝐼𝑅𝑇(𝑡; 𝜔, 𝜃) ∙ ℎ𝐼𝑅𝑆(𝑥; 𝛺, 𝜙)} (2-44)

The differential sensitivity of A1 neuronal cells demonstrate the modulation drifts of

spectral envelopes in two directions [148]: upward and downward. Neuronal cells exhibiting

this property have spectral peaks that move upward and downward in frequency for an input

signal with changing frequencies. However, in reality, most A1 cells are not strongly

bidirectionally (upward and downward) sensitive. Instead, they are more responsive to either

one direction (upward) or the other (downward). Regardless, the mathematical formulation

defining these characteristics captures frequency modulation (FM) sweeps and amplitude

modulations (AM) from the input auditory spectrogram [127]:

 𝑆𝑇𝑅𝐹⇓ = ℛ𝑒{ℎ𝐼𝑅𝑇(𝑡; 𝜔, 𝜃) ∙ ℎ𝐼𝑅𝑆(𝑥; 𝛺, 𝜙)} (2-45)

 𝑆𝑇𝑅𝐹⇑ = ℛ𝑒{ℎ𝐼𝑅𝑇
∗ (𝑡; 𝜔, 𝜃) ∙ ℎ𝐼𝑅𝑆(𝑥; Ω, ϕ)} (2-46)

where ⇓ and ⇑ denotes downwards and upwards modulations drifts, respectively and ∗

defines complex conjugate.

41

Figure 2-22: The multiresolution spectro-temporal auditory cortical model. Adapted from Shamma et al. [126],

[127].

2.3.2.3. Model Selection

A summary of the two auditory cortical models are projected in Table 2-3. Dau’s

temporal modulation model has been used for automatic speech recognition [149],

assessing speech quality [150], predicting speech intelligibility in hearing-impaired subjects

[151], detecting across-channel sound fluctuations [152], audio quality assessment [153],

audio decoding for audio signal transmission [154], and a binaural sound signal detector

[155]–[157].

Like Dau’s model, the NSL model extracts temporal modulation information from a

sound signal. In addition, the NSL model also extracts spectral modulation information. The

combination of spectro-temporal modulation information from the NSL model has several

features. It can be resynthesised to restore perceptually intelligible speech, advantageous

for speech compression [158] and as a result, has also been used in speech intelligibility

experiments [159]. Other applications of the NSL model include source separation of speech

signals by gender [160], speech detection amid animal vocals, music and environmental

sounds [161], noise suppression in speech signals [162] or speech enhancement [163],

phoneme discrimination for automatic speech recognition [164], automatic speech emotion

recognition [165], and investigation of speech signal reconstruction quality under various

spectro-temporal fluctuations [166].

Aside from speech signals, the NSL model is also used for musical timbre classification,

which has resulted in a musical instrument classification accuracy as high as 98.7% [167]

using a support vector machine (SVM) and 11 musical instrument classes. Burred et al. used

an alternative method of extracting spectro-temporal envelopes using sinusoidal modelling,

frequency interpolation, and principal component analysis to attain a score of 94.9% musical

instrument classification accuracy from five instruments [168]. Eronen and Klapuri used

temporal features such as rise-time and decay-time in addition to temporal envelope

information as well as spectral features using mel-frequency cepstral coefficients (MFCC),

representing discrete magnitudes of short-term power distributed on a nonlinear frequency

scale, to achieve 80% classification of 30 musical instruments [169]. Out of all the models

mentioned above, the NSL model has the highest classification accuracy of musical

instruments. Hence, the NSL model is selected to be implemented on FPGA.

42

Auditory Cortical Model Features

Dau‘s Temporal Modulation
Model

Nonlinear adaptation.

Temporal modulation filterbank implemented.

Features extracted from temporal modulation filterbank
output to match the performances of subjects in a
psychoacoustic experiment.

Multiresolution Spectro-
temporal NSL Model

Spectral and temporal (spectro-temporal) modulation
filterbanks implemented.

Neuronal cell directionality capturing upward and
downward modulation drifts.

Features extracted from spectro-temporal receptive fields
(STRFs) under various spectral densities and temporal
velocities capable of representing features for classifying
musical instruments accurately up to 98.7% [167].

Table 2-3: Summary of auditory timbre models.

2.4. Chapter Summary and Conclusion

In this chapter, a brief description of a mammalian auditory pathway is presented along

with psychoacoustical studies of human pitch and timbre perceptions. Two cochlear models,

three pitch perception models, and two timbre perception models are reviewed. Out of the

two cochlear models reviewed, the CAR segment of the CAR-FAC model is selected to be

modified and implemented on FPGA, which is presented in chapter 3. A pitch perception

model, the ACF model, is selected to be fitted with a novel algorithm to run on an FPGA,

which is presented in chapter 4. For timbre perception, the multiresolution spectro-temporal

auditory cortical model is selected to be modified and implemented on FPGA with selected

algorithm segments from the other reviewed timbre models to be included as well. The

details of this design and FPGA implementation are covered in chapter 5. The capabilities of

the selected pitch models and timbre model are also showcased in chapters 6 and 7 for the

classifications of monophonic musical notes and musical instruments, respectively.

2.5. Bibliography

[1] S. A. Shamma, R. S. Chadwick, W. J. Wilbur, K. A. Morrish, and J. Rinzel, “A
Biophysical Model of Cochlear Processing: Intensity Dependence of Pure Tone
Responses,” J. Acoust. Soc. Am., vol. 80, no. 1, pp. 133–145, 1986, doi:
10.1121/1.394173.

[2] R. Meddis, L. P. O’Mard, and E. A. Lopez-Poveda, “A Computational Algorithm for
Computing Nonlinear Auditory Frequency Selectivity,” J. Acoust. Soc. Am., vol. 109,
no. 6, pp. 2852–2861, 2001, doi: 10.1121/1.1370357.

[3] R. F. Lyon, “Cascades of two-pole–two-zero asymmetric resonators are good models
of peripheral auditory function,” J. Acoust. Soc. Am., vol. 130, no. 6, p. 3893, 2011,
doi: 10.1121/1.3658470.

[4] C. S. Thakur, T. J. Hamilton, J. Tapson, A. van Schaik, and R. F. Lyon, “FPGA
Implementation of the CAR Model of the Cochlea,” in 2014 IEEE International
Symposium on Circuits and Systems (ISCAS), 2014, pp. 1853–1856, doi:
10.1109/ISCAS.2014.6865519.

[5] Y. Xu, C. S. Thakur, R. K. Singh, R. Wang, J. Tapson, and A. Van Schaik, “Electronic
Cochlea : CAR-FAC Model on FPGA,” in 2016 IEEE Biomedical Circuits and Systems
Conference (BioCAS), 2016, pp. 564–567, doi: 10.1109/BioCAS.2016.7833857.

43

[6] Y. Xu, C. S. Thakur, R. K. Singh, T. J. Hamilton, R. Wang, and A. van Schaik, “A
FPGA Implementation of the CAR-FAC Cochlear Model,” Front. Neurosci., vol. 12, no.
April, pp. 1–14, 2018, doi: 10.3389/fnins.2018.00198.

[7] J. O. Pickles, “The Outer and Middle Ears,” in An Introduction to the Physiology of
Hearing, 4th ed., Bingley, U.K.: Brill, 2012, pp. 11–24.

[8] G. G. Matthews, “Hearing and Other Vibration Senses,” in Neurobiology Molecules,
Cells and Systems, 1st ed., Cambridge, Massachusetts: Blackwell Science, 1997, pp.
433–457.

[9] J. O. Pickles, “The Auditory Nerve,” in An Introduction to the Physiology of Hearing,
4th ed., Bingley, U.K.: Brill, 2012, pp. 73–100.

[10] J. J. Rosowski, “The effects of external- and middle-ear filtering on auditory threshold
and noise-induced hearing loss,” J. Acoust. Soc. Am., vol. 90, no. 1, pp. 124–135,
1991, doi: 10.1121/1.401306.

[11] M. A. Ruggero and A. N. Temchin, “The Roles of the External , Middle , and Inner
Ears in Determining the Bandwidth of Hearing,” Proc. Natl. Acad. Sci. U. S. A., vol.
99, no. 20, pp. 13206–13210, 2002.

[12] R. K. Singh, “A Real-time Implementation of the Primary Auditory Neuron Activities,”
University of Western Sydney, 2012.

[13] A. Huber, T. Linder, M. Ferrazzini, S. Schmid, N. Dillier, S. Stoeckli, and U. Fisch,
“Intraoperative Assessment of Stapes Movement,” Ann. Otol. Rhinol. Laryngol., vol.
110, no. 1, pp. 31–35, 2001, doi: 10.1177/000348940111000106.

[14] J. O. Pickles, “The Cochlea,” in An Introduction to the Physiology of Hearing, 3rd ed.,
Bingley, U.K.: Emerald Group, 2008, pp. 25–72.

[15] F. Mammano and R. Nobili, “Biophysics of the cochlea : Linear approximation
Biophysics of the cochlea : Linear approximation,” J. Acoust. Soc. Am., vol. 93, no. 6,
pp. 3320–3332, 1993, doi: 10.1121/1.405716.

[16] A. van Schaik, “Analogue VLSI Building Blocks for an Electronic Auditory Pathway,”
École Polytechnique Fédérale de Lausanne, 1997.

[17] E. A. Lopez-Poveda and R. Meddis, “A Human Nonlinear Cochlear Filterbank,” J.
Acoust. Soc. Am., vol. 110, no. 6, pp. 3107–3118, 2001, doi: 10.1121/1.1416197.

[18] R. S. Swenson, “Chapter 7D - Auditory System,” Review of Clinical and Functional
Neuroscience, 2006.
https://www.dartmouth.edu/~rswenson/NeuroSci/chapter_7D.html (accessed Mar. 21,
2019).

[19] J. O. Pickles, “Mechanisms of transduction and excitation in the cochlea,” in An
Introduction to the Physiology of Hearing, 4th ed., Bingley, U.K.: Brill, 2012, pp. 101–
154.

[20] J. J. Guinan, “Olivocochlear Efferents: Anatomy, Physiology, Function, and the
Measurement of Efferent Effects in Humans,” Ear Hear., vol. 27, no. 6, pp. 589–607,
2006, doi: 10.1097/01.aud.0000240507.83072.e7.

[21] J. Ashmore, “Cochlear Outer Hair Cell Motility,” Physiol. Rev., vol. 88, no. 1, pp. 173–
210, 2008, doi: 10.1152/physrev.00044.2006.

44

[22] R. C. Kidd and T. F. Weiss, “Mechanisms that Degrade Timing Information in the
Cochlea,” Hear. Res., vol. 49, no. HEARES 01421, pp. 181–208, 1990.

[23] R. Meddis, “Simulation of Mechanical to Neural Transduction in the Auditory
Receptor,” J. Acoust. Soc. Am., vol. 79, no. 3, pp. 702–711, 1986, doi:
10.1121/1.393460.

[24] R. Meddis and E. A. Lopez-Poveda, “Auditory Periphery: From Pinna to Auditory
Nerve,” in Computational Models of the Auditory System, R. Meddis, E. A. Lopez-
Poveda, R. R. Fay, and A. N. Popper, Eds. New York, Dordrecht, Heidelberg, London:
Springer, 2010, pp. 7–38.

[25] C. J. Sumner, E. A. Lopez-Poveda, L. P. O’Mard, and R. Meddis, “A Revised Model of
the Inner-Hair Cell and Auditory-Nerve Complex,” J. Acoust. Soc. Am., vol. 111, no. 5,
pp. 2178–2188, 2002, doi: 10.1121/1.1453451.

[26] M. J. Hewitt and R. Meddis, “A computer model of amplitude-modulation sensitivity of
single units in the inferior colliculus.,” J. Acoust. Soc. Am., vol. 95, no. 4, pp. 2145–
2159, 1994, doi: 10.1121/1.408676.

[27] R. T. Ferry and R. Meddis, “A Computer Model of Medial Efferent Suppression in the
Mammalian Auditory System.,” J. Acoust. Soc. Am., vol. 122, no. 6, pp. 3519–3526,
2007, doi: 10.1121/1.2799914.

[28] R. F. Lyon, “Auditory Filter Models,” in Human and Machine Hearing: Extracting
Meaning from Sound, Cambridge University Press, 2017, pp. 239–264.

[29] R. F. Lyon, A. G. Katsiamis, and E. M. Drakakis, “History and Future of Auditory Filter
Models,” ISCAS 2010 - 2010 IEEE Int. Symp. Circuits Syst. Nano-Bio Circuit Fabr.
Syst., pp. 3809–3812, 2010, doi: 10.1109/ISCAS.2010.5537724.

[30] R. F. Lyon, “The CARFAC Digital Cochlear Model,” in Human and Machine Hearing:
Extracting Meaning from Sound, Cambridge University Press, 2017, pp. 293–298.

[31] C. D. Geisler, G. K. Yates, R. B. Patuzzi, and B. M. Johnstone, “Saturation of Outer
Hair Cell Receptor Currents Causes Two-Tone Suppression,” Hear. Res., vol. 44, no.
2–3, pp. 241–256, 1990, doi: 10.1016/0378-5955(90)90084-3.

[32] R. F. Lyon, “The Outer Hair Cell,” in Human and Machine Hearing: Extracting
Meaning from Sound, Cambridge University Press, 2017, pp. 309–319.

[33] M. R. Schroeder and J. L. Hall, “Model for Mechanical to Neural Transduction in the
Auditory Receptor,” J. Acoust. Soc. Am., vol. 55, no. 5, pp. 1055–1060, 1974, doi:
10.1121/1.1914647.

[34] R. F. Lyon, “The Inner Hair Cell,” in Human and Machine Hearing: Extracting Meaning
from Sound, Cambridge University Press, 2017, pp. 320–330.

[35] R. F. Lyon, “The AGC Loop Filter,” in Human and Machine Hearing: Extracting
Meaning from Sound, Cambridge University Press, 2017, pp. 331–344.

[36] A. Saremi, R. Beutelmann, M. Dietz, G. Ashida, J. Kretzberg, and S. Verhulst, “A
Comparative Study of Seven Human Cochlear Filter Models,” J. Acoust. Soc. Am.,
vol. 140, no. 3, pp. 1618–1634, 2017, doi: 10.1121/1.4960486.

[37] C. S. Thakur, T. J. Hamilton, J. Tapson, A. van Schaik, and R. F. Lyon, “Live
Demonstration: FPGA implementation of the CAR Model of the cochlea,” in 2014
IEEE International Symposium on Circuits and Systems (ISCAS), 2014, pp. 1853–

45

1856, doi: 10.1109/ISCAS.2014.6865519.

[38] R. Meddis, “MAP 1_14 Model description.” Meddis, Ray - University of Essex,
Colchester, pp. 1–32, 2012.

[39] R. K. Singh, “RTAP: Towards a Real-Time Auditory Periphery Simulation,” in
International Conference on Future Computational Technologies, 2015, pp. 52–57,
doi: 10.17758/UR.U0315218.

[40] R. K. Singh, “A Real-Time Implementation of a Dual Resonance Nonlinear Filterbank,”
in International Conference on Engineering and Natural Sciences, 2015, pp. 36–41,
doi: http://iierdl.org/proceeding.php?pid=24.

[41] R. Meddis and L. P. O’Mard, “Virtual Pitch in a Computational Physiological Model,” J.
Acoust. Soc. Am., vol. 120, no. 6, pp. 3861–3869, 2006, doi: 10.1121/1.2372595.

[42] R. F. Lyon, “A Pole-Zero Filter Cascade Provides Good Fits to Human Masking Data
and to Basilar Membrane and Neural Data,” in AIP Conference Proceedings, 2011,
vol. 1403, pp. 224–229, doi: 10.1063/1.3658090.

[43] ASA, “ASA Standard Term Database,” 2016. https://asastandards.org/asa-standard-
term-database/ (accessed Sep. 26, 2018).

[44] A. Seebeck, “Beobachtungen über einige Bedingungen der Entstehung von Tönen,”
Ann. Phys., vol. 129, no. 7, pp. 417–436, 1841, doi: 10.1002/andp.18411290702.

[45] J. W. Strutt, The Theory of Sound: Volume 1, 1st ed. London, UK: Macmillan and Co.,
1877.

[46] G. S. Ohm, “Ueber die Definition des Tones, nebst daran geknüpfter Theorie der
Sirene und ähnlicher tonbildender Vorrichtungen,” Ann. Phys., vol. 135, no. 8, pp.
513–565, 1843, doi: 10.1002/andp.18431350802.

[47] A. Seebeck, “Ueber die Sirene,” Ann. Phys., vol. 136, no. 12, pp. 449–481, 1843, doi:
10.1002/andp.18431361202.

[48] G. S. Ohm, “Noch ein Paar Worte über die Definition des Tones,” Ann. Phys., vol.
138, no. 5, pp. 1–18, 1844, doi: 10.1002/andp.18441380503.

[49] H. F. Helmholtz, “On the Sensations of Tone as a Physiological Basis for the Theory
of Music,” Nature, no. September, pp. 449–452, 1875, doi: 10.1038/012449a0.

[50] G. von Békésy, “Zur Theorie des Hörens; die Schwingungsform der Basilarmembran,”
Phys. Zeits, vol. 29, pp. 793–810, 1928.

[51] J. F. Schouten, R. J. Ritsma, and B. L. Cardozo, “Pitch of the Residue,” J. Acoust.
Soc. Am., vol. 34, no. 9B, pp. 1418–1424, 1962, doi: 10.1121/1.1918360.

[52] R. J. Ritsma, “Existence Region of the Tonal Residue II,” J. Acoust. Soc. Am., vol. 35,
no. 8, pp. 1241–1244, 1963, doi: 10.1121/1.1918679.

[53] R. J. Ritsma, “Existence Region of the Tonal Residue. I,” J. Acoust. Soc. Am., vol. 34,
no. 9A, pp. 1224–1229, 1962, doi: 10.1121/1.1918307.

[54] J. C. R. Licklider, “‘Periodicity’ Pitch and ‘Place’ Pitch,” J. Acoust. Soc. Am., vol. 26,
no. 5, pp. 945–945, 1954, doi: 10.1121/1.1928005.

[55] W. R. Thurlow and A. M. Small, “Pitch perception for Certain Periodic Auditory

46

Stimuli,” J. Acoust. Soc. Am., vol. 27, no. 1, pp. 132–137, 1955, doi:
10.1121/1.1907473.

[56] R. D. Patterson, “Noise Masking of a Change in Residue Pitch,” J. Acoust. Soc. Am.,
vol. 45, no. 6, pp. 1520–1524, 1969, doi: 10.1121/1.1911632.

[57] J. F. Schouten, “The Perception of Pitch,” Philips Tech. Rev., vol. 5, no. 10, pp. 286–
295, 1940.

[58] F. L. Wightman and D. M. Green, “The Perception of Pitch,” Am. Sci., vol. 62, no. 2,
pp. 208–215, 1974, doi: 10.1093/oxfordhb/9780199298457.013.0005.

[59] R. D. Patterson, “The effects of relative phase and the number of components on
residue pitch.,” J. Acoust. Soc. Am., vol. 53, no. 6, pp. 1565–1572, 1973, doi:
10.1121/1.1913504.

[60] F. L. Wightman, “Pitch and stimulus fine structure,” J. Acoust. Soc. Am., vol. 54, no. 2,
pp. 397–406, 1973, doi: 10.1121/1.1913591.

[61] R. P. Carlyon and T. M. Shackleton, “Comparing the fundamental frequencies of
resolved and unresolved harmonics: Evidence for two pitch mechanisms?,” J. Acoust.
Soc. Am., vol. 95, no. 6, pp. 3541–3554, 1994, doi: 10.1121/1.409971.

[62] R. Meddis and L. O’Mard, “A unitary model of pitch perception,” J. Acoust. Soc. Am.,
vol. 102, no. 3, pp. 1811–1820, 1997, doi: 10.1121/1.420088.

[63] J. M. Brunstrom and B. Roberts, “Separate mechanisms govern the selection of
spectral components for perceptual fusion and for the computation of global pitch,” J.
Acoust. Soc. Am., vol. 107, no. 3, pp. 1566–1577, 2001, doi: 10.1121/1.428441.

[64] A. Gerson and J. L. Goldstein, “Evidence for a general template in central optimal
processing for pitch of complex tones,” J. Acoust. Soc. Am., vol. 63, no. 2, pp. 498–
510, 1978, doi: 10.1121/1.381750.

[65] H. Duifhuis, L. F. Willems, and R. J. Sluyter, “Measurement of pitch in speech: An
implementation of Goldstein’s theory of pitch perception,” J. Acoust. Soc. Am., vol. 71,
no. 6, pp. 1568–1580, 1982, doi: 10.1121/1.387811.

[66] M. T. M. Scheffers, “Simulation of auditory analysis of pitch : An elaboration on the
DWS pitch meter,” J. Acoust. Soc. Am., vol. 74, no. 6, pp. 1716–1725, 1983, doi:
10.1121/1.390280.

[67] D. Bendor and X. Wang, “The neuronal representation of pitch in primate auditory
cortex,” Nature, vol. 436, no. August, pp. 1161–1165, 2005, doi:
10.1038/nature03867.

[68] H. Penagos, J. R. Melcher, and A. J. Oxenham, “A Neural Representation of Pitch
Salience in Nonprimary Human Auditory Cortex Revealed with Functional Magnetic
Resonance Imaging,” Jounal Neurosci., vol. 24, no. 30, pp. 6810–6815, 2004, doi:
10.1523/JNEUROSCI.0383-04.2004.

[69] J. Lin and W. M. Hartmann, “The pitch of a mistuned harmonic: Evidence for a
template model,” J. Acoust. Soc. Am., vol. 103, no. 5, pp. 2608–2617, 1998, doi:
10.1121/1.422781.

[70] J. M. Brunstrom and B. Roberts, “Effects of asynchrony and ear of presentation on the
pitch of mistuned partials in harmonic and frequency-shifted,” J. Acoust. Soc. Am.,
vol. 110, no. 1, pp. 391–401, 2001, doi: 10.1121/1.1379079.

47

[71] B. Roberts and J. M. Brunstrom, “Perceptual fusion and fragmentation of complex
tones made inharmonic by applying different degrees of frequency shift and spectral
stretch Perceptual fusion and fragmentation of complex tones made inharmonic by
applying different degrees of frequency shif,” J. Acoust. Soc. Am., vol. 110, no. 5, pp.
2479–2490, 2001, doi: 10.1121/1.1410965.

[72] B. Roberts and J. M. Brunstrom, “Spectral pattern, harmonic relations, and the
perceptual grouping of low-numbered components,” J. Acoust. Soc. Am., vol. 114, no.
4, pp. 2118–2134, 2003, doi: 10.1121/1.1605411.

[73] L. Feng and X. Wang, “Harmonic template neurons in primate auditory cortex
underlying complex sound processing,” Proc. Natl. Acad. Sci. United States Am., vol.
114, no. 5, pp. E840–E848, 2017, doi: 10.1073/pnas.1607519114.

[74] J. L. Goldstein, “An optimum processor theory for the central formation of the pitch of
complex tones,” J. Acoust. Soc. Am., vol. 54, no. 6, pp. 1496–1516, 1973, doi:
10.1121/1.1914448.

[75] S. Shamma and D. Klein, “The case of the missing pitch templates: How harmonic
templates emerge in the early auditory system,” J. Acoust. Soc. Am., vol. 107, no. 5,
pp. 2631–2644, 2000, doi: http://dx.doi.org/10.1121/1.428649.

[76] M. A. Cohen, S. Grossberg, and L. L. Wyse, “A spectral network model of pitch
perception,” J. Acoust. Soc. Am., vol. 98, no. 2, pp. 862–879, 1995, doi:
10.1121/1.413512.

[77] J. C. R. Licklider, “A Duplex Theory of Pitch Perception,” J. Acoust. Soc. Am., vol. 23,
no. 1, p. 147, 1951, doi: 10.1121/1.1917296.

[78] K. Krumbholz, R. D. Patterson, and D. Pressnitzer, “The lower limit of pitch as
determined by rate discrimination,” J. Acoust. Soc. Am., vol. 108, no. 3, pp. 1170–
1180, 2000, doi: 10.1121/1.1287843.

[79] D. Pressnitzer, R. D. Patterson, and K. Krumbholz, “The lower limit of melodic pitch,”
J. Acoust. Soc. Am., vol. 109, no. 5, pp. 2074–2084, 2001, doi: 10.1121/1.1359797.

[80] R. J. Ritsma, “Frequencies Dominant in the Perception of the Pitch of Complex
Sounds,” J. Acoust. Soc. Am., vol. 42, no. 1, pp. 191–198, 1967, doi:
10.1121/1.1910550.

[81] R. Renken, J. E. C. Wiersinga-Post, S. Tomaskovic, and H. Duifhuis, “Dominance of
missing fundamental versus spectrally cued pitch: Individual differences for complex
tones with unresolved harmonics,” J. Acoust. Soc. Am., vol. 115, no. 5, pp. 2257–
2263, 2004, doi: 10.1121/1.1690076.

[82] C. C. Blackburn and M. B. Sachs, “Classification of Unit Types in the Anteroventral
Cochlear Nucleus: PST Histograms and Regularity Analysis,” J. Neurophysiol., vol.
62, no. 6, pp. 1303–1329, 1989, doi: 10.1152/jn.1989.62.6.1303.

[83] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and
its application to conduction and excitation in nerve,” J. Physiol., vol. 117, no. 4, pp.
500–544, 1952, doi: 10.1113/jphysiol.1952.sp004764.

[84] R. J. Macgregor, Neural and Brain Modeling. Academic Press, 1987.

[85] M. J. Hewitt, R. Meddis, and T. M. Shackleton, “A computer model of a cochlear-
nucleus stellate cell: responses to amplitude-modulated and pure-tone stimuli.,” J.
Acoust. Soc. Am., vol. 91, no. 4, pp. 2096–2109, 1992, doi: 10.1121/1.403696.

48

[86] D. Oertel, “Synaptic Responses and Electrical Properties of Cells in Brain Slices of
the Mouse Anteroventral Cochlear Nucleus,” J. Neurosci., vol. 3, no. 10, pp. 2043–
2053, 1983, doi: 10.1523/JNEUROSCI.03-10-02043.1983.

[87] D. Oertel, “Use of brain slices in the study of the auditory system: Spatial and
temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus
of the mouse,” J. Acoust. Soc. Am., vol. 78, no. 1, pp. 328–333, 1985, doi:
10.1121/1.392494.

[88] G. Langner, “Periodicity coding in the auditory system,” Hear. Res., vol. 60, no. 2, pp.
115–142, 1992, doi: 10.1016/0378-5955(92)90015-F.

[89] A. de Cheveigné, “Cancellation model of pitch perception,” J. Acoust. Soc. Am., vol.
103, no. 3, pp. 1261–1271, 1998, doi: 10.1121/1.423232.

[90] S. J. Jones and J. C. Van der Poel, “Binaural interaction in the brain-stem auditory
evoked potential: evidence for a delay line coincidence detection mechanism,”
Electroencephalogr. Clin. Neurophysiol., vol. 77, no. 3, pp. 214–224, 1990, doi:
10.1016/0168-5597(90)90040-K.

[91] P. X. Joris, P. H. Smith, and T. C. T. Yin, “Coincidence Detection in the Auditory
System: 50 Years after Jeffress,” Neuron, vol. 21, no. 6, pp. 1235–1238, 1998, doi:
10.1016/S0896-6273(00)80643-1.

[92] A. de Cheveigné and D. Pressnitzer, “The case of the missing delay lines: Synthetic
delays obtained by cross-channel phase interaction,” J. Acoust. Soc. Am., vol. 119,
no. 6, pp. 3908–3918, 2006, doi: 10.1121/1.2195291.

[93] L. R. Rabiner, “On the Use of Autocorrelation Analysis for Pitch Detection,” IEEE
Trans. Acoust., vol. 25, no. 1, pp. 24–33, 1977, doi: 10.1109/TASSP.1977.1162905.

[94] Y. Ando, T. Okano, and Y. Takezoe, “The running autocorrelation function of different
music signals relating to preferred temporal parameters of sound fields,” J. Acoust.
Soc. Am., vol. 86, no. 2, pp. 644–649, 1989, doi: 10.1121/1.398242.

[95] A. de Cheveigné, “Separation of concurrent harmonic sounds: Fundamental
frequency estimation and a time-domain cancellation model of auditory processing,” J.
Acoust. Soc. Am., vol. 93, no. 6, pp. 3271–3290, 1993, doi: 10.1121/1.405712.

[96] A. de Cheveigné, “Concurrent vowel identification. III. A neural model of harmonic
interference cancellation,” J. Acoust. Soc. Am., vol. 101, no. 5, pp. 2857–2865, 1997,
doi: 10.1121/1.419480.

[97] K. D. Martin, “Automatic Transcription of Simple Polyphonic Music: Robust Front End
Processing,” 1996. [Online]. Available:
http://www.music.mcgill.ca/~ich/classes/mumt611_05/transcription/kdm-TR399.pdf.

[98] A. Klapuri, “Multipitch Analysis of Polyphonic Music and Speech Signals Using an
Auditory Model,” IEEE Trans. Audio, Speech Lang. Process., vol. 16, no. 2, pp. 255–
266, 2008, doi: 10.1109/TASL.2007.908129.

[99] A. Klapuri, “Auditory Model-Based Methods for Multiple Fundamental Frequency
Estimation,” in Signal Processing Methods for Music Transcription, A. Klapuri and M.
Davy, Eds. New York, USA: Springer US, 2006, pp. 229–265.

[100] R. Meddis and M. J. Hewitt, “Virtual pitch and phase sensitivity of a computer model
of the auditory periphery. I : Pitch identification,” J. Acoust. Soc. Am., vol. 89, no. 6,
pp. 2866–2882, 1991, doi: 10.1121/1.400725.

49

[101] A. de Cheveigné, “Pitch Perception Models,” in Pitch: Neural Coding and Perception,
C. J. Plack, A. J. Oxenham, R. R. Fay, and A. N. Popper, Eds. New York, NY, USA:
Springer Science+Business Media LLC, 2005, pp. 169–233.

[102] F. L. Wightman, “The pattern-transformation model of pitch,” J. Acoust. Soc. Am., vol.
54, no. 2, pp. 407–416, 1973, doi: 10.1121/1.1913592.

[103] F. A. Bilsen, “Pitch of noise signals: Evidence for a ‘central spectrum,’” J. Acoust. Soc.
Am., vol. 61, no. 1, pp. 150–161, 1977, doi: 10.1121/1.381276.

[104] E. Terhardt, “Pitch, consonance, and harmony,” J. Acoust. Soc. Am., vol. 55, no. 5,
pp. 1061–1069, 1974, doi: 10.1121/1.1914648.

[105] A. van Schaik and R. Meddis, “Analog very large-scale integrated (VLSI)
implementation of a model of amplitude-modulation sensitivity in the auditory
brainstem,” J. Acoust. Soc. Am., vol. 105, no. 2, pp. 811–821, 1999, doi:
10.1121/1.426270.

[106] ASA, “Timbre.” https://asastandards.org/Terms/timbre/ (accessed Apr. 23, 2019).

[107] J. Marozeau, A. de Cheveigné, S. Mcadams, and S. Winsberg, “The dependency of
timbre on fundamental frequency,” J. Acoust. Soc. Am., vol. 114, no. 5, pp. 2946–
2957, 2003, doi: 10.1121/1.1618239.

[108] M. Fabiani and A. Friberg, “Influence of pitch, loudness, and timbre on the perception
of instrument dynamics,” J. Acoust. Soc. Am., vol. 130, no. 4, pp. EL193–EL199,
2011, doi: 10.1121/1.3633687.

[109] H. L. F. Helmholtz, “On the Differences in the Quality of Musical Tones.,” in The
Sensations of Tone as a Physiological Basis for the Theory of Music., New York, NY,
US: Longmans, Green and Co, 1875, pp. 106–173.

[110] W. H. Lichte, “Attributes of Complex Tones,” The University of Iowa, 1940.

[111] A. Gabrielsson and H. Sjögren, “Perceived sound quality of sound‐reproducing
systems,” J. Acoust. Soc. Am., vol. 65, no. 4, pp. 1019–1033, 1979, doi:
10.1121/1.382579.

[112] P. Goad, “Sharpness: A perceptually based measure of the spectral dimension of
musical timbre,” J. Acoust. Soc. Am., vol. 95, no. 5, p. 2958, 1994, doi:
10.1121/1.409051.

[113] W. De Baene, A. Vandierendonck, M. Leman, A. Widmann, and M. Tervaniemi,
“Roughness perception in sounds : behavioral and ERP evidence,” Biol. Psychol., vol.
67, no. 3, pp. 319–330, 2004, doi: 10.1016/j.biopsycho.2004.01.003.

[114] H. Fastl and E. Zwicker, “Critical Bands and Excitation,” in Psychoacoustics: Facts
and Models, Springer-Verlag Berlin Heidelberg, 2007, pp. 149–173.

[115] H. Fastl and E. Zwicker, “Roughness,” in Psychoacoustics: Facts and Models, 3rd ed.,
Springer-Verlag Berlin Heidelberg, 2007, pp. 257–264.

[116] A. Gabrielsson, B. Hagerman, T. Bech‐Kristensen, and G. Lundberg, “Perceived
sound quality of reproductions with different frequency responses and sound levels,”
J. Acoust. Soc. Am., vol. 88, no. 3, pp. 1359–1366, 1990, doi: 10.1121/1.399713.

[117] K. W. Berger, “Some Factors in the Recognition of Timbre,” J. Acoust. Soc. Am., vol.
36, no. 10, pp. 1888–1891, 1964, doi: 10.1121/1.1919287.

50

[118] L. Wedin and G. Goude, “Dimension Analysis of the Perception of Instrumental
Timbre,” Scand. J. Psychol., vol. 13, no. 1, pp. 228–240, 1972, doi: 10.1111/j.1467-
9450.1972.tb00071.x.

[119] J. M. Grey, “Timbre discrimination in musical patterns,” J. Acoust. Soc. Am., vol. 64,
no. 2, pp. 467–472, 1978, doi: 10.1121/1.382018.

[120] P. Iverson and C. L. Krumhansl, “Isolating the dynamic attributes of musical timbre,” J.
Acoust. Soc. Am., vol. 94, no. 5, pp. 2595–2603, 1993, doi: 10.1121/1.407371.

[121] R. Plomp, “The Role of Modulation in Hearing,” in Hearing-Physiological Bases and
Psychophysics, Springer, Berlin, Heidelberg, 1983, pp. 270–276.

[122] E. Terhardt, “On the Perception of Periodic Sound fluctuations (Roughness),” Acta
Acust. united with Acust., vol. 30, no. 4, pp. 201–213, 1974.

[123] C. E. Schreiner, J. Mendelson, M. W. Raggio, M. Brosch, and K. Krueger, “Temporal
processing in cat primary auditory cortex.,” Acta Otolaryngol. Suppl., vol. 532, pp. 54–
60, 1997, doi: 10.3109/00016489709126145.

[124] S. A. Shamma and H. Versnel, “Ripple Analysis in Ferret Primary Auditory Cortex . II .
Prediction of Unit Responses to Arbitrary Spectral Profiles,” Audit. Neurosci., vol. 1,
pp. 255–270, 1995.

[125] L. R. Rabiner and R. W. Schafer, Introduction to Digital Speech Processing, vol. 1.
Hanover, MA, USA: Publishers Inc., 2007.

[126] S. Shamma, “Encoding Sound Timbre in the Auditory System,” IETE J. Res., vol. 49,
no. 2, pp. 145–156, 2003, doi: 10.1080/03772063.2003.11416333.

[127] T. Chi, P. Ru, and S. A. Shamma, “Multiresolution Spectrotemporal Analysis of
Complex Sounds,” J. Acoust. Soc. Am., vol. 118, no. 2, pp. 887–906, 2005, doi:
10.1121/1.1945807.

[128] N. F. Viemeister, “Temporal modulation transfer functions based upon modulation
thresholds,” J. Acoust. Soc. Am., vol. 66, no. 5, pp. 1364–1380, 1979, doi:
10.1121/1.383531.

[129] D. M. Green, “‘Frequency’ and the Detection of Spectral Shape Change,” in Auditory
Frequency Selectivity, B. C. J. Moore and R. D. Patterson, Eds. New York, London:
Plenum Press, 1986, pp. 351–359.

[130] T. Chi, Y. Gao, M. C. Guyton, P. Ru, and S. Shamma, “Spectro-temporal modulation
transfer functions and speech intelligibility,” J. Acoust. Soc. Am., vol. 106, no. 5, pp.
2719–2732, 1999, doi: 10.1121/1.428100.

[131] T. Dau, B. Kollmeier, and A. Kohlrausch, “Modeling auditory processing of amplitude
modulation . I. Detection and masking with narrow-band carriers,” J. Acoust. Soc.
Am., vol. 102, no. 5, pp. 2892–2905, 1997, doi: 10.1121/1.420344.

[132] S. Amagai, R. J. Dooling, S. Shamma, T. L. Kidd, and B. Lohr, “Detection of
modulation in spectral envelopes and linear-rippled noises by budgerigars
(Melopsittacus undulatus),” J. Acoust. Soc. Am., vol. 105, no. 3, pp. 2029–2035,
1999, doi: 10.1121/1.426736.

[133] M. Sahani and J. F. Linden, “How Linear are Auditory Cortical Responses ?,” in
Advances in Neural Information Processing Systems 15 (NIPS 2002), 2002, pp. 109–
116, doi: 10.1124/dmd.105.005157.concerning.

51

[134] R. C. DeCharms, D. T. Blake, and M. M. Merzenich, “Optimizing Sound Features for
Cortical Neurons,” Science (80-.)., vol. 280, no. 5368, pp. 1439–1443, 1998, [Online].
Available: https://www.jstor.org/stable/2895918.

[135] C. K. Machens, M. S. Wehr, and A. M. Zador, “Linearity of Cortical Receptive Fields
Measured with Natural Sounds,” J. Neurosci., vol. 24, no. 5, pp. 1089–1100, 2004,
doi: 10.1523/JNEUROSCI.4445-03.2004.

[136] S. A. Shamma, H. Versnel, and N. Kowalski, “Ripple Analysis in Ferret Primary
Auditory Cortex. I. Response Characteristics of Single Units to Sinusoidally Rippled
Spectra,” Maryland, USA, 1994.

[137] N. Kowalski, D. A. Depireux, and S. A. Shamma, “Analysis of Dynamic Spectra in
Ferret Primary Auditory Cortex. I. Characteristics of Single-Unit Responses to Moving
Ripple Spectra,” J. Neurophysiol., vol. 76, no. 5, pp. 3503–3523, 1996, [Online].
Available:
http://www.ncbi.nlm.nih.gov/pubmed/8930290%5Cnhttp://www.ncbi.nlm.nih.gov/pubm
ed/8930289.

[138] D. J. Klein, D. A. Depireux, J. Z. Simon, and S. A. Shamma, “Robust spectrotemporal
reverse correlation for the auditory system: Optimizing stimulus design,” J. Comput.
Neurosci., vol. 9, no. 1, pp. 85–111, 2000, doi: 10.1023/A:1008990412183.

[139] H. Versnel and S. A. Shamma, “Spectral-ripple representation of steady-state vowels
in primary auditory cortex,” J. Acoust. Soc. Am., vol. 103, no. 5, pp. 2502–2514, 1998,
doi: 10.1121/1.422771.

[140] O. Bar-yosef, Y. Rotman, and I. Nelken, “Responses of Neurons in Cat Primary
Auditory Cortex to Bird Chirps : Effects of Temporal and Spectral Context,” J.
Neurosci., vol. 22, no. 19, pp. 8619–8632, 2002, doi: 10.1523/JNEUROSCI.22-19-
08619.2002.

[141] T. Dau, B. Kollmeier, and A. Kohlrausch, “Modeling auditory processing of amplitude
modulation. II. Spectral and temporal integration,” J. Acoust. Soc. Am., vol. 102, no. 5,
pp. 2906–2919, 1997, doi: 10.1121/1.420345.

[142] R. Patterson, I. Nimmo-smith, J. Holdsworth, and P. Rice, “An efficient auditory
filterbank based on the gammatone function.” Speech-Group meeting of Institute of
Acoustics on Auditory Modelling, RSRE, Malvern, pp. 1–33, 1987.

[143] M. Slaney, “An Efficient Implementation of the Patterson-Holdsworth Auditory Filter
Bank,” 1993.

[144] T. Dau, D. Püschel, and A. Kohlrausch, “A quantitative model of the ‘“effective”’ signal
processing in the auditory system. I. Model structure,” J. Acoust. Soc. Am., vol. 99,
no. 6, pp. 3615–3622, 1996, doi: 10.1121/1.414959.

[145] S. A. Shamma and H. Versnel, “Ripple Analysis in Ferret Primary Auditory Cortex . III
. Prediction of Unit Responses to Arbitrary Spectral Profiles,” 1995.

[146] M. Slaney, “Auditory Toolbox Version 2,” 1998. [Online]. Available:
https://engineering.purdue.edu/~malcolm/interval/1998-
010/AuditoryToolboxTechReport.pdf.

[147] J. P. Jones and L. A. Palmer, “An Evaluation of the Two-Dimensional Gabor Filter
Model of Simple Receptive Fields in Cat Striate Cortex,” J. Neurophysiol., vol. 58, no.
6, pp. 1233–1258, 1987.

52

[148] D. A. Depireux, J. Z. Simon, D. J. Klein, and S. A. Shamma, “Spectro-Temporal
Response Field Characterization with Dynamic Ripples in Ferret Primary Auditory
Cortex,” J. Neurophysiol., vol. 85, no. 3, pp. 1220–1234, 2001.

[149] J. Tchorz and B. Kollmeier, “A model of auditory perception as front end for automatic
speech recognition,” J. Acoust. Soc. Am., vol. 106, no. 4, pp. 2040–2050, 1999, doi:
10.1121/1.427950.

[150] M. Hansen and B. Kollmeier, “Continuous assessment of time-varying speech
quality,” J. Acoust. Soc. Am., vol. 106, no. 5, pp. 2888–2899, 1999, doi:
10.1121/1.428136.

[151] I. Holube and B. Kollmeier, “Speech intelligibility prediction in hearing-impaired
listeners based on a psychoacoustically motivated perception model Speech
intelligibility prediction in hearing-impaired listeners based on a psychoacoustically
motivated perception,” J. Acoust. Soc. Am., vol. 100, no. 3, pp. 1703–1716, 1996, doi:
10.1121/1.417354.

[152] T. Piechowiak, S. D. Ewert, T. Dau, T. Piechowiak, S. D. Ewert, and T. Dau,
“Modeling comodulation masking release using an equalization-cancellation
mechanism Modeling comodulation masking release using an equalization-
cancellation mechanism,” J. Acoust. Soc. Am., vol. 121, no. 4, pp. 2111–2126, 2007,
doi: 10.1121/1.2534227.

[153] R. Huber and B. Kollmeier, “PEMO-Q — A New Method for Objective Audio Quality
Assessment Using a Model of Auditory Perception,” IEEE Trans. Audio. Speech.
Lang. Processing, vol. 14, no. 6, pp. 1902–1911, 2006, doi:
10.1109/TASL.2006.883259.

[154] J. H. Plasberg and W. B. Kleijn, “The Sensitivity Matrix: Using Advanced Auditory
Models in Speech and Audio Processing,” IEEE Trans. Audio. Speech. Lang.
Processing, vol. 15, no. 1, pp. 310–319, 2007, doi: 10.1109/TASL.2006.876722.

[155] J. Breebaart, S. Van De Par, and A. Kohlrausch, “Binaural processing model based
on contralateral inhibition. I. Model structure,” J. Acoust. Soc. Am., vol. 110, no. 2, pp.
1074–1088, 2001, doi: 10.1121/1.1383297.

[156] J. Breebaart, S. Van De Par, and A. Kohlrausch, “Binaural processing model based
on contralateral inhibition. II. Dependence on spectral parameters,” J. Acoust. Soc.
Am., vol. 110, no. 2, pp. 1089–1104, 2001, doi: 10.1121/1.1383298.

[157] J. Breebaart, S. Van De Par, and A. Kohlrausch, “Binaural processing model based
on contralateral inhibition. III. Dependence on temporal parameters,” J. Acoust. Soc.
Am., vol. 110, no. 2, pp. 1105–1117, 2001, doi: 10.1121/1.1383299.

[158] T. Chi and S. A. Shamma, “Spectrum Restoration From Multiscale Auditory Phase
Singularities by Generalized Projections,” IEEE Trans. Audio. Speech. Lang.
Processing, vol. 14, no. 4, pp. 1179–1192, 2006, doi: 10.1109/TSA.2005.860828.

[159] M. Elhilali and S. Shamma, “Information-bearing components of speech intelligibility
under babble-noise and bandlimiting distortions,” in 2008 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2008, pp. 4205–4208, doi:
10.1109/ICASSP.2008.4518582.

[160] G. Wolf, S. Mallat, and S. Shamma, “Audio source separation with time-frequency
velocities,” in 2014 IEEE International Workshop on Machine Learning for Signal
Processing (MLSP), 2014, pp. 1–6, doi: 10.1109/MLSP.2014.6958893.

53

[161] M. S. Modulations, N. Mesgarani, S. Member, M. Slaney, S. Member, S. A. Shamma,
and S. Member, “Discrimination of Speech From Nonspeech Based on Multiscale
Spectro-Temporal Modulations,” IEEE Trans. Audio. Speech. Lang. Processing, vol.
14, no. 3, pp. 920–930, 2006, doi: 10.1109/TSA.2005.858055.

[162] N. Mesgarani and S. Shamma, “Denoising in the Domain of Spectrotemporal
Modulations,” EURASIP J. Audio, Speech, Music Process., vol. 2007, pp. 1–8, 2007,
doi: 10.1155/2007/42357.

[163] N. Mesgarani and S. Shamma, “Speech processing with a cortical representation of
audio,” in 2011 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2011, pp. 5872–5875, doi: 10.1109/ICASSP.2011.5947697.

[164] N. Mesgarani, S. David, and S. Shamma, “Representation of Phonemes in Primary
Auditory Cortex: How the Brain Analyzes Speech,” in 2007 IEEE International
Conference on Acoustics, Speech and Signal Processing - ICASSP ’07, 2007, pp.
765–768, doi: 10.1109/ICASSP.2007.367025.

[165] S. Wu, T. H. Falk, and W. Chan, “Automatic speech emotion recognition using
modulation spectral features,” Speech Commun., vol. 53, no. 5, pp. 768–785, 2011,
doi: 10.1016/j.specom.2010.08.013.

[166] B. N. Pasley, S. V. David, N. Mesgarani, A. Flinker, S. A. Shamma, E. Nathan, R. T.
Knight, and E. F. Chang, “Reconstructing Speech from Human Auditory Cortex,”
PLOS Biol., vol. 10, no. 1, pp. 1–13, 2012, doi: 10.1371/journal.pbio.1001251.

[167] K. Patil, D. Pressnitzer, S. Shamma, and M. Elhilali, “Music in Our Ears: The
Biological Bases of Musical Timbre Perception,” PLoS Comput. Biol., vol. 8, no. 11,
pp. 1–16, 2012, doi: 10.1371/journal.pcbi.1002759.

[168] J. Burred, A. Robel, and T. Sikora, “Dynamic Spectral Envelope Modeling for Timbre
Analysis of Musical Instrument Sounds,” Audio, Speech, Lang. …, vol. 18, no. 3, pp.
663–674, 2010, doi: 10.1109/TASL.2009.2036300.

[169] A. Eronen and A. Klapuri, “Musical Instrument Recognition using Cepstral Coefficients
and Temporal Features,” in 2000 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Proceedings, 2000, pp. 753–756, doi:
10.1109/ICASSP.2000.859069.

54

3. CAR-Lite: A Multi-Rate Cochlear Model

The cochlear models reviewed in chapter 2 operate at a single sampling rate. This

chapter presents a cochlear model operating at multiple sampling rates, which is

implementable on hardware. Out of the two cochlear models reviewed in chapter 2, the

cascade of asymmetric resonator (CAR) filter configuration from the CAR-FAC model is

selected to be implemented with multi-rate operation. The reason behind this selection is

because the CAR configuration [1] characterises most biological features when compared to

other configurations [2] and enables real-time implementation [3]–[5].

3.1. Motivation

The degree of sophistication of an auditory cochlear model configuration is dependent

on the signal processing algorithm used in the acquisition of spectral information from a

sound signal. With a sophisticated cochlear model, digital hardware such as an FPGA

running an algorithm using a number of filters running in the time domain to capture these

spectra is affected by the significant number of filter coefficients that require non-volatile

storage. This characteristic, in turn, impacts memory and silicon area costs as well as power

consumed by the hardware, which is a significant factor for signal processing engineers to

avoid using auditory models to develop real-world applications. Instead, they rely heavily on

computationally cost-saving algorithm such as the fast Fourier transform (FFT) [6] for

hardware implementation [7], [8], which represents spectral information of a sound signal in

the frequency domain [9], [10].

In this chapter, an attempt is made to reduce the computational costs of an auditory

model by introducing a multi-sampling-rate cochlear model, as per Occam’s Razor principle.

As observed in section 3.2, the multi-sampling-rate used across octaves enables coefficients

from one octave to be reused for the other octaves, which leads to the reduction of filter

coefficients as well as digital hardware computational resources on the FPGA. Because of

its small scale and simplicity, the cochlear model output can be fitted with other sophisticated

algorithms to process perceptual sound cues. As an illustration, the multi-rate cochlear

model from section 3.2 is modified with a novel spiking algorithm to capture sound

intensities, which is presented in section 3.3. The multi-rate cochlear model is also used as a

frontend model cascaded with other models to characterise pitch and timbre cues, which are

described from chapters 4 to 7.

3.2. A Multi-Rate Cochlear Model

This section presents a multi-sampling rate cochlear model. Subsection 3.2.1 revisits

the CAR model, where more of the model’s characteristics are presented before subsection

3.2.2 introduces the multi-rate model. Subsections 3.2.3 and 3.2.4 present an

implementation of the model on FPGA. Subsection 3.2.5 discusses the software and

hardware characteristics of the model, and subsection 3.2.6 compares filter coefficients

usage of the model with the CAR model. Subsection 3.2.7 presents the response of the

model to a log chirp signal while subsection 3.2.8 presents the model response to a musical

signal.

55

3.2.1. CAR Model Revisited

Chapter 2 provides an overview of the CAR-FAC model. This section presents an

expansive view of the CAR segment of the CAR-FAC model, which is a precursor to the next

section. As described in chapter 2, the CAR model [11], [12] uses a cascade filterbank to

model sound wave propagation of the basilar membrane in the cochlea [13]. Each filter in the

filterbank is known as an asymmetric resonator (AR) [14], which is configured as a two-pole-

two-zero filter with an infinite impulse response (IIR). The AR has an asymmetric gain

response shaped like a skewed bell-shaped curve, which is defined by a shallow gradient

before its centre frequency (CF) and a steep gradient after the CF.

Coefficients of the AR placed at the start of the cascade filterbank result in a resonance

corresponding to a high CF. ARs placed after that, have coefficients resulting in decreasing

CFs. The transfer function of an AR [1], H(z), is defined in chapter 2 but is reiterated here for

clarity:

𝐻(𝑧) =

𝑦

𝑥
= 𝑔 (

𝑧2 + (−2𝑎 + ℎc)𝑟𝑧 + 𝑟2

𝑧2 − 2𝑎𝑟𝑧 + 𝑟2
) (3-1)

where x is the input signal; y is the output signal; coefficients a and c are the real and

imaginary components of a complex signal. They are computed as follow:

𝑎 = cos (2𝜋

𝑓𝑐

𝑓𝑠
) (3-2)

𝑐 = sin (2𝜋

𝑓𝑐

𝑓𝑠
) (3-3)

where fc is the centre frequency of the filter and fs is the sampling rate. Coefficients h

controls the distance of zeros from the frequency of the poles and is set to the real

components of the ringing frequency, c. r is the radius of the poles and zeros in the z-plane

and g is an overall unity gain at DC defined by:

𝑔 =

1 − 2𝑎𝑟 + 𝑟2

1 − (2𝑎 − ℎ)𝑟 + 𝑟2
 (3-4)

3.2.2. CAR-Lite

The CAR-Lite cochlear model is based on the single sampling rate CAR model but has

multiple sampling rates. Figure 3-1 displays its configuration. Each filter in CAR-Lite is

organised in a closed-couple form [1] comprising two split first-order difference equations

from the transfer function defined in equation (3-1). Calculation of the coefficients in CAR-

Lite is identical to that of the CAR model [1], [3]–[5], [12] for the first 12 sections, i.e. for the

highest octave, o1. We used 12 sections as there are 12 musical notes in an octave from A

to G# (7 major notes from A to G and 5 sharp notes from A# to G#). This note range applies

to all octaves for any pitched musical instrument in the RWC database [15], which are used

in the classification exercises in chapters 6 and 7. The CFs of the 12 ARs in an octave are

equally spaced on a log scale spanning from 𝑓𝑠/4 to 𝑓𝑠/8. The ratio of the CF to the

56

bandwidth, known as Q, of every AR remains the same. In other words, the CAR-Lite model

has a logarithmically spaced constant-Q filterbank.

Coefficients a, c, and g of the 12 ARs in o1 are pre-computed with the settings in 3.2.3.

Coefficient r is calculated for only the 12 ARs in o1, which are then reused for all other

octaves:

 𝑟 = 1 − 𝜁2𝜋𝑓𝑐/𝑓𝑠 (3-5)

where ζ is the damping factor set at 0.28 to ensure minimum peak gain response error

between neighbouring filter sections calculated from equation (3-1) to maintain constant gain

responses across the 12 ARs. The 12 r values are empirically modified to reduce the errors

further. This modification is done by iteratively adjusting r for every neighbouring pair of filter

sections up to 3 decimal places until the errors of their respective gains are minimal.

At the next lower octave, o2, the same set of coefficients, namely a, c, g, and r, are

reused, but the sampling rate is halved. This technique ensures that the ARs in o2 have the

same gain response as the ARs in o1. However, the centre frequencies (CFs) of the ARs in

o2 are halved with respect to the CFs of the ARs in o1 in accordance with sound wave

propagation in BM in decreasing CFs. On FPGA, this technique brings forth three

advantages. Firstly, only coefficients from ARs in o1 require storage, which conserves

memory by as many as N times. Here, N refers to the number of octaves. Secondly, a

halving sampling rate can be implemented simply by ignoring every second input sample to

o2. This technique is applied to all other octaves, with the sampling rate reduced according

to:

 𝑓𝑠(𝑛) = 𝑓𝑠(1)/(2𝑛−1) (3-6)

where n is the octave index number and 𝑓𝑠(1) is the sampling rate at the highest octave, o1.

Hence, no expensive division circuit [16], [17] is required to be implemented on FPGA.

The last advantage is that only a single AR circuit needs to be implemented on FPGA to

process all the cochlear section. The use of this circuit can be pipelined through time-slicing

– an allocated amount of time is given for a cochlear section to be processed by this circuit

with the output sample fed to the input of the next section, which is processed by the same

AR circuit for the same duration of allocated time. In this way, no extra circuit is required to

process multiple cochlear sections.

57

Figure 3-1: The CAR-Lite model with the sampling rate halved at the start of each octave.

The ARs used in CAR-Lite are low-pass filters with a resonant gain around CF, but they

all have a 0-dB gain at DC as observed for the low-frequency slopes in Figure 3-10(a). This

characteristic can be used to represent the basilar membrane (BM) displacements.

However, inner hair cells (IHCs) are sensitive to BM velocity, which means 6 dB per octave

pre-CF low-frequency slopes are required. One way to compute BM velocity is to implement

a temporal differentiation step by taking the difference of the output at previous and current

discrete times from the same section. However, this reliance on previous time values

requires additional storage. A simple solution is to take the difference between neighbouring

sections since the output of the previous section is the input to the current one. Therefore,

there is no need to store the previous time AR filter output, which conserves memory size

equivalent to the total number of cochlear sections for the BMd signal. This lateral section

difference technique is applied to the output of the CAR filters to calculate the BM velocity,

BMd:

 𝐵𝑀𝑑(𝑠, 𝑡) = 𝑦(𝑠, 𝑡) − 𝑦(𝑠 − 1, 𝑡) (3-7)

where y(s,t) is the AR output of section s at time t. As a result, the pre-CF low-frequency

slopes have the desired gains of 6 dB/octave as observed in Figure 3-10(c).

Biologically plausible models characterise the mechanical-to-electrical transduction

process in the IHCs in several ways. Sumner et al. [18] modelled an IHC with a sigmoid

function based on an analogue circuit to generate a voltage output to initiate the release of

neurotransmitters for spike generation in the auditory nerve (AN). Carney [19], Zhang et al.

[20], and Zilany et al. [21] modelled the IHC voltage output using a logarithmic compression

function and a low-pass filter (LPF). Here, the LPF is a smoothing filter to remove high-

frequency artefacts generated from the nonlinear functions. The nonlinear functions used in

these models are fundamentally sigmoidal functions that can be abstracted as half-wave

rectifiers (HWR) [22]. Such an HWR is used to model the IHC in the CAR-Lite model:

𝐼𝐻𝐶(𝑠, 𝑡) = {

𝐵𝑀𝑑(𝑠, 𝑡), 𝐵𝑀𝑑(𝑠, 𝑡) ≥ 0
0, 𝐵𝑀𝑑(𝑠, 𝑡) < 0

 (3-8)

58

An LPF is not used after the HWR because the IHC signal is not used as input for

auditory spike generation at the next stage. Hence, introducing an LPF after the HWR

needlessly adds redundant computation. Although this makes the IHC stage redundant for

the CAR-Lite model, it is retained here for completeness of the output of the CAR-Lite model

and to ensure that the size of the model remains small. Furthermore, the IHC signal from the

CAR-Lite model is used as input to the auditory models described in section 3.3 and

chapters 4 and 5, which are then low-pass filtered in adherence to the aforementioned

biologically plausible models.

The auditory nerve (AN) spikes output after the IHC stage is generated at positive zero-

crossings of the BMd signal, which is different from biologically plausible models, where the

IHC signal is used instead of the BMd signal:

𝐴𝑁(𝑠, 𝑡) = {

1, 𝐵𝑀𝑑(𝑠, 𝑡) < 0 𝑎𝑛𝑑 𝐵𝑀𝑑(𝑠, 𝑡) ≥ 0.01
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3-9)

The BMd signal is selected over the IHC signal at this stage because positive zero-crossings

is achievable by checking only the most significant bit of the BMd signal, when it changes

from 1 to 0, instead of the entire bit width when an IHC signal is used. Hence, this algorithm

reduces runtime logic elements on hardware. An arbitrary amplitude threshold of 0.01 is

introduced to equation (3-9) to avoid spike generation by sound signals with very low

amplitude out of a full-scale amplitude range of -1 and +1. Additionally, binary spikes from

equation (3-9) are capable of characterising periodicity in the input sound signal, which

indicates a simple manner of accounting for pitch information as presented in chapters 4 and

6. However, the intensity level of the input sound signal cannot be characterised by such

spikes. To accommodate the intensity level, section 3.3 describes a modified CAR-Lite

model extended with a new algorithm.

3.2.3. Fixed-Point Implementation

The CAR-Lite model was implemented initially in floating-point arithmetic to acquire a

benchmark response and subsequently, converted to fixed-point numbers in Matlab. The

fixed-point model is used as the reference model for an FPGA implementation via

SystemVerilog. From the floating-point implementation, the CAR-Lite model is simulated with

nine octaves totalling 108 sections. The centre frequencies (CFs) from the filters span from

50 Hz to 24 kHz, which cover the range of human hearing. The sampling rate for the first

octave, o1, is set at 96 kHz and is halved for every octave down the cascade. Therefore, the

second octave, o2, operates at a sampling rate of 48 kHz, and the final octave, o9, operates

at 375 Hz sampling rate.

Subsection 3.2.3.1 presents the determination of the bit widths of the coefficients of the

CAR-Lite model as well as bit widths of its input and output signals. Subsection 3.2.3.2

presents the dynamic range of the model based on the set bit widths from subsection

3.2.3.1.

3.2.3.1. Bit Widths of Signals and Coefficients

In the FPGA implementation of the CAR [3] and CAR-FAC [25] models with a single

sampling rate, the coefficients are set to 16 bits. Since CAR-Lite is aimed to be a simple and

59

small implementation of a silicon cochlea, a review of the bit widths of the fixed-point

implementation is required to ensure that the coefficients are set at the minimum bit widths

to generate output responses close to the floating-point model. The input signal used for

testing the bit widths is a log chirp. The details of this signal are given in subsection 3.2.7.

The output signal used is the AR output, representing the basilar membrane (BM) output.

With this signal, the gain response of the BM output signal (from 108 ARs) is generated and

compared with the floating-point gain response. Details of the gain response calculation are

given in subsection 3.2.7. The AR coefficients are set separately at 8 bits, 12 bits, and 16

bits. The input signal is set at five different bit widths: 8 bits, 10 bits, 12 bits, 14 bits, and 16

bits.

Figure 3-2 displays the gain responses of the floating-point and fixed-point

implementations for 8 bits AR coefficients and input signal ranging from 8 bits to 16 bits.

Figure 3-3 displays the 2D correlation coefficients (CC) of the comparison between the

floating-point implementation and the combinations of bit widths of the AR coefficients and

the input signal cited in the previous paragraph. The gain responses are treated as 2D

images to quantify the degree of similarity, which is calculated with the following equation

[26]:

𝑟 =

∑ ∑ (𝐴𝑚𝑛 − �̅�)𝑛 (𝐵𝑚𝑛 − �̅�)𝑚

√(∑ ∑ (𝐴𝑚𝑛 − �̅�)2
𝑛𝑚)(∑ ∑ (𝐵𝑚𝑛 − �̅�)2

𝑛𝑚)
 (3-10)

where 𝑟 is a correlation coefficient; 𝑚 is the row number; 𝑛 is the column number; 𝐴 and 𝐵

are the two 2D matrices to be compared; �̅� and �̅� are the mean of the 2D matrices.

When 8 bits AR coefficients and 8 bits input signal are used, the gain response appears

to be the noisiest as observed in Figure 3-2(b). This characteristic is corroborated by the

lowest 2D correlation coefficient (CC) score of 0.569 in Figure 3-3. As the bit width of the

input signal is increased, the gain response begins to appear more like the floating-point

gain response. The increase of the CC also corroborates this characteristic. It is expectedly

the highest for 16 bits coefficients and 16 bits input signal. Using a small bit width for the

input signal at 8 bits, and scaling up the bit widths of the AR coefficients from 8 bits to 16 bits

does not result in any improvement to the CC – the CC remains at its lowest at

approximately 0.57 similar to when 8 bits AR coefficients and 8 bits input signal are used.

Conversely, when the input signal is fixed to 16 bits, and the bit widths of the AR

coefficients are increased from 8 bits to 16 bits, the CC improves significantly by 38% as

opposed to when 8 bits input signal is used. So, to ensure a high similarity between the

benchmark software floating-point and hardware fixed-point responses, the bit width of the

input signal should be set high, while the bit widths of the AR coefficients can be set low.

Although the CCs reflected in Figure 3-3 for 8 bits AR coefficients is lower than 12 bits and

16 bits AR coefficients for 16 bits input signal, the conservation of memory is prioritised over

the small differences observed in the CCs. Hence, the AR coefficients are set to 8 bits, and

the input, the BM output, BMd output, and the IHC signals are set to 16 bits. The AN spike is

a single bit signal.

60

Figure 3-2: BM signal gain response of the (a) floating-point implementation and fixed-point implementation with
8 bits coefficients and (b) 8 bits, (c) 10 bits, (d) 12 bits, (e) 14 bits, and (f) 16 bits input signal.

Figure 3-3: Correlation coefficients showing the similarity between the floating-point and the fixed-point BM gain
responses for various AR coefficients and input signal bit widths. The input signal is at 0 dB full-scale (FS). CC
score (of 0.953) in bold blue font shows the selected bit widths of the AR coefficients and input signal at 8 bits
and 16 bits, respectively.

3.2.3.2. Dynamic Range

Dynamic range, 𝐷𝑅, is the ratio of the maximum (𝑥𝑚𝑎𝑥) and minimum (𝑥𝑚𝑖𝑛) value that

can be represented in a signal [34]. In music, the DR signifies the quality [35] of a musical

signal affecting its emotional influence to a listener [36]. The DR also affects the quality of a

speech signal, which impacts both normal-hearing and hearing-impaired listeners [37]. The

61

DR of a human auditory system is approximately 140 dB [38]. However, the DRs are lower

for different categories of sound signals, i.e. 30 dB to 60 dB for speech [37], and 20 dB to 60

dB for music [39].

DR is expressed in decibels (dB) as:

 𝐷𝑅 = 20 log10 (
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛
) (3-11)

where for an 𝑁 bit fixed-point signal, 𝑥𝑚𝑎𝑥 is calculated as 2𝑁, and 𝑥𝑚𝑖𝑛 is the interval

between two consecutive N bit numbers, i.e. 1 for 16 bits fixed-point numbers. Since the bit

widths of the BM, BMd, and IHC signals are all dependent on the input signal, the input

signal determines the dynamic range of the CAR-Lite model.

Using the values of the last paragraph in section 3.2.2 as an illustration, let us assume

an input signal is having 𝑥𝑚𝑎𝑥 = 2 based on the difference between the peak-to-peak

amplitudes of +1 and -1, and 𝑥𝑚𝑖𝑛 = 0.01 based on the arbitrary amplitude threshold of

0.01. Then the dynamic range of the model is 46 dB [= 20 log(2/0.01) using equation

(3-11)]. Consequently, each sample in the BM, BMd, and IHC signal requires a minimum of

8 bits ≈ ⌈log2(2/0.01)⌉ to be represented. However, without considering an automatic gain

control (AGC), this dynamic range is insufficient in representing music [24] as well as speech

[23] range of approximately 60 dB sound pressure level. Thus, a higher BMd bit width must

be used.

With the input signal, BM, BMd, and IHC signal set a bit width of 𝑁 = 16 bits, then

𝑥𝑚𝑎𝑥 = 2𝑁 = 65,536 and 𝑥𝑚𝑖𝑛 = 1. The dynamic range of the model is 96 dB [= 20 log(216/

1)]. In this case, the DR of the CAR-Lite model is larger than the DRs of speech and musical

signals mentioned in the preceding paragraph. Hence, the model is capable of representing

such signals, which will be seen throughout this dissertation, starting in subsection 3.2.8.

3.2.4. FPGA Implementation

An Altera Cyclone V FPGA (target FPGA chip: 5CGXFC5C6F27C7N) is used to

implement the CAR-Lite model with a system clock speed of 250 MHz and an audio codec

sampling rate set at 96 kHz. Figure 3-4 displays the architecture of the FPGA

implementation of the CAR-Lite model. The model is characterised by two modules: a

supervisor module and an equation module. The supervisor module invokes the equation

module using time-multiplexing, as well as manages the flow of computation by controlling

resources. These resources include the cochlear section to be processed and the

transmission of its corresponding coefficients and data into the equation module. The

equation module implements the AR difference equations defined by the transfer function in

equation (3-1), as well as equations (3-7), (3-8), and (3-9) for BMd, IHC, and AN stages,

respectively. The operations between these equations are serialised but are not pipelined to

ensure a simple supervisor module circuitry.

Figure 3-5(a) illustrates the FPGA operations of the CAR-Lite model upon the arrival of

an audio sample. The octave processing control (OPC) and the section processing control

(SPC) in the supervisor module determines the cochlear octave number and cochlear

section number to run at T0 and T1, respectively. Once determined, the supervisor module

62

transmits the relevant coefficients and signal samples to the equation module before going

into IDLE mode. At T3, the equation module is awakened from an IDLE state and processes

the cochlear equations mentioned in the preceding paragraph. Before the equation module

finishes, the supervisor module pre-empts the next cochlear section to be processed and

prepares its corresponding coefficients. As soon as the equation module finishes, it goes

briefly into an IDLE state (not shown). During this time, the SPC transmits the coefficients

and the input samples for the next section to be processed at T4. The reason behind this

waiting is because the input to the next section is the output of the current section and thus,

requires the completion of the equation module. The same operation shown between T0 to

T4 is applied to all other sections until the end of an octave, as shown in Figure 3-5(b), is

reached. At this time, either a new octave is invoked with the same procedure, or the

operation is ceased, and the supervisor and equation modules transition into an IDLE state.

Figure 3-4: Architecture of the CAR-Lite model implemented on FPGA.

63

Figure 3-5: FPGA output vector waveforms of the supervisor and equation modules operating at (a) the arrival of
an audio sample; and (b) the end of the processing of a cochlear octave, where 12 cochlear sections have been
processed at a specific sampling rate.

3.2.4.1. Supervisor Module

The supervisor module oversees the running of the CAR-Lite model, whose equations

are housed in the equation module. The module has a finite state machine (FSM) that

controls which octave and which sections are processed at any time. It uses two states to

achieve this: octave processing control (OPC) and section processing control (SPC). The

former is explicitly used for controlling multiple sampling rates across octave groups,

whereas the latter is used for selecting coefficients and data entry into the equation module.

The OPC state implements sampling rate reduction by a factor of 2 for every octave

from o2 to o9. These octave groups ignore every second input sample. A 9 bit register is

used to administer the activation of octaves, where every 1 bit is allocated to an octave

group, i.e. bit 1 to o1, bit 2 to octave o2, up to bit 9 to octave o9. Two conditions are required

to activate an octave group as defined by the following Boolean control logic:

 𝐵(𝑛, 𝑡) = 𝐵(𝑛 − 1, 𝑡) ∙ 𝐵(𝑛, 𝑡 − 2𝑛−2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (3-12)

where B is a 9 bit register with the nth bit corresponding to octave group, on. The first

condition in equation (3-12) is that the preceding octave group on-1 has already been

activated, which ensures sequential octave group activation in the cascade. The second

condition in equation (3-12) requires that on is inactive at previous discrete-time, t-2n-2. In the

latter condition, the toggled bit generates the bypassing of every 2nd input sample to on.

These conditions apply to all octave groups except for bit 1 corresponding to o1. This bit is

set at the arrival of an input sample. Sections in octave groups that are not processed at the

present timestamp, t, simply output values from the previous timestamp, t-1. As an example

(see Figure 3-6), to activate o4 when the 9th input sample arrives, o3 must be activated as

64

part of the first condition of equation (3-12). The second condition of equation (3-12)

stipulates that o4 must not be activated when the 5th input sample arrived. When these two

conditions are true, then o4 is activated.

Figure 3-6 displays the octave processing map for up to 19 input samples from system

start-up. At the arrival of an input sample, the xReady flag is set HIGH and is stored in bit 1 of

register B. This enables the twelve corresponding cochlear sections from 1 to 12 in o1 to be

processed. Subsequently, the contents of B are left-shifted and bit 2 is set as HIGH to

enable the AND (or multiply) operation associated with equation (3-12). But before this is

done, the old value of bit 2 is read and inverted to bypass octave processing at every

alternate discrete time. After the left-shift and AND operations, the final value of bit 2

determines whether cochlear sections 13 to 24, corresponding to o2, should run. This

operation continues for the remaining 7 bits in B. Once completed, the contents of B are

cleared to prepare for the next input sample.

Figure 3-6: Octave processing map based on the contents of 9 bit register B from equation (3-12) for the first 19

input samples. Yellow boxes indicate octave activation and white boxes indicate no activation.

When a new octave is required to run, the OPC state explicitly updates the section index

in the SPC state to be processed, which indicates the next cochlear section to be processed.

Otherwise, the SPC tracks the section number to be processed by itself and only updates

the OPC with the already processed cochlear section number. The SPC invokes the

equation module with coefficients and input data for a cochlear section to be processed, and

once, the equation module finishes, the SPC reads back the output data and stores them in

memory.

3.2.4.2. Equation Module

An equation module comprises BM, BMd, IHC, and AN stages of the cochlea defined by

equations (3-1), (3-7), (3-8), and (3-9), respectively. A finite state machine (FSM) is used to

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 o1

2 o2

4 ↓ o3

8 → o4

16 o5

32 o6

64 o7

128 o8

256 o9

Activation of register B in octave 4 (o4) addressed by 10002 (810)

→ 1st condition of equation (3-12)

↓ 2nd condition of equation (3-12)

O
ctave N

u
m

b
er, n

Input Sample Number, t

O
ct

av
e

A
ct

iv
at

io
n

 (R
eg

is
te

r
B

)

65

achieve serial processing of these stages for a single cochlear section within the equation

module. These equations are broken down into smaller parts comprising two operands.

Each of these parts is processed within a discrete state of the FSM. A single cochlear

section requires 20 states corresponding to 20 system clock cycles to complete processing.

Individually, each BM, BMd, IHC, and AN stage in the equation module takes 17, 1, 1, and 1

system clock cycles respectively, to process (17 + 1 + 1 + 1 = 20 system clock cycles). The

20 clock cycles correspond to a latency of 80 ns (= 20 cycles / 250 MHz) per cochlear

section based on a system clock rate of 250 MHz. For a total of 108 cochlear sections, the

latency is 8.64 µs (= 80 ns ×108 cochlear sections). This latency is less than 10.42 µs (= 1 /

96 kHz) – the time interval between the arrivals of two successive audio samples at a rate of

96 kHz.

Due to their low number, all 48 (= 4 coefficients per cochlear section × 12 cochlear

section per cochlear octave) 8 bits coefficients, namely a, c, g, and h, are stored on the

FPGA chip, instead of the off-chip memory.

3.2.4.3. Hardware Resource Utilisation

The logic utilisation in adaptive logic modules (ALM) on an Altera Cyclone V FPGA for

the implementation was only 2.57% with 747 registers used. With such low utilisation, more

complex IHC and AN models as well as other sound processing algorithms, such as

loudness, pitch, and timbre auditory-based models can be appended to the CAR-Lite

cochlear model on a single FPGA. Furthermore, running models on a single FPGA reduces

implementation complexities and data transmission constraints inherent in the usage of

multiple FPGAs.

Table 3-1 shows a comparison of FPGA utilisation between CAR-Lite and other selected

cochlear models on FPGA. CAR [3], [4] and CAR-FAC [25], [27] models have single audio

sampling rates at 48 kHz and 32 kHz, respectively. The CAR-Lite model uses the least ALM

and registers as opposed to the other cited cochlear models. One exception is Gambin’s

model [28], which utilises fewer registers on an FPGA than the CAR-Lite model. However,

the CAR-Lite accommodates more cochlear sections, which can create a higher resolution

auditory image.

Model FPGA No. of filters ALM
Utilisation

Registers
Utilisation

Gambin et al. [28] Xilinx XC3S500E 24 - 352

Leong et al. [29] Xilinx XCV1000-6 88 - 6,800

CAR [3], [4] Xilinx Virtex-6 102 - 9,480

CAR-FAC [25], [27] Altera Cyclone V 100 18% -

Thakur et al. [5] Altera Cyclone V 70 3% 3,899

This work (CAR-Lite) Altera Cyclone V 108 2.57% 747

Table 3-1: Performance of cochlear filters on FPGA.

3.2.5. Software Floating-point vs. Hardware Fixed-point

The hardware implementation of the CAR-Lite model was verified by comparing the

fixed-point Altera Quartus SystemVerilog simulations with benchmark results generated by

the floating-point Matlab implementation. Figure 3-7 displays the gain difference between the

software floating-point and hardware fixed-point BM, BMd, and IHC signals generated using

the log chirp signal described in section 3.2.7. Gain differences begin minimally at high

frequencies (low cochlear section number) and rise towards low frequencies (high cochlear

66

section number) for all three responses. This growth is due to the cascaded configuration,

which enables differences to accumulate at every cochlear filter section. The difference

increases nonlinearly for the BM response from section 80 and beyond (250 Hz and below).

However, this effect is curbed for the BMd and IHC signals, resulting in a steady linear rise in

its gain error responses. This slow growth is primarily due to the BM lateral section

difference defined by equation (3-7), which results in the BM velocity, BMd. In addition, this

effect along with quantisation errors between the floating- and fixed-point numbers

accentuate the gain difference of the BMd signal and even more of the IHC signal at fixed

intervals, giving rise to regular spikes occurring at every octave.

Despite the gain differences, the correlation coefficients between floating-point and

fixed-point responses of BM, BMd, IHC, and AN signals are 0.99, 0.99, 0.99, and 0.98,

respectively. These scores show the highest degree of similarity attainable from a fixed-point

model with the signal and coefficient bit widths set at 16 bits and 8 bits respectively. The few

mismatches present are due to quantisation errors in the fixed-point model.

Figure 3-7: Gain difference between floating-point and fixed-point responses of the BM, BMd, and IHC signals.

3.2.6. CAR vs. CAR-Lite

This subsection shows that the use of multiple sampling rates results in lower bit widths

of AR coefficients in CAR-Lite than with the conventional CAR model using a single

sampling rate. Figure 3-8 displays the coefficients used in the CAR model [3], [4], which has

a single sampling rate of 32 kHz. The low cochlear section number represents high

frequency, and the high cochlear section number represents low frequency. The values of

coefficients a and r converge to unity from low to high cochlear sections. Their values

saturate within 5% of unity beyond section 55 (CF = 1,061 Hz). Using 8 bits to represent

these numbers, both a and r are represented by the largest 8 bit number at 255, beyond

section 87 (CF = 167 Hz). Similarly, coefficient c saturates to 5% full-scale above zero from

section 96 (CF = 99 Hz) and beyond. Therefore, 8 bit numbers are insufficient to differentiate

coefficients between neighbouring cochlear sections. These effects cause the gain response

67

of all the filters in the CAR model to have uneven peaks, especially in the low-frequency

range, which covers cochlear section 60 (CF = 795 Hz) and above. Using 16 bits to

represent the coefficients alleviates this problem and ensures a smooth peak gain response,

as seen in [3], [4], [25]. Furthermore, a minimum bit width of 16 bits is necessary to

represent the small changes in coefficients between successive cochlear sections,

especially in the low and high-frequency regions in the CAR model.

Figure 3-9 displays the coefficients for each of the 12 sections (an octave) used in CAR-

Lite. These coefficients do not have values close to either 0 or 1. The only exception is

coefficients a and c, in section 1. However, these only occur for a single section instead of a

group of sections as is the case in the CAR model. In section 2, although c has a value still

within 5% of unity, the value of a has moved beyond 5% (full-scale) above 0. As a result, the

coefficients are representable by a smaller bit width, i.e. 8 bits instead of 16 bits used for the

CAR model coefficients. To process 108 cochlear sections on an FPGA regardless of the

system clock rate and an audio sampling frequency of 96 kHz, the CAR-Lite model requires

only 48 bytes (4-coefficients per cochlear section × 12-cochlear sections × 1-byte per

coefficient) of coefficients storage as opposed to 864 bytes (4-coefficients per cochlear

section × 108-cochlear sections × 2-bytes per coefficient) needed by the CAR model [3]. On

an FPGA with a 250 MHz system clock rate and 96 kHz audio sampling rate, the CAR-Lite

model can process up to 130 cochlear sections (≈ (250 MHz / 96 kHz) / 20 clock cycles per

cochlear section), while the CAR model can only process up to 89 cochlear sections (≈ (250

MHz / 96 kHz) / 29 clock cycles per cochlear section).

Figure 3-8: 16 bits AR coefficients used in the CAR [3], [4] and CAR-FAC [25], [27] models.

68

Figure 3-9: 8 bits AR coefficients used in each of the nine octaves in the CAR-Lite model [30].

3.2.7. Response to Log Chirp

A logarithmic sine tone sweep, also known as a log chirp, is used as the input signal to

demonstrate the similarity of responses of the various stages of the CAR-Lite model

between the software floating-point and hardware fixed-point implementations. The duration

of the log chirp is 10.93s ranging from 10 Hz to 48 kHz. Figure 3-12 and Figure 3-13

illustrate the hardware fixed-point implementation of the BMd, IHC, and AN responses,

respectively, while Figure 3-7 projects the difference between the software floating-point and

hardware fixed-point implementations. Figure 3-10(a) and Figure 3-10(b) displays the gain

and phase responses for the 108 CAR filter sections for the fixed-point BM response. The

gain, G(s), and phase, P(s), are calculated as follow:

𝐺(𝑗𝜔) = 20 log10 |

𝑌(𝑗𝜔)

𝑋(𝑗𝜔)
| (3-13)

𝑃(𝑗𝜔) = tan−1 (𝐼𝑚 |

𝑌(𝑗𝜔)

𝑋(𝑗𝜔)
| /𝑅𝑒 |

𝑌(𝑗𝜔)

𝑋(𝑗𝜔)
|) (3-14)

where 𝑌(𝑗𝜔) is the Fourier transform of the BM signal; 𝑋(𝑗𝜔) is the Fourier transform of the

input signal; Re is the real component and Im is the imaginary component of a complex

signal.

Coefficient r in equations (3-1) and (3-4) is responsible for the approximately constant

gain responses for all cochlear sections except for the ones in the first two octaves at high

frequencies. Here, the cochlear sections have reduced gains that increase with decreasing

centre frequencies from 19.43 kHz (section 1) to 5.996 kHz (section 24). One method of

correcting these reduced gains is to amplify the gains in this region by using weighting

networks [31] to ensure constant gain responses for all cochlear sections. This solution

involves scaling the BM signals with a vector of gain-correcting factors, where each factor

69

corresponds to a cochlear section. However, due to the dependence of a BM signal from

one cochlear section used as an input to the next cochlear section, the amplification of the

gains at a low-section (high frequency) affects the gain at the next higher section (lower

frequency). As a result, the gains across all the cochlear sections, which include DC gains

across all channels, is scaled up. One solution to this issue is to amplify the BMd signal

instead of the BM signal since a BMd signal generated from one cochlear section does not

affect the BMd signal in the next higher cochlear section. An example of this is illustrated in

Figure 3-11, where the gains of sections 1 to 24 are scaled up to the mean of the gains from

sections 25 to 108, while the gains of sections 24 to 108 remain the same as the levels

shown in Figure 3-10(c). The gain-correcting factors for sections 1 up to 24 are tuned to

4.63, 4.78, 4.42, 3.98, 3.55, 3.16, 2.84, 2.56, 2.33, 2.14, 1.98, 1.85, 1.72, 1.62, 1.55, 1.48,

1.42, 1.36, 1.32, 1.28, 1.25, 1.22, 1.19, and 1.17 respectively.

Another method of addressing the irregular gains from sections 1 to 24 is to ignore

these reduced gains. This notion means that signals above 6 kHz do not have significant

gain representation, such as those below 6 kHz. This solution is taken because the constant

gains of the CAR-Lite model encapsulates the most sensitive region of human hearing

between 2 kHz to 5 kHz as well as perceptible pitch information frequencies between 20 Hz

to 5 kHz [32], [33]. The lack of sensitivity above 6 kHz, is captured by the decreasing gains

of the CAR-Lite model and maintaining these signals with reduced gains decreases the

emphasis of the frequencies above 6 kHz that may contain low-impact vocal information in

speech and singing signals.

The effect of subjecting CAR filter output to lateral section difference leads to BMd gain

responses in Figure 3-10(c). As described in subsection 3.2.2, this gain response has 6

dB/octave pre-CF low-frequency slopes, which is equivalent to BM velocity required to

calculate IHC signals.

70

Figure 3-10: Fixed-point (a) gain response and (b) phase response of the BM signal (BM displacement)
calculated from equation (3-1). Fixed-point (c) gain response of the BMd signal (BM velocity) calculated from
equation (3-7). Each curve represents the response of a cochlear section, starting from section 108 (extreme left
curve) to section 1 (extreme right curve). Note that the BMd response for sections 1 to 4 are below 0 dB due to
the lateral cochlear section difference and the reduced gains of the ARs at the first two octaves (24 sections).

71

Figure 3-11: Fixed-point gain response of the BMd signal with the gain responses of sections 1 (extreme right) to
24 scaled up to the mean of the gain response levels from sections 25 to 108 (extreme left).

72

Figure 3-12: Normalised fixed-point responses of (a) the basilar membrane velocity, BMd; (b) the inner hair cell,
IHC, based on log chirp input signal for cochlear sections 104 (extreme left signal), 92, 80, 68, 56, 44, 32, 20 and
8 (extreme right signal); (c) IHC for all 108 sections.

Figure 3-13: Fixed-point auditory nerve (AN) spike response based on the log chirp input signal.

73

3.2.8. Response to Music

Real-world sound signals vary unpredictably in intensity levels at various times, which

affects loudness. One such signal is music, which is used to test the behaviour of the CAR-

Lite model to generate responses at different intensity levels. Doing so provides information

on the capability of the model to process real-world signals.

The 96 dB dynamic range of the CAR-Lite model is governed by the bit width of the

input signal. Hence, input signals from 0 dB full-scale (dBFS) and below are accurately

representable in CAR-Lite with 16 bit numbers. Beyond 0 dBFS, an input signal is amplified,

which means that more than 16 bits are required to represent them accurately. However,

due to the fixed bit width, the amplitudes of the input signal are saturated. Here, saturation

refers to the inability of the peaks and troughs of an input signal to be represented at the

correct levels. Instead, amplitude values larger than 2𝑁−1 − 1 are capped at 2𝑁−1 − 1 and

amplitude values lower than −2𝑁−1 are capped at −2𝑁−1, which in turn causes audible

distortion.

To overcome the saturation of amplitudes, an automatic gain control (AGC) is used to

vary the amplitude levels of an input signal. The AGC algorithm selected for use in this

dissertation is detailed in appendix A. While the correction of the levels by the AGC removes

the audible distortion, the timbre of the signal is altered, as discussed in section 7.5.2. The

pitch components are also affected, but the fundamental frequency in the signal remains

intact, as discussed in section 6.3.2. Despite altering the timbre and pitch components of a

signal, the signal is intelligible.

The audio codec [40] on board the Altera V GX starter kit [41], acquires a sound signal

via a microphone or another computing device connected to the starter kit. An AGC circuit in

the audio codec conditions the input signal and suppresses saturation before transmitting

the signal out of the codec and into the Cyclone V FPGA to be processed by the CAR-Lite

model. To simulate such an operation, the AGC algorithm in appendix A conditions a sound

signal before inputting it into the CAR-Lite model. Here, the input signal is a fixed-point

representation of a musical signal of a piano note, A3. Figure 3-14 displays the musical

signal at three intensity levels (-20 dBFS, 0 dBFS, and 20 dBFS) with the AGC algorithm

disabled [Figure 3-14(a) – (c)] and enabled [Figure 3-14(d) – (f)].

Figure 3-15 displays the BM response of the input signals from Figure 3-14 calculated

using fixed-point arithmetic in the CAR-Lite model. Here, the displayed BM signals are

selected arbitrarily, i.e. the eighth cochlear section from each of the nine octaves: 8, 20, 32,

44, 56, 68, 80, 92, and 104. The increasing amplitudes of the musical signal from -20 dBFS

to 20 dBFS are also reflected in the increasing amplitudes of the BM signals, especially

when the AGC is disabled. When the AGC is enabled, the amplitudes across the three

intensity levels are similar to one another, as observed in Figure 3-14(d-f) and Figure 3-15(d-

f). This is because the AGC algorithm normalises the maximum amplitudes of the signals to

+1 and -1 in floating-point representation, corresponding to 32,767 and -32,768 in 16 bits

fixed-point representation.

The benefit of the AGC is evident for a 20 dBFS signal. When the AGC is disabled, the

high amplitudes of the input signal and its BM representation are saturated at 32,767 and -

32,768, as observed in Figure 3-14(c) and Figure 3-15(c), respectively. For the latter, this

saturation is represented as red waveforms in Figure 3-16(a), ranging from cochlear sections

74

32 (CF = 4,005 Hz) to 80 (CF = 250 Hz). This saturation indicates that the CAR-Lite model is

unable to properly represent the levels of an input signal at the BM stage and beyond. In

contrast, the amplitude saturation is absent when the AGC is enabled, as shown in Figure

3-14(f), Figure 3-15(f), and Figure 3-16(b). Hence, the AGC enables the representation of

amplitudes of the musical signal at various intensity levels, which then enables the CAR-Lite

model to represent the signal at the BM stage and beyond accurately.

Let us assume that the bit width of the BM signal, 𝑏𝐵𝑀, varies and is calculated using

fixed-point arithmetic with maximum and minimum amplitude values of the BM signal from

Figure 3-15, as follows:

 𝑏𝐵𝑀 = ⌈log2(max(𝐵𝑀) − min(𝐵𝑀))⌉ (3-15)

where ⌈… ⌉ is a ceiling operation. 𝑏𝐵𝑀 increases from 13 to 16 bits with increasing intensity

from -20 dBFS to 20 dBFS when the AGC is disabled, as observed in the left half of Figure

3-17. In contrast, when the AGC is enabled, 𝑏𝐵𝑀 is constant at 16 bits for the same

increasing intensity, as seen in the right half of Figure 3-17. This attribute indicates that the

AGC enables the bit width of the BM signal to be maintained uniformly across intensity

levels.

Overall, the AGC (described in appendix A) aids in improving the dynamic range (DR) of

the CAR-Lite model, while maintaining a fixed bit width of an input signal across intensity

levels. Consequently, the responses of the CAR-Lite model also have fixed bit widths and

are unaffected by saturation issues across various intensity levels.

Figure 3-14: Musical signals (piano note A3) generated in fixed-point at various intensities from -20 dBFS to 20
dBFS. The left column depicts the signals directly input into the CAR-Lite model; the right column depicts the
signals from the left column conditioned by an AGC algorithm before being input into the CAR-Lite model. Note

that the 20 dBFS signal in (c) has its amplitude clipped at 32,767 [= (216−1) − 1] and -32,768 [= −216−1].

75

Figure 3-15: Fixed-point BM responses of the input signals from Figure 3-14. Responses in the left column are
results of the input signals at three intensities with the AGC algorithm disabled, whereas the responses in the
right column responses are input signals conditioned by the AGC algorithm before being processed by the CAR-
Lite model.

76

Figure 3-16: Fixed-point BM responses across cochlear sections for a 20 dBFS musical signal with (a) AGC
disabled and (b) AGC enabled. Red waveforms have amplitudes clipped at 32,767 and -32,768 while blue

waveforms have unclipped amplitudes.

77

Figure 3-17: Bit widths of the BM signal generated from the input musical signal at multiple intensities from -20
dBFS to 20 dBFS with the AGC algorithm disabled and enabled.

3.3. Encoding Sound Intensity (SI)

The CAR-Lite model was designed to be a small-scale cochlear model for

implementation on hardware. Although the CAR filters in the CAR-Lite model emulate basilar

membrane (BM) characteristics, the auditory nerve (AN) segment does not adhere to

biology. This attribute is due to the spike trains output from the AN segment of the model

being generated from the zero-crossings (ZC) of the basilar membrane velocity (BMd)

signals defined by equation (3-9), instead of inner hair cells (IHC) signals. As a result, this

operation can be modelled with only a single bit comparator check on the most significant bit

of a BMd output sample. However, the ZC algorithm is unable to capture sound intensity

(SI), which is essential to describe perceptual loudness [42]. To represent sound intensity

using spike trains, it is ideal to design the spiking algorithm based on how a mammalian

cochlea characterises sound intensity at the AN stage.

In this section, the AN algorithm in the CAR-Lite model is modified to characterise sound

intensity, leading to the formation of the CAR-Lite-SI model. The CAR-Lite-SI differs from the

CAR-Lite model, particularly in the manner the auditory nerve (AN) segment encodes sound

as an array of spike trains. The upcoming subsections present a new spiking algorithm that

enables AN spike trains to capture sound intensity satisfactorily. The solution involves

replacing the simple ZC spike generation algorithm with a sophisticated and biologically

plausible algorithm, as is presented in subsections 3.3.1 and 3.3.2. Furthermore, the use of

spike trains to represent sound intensity is essential to the design of simple algorithms,

which can be implemented on hardware and operated at low power [43]. This algorithm

projects intensity levels at multiple spiking rates through multiple neuron firing thresholds.

Subsections 3.3.3 and 3.3.4 present an FPGA implementation of the CAR-Lite-SI model.

The response of the model to input pure tones at various intensity levels is presented in

subsections 3.3.5 and 3.3.6 as well as to real-world signals in subsection 3.3.7.

78

3.3.1. CAR-Lite-SI

The CAR-Lite-SI model is divided into two stages based on their respective sampling

rates: the basilar membrane and inner hair cell (BM-IHC) stage and the spontaneous rate

and auditory nerve (SR-AN) stage. The BM-IHC stage operates at multiple sampling rates as

presented in the CAR-Lite model in section 3.2 and remains the same here, whereas the

SR-AN stage housing the new AN algorithm, operates at a single sampling rate. The input to

the second stage of the auditory nerve (AN) spike generation is the inner hair signal (IHC)

signal, as opposed to the BMd signal in the CAR-Lite model. Since the IHC signal is positive,

no sign bit is required to represent an IHC sample, resulting in less memory usage.

Furthermore, the use of an IHC signal as a means to generate an AN signal agrees with

biology.

At the second stage, action potentials, which are also known as spikes, are generated

using leaky-integrate-and-fire (LIF) neurons. LIF neurons have been implemented on FPGA

for a large parallel simulation of a neuromorphic cortex [44], which serves as an inspiration

for the new AN spike generator algorithm. A LIF neuron contains a low-pass filter (LPF)

stage to generate spikes. This LPF can be seen as a smoothing filter to remove high-

frequency artefacts, which was absent in the CAR-Lite model. The spikes generated here

are input to an optional complementary pseudorandom binary number generator (PBNG).

The optional use of a PBNG is adopted from a biologically inspired rendition of AN spike

generation for representing sound intensities [19], [45]. Figure 3-18 illustrates the signal

pathway of the CAR-Lite-SI model. The next section describes the new SR-AN algorithm,

and Figure 3-19 shows its signal pathway.

Figure 3-18: The CAR-Lite-SI with IHC signals as input to the new AN algorithm instead of the BMd signals used
initially in section 3.2 in the CAR-Lite model.

3.3.2. The New Auditory Nerve Algorithm

In a mammalian cochlea, there are approximately 30,000 auditory nerve (AN) fibres

[46]. About 10 to 30 fibres are connected to an IHC [47], and each fibre has a specific

spiking threshold [48]. A fibre generates a spike due to the release of neurotransmitters from

the IHC to the AN fibre via the synaptic cleft [49]. This release of neurotransmitters is based

79

on the build-up of presynaptic potassium in the IHC [45], which can be modelled as a moving

average filter [50] by temporally integrating the IHC values [51]:

𝑇𝐼(𝑠, 𝑡𝑇𝐼) =
1

𝑇
∑ 𝐼𝐻𝐶(𝑠, 𝑡)

𝑡+𝑇

𝑡

 (3-16)

where tTI is the subsampled time index for the temporally integrated (TI) IHC values; and T is

an octave-specific accumulation cap, which is set to a multiple of 2. Thus, each octave is

subsampled at a different factor, which brings the sampling rate across all octaves down to a

common value. In addition, equation (3-16) functions as an anti-aliasing filter that can be

implemented on FPGA with only addition and right-shift operations.

Figure 3-19: Spontaneous-rate (SR) – auditory nerve (AN) algorithm in place of the positive zero-crossing
algorithm from section 3.2.

From TI, an AN spike can be generated in two conditions [19], [52]: (a) in the presence

of a sound signal and (b) randomly, in the absence of a sound signal. In the former

condition, a spike can be generated using a variation of the Fitzhugh-Nagumo neuron model

[53], [54], which is also known as a leaky-integrate-and-fire (LIF) neuron model:

 𝑣(𝑠, 𝑡𝑇𝐼) = 𝑣(𝑠, 𝑡𝑇𝐼 − 1) + 𝑐𝐿𝐼𝐹(𝑇𝐼(𝑠, 𝑡𝑇𝐼) − 𝑣(𝑠, 𝑡𝑇𝐼 − 1)) (3-17)

𝐴𝑁𝑎𝑆𝑅(𝑠, 𝑡𝑇𝐼) = {

1, 𝑣(𝑠, 𝑡𝑇𝐼) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑎𝑆𝑅

𝑅𝑎𝑆𝑅 , 𝑣(𝑠, 𝑡𝑇𝐼) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑎𝑆𝑅

0, 𝐴𝑁(𝑠, 𝑡𝑇𝐼 − 𝑡𝑟𝑒𝑓𝑟𝑎𝑐)

 (3-18)

where v is the internal state voltage of a LIF neuron, which is reset to 0 after the

corresponding AN associated with it fires a spike; threshaSR is the spike threshold at which

the LIF neuron fires a binary pulse of 1 for a specific fibre a (termed as H, M, or L - see next

paragraph); RaSR is the output of a PBNG with a uniform distribution between 0 and 1

representing spontaneity (optionally enabled); and cLIF is the coefficient to determine how

much of TI is accumulated to or leaked out from v and is computed using:

𝑐𝐿𝐼𝐹 =

1

𝑓𝑠−𝐴𝑁 × 𝜏𝐿𝐼𝐹
 (3-19)

80

Here, fs-AN is the sampling rate of the AN stage and τLIF is a time step constant. The

minimum inter-spike interval durations of the spikes generated for all three conditions in

equation (3-18) remain the same.

In the absence of a sound signal, the spiking activities of AN fibres do not cease.

Instead, spikes are generated randomly at lower rates, due to the presence of presynaptic

calcium [55], than when a sound signal is present. A possible outcome of incorporating

random spike generation in an auditory model is the strengthening of a low-intensity sound

signal represented in the AN fibres. Sparsely populated spikes in an AN fibre representing

low information entropy can be enhanced by random spikes generated at low frequency.

This notion results in a rise in phase-locked spikes that may improve the fidelity of a speech

signal representation [56]. Randomly generated spikes may also improve timing precision of

a stimulus, where the inter-spike-intervals (ISI) of a stimulus-driven spike train can be

reinforced with a separate spike train generated from intrinsic neuron noise properties

through coincidence matching [57]. Yet another contribution of random spikes is in general

neural encoding in the auditory pathway, where combined stimulus-driven spikes and

spontaneously-driven spikes containing attributes such as spike counts and spike train

structure provides a statistical foundation [58] that may be beneficial to sound discrimination

tasks involving source localisation, loudness, pitch, and timbre.

These AN fibres can be generally categorised into three primary groups based on their

respective spontaneous rates (SR) of spike generation: high SR (HSR), medium SR (MSR),

and low SR (LSR) [59], [60]. In HSR fibres, IHC presynaptic calcium builds up more than in

LSR fibres. As a result, more spikes are generated in HSR fibres than in LSR fibres. This

effect can be modelled in equation (3-18) by using a low threshold for HSR fibres and a high

threshold for LSR fibres. Hence, for an ideal situation where there is no spontaneous spike

generation for all three fibres, a sound with increasing intensity enables spike generation

initially on the HSR fibre only, followed by HSR and MSR fibres, and finally across all three

fibres.

In [55], the concentration of calcium is modelled as a cubic function, which is

proportional to spike generation through the release of a finite number of circulating

neurotransmitters between the IHC and AN fibres [49]. This feature is key to characterising

varying spontaneous rates and the falling sensitivity of spike generation in AN fibres to a

sound signal of constant intensity and frequency [61], called neural adaptation [62]. An

alternative rendition is to bypass the modelling of calcium concentration and

neurotransmitter release and generate spikes randomly using a Poisson process model [19],

[63].

In the new AN spike generation algorithm in the CAR-Lite-SI model, linear methods are

used for generating spikes randomly. The advantage of this implementation is that it is

simple and implementable on hardware, which means that the spontaneous rates are fixed

and capture deterministic dependencies that might otherwise be unpredictable if variable

rates are used. Neural adaptation is also not implemented in this model as I aim to improve

the AN algorithm in the CAR-Lite model to capture intensity as it appears in a sound signal

across all cochlear sections. As a result, the number of spikes generated in this model is

higher than those observed in animal studies as well as biologically plausible models strictly

adhering to animal studies using sophisticated nonlinear equations [45]. In other words, the

81

spike rate of this model can operate at levels that might otherwise lead to a saturated spike

rate in animal biology.

To exhibit the spontaneous rate effect across the three fibres, RaSR from equation (3-18)

is expanded as follow:

 𝑅𝐻𝑆𝑅 = 𝑅1^𝑅2 (3-20)

 𝑅𝑀𝑆𝑅 = 𝑅3^𝑅4^𝑅5 (3-21)

 𝑅𝐿𝑆𝑅 = 𝑅6^𝑅7^𝑅8^𝑅9 (3-22)

where ^ represents a 2-input logical AND operation; Rm is the content of bit-m of a 32 bit

variable generated by a twisted generalised feedback shift register algorithm [64], which is a

sophisticated implementation of the Berlekam-Massey algorithm to generate pseudorandom

binary number sequence [65].

The number of bits used for the calculation of RaSR in equations (3-20), (3-21), and

(3-22) grow at one bit per equation in the order of HSR, MSR, and LSR. This growth

indicates the increasing sparsity of spontaneous spikes across the three fibres, i.e. HSR

fibres generate more spikes that are more densely populated than in MSR and LSR fibres.

As a quantitative illustration of this effect, let us assume that the probability of Rm, P(Rm)

being either a LOW or HIGH, is 0.5. Then, the likelihood of RHSR being a HIGH is 0.25, which

is calculated as P(R1)∙ P(R2) from equation (3-20). The likelihood of RMSR being a HIGH is

0.125 using P(R3)∙P(R4)∙P(R5), and for RLSR being a HIGH is 0.0625 using

P(R6)∙P(R7)∙P(R8)∙P(R9). The decreasing probability factors correlate to sparser spike

distributions across HSR, MSR, and LSR fibres, respectively.

Using this method, the inter-spike-interval generated by the spontaneous effect [second

condition of equation (3-18)] is twice of that generated by the sound signal [first condition of

equation (3-18)]. As a result, stimulus-driven spikes have twice the spike rate of the

spontaneously-driven spikes. This attribute is advantageous as the stimulus-driven spikes

can be clearly distinguished from spontaneously-driven spikes [66] in a sound classification

and sound recognition tasks despite the contributions of spontaneous-driven spikes to

stimulus-driven spikes in terms of information entropy improvement [56]. This specific form

of algorithm is used solely for simulating spontaneous rate spikes in software. A hardware

implementation of the PBNG is detailed in subsection 3.3.4.2, where an 8 bit linear feedback

shift register (LFSR) is used to calculate RHSR (3-20), RMSR (3-21), and RLSR (3-22).

3.3.3. Fixed-Point Implementation

The model was initially implemented using floating-point numbers to acquire a

benchmark response in Matlab. Subsequently, the model was converted to fixed-point

numbers in Matlab to simulate digital hardware (FPGA) responses. The fixed-point version is

then implemented on FPGA in SystemVerilog. For the fixed-point implementation, each CAR

coefficient is 8 bits and each LIF neuron coefficient and firing threshold, as well as every

sample corresponding to the signals in the CAR-Lite-SI model, are set to 16 bits to match

the floating-point responses. These bit widths are the minimum required to attain correlation

coefficient scores, which quantifies the degree of similarity between floating-point and fixed-

82

point gains responses, as close as possible to positive unity (+1). Here, signal refers to input

audio data, the BM output, the IHC output, and the LIF neuron internal state voltage. The AN

signal is a single bit.

3.3.3.1. SR-AN Stage

Only the fixed-point implementation of the SR-AN stage is covered here as the BM-IHC

stage is the same as the equation module described in subsection 3.2.4.2. The maximum

rate of spike generation in the MAP model described in chapter 2 with default settings, is

1,000 spikes/s primarily in the HSR fibre at the onset of a stimulus. Based on this maximum

rate, the sampling rate of the SR-AN stage, fs-AN, is set at 3 kHz, which corresponds to the

sampling rate of the sixth cochlear octave, o6. This sampling rate corresponds to a Nyquist

frequency of 1.5 kHz and enables spike generation up to 1,500 spikes/s. Temporal

integration via the moving average filter defined by equation (3-16) is applied only from

octaves 1 to 5, which allows the down-sampling of IHC values from high multiple sampling

rates to a low single rate of 3 kHz. In addition, the binary spikes generated from octaves 7 to

9 are up-sampled to 3 kHz. Using this approach, there is no need to manipulate the 16 bit

LIF neuron voltages from equation (3-17) multiple times to generate the spike train. Instead,

the single bit spikes themselves from equation (3-18) are dealt with, which reduces memory

utilisation from 16 bits to 1 bit per SR-AN fibre from o7 to o9. Table 3-2 shows the BM-IHC

sampling rates across nine cochlear octaves and their respective sub-sampling factors in the

SR-AN stage to achieve a sampling rate of 3 kHz.

Octave fs (kHz) Down-sampling Factor Up-sampling Factor

1 96 32 1

2 48 16 1

3 24 8 1

4 12 4 1

5 6 2 1

6 3 1 1

7 1.5 1 2

8 0.75 1 4

9 0.375 1 8
Table 3-2: Sub-sampling factors in the SR-AN stage operating at a sampling rate of 3 kHz.

AN fibres in a biological cochlea possess different spiking thresholds across sound

intensities [55] and frequencies [67]. For the sake of simplicity, the spiking thresholds in this

model are only set for the three discrete fibres regardless of the cochlear section. They are

calculated as follow:

 𝑡ℎ𝑟𝑒𝑠ℎ𝐿𝑆𝑅 = ℎ𝐿𝑆𝑅 ∙ 𝑡ℎ𝑚𝑛 (3-23)

 𝑡ℎ𝑟𝑒𝑠ℎ𝑀𝑆𝑅 = ℎ𝑀𝑆𝑅 ∙ 𝑡ℎ𝑟𝑒𝑠ℎ𝐿𝑆𝑅 (3-24)

 𝑡ℎ𝑟𝑒𝑠ℎ𝐻𝑆𝑅 = ℎ𝐻𝑆𝑅 ∙ 𝑡ℎ𝑟𝑒𝑠ℎ𝐿𝑆𝑅 (3-25)

where hLSR, hMSR, and hHSR are fibre-specific scalars; thmn is the mean of the distribution of

the maximum of a LIF neuron internal state voltage across all cochlear sections, s, for an

input pure-tone signal, x, for 23 fixed frequency, f, at three arbitrary frequency ranges: 100

83

Hz to 1kHz in 100 Hz steps; 1 kHz to 5 kHz in 500 Hz steps; and 5 kHz to 10 kHz in 1 kHz

steps:

𝑡ℎ𝑚𝑛 =
1

23
∑ max

𝑓∈𝑓(𝑥)
𝑣𝑓(𝑠, 𝑡)

10 𝑘𝐻𝑧

𝑓=100 𝐻𝑧

 (3-26)

The internal voltage defined by equation (3-17) in this case is allowed to vary freely and

is not reset to 0 V after the respective AN fibre fires. Using this approach, the LSR fibre

threshold can be determined, along with the thresholds for MSR and HSR fibres using

equations (3-24) and (3-25), respectively. The fibre specific scalars are then tuned to

achieve a mean spike rate of 1,000 spikes/s at the HSR fibre. The mean spike rate is

calculated using the total number of spikes per fibre over the time duration of an input signal.

Table 3-3 shows the settings to achieve this.

Variables Floating-point Fixed-point

𝜏𝐿𝐼𝐹 1.33 ms

𝑐𝐿𝐼𝐹 0.25 16,384

ℎ𝐻𝑆𝑅 0.01

ℎ𝑀𝑆𝑅 0.1

ℎ𝐿𝑆𝑅 2.329 × 10-2

𝑡ℎ𝑚𝑛 0.979

𝑡ℎ𝑟𝑒𝑠ℎ𝐻𝑆𝑅 2.28 × 10-4 7

𝑡ℎ𝑟𝑒𝑠ℎ𝑀𝑆𝑅 2.28 × 10-3 75

𝑡ℎ𝑟𝑒𝑠ℎ𝐿𝑆𝑅 2.28 × 10-2 747

Absolute refractory period
closest to 075 ms [19], [68]:

1.33 ms (1 sample skip)

Table 3-3: Variables set to achieve a mean spike rate of 1,000 spikes/s at the AN HSR fibre.

3.3.4. FPGA Implementation

Figure 3-20 displays the architecture of the CAR-Lite-SI model implemented on an

Altera Cyclone V FPGA (target FPGA chip: 5CGXFC5C6F27C7N). The FPGA system and

audio codec clock rates are set at 250 MHz and 96 kHz, respectively. The model is

characterised by three modules: a supervisor module, a BM-IHC module, and an SR-AN

module. As observed from Figure 3-21, the operation of the supervisor and the BM-IHC

modules in the CAR-Lite-SI model are identical to the supervisor and equation modules in

the CAR-Lite model shown in Figure 3-5. The SPC and OPC states in the supervisor module

of the CAR-Lite-SI model also control the invocation of the SR-AN module in addition to

controlling the invocation of the BM-IHC module.

The role of the supervisor module is to pre-empt the next cochlear section to be

processed and prepare its coefficients corresponding to the BM-IHC and SR-AN. It does so

one cochlear section at a time, whereby it prepares coefficients for the BM-IHC module

corresponding to section s and coefficients for the SR-AN module corresponding to section

s-1. This operation is indicative of the SR-AN module cascaded after the BM-IHC module. As

an illustration, in Figure 3-21, the supervisor prepares BM-IHC coefficients for section 2 and

SR-AN coefficients for section 1 at T3 and T4, while the BM-IHC module is processing

section 1 and the SR-AN module is in IDLE state. The inactive SR-AN is awaiting samples to

be output from the BM-IHC module via the supervisor module as well as coefficients from

the supervisor module for section 1. It begins processing section 1 at T5. This scenario is

repeated for all twelve cochlear sections corresponding to an octave. After the twelfth

84

section is processed, all three modules continue processing the next twelve sections serially

in the next higher octave. When all the octaves are processed, all three modules transition to

the IDLE state until the next audio sample arrives. Descriptions of the three modules are

detailed in the next two subsections.

Figure 3-20: FPGA architecture of the CAR-Lite-SI model with the extended SR-AN module, where y represents
a selected output signal from either the BM, BMd, IHC or AN stage.

85

Figure 3-21: FPGA output vector waveform of the supervisor, BM-IHC, and SR-AN modules operating when (a)
an audio sample arrives; and (b) at the end of the processing of a cochlear octave, where 12 cochlear sections
have been processed at a specific sampling rate.

3.3.4.1. Supervisor and BM-IHC Modules

The implementation of the supervisor module is identical to the implementation

described in subsection 3.2.4.1. The BM-IHC module is similar to the equation module

described in subsection 3.2.4.2 with one exception. The auditory nerve (AN) spike generator

using the positive zero-crossing of the BMd signal, defined by equation (3-9), is omitted. This

omission brings the number of states in the finite state machine (FSM) of the BM-IHC

module to 16 as opposed to 20 states in the equation module of the CAR-Lite model. The

latency of the BM-IHC module is 64 ns (= 16 states / 250 MHz) per cochlear section. The

BM, BMd, and IHC stage takes 14, 1, 1 clock cycles respectively, to process.

3.3.4.2. SR-AN Module

The structure of the SR-AN module is similar to the equation module in subsection

3.2.4.2 in that equations (3-16), (3-17), (3-18), (3-20), (3-21), and (3-22) are broken down

into two operands per state, as part of an FSM. A total of 9 states are required to calculate

the spiking activities of three AN fibres per cochlear section at 1 clock cycle per state, which

amounts to a latency of 36 ns (= 9 states / 250 MHz). In the first state, IHC values are

accumulated to generate T as many times as defined by an octave-specific cap. In the next

state, the mean of the accumulated values is calculated by a right-shift operation as the

octave-specific cap is a multiple of 2 as defined by equation (3-16).

86

In the next state, an 8 bit linear feedback shift register (LFSR) using Galois configuration

[69], is updated to generate a pseudorandom sequence of binary numbers. The LFSR

replaces the 32 bit software-based PBNG for generating spontaneous spiking activity on the

FPGA. Its polynomial feedback is characterised as:

 𝐿(𝐷) = 𝐷8 + 𝐷6 + 𝐷5 + 𝐷4 + 1 (3-27)

where L(D) is output of the LFSR defined by a polynomial equation; and Dm is the period of

the exponent, m, indicating a tap-off from the mth flip-flop to an XOR gate. Figure 3-22

illustrates the LFSR configuration.

Figure 3-22: Linear feedback shift register (LFSR) implemented in fixed-point arithmetic and on an FPGA.

After the LFSR state, the three AN fibres types corresponding to a specific cochlear

section, are calculated serially in the order of HSR, MSR, and LSR in three separate states

(4 to 6), using equations (3-17) and (3-18). This serial computation is possible as the BM-

IHC and the SR-AN modules are processed in a pipeline architecture and the latency of the

SR-AN module is lower than BM-IHC. So, there is no need to calculate the spikes for the

three AN fibres for each cochlear section in parallel. As a result, there is no risk of AN data

corruption due to either buffer overrun or underrun. Within the same three serial states (4 to

6) of stimulus-driven spikes generation, the output of the LFSR calculated in the third state

are then combined per equations (3-20), (3-21), and (3-22) to generate three spontaneous

rate bits. In the next state, the three spontaneous rate bits are used for updating the three

AN fibre output based on equation (3-18).

3.3.4.3. Hardware Resource Utilisation

The logic utilisation in adaptive logic modules (ALM) on an Altera Cyclone V FPGA for

the fixed-point implementation is 15% with 8,420 registers used. Table 3-4 shows a

comparison of the FPGA resource utilisation between the CAR-Lite and the CAR-Lite-SI

models as well as with other analogue and digital models. The SR-AN algorithm described in

subsection 3.3.2 is also implemented for the single-sampling rate CAR model [3] for the sake

of comparison with the CAR-Lite-SI model. This modified CAR model is hereby known as the

CAR-SI model. The CAR-Lite-SI model utilises lower ALMs and registers than the CAR-SI

model by 2% and 2,161 registers, respectively. The CAR-SI also has the highest utilisation

over all other models in Table 3-4. The exception is the single-sampling rate CAR-FAC

model with OHC and automatic gain control, which has the highest overall ALM utilisation

[27]. The ALM utilisation for all other digital models is significantly lower. Therefore, it can be

concluded that the SR-AN algorithm increases FPGA resource utilisation significantly.

87

The CAR-Lite-SI model utilises logic significantly higher than the CAR-Lite model by five

times in ALM utilisation and twelve times in the utilisation of registers. This attribute is due to

the CAR-Lite-SI model having an extra module (SR-AN) than the CAR-Lite model. In

addition, the increase of the AN output sections from 108 to 324 (3 AN fibres × 108 cochlear

sections) channels as well as a more sophisticated manner of generating spikes have led to

the increased number of registers used for buffering as well as heightened inter-connectivity

between the modules in the CAR-Lite-SI model. However, there is still ample space

available on the FPGA for expanding CAR-Lite-SI further, which enables the implementation

of more complex algorithm such as neural adaptation [70] in the SR-AN segment and

nonlinearity in the BM response through outer hair cell (OHC) feedback and automatic gain

control such as the one used in the CAR-FAC model [27]. Incidentally, the increase in logic

utilisation due to the SR-AN algorithm is justifiable as the CAR-Lite-SI model can represent

sound intensity levels in the spike-time domain as presented in subsection 3.3.7, which

cannot be performed by the other models in Table 3-4 except for the CAR-SI model.

A power analysis tool from Altera, called PowerPlay with default settings enabled, is

used to estimate the power required to run the CAR-Lite-SI model because the power

consumption for the Altera Cyclone V GX Starter Kit cannot be measured directly. As shown

in Table 3-4, the estimated power consumed by the CAR-Lite-SI model is higher than the

CAR-Lite model. This characteristic is to be expected due to the higher logic utilisation of the

former than the latter. However, the multi-sampling rate CAR-Lite-SI model still consumes

less power than the single sampling rate CAR-SI model, which consumes the highest power

as compared to all other presented models in Table 3-4. Another significant observation is

that the FPGA-based cochlear models consume more power than analogue silicon cochlear

models. However, analogue silicon cochleae may become unstable due to the various

degrees of tolerances of analogue electronic components in the circuit.

Model FPGA No. of filters ALM utilisation Registers utilisation Power (mW)

Sarpeshkar et
al. [71]

- 16 - - 0.3

Lazzaro et al.
[72]

- 119 - - 5

Hamilton et al.
[73]

- 83 - - 57

Shih-Chii et al.
[74]

- 128 - - 22

Wang et al. [75] - 9 - - 0.09

CAR-FAC [27] Altera
Cyclone V

100 18% 5,235 240

Thakur et al. [5] Altera
Cyclone V

70 3% 3,899 -

CAR-Lite [76] Altera
Cyclone V

108 2.57% 887 234

*CAR-SI [3] Altera
Cyclone V

108 17% 10,581 250

This work (CAR-
Lite-SI)

Altera
Cyclone V

108 15% 8,420 244

Table 3-4: Performance of cochlear filters on analogue (described as ‘-‘ under FPGA column) and digital
hardware. *Single sampling rate cochlear model fitted with SR-AN algorithm from subsection 3.3.4.2.

Furthermore, as the analogue models are hardwired, they are not scalable. In contrast,

FPGA-based cochlear models are stable as they operate in the digital domain and do not

have tolerance issues with their internal components. Additionally, the reconfigurable

attribute of the FPGA allows cochlear models to be scalable. This characteristic includes

88

adding or omitting cochlear octaves and sections, which is achievable at a shorter time than

for the analogue silicon cochleae.

3.3.5. Response to Pure Tones

A 1 kHz, 0.68 s pure tone signal with a 50 ms ramp-up and 50 ms ramp-down is used to

generate six types of AN fibre responses from the fixed-point implementation of the CAR-

Lite-SI model, as illustrated in Figure 3-24. The pure tone is chosen to demonstrate and

distinguish between spikes generated directly by the sound signal (stimulus-driven spikes)

and spikes generated by the spontaneous effect (spontaneously-driven spikes). The HSR

responses in Figure 3-24 depict the input signal spread across more contiguous cochlear

sections [58 cochlear sections from sections 11 (13,470 Hz) to 69 (472 Hz)] than the MSR

response [43 cochlear sections from sections 24 (6,357 Hz) to 67 (530 Hz)]. The LSR

response of the 1 kHz pure tone is contained within the smallest number of contiguous

cochlear sections at 27, spanning from sections 38 (2,832 Hz) to 65 (595 Hz). In terms of

spontaneous rate activities, the HSR fibres generate the most densely packed random

spikes, and the LSR fibres generate the least, which are in agreement with biologically

plausible models [19], [20]. The intensity information from the combined stimulus-driven and

spontaneous-driven spikes are acquirable by the mean spike rate across the three fibres

presented in Table 3-5.

Figure 3-23: Time-frequency representation (cochleagram) of the IHC signal of a pure tone whose AN response
is shown in Figure 3-24.

89

Figure 3-24: SR-AN spike response from a fixed-point implementation of the CAR-Lite-SI model of a 0.68 s, 1
kHz input pure tone with a 50 ms ramp-up and 50 ms ramp-down (IHC representation displayed in Figure 3-23)
for the following conditions: (a) both spontaneity and refractoriness disabled; (b) spontaneity disabled and
refractoriness enabled; (c) spontaneity enabled using PBNG and refractoriness disabled; (d) spontaneity enabled
using PBNG and refractoriness enabled; (e) spontaneity enabled using LFSR and refractoriness disabled; and (f)
spontaneity enabled using LFSR and refractoriness enabled.

When the AN refractory period is enabled (labelled as refractoriness in Table 3-5), the

AN fibres produce sparser spike distributions, as observed for (b), (d), and (f) of Figure 3-24,

and quantified as lower spike rates in Table 3-5, than when the AN refractoriness is

disabled. This characteristic is mainly due to the bypassing of the computation of every

second input sample to the SR-AN module to signify the inability of the AN to generate

spikes immediately after firing. The absence of spontaneously-driven spikes (AN spontaneity

disabled) coupled with the LIF neurons’ inability to immediately fire (refractoriness enabled)

leads to the lowest spike rate across all three fibre types. When both spontaneity and

refractoriness is enabled, as seen in (d) and (f) of Table 3-5, the spike rate is close to the

design requirements of a mean of 1,000 spikes/s on the HSR fibre.

Figure 3-24 Spontaneity Refractoriness Mean Spike Rate (spikes/s)

LFSR
(FPGA)

PBNG
(Software)

HSR MSR LSR

(a) 0 0 0 607 419 230

(b) 0 0 1 531 371 206

(c) 0 1 0 1,212 741 400

(d) 0 1 1 917 613 340

(e) 1 0 0 1,212 745 407

(f) 1 0 1 916 623 359
Table 3-5: Mean spike rate of each AN fibre with various spontaneous spiking conditions generated from the
fixed-point implementation of the CAR-Lite-SI model.

3.3.6. Iso-Intensity Response

Figure 3-25 displays the AN spike rate response from the fixed-point implementation of

the CAR-Lite-SI model to a frequency sweep of a 0.68 s pure tone input signal with its

frequency ranging from 100 Hz to 1 kHz. For iso-intensity frequency responses [77] of the

90

AN, the input pure tones at the aforementioned varying frequencies are repeatedly streamed

into the model at different input levels from 0 dB full-scale (FS) to -60 dBFS, in steps of -10

dBFS. At high-intensity levels of 0 dBFS, spike generation at all three fibres are mainly

driven by the sound input frequency range. As sound level reduces, the spike rates of all the

three fibre types drop expectedly regardless of the sound input frequency. Below -40 dBFS,

the LSR fibres are no longer sensitive to the stimulus as illustrated in the negligible spike

rates in Figure 3-25(c) when no spontaneously-driven spikes are present. When the

spontaneously-driven spike generation algorithm is enabled, the spikes rates at these levels

rise, as depicted in Figure 3-25(f) and Figure 3-25(i). At -60 dBFS, only the HSR fibres are

driven by the sound input as observed in the active spike rates in Figure 3-25(a), and no

spike rate activities in the MSR [Figure 3-25(b)] and LSR [Figure 3-25(c)] fibres when no

spontaneously-driven spikes are present. When spontaneously-driven spikes are present,

the MSR and LSR fibres are exclusively driven by spontaneous activity, as observed in

Figure 3-25(e), (f), (h), and (i).

The spike rates exhibited in Table 3-5 and the iso-intensity curves in Figure 3-25 are

higher than the iso-intensity curves recorded in animal studies that include squirrel monkey

[78], guinea pig [61], and lake sturgeon [77]. This attribute is due to the absence of neural

adaptation feature in the model as my intention is to characterise sound signal intensity

variations as it occurs without any reduction to the sensitivity across all cochlear sections. As

a result, the spike rates projected by the CAR-Lite-SI model remain constant as long as the

sound signal is present. Furthermore, the iso-intensity curves from the animal studies are

generally bell-shaped. In contrast, the iso-intensity curves in this model have a general

outlook of an unsmoothed right-half of a bell (a steeper roll-off at the high frequency end

than the low frequency end), which indicate that this model is generally more responsive to

low-frequency sound signals than the responses found in animal studies [61], [77], [78]. This

characteristic is an advantage as this enables the model to respond to low pitch speech and

musical signals.

An alternative viewpoint is that the shape of these curves in the model resembles the

gain response shape of a low-pass filter (LPF). An indication of this is that firstly, the spike

rate above 1 kHz drops lower than those below the 1 kHz range. Secondly, the dips in the

spike rate at high intensities from 0 dBFS to -30 dBFS for HSR fibres and from 0 dBFS to -

10 dBFS for MSR fibres occur at 3 kHz, 6 kHz, 9 kHz, and 12 kHz. These dips in the iso-

intensity curves are similar to the stopband ripple or known alternatively as the suppressed

fluctuating high-frequency side-lobe of a moving average filter [50]. The cause of this is the

temporal integration stage, which performs a moving average of IHC values and thus,

functions as a low-pass filter with a cut-off frequency at 1.5 kHz. With regards to musical

signals, the starting dip in the iso-intensity curve at 3 kHz corresponds to the eighth octave

of the musical note, F#. This note and those at higher frequencies corresponding to the dips

in the iso-intensity curves are considered to have high pitches that are outside the dominant

region of pitch perception [79]–[81], so no measures are taken to alleviate these effects. For

speech signals, the spectrum of interest is approximately from 200 Hz to 3 kHz [56], and so

the dips in the iso-intensity curves have ideally minimal impact on speech signals as well.

91

Figure 3-25: Iso-intensity responses of HSR, MSR, and LSR AN fibres for 108 cochlear sections generated with
refractoriness enabled and (a) – (c) spontaneity disabled, (d) – (f) PBNG enabled and (g) – (i) LFSR enabled.

3.3.7. Noise Effect on Real-World Signals

Figure 3-26(a1)-(a6) displays a musical note signal, A4, from a piano [15], along with its

AN responses. Figure 3-26(b1)-(b6) displays a speech signal with a male voice uttering “1-o-

7” [82] and it’s corresponding AN responses. These two signals are up-sampled from 44.1

kHz to 96 kHz before being injected into the fixed-point hardware implementation of the

CAR-Lite-SI model. At the AN stage, noisy spikes are introduced to these real-world signals

either with the PBNG or the LFSR circuit when the spontaneity option is enabled (as seen in

Table 3-6 and Table 3-7). Two methods are used to measure the effect of the noise on the

signals. One involves calculating the signal-to-noise (SNR) ratio:

𝑆𝑁𝑅 = 20 log10

𝑠𝑝𝑘𝐴𝑁(𝑠, 𝑛)

𝑠𝑝𝑘𝑆𝑅𝐴𝑁(𝑠, 𝑛)
 (3-28)

where 𝑠 is the cochlear section spanning to a maximum of 𝑆 (= 108) sections; 𝑛 is the

sample number spanning up to the length of the sound signal 𝑁; 𝑠𝑝𝑘𝐴𝑁 is the AN response

comprising stimulus-driven spikes and spontaneously-driven spikes (noisy spikes) generated

either from the PBNG or LFSR circuit; 𝑠𝑝𝑘𝑆𝑅𝐴𝑁 is the spontaneously-driven spikes generated

from either the PBNG or LFSR circuit.

Alternatively, to understand how much information from the input sound signal is

preserved in the AN response amid noise generated from either the PBNG or LFSR circuit, a

spike coincidence ratio is used. It is calculated as the ratio of the number of spikes match

between the AN response and the binarized TI response (subsampled low-pass filtered inner

hair cell response), which is then normalized by the number of binary TI spikes:

𝐶𝑠𝑝𝑘 =

∑ ∑ 𝑠𝑝𝑘𝐴𝑁(𝑠, 𝑛)𝑁
𝑛=1

𝑆
𝑠=1 𝑠𝑝𝑘𝑇𝐼(𝑠, 𝑛)

∑ ∑ 𝑠𝑝𝑘𝑇𝐼(𝑠, 𝑛)𝑁
𝑛=1

𝑆
𝑠=1

 (3-29)

92

where 𝑠𝑝𝑘𝑇𝐼 is the binarized TI response, which is assumed to be a 2D spike representation

of the input signal unaffected by spontaneously-driven spikes (noisy spikes). It is defined as:

𝑠𝑝𝑘𝑇𝐼 = {

1, 𝑇𝐼(𝑠, 𝑛) > 0
0, 𝑇𝐼(𝑠, 𝑛) = 0

 (3-30)

The SNR profiles for the speech and musical signals using noises generated from the

PBNG and the LFSR circuits across the three AN fibres are displayed in Figure 3-27. The

real-world signals have three discrete intensity levels, represented as three distinct colour

bars in the figure. The SNR is at its lowest for low-intensity signals and highest for high-

intensity signals regardless of the input signal type used here. This attribute is expected as

low-intensity signals result in a low number of stimulus-driven spikes generated at the AN

stage and thus, spontaneously-driven (noisy) spikes affect the AN response significantly,

which results in a low SNR. Conversely, high-intensity signals result in a higher number of

stimulus-driven spikes generation, which lowers the influence of spontaneously-driven

(noisy) spikes in the AN response. This characteristic indicates that an LSR fibre has a lower

SNR than an MSR fibre, and an HSR fibre has a higher SNR than the MSR fibre. Moreover,

as the intensity of the input signal increases as observed in Figure 3-27, the SNRs for all

three fibres also increase due to the stimulus-driven spikes being represented more in these

fibres than spontaneously-driven spikes.

The effect of refractoriness also generally reduces the SNRs for the three AN fibres

because a spike generated immediately after a LIF neuron fires is likely a stimulus-driven

spike and a delay in the LIF neuron firing due to refractoriness, suppresses this spike. There

are instances where there are gaps of silence in an input sound signal, such as a speech

signal. In this case, the stimulus-driven spikes generated during the gaps is suppressed. If

the refractoriness is enabled, more noisy spikes are generated, especially during the gaps,

which reduces the SNR.

Table 3-6 and Table 3-7 provides a comparison between spike coincidence ratios of the

AN responses generated from the CAR-Lite and CAR-Lite-SI models for the speech and

musical signals, respectively. AN responses of the fixed-point implementation of the CAR-

Lite model are shown in Figure 3-26(a3) and (b3) corresponding to the 0 dBFS musical

signal [Figure 3-26(a1)] and 0 dBFS speech signal [Figure 3-26(a2)] respectively. Their

corresponding AN responses from the fixed-point implementation of the CAR-Lite-SI model

are displayed in Figure 3-26(a4)-(a6) and (b4)-(b6), respectively. It is expectedly difficult to

determine input sound intensity from the AN response of the CAR-Lite model because this

response contains no intensity information and thus, is incapable of capturing sound

intensity levels in the musical and speech signals. This attribute is evident in the low

coincidence matching ratio, 𝐶𝑠𝑝𝑘, under the “Zero-Crossings” column of Table 3-6 and Table

3-7. In contrast, the AN response of the CAR-Lite-SI model can represent sound intensity by

the difference of spike rates across three AN fibres indicating three discrete levels. This

characteristic is visually apparent in Figure 3-26(a4)-a(6) and (b4)-(b6) as well as

quantitatively, with the higher 𝐶𝑠𝑝𝑘 values under the “LSR”, “MSR”, and “HSR” columns of

Table 3-6 and Table 3-7.

Another observation from Table 3-6 and Table 3-7 is that added noise either via PBNG,

or LFSR circuit increases Cspk. Stimulus-driven spikes are generated when the intensity of

93

the TI signal increases above the firing thresholds of the LIF neurons. When the intensity of

the TI signal is low, and below firing thresholds, spikes are generated spontaneously

according to equations (3-20), (3-21), and (3-22) based on the AN fibre type. Hence, if a

spontaneously-driven spike coincides with a binarized TI sample, then this indicates a low-

intensity signal representation in the spike trains of the AN. As a result, the coincidence

matching ratio, Cspk, increases when noisy spikes in the form of spontaneously-driven spikes

are introduced. Disabling the refractoriness further increases Cspk according to the

explanation above that led to the rise in the SNR. In other words, the highest Cspk readings

for all three fibre types occur when either PBNG or LFSR is enabled and refractoriness

disabled. If the refractoriness is enabled, then Cspk readings for all three fibre types fall.

The coincidence matching ratio, Cspk, is higher for the CAR-Lite-SI model than the CAR-

Lite model. It is larger when spontaneously-driven (noisy) spikes are introduced. The Cspk as

well as the SNRs for all three AN fibres also increase when the intensity of the input sound

signal increases. However, there is no indication that noisy spikes at the AN stage aids in

boosting signal coherence [83]–[85]. A further investigation is warranted to understand

whether induced noisy spikes aids in boosting signal coherence that may include feature

extraction, pattern recognition, and classification tasks.

Figure 3-26: Sound intensity representation of real-world sound signals that includes (a1) musical forte note, A4,
from a piano; and (b1) speech signal of a male voice uttering “1-o-7”, and their respective cochleagrams in (a2)
and (b2), respectively. AN spikes generated from the fixed-point hardware implementation of the CAR-Lite model
using (a3) the musical signal and (b3) the speech signal. AN spikes generated from the fixed-point hardware
implementation of the CAR-Lite-SI model from the (a4) HSR, (a5) MSR, and (a6) LSR fibre responses of the
musical signal; and (b4) HSR, (b5) MSR, and (b6) LSR responses of the speech signal. Note that the spontaneity

is generated using LFSR and refractoriness is disabled.

94

Figure 3-27: Signal-to-noise (SNR) ratio of the following real-world input signals with increasing intensity across
the three AN fibres: HSR; MSR; and LSR under two noise (either PBNG or LFSR) and two refractoriness
settings: (a) the speech signal of a male voice uttering “1-o-7”; and (b) the musical signal, A4 played from a
piano.

95

Spontaneity Refractoriness Spike Coincidence Ratio

LFSR (FPGA) PBNG (Matlab) Zero-crossings LSR MSR HSR

0 0 0 0.008% 1.4% 6.6% 13%

0 0 1 0.008% 1.0% 4.6% 8.6%

0 1 0 0.008% 3.5% 10% 19%

0 1 1 0.008% 3.0% 7.6% 12%

1 0 0 0.008% 3.6% 10% 19%

1 0 1 0.008% 3.4% 8.2% 13%

Table 3-6: Coincidence matching ratio between the AN responses from the CAR-Lite model and the CAR-Lite-SI

model, and the binarized TI response for the utterance of “1-o-7” under various spiking configurations.

Spontaneity Refractoriness Spike Coincidence Ratio

LFSR (FPGA) PBNG (Matlab) Zero-crossings LSR MSR HSR

0 0 0 0.002% 2.2% 17% 37%

0 0 1 0.002% 1.7% 11% 25%

0 1 0 0.002% 8.3% 27% 53%

0 1 1 0.002% 7.4% 20% 35%

1 0 0 0.002% 8.5% 22% 53%

1 0 1 0.002% 8.5% 22% 36%

Table 3-7: Coincidence matching ratio between the AN responses from the CAR-Lite model and the CAR-Lite-SI
model, and the binarized TI response for the A4 piano note under various spiking configurations.

3.4. Chapter Summary and Conclusion

In the first half of this chapter, a small and simple cochlear model, known as CAR-Lite,

comprising a cascade of asymmetric resonators (CAR), is presented. For an implementation

of 108 cochlear sections, the model operates at nine different sampling rates, with an octave

group of twelve sections operating at a specific sampling rate. It uses 16 bits signals and 8

bits coefficients, which is half of the bit width of coefficients used in the CAR model.

Furthermore, the CAR-Lite model uses nine times fewer coefficients than the CAR model.

On an Altera Cyclone V FPGA, the logic utilisation of the model is only 2.57%. Its dynamic

range is 96 dB, which covers the range of speech, music and other perceivable audible

stimuli. Stimuli at high intensity levels have saturated amplitudes resulting in information

loss, which consequently yields saturated waveforms output from the model. However, using

an automatic gain control (AGC) algorithm to vary the intensity levels of the stimuli enables

the model to generate output responses without saturation.

In the second half of this chapter, the zero-crossing spiking algorithm in the CAR-Lite

model is replaced with an abstract biologically plausible spiking algorithm capable of

encoding sound at various intensity levels. Known as the CAR-Lite-SI model, the output of

the CAR filters with high sampling rates are down-sampled, and the ones with low sampling

rates are up-sampled to a common sampling rate before being converted to spikes using

leaky-integrate-and-fire neurons. Spontaneous spike generation is also included in the

model that increases the degree of similarity between the spike trains and the outputs of the

CAR filters. This characteristic enables spike representation of real-world signals such as

musical notes and speech to resemble closer to their output representation from the CAR

filters. On an Altera Cyclone V FPGA, the logic utilisation is 15%, which allows room for

expansion with the implementation of more sophisticated algorithms.

3.5. Bibliography

[1] R. F. Lyon, “The Cascade of Asymmetric Resonators,” in Human and Machine
Hearing: Extracting Meaning from Sound, Cambridge University Press, 2017, pp.
293–298.

[2] A. Saremi, R. Beutelmann, M. Dietz, G. Ashida, J. Kretzberg, and S. Verhulst, “A

96

Comparative Study of Seven Human Cochlear Filter Models,” J. Acoust. Soc. Am.,
vol. 140, no. 3, pp. 1618–1634, 2017, doi: 10.1121/1.4960486.

[3] C. S. Thakur, T. J. Hamilton, J. Tapson, A. van Schaik, and R. F. Lyon, “FPGA
Implementation of the CAR Model of the Cochlea,” in 2014 IEEE International
Symposium on Circuits and Systems (ISCAS), 2014, pp. 1853–1856, doi:
10.1109/ISCAS.2014.6865519.

[4] C. S. Thakur, T. J. Hamilton, J. Tapson, A. van Schaik, and R. F. Lyon, “Live
Demonstration: FPGA implementation of the CAR Model of the cochlea,” in 2014
IEEE International Symposium on Circuits and Systems (ISCAS), 2014, pp. 1853–
1856, doi: 10.1109/ISCAS.2014.6865519.

[5] C. S. Thakur, R. M. Wang, S. Afshar, T. J. Hamilton, J. Tapson, S. A. Shamma, and
A. van Schaik, “Sound Stream Segregation: A Neuromorphic Approach to Solve the
‘Cocktail Party Problem’ in Real-Time,” Front. Neurosci., vol. 9, pp. 1–10, 2015, doi:
10.3389/fnins.2015.00309.

[6] J. B. Allen and M. M. Sondhi, “Cochlear macromechanics: Time domain solutions,” J.
Acoust. Soc. Am., vol. 66, no. 1, pp. 123–132, 1979, doi: 10.1121/1.383064.

[7] T. E. D. Painter and A. Spanias, “Perceptual Coding of Digital Audio,” Proc. IEEE, vol.
88, no. 4, pp. 451–513, 2000, doi: 10.1109/5.842996.

[8] P. Balazs, B. Laback, G. Eckel, and W. A. Deutsch, “Time – Frequency Sparsity by
Removing Perceptually Irrelevant Components Using a Simple Model of
Simultaneous Masking,” IEEE Trans. Audio. Speech. Lang. Processing, vol. 18, no. 1,
pp. 34–49, 2010, doi: 10.1109/TASL.2009.2023164.

[9] S. W. Smith, “The Discrete Fourier Transform,” in The Scientist and Engineer’s Guide
to Digital Signal Processing, 1st ed., San Diego, CA, USA: California Technical
Publishing, 1997.

[10] S. W. Smith, “The Fast Fourier Transform,” in The Scientist and Engineer’s Guide to
Digital Signal Processing, 1st ed., San Diego, CA, USA: California Technical
Publishing, 1997.

[11] R. F. Lyon, Human and Machine Hearing: Extracting Meaning from Sound.
Cambridge University Press, 2017.

[12] R. F. Lyon, “Cascades of two-pole–two-zero asymmetric resonators are good models
of peripheral auditory function,” J. Acoust. Soc. Am., vol. 130, no. 6, p. 3893, 2011,
doi: 10.1121/1.3658470.

[13] R. F. Lyon, “Waves in Distributed Systems,” in Human and Machine Hearing:
Extracting Meaning from Sound, Cambridge University Press, 2017, pp. 219–236.

[14] R. F. Lyon, “Resonators,” in Human and Machine Hearing: Extracting Meaning from
Sound, Cambridge University Press, 2017, pp. 145–168.

[15] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC Music Database: Music
Genre Database and Musical Instrument Sound Database,” in Proceedings of the 4th
International Conference on Music Information Retrieval (ISMIR 2003), 2003, pp.
229–230.

[16] X. Wang and B. E. Nelson, “Tradeoffs of designing floating-point division and square
root on Virtex FPGAs,” in 11th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, 2003. FCCM 2003., 2003, doi:

97

10.1109/FPGA.2003.1227255.

[17] P. Malík, “Natural logarithm and division floating-point high throughput co-processor
implemented in FPGA,” in 2016 IEEE Nordic Circuits and Systems Conference
(NORCAS), 2016, pp. 1–6, doi: 10.1109/NORCHIP.2016.7792918.

[18] C. J. Sumner, E. A. Lopez-Poveda, L. P. O’Mard, and R. Meddis, “A Revised Model of
the Inner-Hair Cell and Auditory-Nerve Complex,” J. Acoust. Soc. Am., vol. 111, no. 5,
pp. 2178–2188, 2002, doi: 10.1121/1.1453451.

[19] L. H. Carney, “A model for the responses of low-frequency auditory-nerve fibers in
cat,” J. Acoust. Soc. Am., vol. 93, no. 1, pp. 401–417, 1993, doi: 10.1121/1.405620.

[20] X. Zhang, M. G. Heinz, I. C. Bruce, and L. H. Carney, “A phenomenological model for
the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and
suppression,” J. Acoust. Soc. Am., vol. 109, no. 2, pp. 648–670, 2001, doi:
10.1121/1.1608963.

[21] M. S. A. Zilany and I. C. Bruce, “Modeling auditory-nerve responses for high sound
pressure levels in the normal and impaired auditory periphery,” J. Acoust. Soc. Am.,
vol. 120, no. 3, pp. 1446–1466, 2006, doi: 10.1121/1.2225512.

[22] R. F. Lyon, “The Inner Hair Cell,” in Human and Machine Hearing: Extracting Meaning
from Sound, Cambridge University Press, 2017, pp. 320–330.

[23] S. W. Smith, “Audio Processing,” in The Scientist and Engineer’s Guide to Digital
Signal Processing, 1st ed., San Diego, CA, USA: California Technical Publishing,
1997, pp. 351–372.

[24] M. Yitao and X. Li, “Music and Cochlear Implants,” J. Otol., vol. 8, no. 1, pp. 32–38,
2013, doi: 10.1016/S1672-2930(13)50004-3.

[25] Y. Xu, C. S. Thakur, R. K. Singh, R. Wang, J. Tapson, and A. Van Schaik, “Electronic
Cochlea : CAR-FAC Model on FPGA,” in 2016 IEEE Biomedical Circuits and Systems
Conference (BioCAS), 2016, pp. 564–567, doi: 10.1109/BioCAS.2016.7833857.

[26] Mathworks, “corr2: 2-D correlation coefficient,” 2017.
http://au.mathworks.com.au/help/images/ref/corr2.html (accessed Oct. 15, 2017).

[27] Y. Xu, C. S. Thakur, R. K. Singh, T. J. Hamilton, R. Wang, and A. van Schaik, “A
FPGA Implementation of the CAR-FAC Cochlear Model,” Front. Neurosci., vol. 12, no.
April, pp. 1–14, 2018, doi: 10.3389/fnins.2018.00198.

[28] I. Gambin, I. Grech, O. Casha, E. Gatt, and J. Micallef, “Digital Cochlea Model
Implementation Using Xilinx XC3S500E Spartan-3E FPGA,” in Electronics, Circuits,
and Systems (ICECS), 2010 17th IEEE International Conference on, 2010, pp. 946–
949, doi: 10.1109/ICECS.2010.5724669.

[29] M. P. Leong, C. T. Jin, and P. H. W. Leong, “Parameterized Module Generator for an
FPGA-Based Electronic Cochlea,” in The 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’01), 2001, pp. 21–30.

[30] R. K. Singh, Y. Xu, R. Wang, T. J. Hamilton, S. L. Denham, and A. van Schaik, “CAR-
Lite: A Multi-Rate Cochlear Model on FPGA for Spike-based Sound Encoding,” IEEE
Trans. Circuits Syst. I Regul. Pap., vol. 66, no. 5, pp. 1805–1817, 2019, doi:
10.1109/TCSI.2018.2868247.

[31] S. A. Gelfand, “Acoustics and Sound Measurement,” in Essentials of Audiology, 4th

98

ed., New York, NY, US: Thieme Medical Publishers, 2016, pp. 1–29.

[32] S. A. Gelfand, “Measurement Principles and the Nature of Hearing,” in Essentials of
Audiology, 4th ed., New York, NY, US: Thieme Medical Publishers, 2016, pp. 70–90.

[33] C. J. Plack and A. J. Oxenham, “Overview: The Present and Future of Pitch,” in Pitch:
Neural Coding and Perception, C. J. Plack, A. J. Oxenham, R. R. Fay, and A. N.
Popper, Eds. New York, NY, USA: Springer, New York, NY, 2005, pp. 1–6.

[34] International Electrotechnical Commission, “723-03-11 - Dynamic Range,” 1997.
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=723-03-11 (accessed
Jun. 15, 2020).

[35] N. B. H. Croghan, K. H. Arehart, and J. M. Kates, “Quality and loudness judgments for
music subjected to compression limiting,” J. Acoust. Soc. Am., vol. 132, no. 2, pp.
1177–1188, 2012, doi: 10.1121/1.4730881.

[36] A. Bhatara, A. K. Tirovolas, L. M. Duan, B. Levy, and D. J. Levitin, “Perception of
emotional expression in musical performance,” J. Exp. Psychol. Hum. Percept.
Perform., vol. 37, no. 3, pp. 921–934, 2011, doi: 10.1037/a0021922.

[37] F.-G. Zeng, G. Grant, J. Niparko, J. Galvin, R. Shannon, J. Opie, and P. Segel,
“Speech dynamic range and its effect on cochlear implant performance,” J. Acoust.
Soc. Am., vol. 111, no. 1, pp. 377–386, 2002, doi: 10.1121/1.1423926.

[38] G. Ballou, Handbook for Sound Engineers, 4th ed. MA, USA: Elsevier, 2008.

[39] M. Kirchberger and F. A. Russo, “Dynamic Range Across Music Genres and the
Perception of Dynamic Compression in Hearing-Impaired Listeners,” Trends Hear.,
vol. 20, no. Februrary, pp. 1–16, 2016, doi: 10.1177/2331216516630549.

[40] Analog Devices, “SSM2603: Low Power Audio Codec (Rev. B).” Analog Devices, pp.
1–32, 2012.

[41] Terasic and Altera Corporation, “Cyclone V GX Starter Kit - User Manual.” Terasic,
pp. 1–103, 2014.

[42] H. Fastl and E. Zwicker, “Loudness,” in Psychoacoustics: Facts and Models, 3rd ed.,
Springer-Verlag Berlin Heidelberg, 2007, pp. 203–238.

[43] T. Delbruck, “Introduction,” in Event-Based Neuromorphic Systems, 1st ed., S.-C. Liu,
T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas, Eds. John Wiley & Sons Inc.,
2015, pp. 1–6.

[44] R. M. Wang, C. S. Thakur, and A. van Schaik, “An FPGA-based Massively Parallel
Neuromorphic Cortex Simulator,” Front. Neurosci., vol. 12, no. April, pp. 1–18, 2018,
doi: 10.3389/fnins.2018.00213.

[45] C. J. Sumner, E. A. Lopez-Poveda, L. P. O’Mard, and R. Meddis, “A Revised Model of
the Inner-Hair Cell and Auditory-Nerve Complex,” J. Acoust. Soc. Am., vol. 111, no. 5,
pp. 2178–2188, 2002, doi: 10.1121/1.1453451.

[46] C. D. Geisler, “Coding of Acoustic Signals on the Auditory Nerve,” IEEE Eng. Med.
Biol. Mag., vol. 6, no. 2, pp. 22–28, 1987, doi: 10.1109/MEMB.1987.5006403.

[47] A. Merchan-Perez and M. C. Liberman, “Ultrastructural differences among afferent
synapses on cochlear hair cells: Correlations with spontaneous discharge rate,” J.
Comp. Neurol., vol. 371, no. 2, pp. 208–221, 1996, doi: 10.1002/(SICI)1096-

99

9861(19960722)371:2<208::AID-CNE2>3.3.CO;2-P.

[48] C. M. Liberman, “Single-Neuron Labeling in the Cat Auditory Nerve,” Science (80-.).,
vol. 216, no. 4551, pp. 1239–1241, 1982, [Online]. Available:
http://www.jstor.org/stable/1688751.

[49] R. Meddis, “Simulation of Mechanical to Neural Transduction in the Auditory
Receptor,” J. Acoust. Soc. Am., vol. 79, no. 3, pp. 702–711, 1986, doi:
10.1121/1.393460.

[50] S. W. Smith, “Moving Average Filters,” in The Scientist and Engineer’s Guide to
Digital Signal Processing, 1st ed., San Diego, CA, USA: California Technical
Publishing, 1997, pp. 277–284.

[51] D. Eddins and D. Green, “Temporal integration and temporal resolution,” in Hearing,
B. C. J. Moore, Ed. Elsevier Inc., 1995, pp. 207–242.

[52] R. Meddis, “Auditory-nerve first-spike latency and auditory absolute threshold: A
computer model,” J. Acoust. Soc. Am., vol. 119, no. 1, pp. 406–417, 2006, doi:
10.1121/1.2139628.

[53] R. FitzHugh, “Impulses and Physiological States in Theoretical Models of Nerve
Membrane,” Biophys. J., vol. 1, no. 6, pp. 445–466, 1961, doi: 10.1016/S0006-
3495(61)86902-6.

[54] J. Nagumo, S. Arimoto, and S. Yoshizawa, “An Active Pulse Transmission Line
Simulating Nerve Axon,” Proc. IRE, vol. 50, no. 10, pp. 2061–2070, Oct. 1962, doi:
10.1109/JRPROC.1962.288235.

[55] P. Heil and H. Neubauer, “Temporal integration of sound pressure determines
thresholds of auditory-nerve fibers.,” J. Neurosci., vol. 21, no. 18, pp. 7404–15, 2001,
doi: 21/18/7404 [pii].

[56] H. Mino, “The Effects of Spontaneous Random Activity on Information Transmission
in an Auditory Brain Stem Neuron Model,” Entropy, vol. 16, no. 12, pp. 6654–6666,
2014, doi: 10.3390/e16126654.

[57] E. Schneidman, B. Freedman, and I. Segev, “Ion Channel Stochasticity May Be
Critical in Determining the Reliability and Precision of Spike Timing,” Neural Comput.,
vol. 10, no. 7, pp. 1679–1703, 1998, doi: 10.1162/089976698300017089.

[58] B. J. Richmond, “Stochasticity, spikes and decoding: Sufficiency and utility of order
statistics,” Biol. Cybern., vol. 100, no. 6, pp. 447–457, 2009, doi: 10.1007/s00422-
009-0321-x.

[59] M. C. Liberman, “Auditory‐nerve response from cats raised in a low‐noise chamber,”

J. Acoust. Soc. Am., vol. 63, no. 2, pp. 442–455, 1978, doi: 10.1121/1.381736.

[60] C. J. Sumner, L. P. O’Mard, E. A. Lopez-Poveda, and R. Meddis, “A nonlinear filter-
bank model of the guinea-pig cochlear nerve: Rate responses,” J. Acoust. Soc. Am.,
vol. 113, no. 6, p. 3264, 2003, doi: 10.1121/1.1568946.

[61] M. Müller and D. Robertson, “Relationship between tone burst discharge pattern and
spontaneous firing rate of auditory nerve fibres in the guinea pig,” Hear. Res., vol. 57,
no. 1, pp. 63–70, 1991, doi: 10.1016/0378-5955(91)90075-K.

[62] S. Anstis and S. Saida, “Adaptation to Auditory Streaming of Frequency-Modulated
Tones,” J. Exp. Psychol. Hum. Percept. Perform., vol. 11, no. 3, pp. 257–271, 1985,

100

doi: 10.1037/0096-1523.11.3.257.

[63] X. Zhang, M. G. Heinz, I. C. Bruce, and L. H. Carney, “A Phenomenological Model for
the Responses of Auditory-Nerve Fibers : I . Nonlinear Tuning,” J. Acoust. Soc. Am.,
vol. 109, no. 2, pp. 648–670, 2001, doi: 10.1121/1.1336503.

[64] M. Matsumoto and Y. Kurita, “Twisted GFSR generators,” ACM Trans. Model.
Comput. Simul., vol. 2, no. 3, pp. 179–194, 1992, doi: 10.1145/146382.146383.

[65] J. L. Massey, “Shift-Register Synthesis and BCH Decoding,” IEEE Trans. Inf. Theory,
vol. 15, no. 1, pp. 122–127, 1969, doi: 10.1109/TIT.1969.1054260.

[66] R. Meddis and E. A. Lopez-Poveda, “Auditory Periphery: From Pinna to Auditory
Nerve,” in Computational Models of the Auditory System, R. Meddis, E. A. Lopez-
Poveda, R. R. Fay, and A. N. Popper, Eds. New York, Dordrecht, Heidelberg, London:
Springer, 2010, pp. 7–38.

[67] P. Heil and A. J. Peterson, “Basic response properties of auditory nerve fibers: a
review,” Cell Tissue Res., vol. 361, no. 1, pp. 129–158, 2015, doi: 10.1007/s00441-
015-2177-9.

[68] R. Meddis, “Auditory-nerve first-spike latency and auditory absolute threshold: A
computer model,” J. Acoust. Soc. Am., vol. 119, no. 1, pp. 406–417, 2006, doi:
10.1121/1.2139628.

[69] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Linear Feedback
Shift Register,” in Numerical Recipes: The Art of Scientific Computing, 3rd ed.,
Cambridge, UK: Cambridge University Press, 2007, pp. 380–385.

[70] C. J. Sumner, E. A. Lopez-Poveda, L. P. O’Mard, and R. Meddis, “Adaptation in a
Revised Inner-Hair Cell Model,” J. Acoust. Soc. Am., vol. 113, no. 2, pp. 893–901,
2003, doi: 10.1121/1.1515777.

[71] R. Sarpeshkar, M. W. Baker, C. D. Salthouse, J.-J. Sit, L. Turicchia, and S. M. Zhak,
“An Analog Bionic Ear Processor with Zero-Crossing Detection,” in Solid-State
Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE
International, 2005, pp. 2004–2005, doi: 10.1109/ISSCC.2005.1493877.

[72] J. Lazzaro, J. Wawrzynek, and A. Kramer, “Systems Technologies for Silicon Auditory
Models,” IEEE Micro, vol. 14, no. 3, pp. 7–15, 1994, doi: 10.1109/40.285219.

[73] T. J. Hamilton, C. Jin, A. van Schaik, and J. Tapson, “An Active 2-D Silicon Cochlea,”
IEEE Trans. Biomed. Circuits Syst., vol. 2, no. 1, pp. 30–43, 2008, doi:
10.1109/TBCAS.2008.921602.

[74] S. C. Liu, A. Van Schaik, B. A. Minch, and T. Delbruck, “Asynchronous Binaural
Spatial Audition Sensor With 2x64x4 Channel Output,” IEEE Trans. Biomed. Circuits
Syst., vol. 8, no. 4, pp. 453–464, 2014, doi: 10.1109/TBCAS.2013.2281834.

[75] S. Wang, T. J. Koickal, A. Hamilton, R. Cheung, and L. S. Smith, “A Bio-Realistic
Analog CMOS Cochlea Filter With High Tunability and Ultra-Steep Roll-Off,” IEEE
Trans. Biomed. Circuits Syst., vol. 9, no. 3, pp. 297–311, 2015, doi:
10.1109/TBCAS.2014.2328321.

[76] R. K. Singh, Y. Xu, R. Wang, T. J. Hamilton, S. L. Denham, and A. van Schaik, “CAR-
Lite: A Multi-Rate Cochlea Model on FPGA,” in 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), 2018, pp. 1–5, doi: 10.1109/ISCAS.2018.8351394.

101

[77] M. Meyer, R. R. Fay, and A. N. Popper, “Frequency tuning and intensity coding of
sound in the auditory periphery of the lake sturgeon, Acipenser fulvescens,” J. Exp.
Biol., vol. 213, no. 9, pp. 1567–1578, 2010, doi: 10.1242/jeb.031757.

[78] J. E. Rose, J. E. Hind, D. J. Anderson, and J. F. Brugge, “Some effects of stimulus
intensity on response of auditory nerve fibers in the squirrel monkey.,” J.
Neurophysiol., vol. 34, no. 4, pp. 685–699, 1971, doi: 10.1152/jn.1971.34.4.685.

[79] D. Pressnitzer, R. D. Patterson, and K. Krumbholz, “The lower limit of melodic pitch,”
J. Acoust. Soc. Am., vol. 109, no. 5, pp. 2074–2084, 2001, doi: 10.1121/1.1359797.

[80] D. Y. Chung and F. B. Colavita, “Periodicity pitch perception and its upper frequency
limit in cats,” Percept. Psychophys., vol. 20, no. 6, pp. 433–437, 1976, doi:
10.3758/BF03208278.

[81] O. Macherey and R. P. Carlyon, “Re-examining the upper limit of temporal pitch,” J.
Acoust. Soc. Am., vol. 136, no. 6, pp. 3186–3199, 2014, doi: 10.1121/1.4900917.

[82] R. Meddis, “Matlab Auditory Periphery (MAP) Model Technical Description.” Essex,
pp. 1–32, 2011.

[83] F. G. Zeng, Q.-J. Fu, and R. Morse, “Human hearing enhanced by noise,” Brain Res.,
vol. 869, no. 1–2, pp. 251–255, 2000, doi: 10.1016/S0006-8993(00)02475-6.

[84] R. P. Morse and E. F. Evans, “Additive noise can enhance temporal coding in a
computational model of analogue cochlear implant stimulation,” Hear. Res., vol. 133,
no. 1–2, pp. 107–119, 1999, doi: 10.1016/S0378-5955(99)00062-3.

[85] S. E. Behnam and F. G. Zeng, “Noise improves suprathreshold discrimination in
cochlear-implant listeners,” Hear. Res., vol. 186, no. 1–2, pp. 91–93, 2003, doi:
10.1016/S0378-5955(03)00307-1.

102

4. Auditory Pitch Model: Autocorrelogram Generation

 (In memory of Ray Meddis)

This chapter presents a novel algorithm for calculating an autocorrelogram, which

contains pitch information. The next section presents the motivation behind this novel

algorithm. After that, details of the conventional algorithm and the novel algorithm for

calculating an autocorrelogram are presented. The novel algorithm is applied to an auditory

pitch model, and the resulting autocorrelograms are compared to autocorrelograms

generated from the conventional algorithm to understand the degree of similarity between

them. Two FPGA implementations of the model are presented – one with the conventional

algorithm and the other with the novel algorithm. Their results are compared to indicate the

benefits of the hardware implementation of operating the new algorithm over the

conventional one. Additionally, the hardware responses of the model fitted with the novel

algorithm are used to explain several auditory pitch phenomena.

4.1. Motivation

The workings of the bipolar cells in the vision pathway inspire the novelty of generating

autocorrelogram for the pitch perception model presented in this chapter. The bipolar cells

transmit neural images from the retina to the cortical regions of vision through ON and OFF

events when there is a change in the field of view [1]. This binary event served as an

inspiration for the development of event-based silicon retina such as the dynamic vision

sensor (DVS) camera [2] and the asynchronous time-based image sensor (ATIS) camera

[3], [4].

Out of the three auditory pitch models reviewed in chapter 2, Meddis physiological

model of virtual pitch has been implemented on a field-programmable gate array (FPGA),

which is a configurable digital electronics hardware platform – Lim et al. [5] and Jones et al.

[6] used binary ON and OFF events to represent chopper neuron firing responses in the

ventral cochlear nucleus (VCN) in FPGA. From the VCN module, the spikes are sent to an

inferior colliculus (ICC) module housing coincidence neurons that sum up the number of

spikes (ON events) and compare the summed value to a threshold using a comparator

circuit. A coincidence neuron behaves identically in spiking operation to the chopper neurons

and outputs an ON event via a spike when the sum of input spikes value crosses a

threshold. Otherwise, the coincidence neuron outputs an OFF event (no spike). This binary

property can be applied to the auditory nerve (AN) signal since the distribution of the time

intervals between successive output spikes in the auditory nerve contributes to the pitch

periodicity of the input sound signal [7].

Alternatively, an analogue very-large-scale-integrated (VLSI) chip implementation of the

VCN-ICC model has been implemented by van Schaik and Meddis [8], [9]. van Schaik

improved his VLSI design by incorporating a simple 2-input logical-AND gate to model

coincidence detector neuron, using ON and OFF responses to extract periodicities between

two successive spikes [10]. Using the binary ON and OFF events such as those used by Lim

et al., Jones et al. and van Schaik et al. as well the utilisation of 2-input logical-AND gates

from van Schaik et al., I will show in this chapter that the autocorrelograms generated from

the model reviewed in chapter 2 are capable of using fewer computational resources on

FPGA than the conventional means of computing these autocorrelograms. For estimating

pitch information from these autocorrelograms, the reader is advised to refer to chapter 6.

103

In the next section, the algorithm is presented. The algorithm is then applied to CAR-

Lite-ACF model presented in section 4.4. Within this section, FPGA implementations are

presented with conventional mathematical operations as well as with the novel algorithm for

comparison.

4.2. Algorithm Characteristics

The critical ingredient in calculating an autocorrelogram using either the conventional

method or the novel method is the type of input signal. As presented in chapter 2, auditory

pitch models using the autocorrelation function (ACF) model rely on low-pass filtered inner

hair cell (IHC) signals from a cochlear model as their input. Hence, the input signal is made

up of real-valued numbers. From a computational perspective, each point in the correlation

matrix calculation requires the usage of an arithmetic logic unit (ALU) found in a central

processing unit (CPU). The total number of points in an autocorrelogram, (the output

correlation matrix), is dependent on the number of cochlear sections as well as the temporal

window lag size.

Let us consider the dimensions of the cochlear model (CAR-Lite) described in chapter 3

for use with an ACF model to be described in a later section of this chapter. For this cochlear

model, there are 108 sections. Assuming a temporal lag size of 2,048, an autocorrelogram

generated from the output of these 108 sections contains 221,184 (108 × 2,048) values, as

observed in Figure 4-2. From a computational perspective, the multiplier of the ALU has to

be invoked as many as 221,184 times at the onset of every 2,048 input sample. In real-time

operation, this may block the processing of other functions that rely on the multiplier.

An alternative is to use more CPU cores containing multiple ALUs at higher clock

speeds that can operate in parallel. However, this would come at a high cost of

computational redundancy and increased power consumption.

Furthermore, CPU usage for autocorrelogram generation in real-time requires an

understanding of the operating system (OS). The manner the OS divides software

applications into multiple computational segments called threads to be processed on

available CPU in a round-robin, and priority-based format also requires understanding, i.e.

high-priority threads are serviced more frequently than low-priority threads [12]. This notion

increases the complexity of implementing real-time autocorrelogram generation. Alternative

platforms such as embedded systems consisting of affordable small to medium-sized

microcontrollers usually do not possess sufficient CPUs, clock speed as well as high-speed

data transmission medium to handle the calculation mentioned in the preceding paragraph.

Although large and costlier microcontrollers may be capable of handling the calculations,

CPU accesses are done through a real-time OS, which adds to development complexity and

leads to higher power consumption than small- and medium-sized microcontrollers [13].

To reduce computational resources for generating an autocorrelogram, I propose to use

binary spike trains generated from the auditory nerve as input to the ACF model instead of

real-valued inner hair cell (IHC) signal. The binary spikes generated are pulses, and each

binary spike has two states: ON and OFF. Hence, with binary spikes, only a single bit is

required to represent an input signal to generate an autocorrelogram as opposed to an 𝑛 bit

real-valued IHC signal. This approach obviates the need for a conventional CPU as there is

only be a single bit active. A resource-efficient method to calculate an autocorrelogram from

binary spikes is to develop a customised CPU made up of a small number of logic gates with

104

a straightforward configuration. This form of processing can be implemented on an FPGA. A

disadvantage with an autocorrelogram generated from binary spikes is that low amplitude

sound information is lost, which may correspond to information from other sound sources.

Here, low amplitude sound refers to magnitudes of sound lower than the salient or

noticeable sound that is usually captured in an autocorrelogram generated using real-valued

IHC signal. Despite the loss of information, the autocorrelogram still captures sufficient

salient pitch information, as observed in this chapter as well as chapter 6.

An autocorrelogram generated from an ACF model [14], [15] uses multiply-and

accumulate (MAC) operations iteratively:

𝑟𝑔(𝑠, 𝑡, 𝜏) = ∑ 𝑔(𝑠, 𝑡)

𝑁−𝜏

𝜏=0

∙ 𝑔(𝑠, 𝑡 − 𝜏) (4-1)

where 𝜏 is a lag corresponding to the time-delayed shift of 𝑔 representing an IHC sample

output from a cochlear section, 𝑠, at time, 𝑡; 𝑁 is a upper limit where 𝜏 is capped.

In equation (4-1), an input sample, 𝑔, is a base-10 number; the dot operator represents

multiplication. For m bit 𝑔 values, the product between two 𝑔 values results in a 2m bit

number. This number is then normalised to m bits by dividing the 2m bit number by 2𝑚. After

that, the bit-width of an output sample in 𝑟𝑔 is calculated as log2(𝑁 ∙ 2𝑚). As an example, if

the values of 𝑔 are 16 bit numbers, then each multiplication results in a 32 bit number. This

32 bit output sample is normalised to a 16 bit output sample, by dividing the 32 bit number

with 216, as illustrated in Figure 4-1(a). Then, summing up 𝑀 and 𝑁 number of 16 bit values

would result in log2(𝑁 ∙ 216) bits to represent an output sample in 𝑟𝑔. For 𝑁 with a length of

2,048, an output sample in 𝑟𝑔 is representable by at least 27 bits.

Using binary spike trains as inputs, equation (4-1) can be modified to use only logical-

AND and accumulate operations (AAC) in the following respective forms:

𝑟𝑏(𝑠, 𝑡, 𝜏) = ∑ 𝑏(𝑠, 𝑡)

𝑁−𝜏

𝜏=0

^𝑏(𝑠, 𝑡 − 𝜏) (4-2)

where 𝑏 is a single bit binary number; ^ represents a logical-AND operation. Each AND

operation results in a single bit output as opposed to the 2m bit number required using

equation (4-1) as illustrated in Figure 4-1(b). Moreover, no normalisation is required. The bit-

width of an output sample in 𝑟𝑏, is now log2(𝑁 ∙ 2) instead of log2(𝑁 ∙ 2𝑚). Note that the

former equation is calculated from the latter equation with 𝑚 = 1 representing 1 bit. Hence,

for 𝑁 with a length of 2,048, an output sample in 𝑟𝑏 is 12 bits. This exercise reduces memory

utilisation based on a point value on an autocorrelogram by as much as 2.2 times, i.e. 27 bits

/ 12 bits. Despite the memory utilisation reduction, the use of low bit widths indicates a loss

in precision, which, in turn, means the possible loss of pitch information.

105

Figure 4-1: Bit width differences of elements in coincidence matrices calculated from (a) multiplication operation

(red dot) using 16 bits IHC input and (b) logical-AND operation (green dot) using 1 bit AN input.

On FPGA (specifically the Altera Cyclone V 5CGXFC5C6F27C7N chip), the number of

computational resources such as multipliers and combinational logic circuits (known

alternatively as adaptive logic modules or ALMs) is limited. In terms of quantity (Qty),

multipliers (Qty: 450) are a scarcer commodity than the ALMs (Qty: 29,080) [16]. There are

three types of multipliers on board the FPGA: firm, soft, and combined. Firm multipliers use

dedicated DSP circuit blocks numbering 150 in total, whereas soft multipliers use look-up

tables (LUT) in configurable ALMs numbering 300 in total. Combination multipliers use a mix

of DSP and ALM circuits numbering 450 in total. Even with 450 multipliers in total, it is

insufficient to accommodate the parallel calculation of all the points in an autocorrelogram

matrix comprising 221,184 multiplications. Instead, the multipliers would be time-multiplexed

- the use of the multipliers is broken down over time to service all the multiplication

operations, thereby reducing the need for a high number of parallel multiplier circuits. In

contrast, the use of equation (4-2) to generate an autocorrelogram matrix enables logical-

AND gates utilisation without using any computationally expensive and sophisticated

multiplier circuits.

The advantages of the AAC operations algorithm defined by equation (4-2) over the

conventional MAC operations algorithm defined by equation (4-1) are the computation,

power and resource costs. The cost of the first three CPU processors mentioned in Table

4-1(a) increases with increasing CPU cores. The number of CPU cores indicates the number

of multiplier circuits used as part of an ALU circuit. So, to accommodate the computations of

the proposed auditory pitch model, a large-sized CPU core may be needed. Alternatively, a

medium-sized CPU is usable by operating the CPU chip at a high global clock speed along

with a real-time operating system to slice the multiply-accumulate (MAC) operations into

smaller manageable operations that can be serviced by a CPU quickly over multiple global

clock pulses instead of one. This task is known as a pipeline operation [13]. Nonetheless,

the cost of the MAC-based CPU chips outweighs the cost of logical-AND chips observed in

Table 4-1(b) as well as FPGA chips projected in Table 4-1(c) that possess reconfigurable

digital logical elements and digital signal processors (DSP) equipped for both AAC-based

and MAC-based operations. Hence, it is certainly cost-effective to utilise the novel AAC-

based algorithm for real-time implementation over the conventional MAC-based algorithm.

106

(a) Processor Clock
Speed (Hz)

Number of
MAC

operations

Power
Consumption

(W)

Number of
DSP CPU

Cores

Chip
Size
(mm)

Cost
(US $)

TMS320C5545 [17] 150 × 106 400 × 106 150 × 10-3 1 7 × 7 2.76

ADAU1467 [18] 295 × 106 1.2 × 109 69 × 10-3 1 12 × 12 8.78

66AK2H14 [19] 1.2 × 109 307.2 x 109 10.2 to 16 8 40 × 40 661.26

(b) Logical-AND Clock
Speed (Hz)

Number of
MAC

operations

Power
Consumption

(W)

Number of
AND gates

Chip
Size
(mm)

Cost
(US $)

SN74AUP1G08 [20] - - 3 × 10-6 1 2.5 × 2.3 0.08

SN74AUC08 [21] - - 27 × 10-6 4 4 × 4 0.26

(c) FPGA Series Clock
Speed (Hz)

Number of
Logic

Elements

Number of
Adaptive

Logic
Modules

Number
of I/O
pins

Cost
(US $)

5CEBA2U15C8N [22] Cyclone V 550 25 × 103 9,434 176 39.53

5CGXFC7D7F31C8N
[23]

Cyclone V 550 149 × 103 56,480 480 249.95

Table 4-1: Survey of computational resources for using (a) MAC-based computational processors, (b) logical-

AND chips, and (c) a combination of MAC-based and AAC-based FPGA chips.

4.3. General Model Characteristics

The pitch model described in section 4.4 uses the output signals from the CAR-Lite

model described in chapter 3 as their input. Based on the mathematical operation used in

the pitch model, the input signal used is either the inner hair cell (IHC) or the auditory nerve

(AN) signal. The IHC signal is described in section 3.2, while the AN signal is generated

using leaky-integrate-and-fire (LIF) neuron, similar to the one described in subsection 3.3.2:

 𝑣𝐿𝐼𝐹(𝑠, 𝑡) = 𝑣𝐿𝐼𝐹(𝑠, 𝑡 − 1) + 𝑐𝐿𝐼𝐹(𝐼𝐻𝐶(𝑠, 𝑡) − 𝑣𝐿𝐼𝐹(𝑠, 𝑡 − 1)) (4-3)

𝐴𝑁(𝑠, 𝑡) = {

1, 𝑣𝐿𝐼𝐹(𝑠, 𝑡) > 𝑡ℎ𝑟𝑒𝑠ℎ

0, 𝑣𝐿𝐼𝐹(𝑠, 𝑡) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ
 (4-4)

where 𝑣𝐿𝐼𝐹 is an internal state voltage, which is reset to 0 after the AN associated with it fires

a spike; 𝑐𝐿𝐼𝐹 is a low-pass coefficient; 𝑡ℎ𝑟𝑒𝑠ℎ is the firing threshold of a LIF neuron for

section 𝑠, at time 𝑡.

In the CAR-Lite-SI model described in subsection 3.3.2 of chapter 3, the AN signal is

resampled to a standard sampling rate of 3 kHz to ensure spike rates remained under 1,000

spikes per second. In the case of autocorrelogram generation for calculating pitch in this

dissertation, this AN resampling is removed, thus, preserving the multiple sampling rates

used by the different octaves in CAR-Lite, which enables an autocorrelogram to capture a

broad pitch range. Additionally, spontaneous spike generation in the form of pseudorandom

binary noise, and LIF neuron refractoriness are not implemented for the model in this

chapter as the objective is to know the minimum computing mechanism required to generate

an autocorrelogram on an FPGA.

When the CAR-Lite-ACF model uses the IHC signal as its input, its respective

autocorrelogram output is calculated using MAC operations. When the model uses the AN

signal as its input, its autocorrelogram output is calculated using AAC operations. The MAC-

based model is designed first, in floating-point arithmetic in Matlab. This is regarded as the

software implementation and is used as a benchmark for the design of the AAC-based

107

model, specifically in the determination of the firing threshold voltages of the leaky-integrate-

and-fire (LIF) neurons. From the floating-point model, the fixed-point version is implemented

in Matlab, which is regarded as the hardware implementation as it is designed to be

implementable on an FPGA. From here, they are implemented on an Altera Cyclone V GX

starter kit with a 5CGXFC5C6F27C7 FPGA chip via SystemVerilog using the Altera Quartus

software application. SystemVerilog is used over Verilog and VHDL because it is a versatile

hardware descriptive language that combines the properties of Verilog in terms of enabling

quick C-style writeups of the model as well as the properties of VHDL in terms of early error

detection during model design [24].

As far as the bit widths are concerned for the hardware model, each element in a MAC-

based coincidence matrix (the matrix that holds real-valued numbers calculated from the

product of two real-values before summation) is set at 16 bits – the same bit width as the

inner hair cell (IHC) signal. For the AAC-based coincidence matrix (the matrix that holds only

binary numbers, where each binary number is the result of the logical-AND operation

between two binary numbers representing binary spikes), this bit width is set at 1 bit per

matrix element. To ensure sufficient bits to represent the result of accumulation, each

element in either MAC-generated or AAC-generated autocorrelogram is 32 bits wide. All

other bit widths and variable settings of the CAR-Lite-ACF model used in section 4.4 are

summarised in Table 4-2.

Index Description Variable Setting

1 Sampling rate, fs, of cochlear octave on, i.e. 9

sampling rates across 9 octaves.

fs - o1 to

fs – o9

96 kHz to 375 Hz (in division of 2 starting
from 96 kHz).

2 108 centre frequency, fc, for 108

logarithmically-spaced cochlear sections.

fc 50 Hz (section 108) to 24 kHz (section 1).

3 CAR filter coefficient bit width. a, c, h, r 8 bits per coefficient.

4 Basilar membrane (BM) signal bit width
(CAR filter output).

BM 16 bits per sample.

5 BM velocity signal bit width. BMd 16 bits per sample.

6 Inner hair cell (IHC) bit width. IHC 16 bits per sample.

7 Point sample bit width on a MAC-based
coincidence matrix – each sample is the
output of a multiplication operation only.

Cij 16 bits per sample.

8 Intermediate variable bit width holding
multiplication results between two 16 bit
numbers.

yint 32 bits

9 Point sample bit width on an
autocorrelogram from both MAC- and AAC-
based implementations.

Gij or rg 32 bits per sample.

10 LIF neuron voltage coefficient for AAC-based
CAR-Lite-ACF model.

cLIF fc (1)/ fs - o1 = 24 kHz / 96 kHz = 0.25

11 LIF neuron voltage coefficient bit width. cLIF 16 bits

12 LIF neuron voltage firing threshold (CAR-
Lite-ACF).

vLIF-fire 0.27 V

13 LIF neuron firing threshold bit width. vLIF-fire 16 bits

14 Auditory nerve (AN) or LIF neuron output
signal bit width.

AN 1 bit

15 Autocorrelation lag window size. Τ 2,048 samples covering up to 50 Hz.

16 FPGA system clock speed. fFPGA-sys 250 MHz

17 FPGA audio codec speed. fFPGA-aud 96 kHz

Table 4-2: Settings of the CAR-Lite-ACF model implemented on software (via Matlab) and hardware (FPGA via
SystemVerilog).

108

4.4. CAR-Lite-ACF Model

This model determines periodicity pitch with temporal cues output from an auditory

model. It does this in three stages, using a cochlear model, cochlear section-by-section

autocorrelation for periodicity detection, and cross-section integration of the resulting

autocorrelation output to generate temporal periodicity profiles, also known as the summary

autocorrelation function (ACF) [14]. Figure 4-2 illustrates a diagram of the model operating

using AAC operations. For MAC operations, the input to the autocorrelation stage is the half-

wave rectified inner hair cell (IHC) signal instead of the auditory nerve (AN) spikes.

The multiple sampling rates of the CAR-Lite stage are maintained here. Ideally, this

indicates that the number of output samples reduces by a factor of 2 per octave. Thus, the

lengths of the output signals for every octave differ. However, to analyse the cochleagram

across all octaves, the output signals are padded with previously computed output samples

at the reduction factor of the octaves. This action enables the lengths of all octaves to be the

same, as was demonstrated in chapter 3. Hence, the highest sampling rate of octave 1 is the

global sampling rate across all octaves, and the multiple sampling rates are deemed as the

sampling rates local to the octaves. In this case, the input and output of the ACF stage are

also governed by this global sampling rate.

109

Figure 4-2: (a) The CAR-Lite-ACF model for pitch extraction from temporal cues in the sound signal. (b) A view of
the periodicity detection algorithm, resulting in a 2D autocorrelogram matrix (orange) generated using either MAC
or AAC operation and the cross-section summation (green), resulting in a 1D temporal profile containing pitch

information. The LIF neurons binarize the inner hair cell (IHC) inputs from the CAR-Lite cochlear model.

For the AAC-based model, the firing threshold of the leaky-integrate-and-fire (LIF)

neuron emulating the auditory nerve stage corresponds to the maximum of a correlation

coefficient [calculated from equation (4-9)] between a benchmark floating-point MAC-based

autocorrelogram and fixed-point AAC-based autocorrelograms. The latter autocorrelograms

are calculated from a linear distribution of firing thresholds from 0.23 V to 0.31 V in 0.01 V

intervals. This range is selected as it yields high correlation coefficients above 0.96. The

selected firing threshold is 0.27 V from the correlation coefficient in Figure 4-3 with a

complex tone used as the input signal. This firing threshold is used to ensure that all AAC-

110

based autocorrelograms in this dissertation resemble MAC-based autocorrelograms as

closely as possible. The same stimulus is used to indicate the similarity in responses of the

floating-point and fixed-point implementations, as illustrated in subsection 4.4.2. Subsection

4.4.3 showcases the capability of the hardware AAC-based model to explain missing

fundamental frequency phenomenon, and subsection 4.4.4 uses the same model to explain

the phenomenon of harmonics phase change effect on pitch.

Figure 4-3: LIF neuron firing threshold determined with high confidence from the maximum correlation coefficient
calculated in the comparison between MAC-based and AAC-based autocorrelograms.

4.4.1. FPGA Implementation

The Altera Cyclone V FPGA is used for the implementation of the CAR-Lite-ACF model

in this subsection. The model settings are presented in Table 4-2 with the FPGA system clock

and audio clock rates set at 250 MHz and 96 kHz, respectively.

This section is further segmented into two subsections. Subsection 4.4.1.1 describes the

CAR-Lite-ACF model implemented on FPGA using MAC operations. Subsection 4.4.1.2

describes the same model implemented on FPGA using AAC operations.

4.4.1.1. CAR-Lite-ACF model using MAC operations

Figure 4-4 illustrates the CAR-Lite-ACF model implemented with multiply-accumulate

(MAC) operations. There are three modules implemented in SystemVerilog: supervisor, BM-

IHC, and ACF modules. The supervisor module manages the overall operation, while the

BM-IHC module generates the 2D time-frequency signal as input to the ACF module for

generating an autocorrelogram. In this case, as the ACF module here relies specifically on

the inner hair cell (IHC) signal as its input, the calculation of the auditory nerve signal is

omitted from the BM-IHC module.

The supervisor module monitors the acquisition of input audio data sample from an

audio buffer and oversees the data transfer to and from the BM-IHC and ACF modules. The

BM-IHC module hosts the equations that characterise the CAR-Lite cochlear model, while

the ACF module contains the autocorrelation function (ACF) equations using MAC

operations. The latency of the BM-IHC module is 64 ns (16 states × 1/250 MHz)

111

corresponding to one cochlear section and 6.91 µs for 108 cochlear sections. The latency of

the ACF module is 8.21 µs ({2 iterative states × 2,048 delay samples / 2 parallel multiply,

right-shift, and accumulate (MRSAC) operations + 4 non-iterative states} × 1/250 MHz) for

calculating 2,048 samples in the delay vector per cochlear section. For 108 cochlear

sections, the ACF module is instantiated 108 times, and so, the latency of this parallel

invocation is equivalent to invoking the ACF module once. Overall, the latencies of the BM-

IHC and ACF modules are each below 2,604 system clock cycles (based on 250 MHz) or

10.41 µs, which is the duration between the arrival of two sequential input samples (based

on 96 kHz audio sampling rate).

The ACF module is instantiated 108 times, which means that the circuit defining the

characteristics of the ACF operation is cloned 108 times – one cochlear section output

sample to one ACF module. In other words, when the BM-IHC module outputs an IHC output

sample of a specific cochlear section, its dedicated ACF module is activated to run as seen

in Figure 4-5. An alternative solution is to time-multiplex a single ACF module to process all

the cochlear sections in a pipelined manner. However, this manner of processing is not ideal

as the ACF module is required to perform 221,184 (108 cochlear sections × 2,048 lag

samples) multiply, right-shift, and accumulate (MRSAC) operations for every input sample

acquired from the audio codec. Since the FPGA system clock is 250 MHz, there are only

2,604 clock cycles available between the arrivals of two adjacent input sound samples. This

number is translatable as the maximum number of clock cycles available to finish 221,184

MRSAC operations. So, pipelining the MRSAC operations clearly cannot be accommodated

unless either the system clock rate increases or each cochlear section is addressed by its

own dedicated ACF module, i.e. ACF modules operating in parallel. Doing the former would

mean unpredictable real-time operation due to timing latency irregularities, while the latter

would provide a more meaningful result with 2,048 MRSAC operations for each cochlear

section that can be processed within 2,604 clock cycles.

112

Figure 4-4: Architecture of the CAR-Lite-ACF model with fixed-point arithmetic implemented on an FPGA with
MAC operations on inner hair cell (IHC) input signals. FSM: Finite state machine.

113

Figure 4-5: FPGA output vector waveforms of the supervisor, BM-IHC, and ACF modules operating at (a) the
arrival of an audio sample; (b) the activation of each of 108 parallel ACF module at the arrival of an IHC sample
from a specific cochlear section corresponding to the audio sample e.g. when the BM-IHC outputs an IHC sample
for cochlear section 1, the dedicated ACF module for cochlear section 1 is activated; the same operation applies
for the other 107 cochlear sections.

To generate a 108-section-by-2,048-sample autocorrelogram, up to 221,184 samples

should be available before processing commences. However, waiting on 221,184 samples to

arrive before commencing processing would mean that the digital signal processors (DSPs)

assigned to calculate the autocorrelogram would be inactive until all the input samples are

acquired. A more efficient approach is to distribute the computation evenly when an input

sample arrives instead of waiting for a block of samples. With the block-based operation,

even after the entire 221,184 input samples are received, computational resources have to

be allocated either by the increase in FPGA system clock rate or a higher than usual number

114

of parallel DSPs to ensure that the autocorrelogram is available at the shortest possible time.

Otherwise, a noticeable lag is observable when a sound signal is played and when its

corresponding autocorrelogram is projected. Processing one sample at a time means that

this lag is minimised to become unnoticeable [13].

The ACF module utilises a five-state finite state machine (FSM) to perform per sample

computation comprising Idle, ACF_VS, MRSAC, ACF_DU, and Done. At the Idle state, when

an input sample arrives, it is stored in xn, where n signifies the cochlear section number. The

next state is the vector shift (ACF_VS) state, where the 2,048 samples in the lag window

vector are shifted down. Hence, all the values in 2,048 memory locations move one address

downward, i.e. the oldest sample at memory address 2,047 is displaced by the second

oldest value from memory address 2,046; input sample at address 2,045 moves to address

2,046, etc. The newly acquired input sample is stored at memory address 0. Following the

vector shift is the MRSAC state, where the multiply, right-shift, and accumulate operations

are nested to allow DSP to calculate all three operations within a single clock cycle. Here,

multiplication is done for the input sample, x(t), and x(t) delayed by d samples from the lag

window vector, x_(d). Two parallel MRSAC operations are implemented at this state to

ensure that the latency of calculating 2,048 samples in the delay vector remains below 2,604

clock cycles (10.41 µs). Following a set of MRSAC operation, d is incremented to point to the

next delayed sample in the lag window in the delay-index update (ACF_DU) state. After this,

the FSM enters the MRSAC state again to calculate the next set of lag calculation. When the

MRSAC state processes all 2,048 of the delay samples, the FSM concludes by traversing to

the Done state, where an octave-based counter is incremented.

As the cochlear octaves operate at different sampling rates, some input sound samples

are dropped for cochlear octaves beyond octave 1 in the BM-IHC module. This characteristic

means that the old input samples to the ACF modules for these octaves are retained when

the input sound sample at their corresponding cochlear section is bypassed. An octave-

based counter is used to track this retention of input samples to the ACF module in the Store

state. After a lag window of 2,048 samples has been processed, the octave-based counter is

incremented and checked against an octave-based threshold. A lower count than the

octave-based threshold means that there are no input samples to be expected, and the

same input sample is used to calculate the next ACF output vector. From the Store state, the

FSM progresses to the ACF_VS state, where the contents of the lag window vector are

shifted downward, and the topmost element in the vector is updated by the same input

sample that has been retained. For cochlear sections in the first octave, the input samples

are the new ones passed down by the BM-IHC module via the supervisor module.

Figure 4-6 illustrates an example of the ACF calculation for an eight-sample delay

window vector across three cochlear sections: 0, 12, and 24 adhering to equation (4-1).

These three cochlear sections are the first section from octaves 1 to 3. Hence, their

sampling rates are 1, ½, and ¼ of the sampling rate of octave 1. In other words, the new

input samples for octaves 2 and 3 are available at the third, and fifth clock cycles of the

sampling rate of octave 1. This characteristic is indicated by the delay window vector

represented by the coloured columns in groups of 1, 2, and 4 that are labelled as x_a, x_b,

and x_c, respectively in Figure 4-6. Every input sample received is stored at the top of delay

window vectors, i.e. xa_0, xb_0, and xc_0 corresponding to inputs x0, x1, and x2. But before

this takes place, the contents of the vectors are shifted downward by one sample. The

contents of the input sample xn is multiplied with every element of the delay vector (indicated

115

by the blue horizontal lines), and the corresponding results are accumulated over time

(indicated by the red vertical lines) to project the autocorrelation output vector, y. Note that a

16 bit right-shift operation is implemented immediately after a multiplication operation to

maintain an output bit width of 16 bits.

The SystemVerilog simulation of the example in Figure 4-6 is shown in Figure 4-7. The

input samples x0, x12, and x24 are shown along with the eight-column outputs of y0_0, y12_0,

and y24_0 that are colour-coded identically to the columns of Figure 4-6. The ACF module is

instantiated three times, which indicates parallel processing to generate the three output

vectors simultaneously. The results of the parallel processing is observable from 20 ns to

140 ns, where the output samples of y0_0, y12_0, and y24_0 become available

simultaneously.

116

(a) t

x0 256 257 258 259 260 261 262 263 ∑(x0(t) ∙ xa(t,d) / 216) = y0

xa_0 256 257 258 259 260 261 262 263 1 2 3 4 5 6 7 8 y0_0

xa_1 0 256 257 258 259 260 261 262 0 1 2 3 4 5 6 7 y0_1

xa_2 0 0 256 257 258 259 260 261 0 0 1 2 3 4 5 6 y0_2

xa_3 0 0 0 256 257 258 259 260 0 0 0 1 2 3 4 5 y0_3

xa_4 0 0 0 0 256 257 258 259 0 0 0 0 1 2 3 4 y0_4

xa_5 0 0 0 0 0 256 257 258 0 0 0 0 0 1 2 3 y0_5

xa_6 0 0 0 0 0 0 256 257 0 0 0 0 0 0 1 2 y0_6

xa_7 0 0 0 0 0 0 0 256 0 0 0 0 0 0 0 1 y0_7

- Multiply: (x0(t) ∙ xa(t,d) / 216); | Accumulate: ∑ (x0(t) ∙ xa(t,d) / 216).

(b) t

x12 512 512 513 513 514 514 515 515 ∑(x12(t) ∙ xb(t,d) / 216) = y12

xb_0 512 512 513 513 514 514 515 515 4 8 12 16 20 24 28 32 y12_0

xb_1 0 512 512 513 513 514 514 515 0 4 8 12 16 20 24 28 y12_1

xb_2 0 0 512 512 513 513 514 514 0 0 4 8 12 16 20 24 y12_2

xb_3 0 0 0 512 512 513 513 514 0 0 0 4 8 12 16 20 y12_3

xb_4 0 0 0 0 512 512 513 513 0 0 0 0 4 8 12 16 y12_4

xb_5 0 0 0 0 0 512 512 513 0 0 0 0 0 4 8 12 y12_5

xb_6 0 0 0 0 0 0 512 512 0 0 0 0 0 0 4 8 y12_6

xb_7 0 0 0 0 0 0 0 512 0 0 0 0 0 0 0 4 y12_7

- Multiply: (x12(t) ∙ xb(t,d) / 216); | Accumulate: ∑ (x12(t) ∙ xb(t,d) / 216).

(c) t

x24 1024 1024 1024 1024 1025 1025 1025 1025 ∑(x24(t) ∙ xc(t,d) / 216) = y24

xc_0 1024 1024 1024 1024 1025 1025 1025 1025 16 32 48 64 80 96 112 128 y24_0

xc_1 0 1024 1024 1024 1024 1025 1025 1025 0 16 32 48 64 80 96 112 y24_1

xc_2 0 0 1024 1024 1024 1024 1025 1025 0 0 16 32 48 64 80 96 y24_2

xc_3 0 0 0 1024 1024 1024 1024 1025 0 0 0 16 32 48 64 80 y24_3

xc_4 0 0 0 0 1024 1024 1024 1024 0 0 0 0 16 32 48 64 y24_4

xc_5 0 0 0 0 0 1024 1024 1024 0 0 0 0 0 16 32 48 y24_5

xc_6 0 0 0 0 0 0 1024 1024 0 0 0 0 0 0 16 32 y24_6

xc_7 0 0 0 0 0 0 0 1024 0 0 0 0 0 0 0 16 y24_7

- Multiply: (x24(t) ∙ xc(t,d) / 216); | Accumulate: ∑ (x24(t) ∙ xc(t,d) / 216).

Figure 4-6: Simulation of a MAC-based ACF algorithm with each table showing ACF results of an input signal, xn,
where n represents cochlear sections (a) 0, (b) 12, and (c) 24. xa_d, xb_d, and xc_d are the block memory
allocated based on the ACF window lag size, d (set as 8 in this demonstration but as 2,048 in CAR-Lite-ACF).
yn_d is the accumulated output at various discrete-time and for various lag sizes.

117

Figure 4-7: SystemVerilog simulation of a MAC-based multi-octave autocorrelation function (ACF) corresponding
to the example illustrated in Figure 4-6 (row ending numbers in red font).

4.4.1.2. CAR-Lite-ACF model using AAC operations

The architecture of the CAR-Lite-ACF model implemented with AND-accumulate (AAC)

operations is illustrated in Figure 4-8. It is similar to the MAC-based CAR-Lite-ACF model

described in section 4.4.1.1 and has three modules: supervisor, BM-IHC-AN, and ACF.

However, in this case, the ACF module has auditory nerve (AN) signals as its inputs that are

generated in the BM-IHC-AN module with leaky-integrate-and-fire (LIF) neurons. The LIF

neuron algorithm is the new addition to the BM-IHC module from the MAC implementation,

and thus, its title for the AAC implementation is updated to reflect this: BM-IHC-AN.

The LIF neuron algorithm is similar to its implementation in the CAR-Lite-SI model in

chapter 3 with three differences. Firstly, the refractory period is excluded from the LIF neuron

spiking as it degrades the degree of similarity between AN spike and IHC signals, as

demonstrated in subsection 3.3.7. Secondly, the multiple sampling rates from the CAR-Lite

model is also maintained in the LIF neurons across all octaves, unlike the single sampling

rate of 3 kHz in the CAR-Lite-SI model. This allows a large range of fundamental frequencies

to be representable in an autocorrelogram, especially with regards to the musical notes used

in chapter 6. Thirdly, only a single auditory nerve (AN) fibre firing threshold is implemented

as a 16-bit value, as shown in Table 4-2, instead of three-fibre implementation as described

by the CAR-Lite-SI model in chapter 3. The bit width of each AN signal corresponding to a

cochlear section is 1-bit. So, for all 108 cochlear sections, only 108-bits are required as

opposed to 1,728-bits (16-bits × 108 cochlear sections) for the MAC implementation.

The supervisor module acquires AN signal from a cochlear section originating from the

BM-IHC-AN module before invoking the ACF module for the specific cochlear section, as

seen in Figure 4-9(b). For cochlear sections that are not processed due to the different

sampling rates across the cochlear octaves, previously latched BM, BMd, IHC and AN data

samples are reused.

The BM-IHC-AN module has latencies of 84 ns for 21 states corresponding to one

cochlear section invocation and 9.07 µs for 108 invocations corresponding to 108 cochlear

118

sections. Here the multiplication and right-shift operation in the ACF equation is replaced

with the logical-AND operation. The latency of the ACF module is identical to the MAC-

based operation described in section 4.4.1.1, which is at 8.21 µs ({2 iterative states × 2,048

delay samples / 2 parallel AAC operations + 4 non-iterative states} × 1/250 MHz) for

calculating 2,048 samples in the delay vector per cochlear section. The latencies for this

model are below the safe duration threshold of 10.41 µs – the duration between the arrivals

of two successive audio samples.

An example of the operation of the AAC-based ACF module is shown in Figure 4-10.

Here, only logical-AND and accumulate operations are used instead of MRSAC operations

based on equation (4-2). The colour-coded rows in Figure 4-10 are simulated in

SystemVerilog, and their resultant FPGA vector waveforms are shown in Figure 4-11. In the

latter, the colour-coded output vectors for the three rows are calculated in parallel by three

separately invoked ACF modules. For demonstration purposes, the three input streams to

the three parallel ACF modules have periods of 40 ns, 80 ns, and 160 ns corresponding to

the reduction of sampling rates by a factor of 2 for the first three cochlear octaves.

Figure 4-8: Architecture of the CAR-Lite-ACF model (fixed-point arithmetic) implemented on FPGA with AAC
operations on the auditory nerve (AN) input signals. FSM: Finite state machine.

119

Figure 4-9: FPGA output vector waveforms of the supervisor, BM-IHC-AN, and ACF modules operating at (a) the
arrival of an audio sample; (b) the activation of each of 108 parallel ACF modules at the arrival of one AN bit from
a specific cochlear section corresponding to the audio sample e.g. when the BM-IHC-AN outputs one AN bit for
cochlear section 1, the dedicated ACF module for cochlear section 1 is activated; the same operation applies for
the other 107 cochlear sections.

120

(a) t

x0 1 0 1 0 1 0 1 0 ∑(x0(t) ^ xa(t,d)) = y0

xa_0 1 0 1 0 1 0 1 0 1 1 2 2 3 3 4 4 y0_0

xa_1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 y0_1

xa_2 0 0 1 0 1 0 1 0 0 0 1 1 2 2 3 3 y0_2

xa_3 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 y0_3

xa_4 0 0 0 0 1 0 1 0 0 0 0 0 1 1 2 2 y0_4

xa_5 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 y0_5

xa_6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 y0_6

xa_7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 y0_7

- Logical-AND: (x0(t) ^ xa(t,d)); | Accumulate: ∑ (x0(t) ^ xa(t,d)).

(b) t

x12 1 1 0 0 1 1 0 0 ∑(x12(t) ^ xb(t,d)) = y12

xb_0 1 1 0 0 1 1 0 0 1 2 2 2 3 4 4 4 y12_0

xb_1 0 1 1 0 0 1 1 0 0 1 1 1 1 2 2 2 y12_1

xb_2 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 y12_2

xb_3 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 y12_3

xb_4 0 0 0 0 1 1 0 0 0 0 0 0 1 2 2 2 y12_4

xb_5 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 y12_5

xb_6 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 y12_6

xb_7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 y12_7

- Logical-AND: (x12(t) ^ xb(t,d)); | Accumulate: ∑ (x12(t) ^ xb(t,d)).

(c) t

x24 1 1 1 1 0 0 0 0 ∑(x24(t) ^ xc(t,d)) = y24

xc_0 1 1 1 1 0 0 0 0 1 2 3 4 4 4 4 4 y24_0

xc_1 0 1 1 1 1 0 0 0 0 1 2 3 3 3 3 3 y24_1

xc_2 0 0 1 1 1 1 0 0 0 0 1 2 2 2 2 2 y24_2

xc_3 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 y24_3

xc_4 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 y24_4

xc_5 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 y24_5

xc_6 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 y24_6

xc_7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 y24_7

- Logical-AND: (x24(t) ^ xc(t,d)); | Accumulate: ∑ (x24(t) ^ xc(t,d)).

Figure 4-10: Simulation of an AAC-based ACF algorithm with each table showing ACF results of an input signal,

𝑥𝑛, where 𝑛 represents cochlear sections (a) 0, (b) 12, and (c) 24. 𝑥𝑎_𝑑, 𝑥𝑏_𝑑, and 𝑥𝑐_𝑑 are the block memory
allocated based on the ACF window lag size, d (set as 8 in this demonstration but as 2,048 in CAR-Lite-ACF).
𝑦𝑛_𝑑 is the accumulated output at various discrete-time and for various lag sizes.

121

Figure 4-11: SystemVerilog simulation of the AAC-based multi-octave autocorrelation function (ACF) at 0 sample
delay based on the example illustrated in Figure 4-10 (row ending numbers in red font).

4.4.1.3. Results

The results of the CAR-Lite-ACF model implemented on an Altera Cyclone V FPGA is

shown in Table 4-3, which are extracted from the Altera Quartus compiler reports and the

Altera PowerPlay reports for power measurements. The MAC-based implementation uses

eight times more digital signal processors (DSPs) than the AAC-based implementation. The

power consumption is also higher for the MAC-based implementation than the AAC-based

implementation by 21 mW. However, the number of adaptive logic modules (ALM) and

registers utilised by the AAC-based implementation is almost on par with the MAC-based

implementation, though, it is slightly higher for the MAC-based implementation.

Each set of multiply, right-shift, and accumulate (MRSAC) and AAC operations in CAR-

Lite-ACF is characterised in a nested equation housed within a single state of the finite state

machine (FSM) in the ACF module. This implementation is due to the computations required

based on the timing constraints of the arrivals of audio samples, i.e. 221,184 (108 cochlear

sections × 2,048 lag samples) calculations per input audio sample is required for CAR-Lite-

ACF. The Quartus SystemVerilog compiler compensates the optimisation of DSP and logic

utilisation for such nested equations by introducing more logic circuitry and registers.

In summary, for the CAR-Lite-ACF model, the AAC-based implementation uses less

computational resources and consumes less power than the MAC-based implementation.

Model Number of ALM
Utilised (out of

29,080)

Number of
Registers
Utilised

Number of
DSPs Utilised

(out of 150)

Power (mW)

CAR-Lite-ACF
(section 4.4.1.1:

MAC-based)
1,392 (4.8%) 2,556 60 (40%) 265

CAR-Lite-ACF
(section 4.4.1.2:

AAC-based)
1,303 (4.5 %) 2,429 7 (4.7 %) 244

Table 4-3: Computational resources used on an Altera Cyclone V FPGA to implement the CAR-Lite-ACF model.

4.4.2. Response to Complex Tones

The complex tone comprises four sinusoidal tones at 100 Hz, 200 Hz, 500 Hz, and 1.5

kHz. Figure 4-12 displays the autocorrelogram matrices generated in floating-point and

122

fixed-point arithmetic using MAC and AAC operations. Placed below and to the right of each

autocorrelogram in Figure 4-12 is a temporal profile and a spectral profile, respectively. The

temporal profile waveform, ytemp, and spectral profile waveform, yspec, are calculated as

follow:

𝑦𝑡𝑒𝑚𝑝 =
1

𝑚𝑎𝑥
𝑠

∑ 𝑦𝐴𝐶(𝑠, 𝑑)𝑆
𝑠=1

∑ 𝑦𝐴𝐶(𝑠, 𝑑)

𝑆

𝑠=1

 (4-5)

𝑦𝑠𝑝𝑒𝑐 =
1

𝑚𝑎𝑥
𝑑

∑ 𝑦𝐴𝐶(𝑠, 𝑑)𝐷
𝑑=1

∑ 𝑦𝐴𝐶(𝑠, 𝑑)

𝐷

𝑑=1

 (4-6)

where yAC is the 2D autocorrelogram; s is a cochlear section index; d is the lag sample

number; S is the number of cochlear sections in the CAR-Lite cochlear model at 108; D is

the maximum lag or delay at 2,048 samples. In other words, the temporal profile is the

summation of rows of the autocorrelogram, and the spectral profile is the summation of the

columns of the autocorrelogram, which are then normalised with the largest numbers in their

respective summed vectors.

Figure 4-12: Autocorrelogram matrices (with blue background), temporal profiles (below an autocorrelogram),
and spectral profile (right of an autocorrelogram) generated with (a) floating-point MAC operations, (b) fixed-point
MAC operations, (c) floating-point AAC operations, and (d) fixed-point AAC operations. Note the abbreviation –

CF: Centre frequency of a cochlear section.

In each of the four autocorrelograms in Figure 4-12, the four sinusoids of the complex

tone are seen clearly as four light-blue coloured horizontal stripes. These stripes are also

aligned with the four peaks in the spectral profile, which correspond to the frequencies of the

four tones. However, this attribute is not apparent in the temporal profile. Figure 4-13

illustrates the temporal profile waveforms from Figure 4-12(a) and Figure 4-12(d) magnified

123

in the arbitrary region ranging from 29 ms to 41 ms. The duration between peaks provides

information on the frequency components residing in the signal, which is calculated as

follows:

 𝑓𝑖 = 1/ ((𝑝𝑗 − 𝑝𝑗−1)/𝑓𝑠) (4-7)

where the ith frequency component is calculated using the distance in samples between two

peaks, pj, and pj-1 over a sampling rate, fs, of 96 kHz. In Figure 4-13, the lag on the x-axis is

presented as time instead of samples. With this arrangement, equation (4-7) can still be

used to calculate the frequency by setting the sampling rate, fs, to 1 and replacing the

sample numbers, pj and pj-1 with timestamp information. The four frequency components are

extractable, as is evident in Figure 4-13 using this technique together with manually marked

timestamp information.

The temporal profile generated using AAC operations contains ‘noise’, which is

observable in Figure 4-13(b) that is generated by the fixed-point arithmetic. This effect is due

to the depth of the bit width reduction of the output signal from the CAR-Lite cochlear model

to the ACF algorithm. The floating-point MAC-based signals are at least 64 bits wide and

thus, have a smooth transition between two successive samples. In contrast, the 32 bits

fixed-point AAC-based signals are generated from 1 bit AN binary spike-streams.

Consequently, the streams of pulses continue to exist in the autocorrelogram and become

apparent in the temporal profile. Here, they appear as ‘noise’ but have a resonance of 50

kHz following the pulse output of a LIF neuron. Hence, this ‘noise’ is regarded as a carrier

signal, and it is the lower frequency modulated signal, which is of interest that carries the

pitch information. In other words, pitch information is the demodulated signal output from the

CAR-Lite-ACF model.

Two passes of a first-order infinite impulse response (IIR) low-pass filter (LPF) is applied

to the signal with the following filter characteristic to suppress the high frequency ‘noise’:

 𝑦𝐿𝑃𝐹(𝑑) = (1 − 𝑐𝐿𝑃𝐹) ∙ 𝑦𝐿𝑃𝐹(𝑑 − 1) + 𝑐𝐿𝑃𝐹 ∙ 𝑦𝑡𝑒𝑚𝑝(𝑑) (4-8)

where cLPF is the coefficient set empirically at 0.2. The filtering effect results in a smoothed

temporal profile signal, as displayed in Figure 4-13(c). Despite the phase shifts of the peaks

by 60 µs, the time duration between peaks remains the same, which results in the frequency

characteristics of the four tones displayed as clearly as the MAC-generated temporal profile

in Figure 4-13(a).

124

125

Figure 4-13: Magnified temporal profiles from Figure 4-12 between time lags of 29 ms and 41 ms generated from
(a) floating-point MAC operations, (b) fixed-point AAC operations, and (c) a low-pass filtered version of the

waveform in (b).

The degrees of similarity between the four autocorrelograms in Figure 4-12 and their

corresponding temporal and spectral profiles are shown in Figure 4-14. A 2D correlation

coefficient is used to quantify the degree of similarity, which is defined by:

𝑟 =

∑ ∑ (𝐴𝑚𝑛 − �̅�)𝑛 (𝐵𝑚𝑛 − �̅�)𝑚

√(∑ ∑ (𝐴𝑚𝑛 − �̅�)2
𝑛𝑚)(∑ ∑ (𝐵𝑚𝑛 − �̅�)2

𝑛𝑚)
 (4-9)

where 𝑟 is a correlation coefficient; 𝑚 is the row number; 𝑛 is the column number; 𝐴 and 𝐵

are the two 2D matrices to be compared; �̅� and �̅� are the mean of the 2D matrices.

The MAC-based floating-point and fixed-point generated autocorrelograms, as well as

their two respective profiles, have the highest similarity with 2D correlation coefficient scores

of 1. For the other autocorrelograms, the CCs range between 0.82 and 0.97 with a standard

deviation of 0.083. The overall range of CC scores is higher for the temporal profiles than the

autocorrelogram CC scores, ranging between 0.9 and 1, and even higher for the spectral

profiles in the range of 0.97 and 1. The standard deviation of CC scores for the temporal

profile is 0.045, and for the spectral profile, it is 0.014. Note that the temporal profiles used

for comparison here are generated using AAC operations that have undergone two passes

of low-pass filtering, as mentioned in the preceding paragraph. An essential comparison is

between the floating-point MAC-based and fixed-point AAC-based autocorrelograms as the

latter is used for FPGA implementation and a score of 0.97 shows that there is very little

difference between the two. Also note that all the AAC-based autocorrelograms in Figure

4-14 use the LIF neuron firing threshold of 0.27 V extracted from Figure 4-3, which is based

on the highest CC of 0.97 (under MACflt vs. AACfix).

126

Figure 4-14: Degrees of similarity between the four autocorrelograms and their corresponding temporal and
spectral profiles from Figure 4-12 using the 2D correlation coefficient (CC). Note the following abbreviation – flt:

floating-point; fix: fixed-point.

4.4.3. Response to Missing Fundamental Frequency

An input signal containing 800 Hz, 1 kHz, and 1.2 kHz harmonics without its

fundamental frequency, 𝑓0, of 200 Hz is used to test whether the missing 𝑓0 information is

acquirable from an autocorrelogram. Figure 4-15(a) displays the autocorrelogram

representing the harmonic signal. The region below 800 Hz in the autocorrelogram depict

missing low pitch content in the input signal. This attribute indicates that the ratio of the

distribution of pitch-related inter-spike intervals (ISI) across all cochlear sections are more

dominant than non-pitch-related ISI [7].

Figure 4-15(b) displays a low-pass filtered temporal profile extracted from the

autocorrelogram. Here, the inverse of the interval of the two peaks marked with blue dots

results in 204 Hz, which is a close approximate to the missing 200 Hz 𝑓0 in the harmonic

signal. However, using the two highest peaks with the blue dot marked as “t0” and the red

dot yields a wrong fundamental frequency. Hence, a real-world sound signal comprising

harmonic and inharmonic contents does not yield an accurate fundamental frequency using

the two highest peaks for calculation. This assessment is also reinforced by the low

classification scores in chapter 6, using algorithm 1 using the two highest peaks. Conversely,

a more sophisticated algorithm is capable of calculating the fundamental frequency from the

temporal profile in Figure 4-15(b), as is also demonstrated in chapter 6. Nonetheless, with an

appropriate pitch estimation algorithm, this exercise shows that a missing 𝑓0 can be

calculated with fixed-point arithmetic on hardware with AAC operations, which in turn,

indicates low computational cost in generating an autocorrelogram.

127

Figure 4-15: Harmonic signal comprising 800 Hz, 1 kHz, and 1.2 kHz without a fundamental frequency, 𝑓0, of 200
Hz represented on (a) an autocorrelogram calculated with fixed-point arithmetic as well as AAC operations and
(b) a low-pass filtered temporal profile extracted from the autocorrelogram, displaying an approximate of the

missing 𝑓0 calculated from the two blue-dotted peaks in the temporal profile. Blue dots represent peaks used for
calculating the missing fundamental frequency. The red dot represents a false positive peak that causes a wrong
fundamental frequency calculated with respect to the first blue dot (t0).

128

4.4.4. Response to Harmonics Phase Change

Chapter 2 introduces how pitch perceived is not affected by the phase change of the

harmonics of a stimulus. Carlyon and Shackleton further articulated this phase insensitivity

phenomenon on pitch perception over existing evidence. Using harmonics at alternating

phase, they found that the corresponding pitch perceived shifted up by an octave [25]. For

the alternating phase, each harmonic signal is generated alternately using either sine or

cosine functions, as opposed to the sine phase signal, whose harmonics are generated only

by sine functions. This pitch doubling effect is observable by the temporal envelope of the

stimuli in Figure 4-16. The normalised summation of the first ten harmonics at 0° phase of a

100 Hz fundamental frequency (f0) is shown in Figure 4-16(a). Here, the peak-to-peak (only

high peaks) periodicity amounts to 100 Hz. When the phases are alternated, the peak-to-

peak periodicity is halved.

Stimuli are generated at three discrete harmonic levels (LOW, MID, and HIGH), as

illustrated in Table 4-4 to show the phase change effects on the temporal profile of an

autocorrelogram (AC). Two stimuli (f0 = 150 Hz and f0 = 300 Hz) are generated in sine phase

at the three harmonic levels. A third stimulus (f0 = 150 Hz) is generated in an alternating

phase at the three harmonic levels. Figure 4-17 illustrates the temporal profiles of these

stimuli using hardware-based AAC operations and fixed-point arithmetic. The temporal

profiles are conditioned by two passes of the low-pass filter defined by equation (4-8) with a

cut-off at 400 Hz to remove high-frequency artefacts.

The peak-to-peak (high peaks only) periodicity of the profiles in Figure 4-17(a), (b), and

(c) correspond to the stimuli f0 of 150 Hz and for Figure 4-17(g), (h), and (i), they correspond

to the stimuli f0 of 300 Hz. The peak-to-peak periodicity remains at 150 Hz when the phases

are alternated for the LOW and MID range harmonics, as shown in Figure 4-17(d), and (e).

However, when HIGH range harmonics are introduced to the stimulus with an f0 of 150 Hz, a

new intermediate-level peak appears between two successive high peaks. Thus, the

temporal profile is more similar to the 300 Hz profiles shown in Figure 4-17(g), (h), and (i)

than the 150 Hz in Figure 4-17(a), (b), and (c). This characteristic leads to pitch being

perceived at twice the f0, at 300 Hz, as was also observed by Carlyon and Shackleton [25]

as well as Meddis [14].

The reason behind this behaviour is attributable to the theory of resolvability, as

explained in chapter 2. LOW harmonics are known to be resolved in that each cochlear filter

at this range, can output a pure tone due to its low bandwidth. Changing the phase of a pure

tone does not affect its temporal envelope shape, and hence, its ACF is unaffected. In

contrast, HIGH harmonics are unresolved as they are output by a high-frequency cochlear

filter as a complex tone. This characteristic is due to the large bandwidth of each cochlear

section at this range, resulting in an output signal that is a combination of pure tones.

Changing the phases of harmonics changes the temporal envelope shape of a complex

tone, which affects the ACF responses [26]. Therefore, an autocorrelogram generated with

the CAR-Lite-ACF model using AAC operations is capable of capturing the effects of

harmonics phase change. CAR-Lite-ACF can be regarded as a unitary model of pitch

perception to resolved and unresolved harmonics presented in alternating phase [14].

129

Harmonic Level Harmonic Range f0 = 150 Hz f0 = 300 Hz

LOW 1st – 5th 150 Hz – 750 Hz 300 Hz – 1.5 kHz

MID 8th – 16th 1.2 kHz – 2.4 kHz 2.4 kHz – 4.8 kHz

HIGH *16th – 48th 2.4 kHz – 7.2 kHz 4.8 kHz – 14.4 kHz
Table 4-4: Three harmonic group levels used for generating stimuli to demonstrate phase insensitivity effect on
pitch. * - denotes increment of 2 harmonic levels.

Figure 4-16: Stimulus with 1st to 10th harmonics for a fundamental frequency (f0) of 100 Hz, summed in (a) sine

(0°) phase, and (b) alternating (90°) phase.

Figure 4-17: Temporal profiles of sine-phase and alternating-phase stimuli at three harmonic group levels as
defined in Table 4-4 and generated from the CAR-Lite-ACF model using hardware-based AND-accumulate
operations and fixed-point arithmetic.

130

4.5. Chapter Summary and Conclusion

This chapter presents a novel algorithm for generating an autocorrelogram for pitch

detection. Conventional algorithm uses multiply and accumulate (MAC) operations on

discrete real-values as its input, whereas the novel algorithm uses logical-AND and

accumulate (AAC) operations on binary spike streams generated from leaky-integrate-and-

fire (LIF) neurons. This novel algorithm is used for generating autocorrelograms. While low

energy contributing to pitch information is removed from the autocorrelogram due to more

significant quantisation errors introduced by AAC operations than MAC operations, salient

pitch information such as the fundamental frequency of an input sound signal can be

represented.

The firing thresholds are selected based on the highest correlation score on the

autocorrelograms generated between the conventional and novel algorithms. This attribute

results in a high degree of similarity between the autocorrelograms generated from both the

algorithms. Additionally, the novel algorithm uses fewer computational resources such as

logic circuit modules and digital signal processors on an FPGA. As a result, the power

consumption of its implementation on FPGA is less than the conventional model, which

makes the novel algorithm a more efficient real-time solution.

The autocorrelogram is insensitive to harmonic content phase change and is also

capable of finding a missing fundamental frequency. Pitch estimation from software and

hardware implementations of the autocorrelogram using the conventional and the novel

algorithms on real-world musical signals at multiple intensity levels as well as with and

without noise is described in chapter 6.

4.6. Bibliography

[1] P. Sterling and J. B. Demb, “Retina,” in The Synaptic Organization of the Brain, 5th
ed., G. M. Shepherd, Ed. New York, USA: Oxford University Press, 2004, pp. 1–88.

[2] T. Delbruck, “Algorithmic Processing of Event Streams,” in Event-Based
Neuromorphic Systems, S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R.
Douglas, Eds. John Wiley & Sons Inc., 2015, pp. 365–380.

[3] C. Posch, D. Matolin, R. Wohlgenannt, M. Hofstätter, P. Schön, M. Litzenberger, D.
Bauer, and H. Garn, “Live demonstration: Asynchronous Time-based Image Sensor
(ATIS) camera with full-custom AE processor,” in Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, 2010, p. 1392, doi:
10.1109/ISCAS.2010.5537265.

[4] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Delbruck,
“Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras with Spiking
Output,” Proc. IEEE, vol. 102, no. 10, pp. 1470–1484, 2014, doi:
10.1109/JPROC.2014.2346153.

[5] S. C. Lim, A. R. Temple, S. Jones, and R. Meddis, “VHDL-based Design of
Biologically Inspired Pitch Detection System,” in Proceedings of International
Conference on Neural Networks (ICNN’97), 1997, pp. 922–927, doi:
10.1109/ICNN.1997.616148.

[6] S. Jones, R. Meddis, S. C. Lim, and A. R. Temple, “Toward a Digital Neuromorphic
Pitch Extraction System,” IEEE Trans. Neural Networks, vol. 11, no. 4, pp. 978–987,
2000, doi: 10.1109/72.857777.

131

[7] P. A. Cariani and B. Delgutte, “Neural Correlates of the Pitch of Complex Tones. I.
Pitch and Pitch Salience,” J. Neurophysiol., vol. 76, no. 3, pp. 1698–1716, 1996.

[8] A. van Schaik and R. Meddis, “The Electronic Ear; Towards a Blueprint,” in
Neurobiology Ionic Channels Neurons and the Brain, L. Conti, Ed. Plenum Press,
1996, pp. 233–250.

[9] A. van Schaik and R. Meddis, “Analog very large-scale integrated (VLSI)
implementation of a model of amplitude-modulation sensitivity in the auditory
brainstem.,” J. Acoust. Soc. Am., vol. 105, no. 2 Pt 1, pp. 811–821, 1999, doi:
10.1121/1.426270.

[10] A. van Schaik, “An Analogue VLSI Model of Periodicity Extraction in the Human
Auditory System,” in Neural Information Processing, 1999. Proceedings. ICONIP ’99.
6th, 1999, pp. 107–112, doi: 10.1109/ICONIP.1999.843970.

[11] G. E. Moore, “Cramming More Components onto Integrated Circuits (Reprint),” Proc.
IEEE, vol. 86, no. 1, pp. 82–85, 1998, doi: 10.1109/JPROC.1998.658762.

[12] R. K. Singh, “RTAP: Towards a Real-Time Auditory Periphery Simulation,” in
International Conference on Future Computational Technologies, 2015, pp. 52–57,
doi: 10.17758/UR.U0315218.

[13] S. Akhter and J. Roberts, Multi-Core Programming: Increasing Performance through
Software Multi-threading., 1st ed. Hillsboro: Intel Press, 2006.

[14] R. Meddis and L. O’Mard, “A unitary model of pitch perception,” J. Acoust. Soc. Am.,
vol. 102, no. 3, pp. 1811–1820, 1997, doi: 10.1121/1.420088.

[15] A. de Cheveigné, “Pitch Perception Models,” in Pitch: Neural Coding and Perception,
C. J. Plack, A. J. Oxenham, R. R. Fay, and A. N. Popper, Eds. New York, NY, USA:
Springer Science+Business Media LLC, 2005, pp. 169–233.

[16] Intel Corporation, “Cyclone V FPGA Features,” 2016.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/cyclon
e-v-product-table.pdf.

[17] Texas Instruments, “TMS320C5545 Fixed-Point Digital Signal Processor,” 2016.
http://www.ti.com/product/TMS320C5545 (accessed Dec. 09, 2018).

[18] Analog Devices, “SigmaDSP Digital Audio Processor,” 2018.
https://www.analog.com/en/products/adau1467.html#product-samplebuy (accessed
Dec. 09, 2018).

[19] Texas Instruments, “66AK2Hxx Multicore DSP+ARM® KeyStoneTM II System-on-Chip
(SoC),” 2017. http://www.ti.com/product/66AK2H14/samplebuy (accessed Dec. 09,
2018).

[20] Texas Instruments, “Low-Power Single 2-Input Positive-AND Gate SN74AUP1G08-
Q1,” 2012. http://www.ti.com/product/SN74AUP1G08-Q1/samplebuy (accessed Dec.
09, 2018).

[21] Texas Instruments, “SN74AUC08 Quadruple 2-Input Positive-AND Gate,” 2005.
http://www.ti.com/product/SN74AUC08/samplebuy (accessed Dec. 09, 2018).

[22] “Intel Cyclone V 5CEBA2U15C8N,” 2018. https://www.digikey.com/product-
detail/en/intel/5CEBA2U15C8N/544-2749-ND/3880770 (accessed Dec. 09, 2018).

132

[23] “Intel Cyclone V 5CGXFC7D7F31C8N,” 2018. https://www.digikey.com/product-
detail/en/intel/5CGXFC7D7F31C8N/544-2772-ND/3879506 (accessed Dec. 09,
2018).

[24] R. Dekker, “What’s the Difference Between VHDL, Verilog, and SystemVerilog?,”
ElectronicDesign, 2014. https://www.electronicdesign.com/what-s-difference-
between/what-s-difference-between-vhdl-verilog-and-systemverilog (accessed Oct.
09, 2019).

[25] R. P. Carlyon and T. M. Shackleton, “Comparing the fundamental frequencies of
resolved and unresolved harmonics: Evidence for two pitch mechanisms?,” J. Acoust.
Soc. Am., vol. 95, no. 6, pp. 3541–3554, 1994, doi: 10.1121/1.409971.

[26] R. D. Patterson, “A pulse ribbon model of monaural phase perception.,” J. Acoust.
Soc. Am., vol. 82, no. 5, pp. 1560–1586, 1987, doi: 10.1121/1.395146.

133

5. A Functional Primary Auditory Cortical Model

This chapter describes a functional model of a mammalian primary auditory cortex (A1).

This model is based on the NSL model reviewed in chapter 2. Using this model as a

reference, I present an implementable hardware model in this chapter, titled CAR-Lite-A1

model. The presentation includes a description of the model architecture as well as a filter

considered from a survey of filters for use in the A1 segment of the model. This chapter also

presents a hardware implementation of the model on FPGA as well as the comparison of the

responses of the software and hardware models using several stimuli.

5.1. Motivation

The multiresolution spectro-temporal NSL model has three stages, as reviewed in

chapter 2. The first stage includes the seed functions for the spectral and temporal domains.

The seed function for the temporal domain is characterised by a gammatone function that is

implemented as a bandpass filter on FPGA [1]. The seed function for the spectral domain is

characterised by a Gabor-like function, which is the second derivative of a Gaussian function

and is generally used as a filter to extract spatial response of a receptive field [2]. Its

amplitude spectrum is similar to that of a bandpass filter. Both these seed functions contain

exponential functions. For real-time operation in floating-point, exponential functions can be

calculated using Schraudolph’s fast exponential functions that can be approximated with

only five 64 bits fixed-point mathematical operations and read back in a standard IEEE-754

floating-point format [3]. An example of the use of this fast exponential function is in the real-

time implementation of Meddis’s MAP model (described in chapter 2), called RTAP [4]–[6].

On FPGA, with fixed-point arithmetic, the implementation of an exponential function is

attainable with an array of constants defining a basis exponential function stored in look-up

tables. However, the bit width of the look-up tables must be significant to ensure that the

precision of the output signal is maintained with respect to the limited bit widths required to

represent input and intermediate signals as well as filter coefficients within the model. The

use of the look-up tables increases memory usage as well as bit widths of the arithmetic

logic units through the combined usage of a large number of DSPs. Furthermore, look-up

tables also increase processing latencies due to frequent memory read and write accesses.

In contrast, linear signal processing filters on FPGA use only a small number of coefficients,

have low memory usage and enable low bit-width arithmetic operation. This characteristic

was demonstrated in the implementation of the CAR-Lite cochlear model in chapter 3 that

used 8 bits coefficients with 16 bits arithmetic operations.

In addition, the Gabor seed function mentioned above is used as a non-causal filter. It

cannot principally be implemented in real-time. However, as the frequency axis of a 2D time-

frequency cochleagram is constant due to a fixed number of cochlear sections, this filter can

be implemented in real-time when all the samples of all the cochlear sections are available

at a specific time. Implementations of a Gabor function on FPGA are possible [7]–[10], but

these are approximations of a discrete Gabor transform that produces the basic “Mexican-

hat” response. Intricate responses containing phase information calculations such as those

related to the third stage of the NSL model require a large number of filter coefficients [11]–

[14], which in turn, increases the utilisation of the limited memory on an FPGA. This effect

also predictably, increases FPGA power consumption with the use of a more significant

number of logic circuits to accommodate these additional operations.

134

In consideration with the factors presented so far, and to keep computational resources

small, the spectro-temporal seed functions are replaced with a bandpass filter type that uses

a small number of coefficients. Furthermore, the phase calculations of the third stage are

omitted from the FPGA implementation. While phase information is essential in defining the

4D output response of the NSL model as well as synthesising the NSL model output audio

close to the original input audio signal from the model’s 4D response, they are less

significant than amplitude variations in a sound signal in portraying timbre information [15].

Hence, this chapter introduces the CAR-Lite-A1 model that extracts only the spectro-

temporal envelope from a sound signal without considering the phase information. This

model is designed to be implementable on an FPGA. In other words, the CAR-Lite-A1 model

is a modified version of the NSL model, which processes sound signal without calculating

phase information. To understand the impact of the modifications, this chapter presents the

analyses of the responses of the CAR-Lite-A1 model over various artificial stimuli. Chapter 7

presents the responses of the CAR-Lite-A1 model in regards to real-world stimuli, where the

results of musical instruments classification, similar to the work of Patil et al. [16], are

presented.

5.2. CAR-Lite-A1 Model

Figure 5-1 illustrates the CAR-Lite-A1 model. It comprises the CAR-Lite cochlear model

described in chapter 3, at the initial stage and a functional A1 model containing a

multiresolution spectro-temporal model derived from the NSL model described in chapter 2,

at the second stage. Finite impulse response (FIR) filters are not considered for the model.

Instead, only infinite impulse response (IIR) filters are considered, as IIR filters are generally

faster than FIR filters in the context of execution speed [17].

The temporal and spectral modulation filters in the CAR-Lite-A1 model are selected from

a group of causal IIR filter configurations surveyed in subsection 5.2.2. In adherence to the

Occam’s Razor principle, the selected configuration has a low number of coefficients, and

stable operation across modulation ranges for FPGA implementation. This ensures low

memory utilisation, which in turn conserves power utilised on an FPGA. Section 5.3

describes the replacement of the Hilbert transform within the NSL model with an IIR filter in

the CAR-Lite-A1 model. Here, the priority is given to the filter that is capable of generating

90° phase shift at the modulation ranges.

Section 5.4 presents the CAR-Lite-A1 configuration with the filters from sections 5.2 and

5.3. Section 5.5 describes its fixed-point implementation, and section 5.6 describes its FPGA

implementation. Finally, section 5.7 presents the results of the model.

135

Figure 5-1: The CAR-Lite-A1 model comprising the CAR-Lite model described in chapter 3, and a multiresolution
spectro-temporal model, known alternatively as a functional A1 model.

5.2.1. Input Sampling Rate

The input to the functional A1 segment of the CAR-Lite-A1 model, known as the A1

model, is an inner hair cell (IHC) signal from the CAR-Lite model. The first stage of the A1

model is a temporal bandpass filterbank, also known as a rate filterbank. The rate filterbank

comprises multiple bandpass filters configured in parallel to detect envelopes from every

cochlear section’s IHC signal at multiple centre frequencies (or centre velocities) ranging

from 2 Hz to 128 Hz, as specified fully in subsection 5.2.2. Due to the low modulation centre

frequencies or also known as low envelope velocities, the IHC signal from every cochlear

section is down-sampled to a standard sampling rate of 375 Hz, which is the sampling rate

of cochlear octave 9. Based on the Nyquist sampling theorem, this is sufficient to

accommodate the highest temporal modulation centre frequency of 128 Hz. Any energy

more than 187.5 Hz is removed by an anti-aliasing filter defined by equation (5-1).

The motivation behind the down-sampling also lies with the inability of the selected filter

specified in subsection 5.2.2.5 to operate at low frequencies with high sampling rates and

low bit widths. This situation is realisable with a filter coefficient which is proportional to the

ratio of the low modulation centre frequency to the sampling rate. The result is a small

floating-point number that cannot be represented well by a fixed-point number with a small

number of bits. Consequently, such filter coefficients are too close to zero and do not

produce the desired filtering effect. For example, the ratio of a modulation centre frequency

of 2 Hz and a sampling rate of 96 kHz (sampling rate of cochlear octave 1) results in

136

1/48,000. Consequently, a fixed-point number of more than 16 bits is required to represent

this coefficient satisfactorily. An illustration of this effect is also described in subsection 3.2.6

of chapter 3 and agrees with [18].

The down-sampled IHC signal, 𝐼𝐻𝐶↓, is calculated using a mean function, identical to

the calculation of the temporal integration variable, 𝑇𝐼, in the CAR-Lite-SI model in chapter

3:

𝐼𝐻𝐶↓(𝑠, 𝑡↓) =
1

𝑇
∑ 𝐼𝐻𝐶(𝑠, 𝑡)

𝑡+𝑇

𝑡

 (5-1)

where the average IHC value of a cochlear section s at a subsampled time t↓, is calculated

for every T samples. T is an octave specific constant set at a multiple of 2 to achieve a

sampling rate of 375 Hz. Thus, the division can be implemented using a right-shift operation

on FPGA. This form of averaging involves no multiplication and also functions as a low-pass

filter as well as an anti-aliasing filter, which operates only with economical addition and right-

shift operations.

The output of the temporal modulation filterbank is the input to a spectral modulation

filterbank, also known as a scale filterbank. The scale filterbank extracts information on the

density of energy across the cochlear sections. It does this with bandpass filters configured

in parallel with spectral modulation centre frequencies (or centre densities) ranging from 0.25

cycles per octave (c/o) to 4 c/o, as specified fully in subsection 5.2.2. The selection of the

sampling rate at 12 c/o corresponds to the number of cochlear sections per octave in the

CAR-Lite model described in chapter 3. Based on the Nyquist sampling theorem, this

sampling rate is capable of accommodating the highest spectral modulation centre density of

4 c/o.

5.2.2. Filter Configuration Survey for Spectro-Temporal Modulation Filters

In the NSL model reviewed in chapter 2, the rate filter is causal, whereas the scale filter

is non-causal. A causal filter requires past and present input samples to generate an output

sample, whereas a non-causal filter requires a past, present, and future input samples to

generate an output sample. Hence, a causal filter can operate in real-time, because the

generation of an output sample is dependent on a current input sample when it becomes

available, in addition to stored past input samples. However, a non-causal filter cannot

operate in real-time as the generation of an output sample requires future input samples as

well as past and present input samples [19].

In the NSL model, the rate filterbank comprises causal filters, whereas the scale

filterbank comprises non-causal filters. Hence, the real-time implementation of the rate

filterbank is realisable, but this does not apply to the scale filterbank. Although the scale

filterbank is implementable on FPGA with non-causal filters, this operation requires an entire

vector of input samples ranging from the lowest to the highest frequency to be available,

before the calculation of the output samples begins. This exercise does not indicate real-time

operation as a non-causal scale filter module on FPGA remains inactive until an entire vector

of input samples corresponding to all the cochlear sections is acquired. Thus, this adds to

the delay in providing the output samples, which affects any causal filter that relies on these

delayed output samples as inputs to operate. To alleviate this situation, it is a requirement to

process every input sample as they become available for both the rate and scale filterbanks.

137

This notion requires the implementation of the scale filterbank as causal filters instead of

non-causal filters.

The seed functions for the rate filter, ℎ𝑡, and scale filter, ℎ𝑠, in the NSL model are

defined in chapter 2, and are repeated here for clarity:

 ℎ𝑡(𝑡) = 𝑡2𝑒−3.5𝑡 𝑠𝑖𝑛(2𝜋𝑡) (5-2)

 ℎ𝑠(𝑥) = (1 − 𝑥2)𝑒−𝑥2/2 (5-3)

where 𝑡 is time and 𝑥 is frequency. Both ℎ𝑡 and ℎ𝑠 use nonlinear functions: the temporal

seed function, ℎ𝑡, uses an exponential, a sinusoidal and a squared function, while the

spectral seed function, ℎ𝑠, has an exponential and a squared function. Although nonlinear

functions are implementable on FPGA [7], [9], their nonlinear characteristics are

approximated using an array of numerical values that are stored in look-up tables on FPGA

[20], [21] – a more extensive array generates an approximation of the nonlinear function with

higher accuracy as opposed to a small array. Furthermore, the number of bits required to

represent these numbers are significant, i.e., 64 bits [22]. Hence, these look-up tables

generally require significant memory space for operation. In contrast, a linearly-weighted

infinite impulse response (IIR) filter does not require such additional look-up tables. It only

requires memory for its coefficients used based on the filter order, e.g., a second-order filter

might require memory for only four coefficients depending on the filter configuration.

Furthermore, since the rate and scale filters have bandpass characteristics in the

temporal and spectral domains respectively [23], each of them can be implemented by a

linear and time-invariant IIR bandpass filter (BPF) instead of the original filters with nonlinear

seed functions. This option would allow the IIR BPF to be implemented as a common filter

for processing the rate and scale filters filter instead of two separate ones in the NSL model.

Alternatively, the temporal domain filter can be implemented with a three-pole pair IIR filter

governed by a gammatone function [24], and the spectral domain filter can be implemented

as a multi-pass forward and backward IIR smoothing filter such as the one implemented in

the automatic gain control (AGC) of the CAR-FAC model [25].

The common filter option mentioned in the preceding paragraph is selected for

implementation. In other words, only a single filter is implemented in a software function,

and, during processing, this function is invoked twice as many times with one invocation

running the IIR filter as a temporal filter and the other invocation running the IIR filter as a

spectral filter. Given the limited computational resource of an FPGA, this exercise is

appealing as less non-volatile memory is required for storage of the CAR-Lite-A1 model

code than if two separate seed functions, such as that of the NSL model, are used. This

implementation is per the Occam’s Razor principle, whereby a simple design approach is

taken that aids in the conservation of computing resources, which in turn maintains low

power utilisation.

Several IIR BPF configurations are implementable on an FPGA. Subsections 5.2.2.1 to

5.2.2.4 consider four such filters. Subsection 5.2.2.5 presents a selection of an appropriate

IIR filter out of the four configurations for FPGA implementation. Finally, in subsection

5.2.2.6, the stability of the selected filter is presented for different centre velocities for the

rate filterbank and centre densities for the scale filterbank. Note that only second-order

138

bandpass configurations are reviewed in the subsections below – the minimum order of

degree for a bandpass filter. The exception is the LPF-HPF cascade configuration described

in subsection 5.2.2.3 that uses first-order filters.

In the following subsections, the centre velocities, 𝑓𝑟𝑡, of a rate filterbank and centre

densities, 𝑓𝑠𝑐, of a scale filterbank are defined in accordance with the settings of the NSL

model used for musical instrument classification [16] as follows: 𝑓𝑟𝑡 = [2.00, 2.83, 4.00, 5.66,

8.00, 11.31, 16.00, 22.63, 32.00, 45.25, 64.00, 90.51, and 128.00] Hertz (Hz); 𝑓𝑠𝑐 = [0.25,

0.35, 0.50, 0.71, 1.00, 1.41, 2.00, 2.83, 4.00] cycles per octave (c/o). The rate filter operates

at a sampling rate of 375 Hz, and for the scale filter, the sampling rate is 12 c/o.

5.2.2.1. Standard Biquadratic

The standard bandpass filter (BPF) is derived from a biquadratic transfer function

comprising the ratio of two quadratic equations. The transfer function has an infinite impulse

response (IIR), which is a second-order recursive linearly-weighted time-invariant filter with

two poles and two zeros [26]. It is considered recursive as the output of the filter is

determined by the input signal as well as the delayed version of the input and output signals

[27]. Its transfer function is defined as:

𝐻(𝑧) =

𝑏0 + 𝑏1 ∙ 𝑧−1 + 𝑏2 ∙ 𝑧−2

𝑎0 + 𝑎1 ∙ 𝑧−1 + 𝑎2 ∙ 𝑧−2
 (5-4)

where bn are coefficients of a feedforward path; an are coefficients of a feedback path; z is a

delay element, wherein z-n is an nth-order delay.

From the transfer function of equation (5-4), two major signal path configurations can be

derived based on the placement order of the poles and zeros directly factorised from the

transfer function. When the configuration has zeros-poles connected between the input and

output pathways respectively (zeros connected to input pathway and poles connected to

output), it is known as direct-form-1 [28]. When it has poles-zeros connected between the

input and output pathways, it is known as direct-form-2 [29]. The direct-form-1 is immune to

internal numerical overflow from multiplication and addition operations in its configuration.

However, the direct-form-2 has no such immunity and is prone to numerical overflow. As a

result, the direct-form-1 is capable of generating stable responses more consistently than

direct-form-2 [29]. Despite its stability, the direct-form-1 is slower in generating an output

signal as it has more delay components than direct-form-2 [28]–[30]. To ensure stable

operations, only the direct-form-1 configuration is considered.

The direct-form-1 configuration is defined by the following difference equation [31]:

𝑦(𝑡) =

𝑏0

𝑎0
∙ 𝑥(𝑡) +

𝑏1

𝑎0
∙ 𝑥(𝑡 − 1) +

𝑏2

𝑎0
∙ 𝑥(𝑡 − 2) −

𝑎1

𝑎0
∙ 𝑦(𝑡 − 1) −

𝑎2

𝑎0
∙ 𝑦(𝑡 − 2) (5-5)

where x is the input and y is the output. It comprises two serially cascaded finite impulse

response (FIR) filters, i.e. one FIR segment deals with the input signal convolved with

weights 𝑏𝑛, and the other deals with the output signal convolved with weights, 𝑎𝑛. It has five

internal variables, whereby each internal variable corresponds to a term in the equation that

requires storage at runtime. Since FIR filters are always stable, this also enables the direct-

form-1 configuration to be more stable than the direct-form -2 configuration [29].

139

To obtain a bandpass filter response from equation (5-5), coefficients a and b, are

defined according to [32] and are depicted in Table 5-1(a) under the “Standard Filter”

column. Figure 5-2 displays the gain and phase responses of the standard direct-form-1 BPF

configured as a rate filterbank using 𝑓𝑟𝑡 and as a scale filterbank using 𝑓𝑠𝑐.

Coefficient (a) 2nd-order IIR Standard Filter (b) 2nd-order IIR Peaking Equaliser

𝑏0 𝛼 1 + 𝛼 ∙ 𝐴

𝑏1 0 −2 ∙ cos(𝜔0)

𝑏2 −𝛼 1 − 𝛼 ∙ 𝐴

𝑎0 1 + 𝛼 1 + 𝛼/𝐴

𝑎1 −2 ∙ cos(𝜔0) −2 ∙ cos(𝜔0)

𝑎2 1 − 𝛼 1 − 𝛼/𝐴

Intermediate Parameters

𝜔0 2 ∙ 𝜋 ∙ 𝑓0/𝑓𝑠

𝛼 sin(𝜔0)/(2 ∙ 𝑄)

𝐴 10(𝑑𝐵𝑔𝑎𝑖𝑛/40)

𝑄 1

𝑑𝐵𝑔𝑎𝑖𝑛 5

𝑓0 Centre velocities of rate filters, 𝑓𝑟, and centre densities of scale filters, 𝑓𝑠.

Table 5-1: Coefficients used in (a) a 2nd-order IIR standard bandpass filter, and (b) a 2nd-order IIR peaking
equaliser filter.

140

Figure 5-2: Gain and phase responses of (a) rate and (b) scale filterbanks using the 2nd-order IIR standard
bandpass filter (BPF) direct-form-1 configuration.

5.2.2.2. Peaking Equaliser

Another derivative of the direct-form-1 IIR filter configuration from subsection 5.2.2.1, is

a peaking equaliser filter, which uses the same difference equation from (5-5) but the

coefficients are from Table 5-1(b). This configuration provides a gain response similar in

shape to the aforementioned standard bandpass filter. However, one significant difference

between the two is that the peaking equaliser filter has positive gains at centre velocities and

centre densities as displayed in Figure 5-3. As a result, the peaking equaliser filters are

known as boost filters. They are widely used in sound recording mixers for volume control at

specific frequencies [33].

141

Figure 5-3: Gain and phase responses of (a) rate and (b) scale filters using a 2nd--order IIR peaking equaliser
filter.

5.2.2.3. Low-pass Filter and High-pass Filter (LPF-HPF) Cascade

Another bandpass filter (BPF) configuration to be considered for hardware

implementation of rate and scale filters is a serial cascade of a low-pass filter (LPF) and a

high-pass filter (HPF) [34]. Based on the Fourier transform property, the convolution of the

two filter kernels in the time domain is a multiplication of their responses in the frequency

domain [35]. This property enables the summation of their filter orders, i.e. a first-order LPF

cascaded with a first-order HPF results in a second-order BPF. Two passes of this second-

order BPF results in a fourth-order BPF. This fourth-order BPF configuration has been used

in the implementation of a single rate filter appended to a cochlear model on FPGA by

Thakur et al. [1]. The second-order and fourth-order BPF cascade configuration has the

following first-order responses:

142

 𝑦𝑙(𝑡) = 𝑦𝑙(𝑡 − 1) + 𝑐𝑙 ∙ (𝑥(𝑡) − 𝑦𝑙(𝑡 − 1)) (5-6)

 𝑦ℎ(𝑡) = 𝑐ℎ ∙ (𝑦ℎ(𝑡 − 1) + 𝑦𝑙(𝑡) − 𝑦𝑙(𝑡 − 1)) (5-7)

where 𝑦𝑙 is the LPF output and 𝑦ℎ is the HPF output at discrete time t. The coefficients for

LPF and HPF, 𝑐𝑙 and 𝑐ℎ, are calculated as follows:

𝑐𝑙 = 2 ∙ 𝜋 ∙

𝑓0

𝑓𝑠
 (5-8)

𝑐ℎ =

1

1 + 2 ∙ 𝜋 ∙
𝑓0
𝑓𝑠

(5-9)

where 𝑓𝑠 is the sampling rate; 𝑓0 is either the centre velocity, 𝑓𝑟𝑡, of a rate filter or centre

density, 𝑓𝑠𝑐, of a scale filter.

Figure 5-4 displays the gain and phase responses of the second-order cascaded

configuration for the 13 centre velocities used in the rate filterbank and the 9 centre densities

used in the scale filterbank. For the rate filters, the gain responses are similar to the second-

order standard bandpass filter configurations except for low centre velocity at 2 Hz, which

exhibits a gain response looking more like a low-pass filter response than a bandpass

response. At centre velocities above 45 Hz and centre densities above 1 c/o for the scale

filter, the filter exhibits a high-pass filter response rather than a bandpass response.

Furthermore, the filter gain responses at the high end at 90.5 Hz and 2.83 c/o have linear

gain responses, where the passband and stopband become indistinguishable. In addition,

the filter responses for the highest centre velocity of 128 Hz and centre density of 4 c/o are

not displayed as they have substantial gains at 507 dB and 334 dB respectively as

compared to all other centre velocities and densities, which possess gains within the range

of -3 dB to -10 dB (in decreasing centre velocities and centre densities respectively).

In [1], a fourth-order rate filter is used at only a single centre velocity at 4 Hz, where two

second-order cascaded LPF-HPF are connected in series. With this specific configuration,

the rate filters from 2 Hz to 64 Hz centre velocities and the scale filters from 0.25 c/o to 2 c/o

centre densities have increasing gains as observed in Figure 5-5 instead of constant gains

for the second-order cascaded configuration as shown in Figure 5-4. Moreover, the gains of

the fourth-order BPF are lower than the gains of the second-order BPF, which would require

a more significant bit widths for the former than the latter. In addition, in Figure 5-5, the

fourth-order BPF cascade responses for two centre velocities at 90.5 Hz, 128 Hz, and two

centre densities at 2.83 c/o, and 4 c/o, are not displayed as they have gains more significant

than the gains delivered at lower centre velocities (2 Hz to 64 Hz) and lower centre densities

(0.25 c/o to 2 c/o), respectively. For scale filters with centre densities at 90.51 Hz and 2.83

c/o, the gains are 296 dB and 28 dB, respectively. For rate filters with centre velocities at

128 Hz and 4 c/o, their gains are beyond 3,000 dB. Due to these factors, the fourth-order

BPF cascade configuration used by Thakur et al. [1] is not considered in the characterisation

of the rate and scale filterbanks.

143

Figure 5-4: Gain and phase responses of (a) rate and (b) scale filterbanks using a 2nd-order cascade BPF
comprising 1st-order low-pass filter (LPF) and a 1st-order high-pass filter (HPF).

144

Figure 5-5: Gain and phase responses of (a) rate and (b) scale filterbanks using a 4th-order cascade BPF
comprising two serial cascades of 2nd-order cascade BPF as used by Thakur et al. [1].

5.2.2.4. Coupled-Form (Asymmetric Resonator)

The last configuration for consideration is a coupled-form [36] of a second-order

asymmetric resonator, which will be alternatively known in this chapter as an asymmetric

resonator (AR). It has been used in the cascaded configuration of the CAR-Lite model,

depicting basilar membrane (BM) characteristics for extracting resonances from a sound

signal as described in chapter 3. For the sake of clarity, its transfer function is repeated here:

𝐻(𝑧) =

𝑦

𝑥
= 𝑔 (

𝑧2 + (−2𝑎 + ℎc)𝑟𝑧 + 𝑟2

𝑧2 − 2𝑎𝑟𝑧 + 𝑟2
) (5-10)

145

where 𝑥 is the input; 𝑦 is the output; 𝑔 is the overall unity gain at DC; 𝑎 is the real

component, and 𝑐 is the imaginary component of a complex number structure representation

of the coupled-form configured filter; ℎ controls the distance of zeros from the frequency of

the poles and is set to the real components of the ringing frequency, 𝑐.

Figure 5-6 displays the coupled-form filter configuration connections. Its output is

defined by:

 𝑦 = 𝑔(𝑥 + ℎ𝑊1) (5-11)

where 𝑊1 is one of two internal variables; the other being 𝑊0. They are defined as:

 𝑊1 = 𝑟(𝑎𝑊1 + 𝑐𝑊0) (5-12)

 𝑊0 = 𝑥 + 𝑟(𝑎𝑊0 − 𝑐𝑊1) (5-13)

The direct-form-1 configuration suffers from the shift of its poles due to round-off errors

in a fixed-point format, especially at high filter orders [28]. In other words, a serial cascade of

either the second-order standard bandpass filters from subsection 5.2.2.1 or peaking

equaliser filters from subsection 5.2.2.2, designed with poles exhibiting stable operations in

floating-point might be unstable when it operates in fixed-point arithmetic. This unstable

operation occurs especially at low resonant frequencies [37] as is the case for centre

velocities and centre densities that are used for the rate and scale filters, respectively. As a

consequence, the coupled-form configuration was designed to alleviate this quantisation

effect at low resonant frequencies [38].

Figure 5-7 illustrates the gain and phase responses of the rate filterbank for all 13 centre

velocities and Figure 5-8 illustrates the same responses of the scale filterbank for all 9 centre

densities from the coupled-form configuration. From these responses, one conclusion is that

the coupled-form configuration is actually a low-pass filter (LPF) as it has DC gain at low

frequencies as observed in the 0 dB gains for all centre velocities in Figure 5-7 and all centre

densities in Figure 5-8. This configuration allows low frequencies to pass through the filter. It

also has a low damping factor enabling positive gains, which projects bandpass responses

in the figures. As a result, numerical values at bandpass frequencies are scaled higher than

low-pass frequencies.

146

Figure 5-6: Coupled-form configuration of a 2nd-order asymmetric resonator. This configuration is also used to
build the filters in the CAR-Lite model described in chapter 3. Adapted from Lyon [39].

Figure 5-7: Frequency and phase responses of a coupled-form configured asymmetric resonator tuned to centre

velocities of temporal modulations ranging from 2 Hz to 128 Hz.

147

Figure 5-8: Frequency and phase responses of a coupled-form configured IIR filter tuned to centre densities of

spectral modulations ranging from 0.25 c/o to 4 c/o.

5.2.2.5. Configuration Selection

Table 5-2 projects the coefficients for each of the four filter configurations surveyed

above based on storage requirements ranging from the lowest to the highest. The table is

further divided into two halves, whereby the first half shows coefficients requiring non-volatile

(permanent) storage and the second half shows coefficients requiring volatile (runtime)

storage. The LPF-HPF cascade requires the least amount of storage. However, as they

have highly irregular gain responses and non-uniform bandpass shapes across all centre

velocities and densities, the cascaded LPF-HPF configuration is not considered for

implementations of the rate and scale filterbanks.

As part of the direct-form-1 configuration, the standard bandpass and peaking equaliser

filters are capable of operating over the entire range of centre velocities and centre densities.

However, the storage requirements of their respective coefficients are high in comparison

with the two other configurations. Specifically, in terms of volatile storage requirements,

coefficients of the peaking equaliser require the most storage, followed by coefficients of the

standard BPF. The significant storage requirement for the two filter types is due to the

reliance of the generation of an output sample on the current input sample, and two past

weighted input samples as well as the two past weighted output samples in time respectively

as defined by equation (5-1). This notion corresponds to five internal variables that require

storage per output sample for one filter during runtime. In contrast, a second-order IIR filter

with coupled-form configuration is only reliant on two internal variables to generate an output

sample for the same range of centre velocities and centre densities. As a result, the coupled-

form configuration is selected to implement the rate and scale filterbanks.

148

(a) Non-volatile Storage Requirements

2nd-order IIR

filter

configuration

Number of

coefficients

(per cochlear

section)

Number of

coefficients

across 108

cochlear

sections

Number of

coefficients

for 13

centre

velocities

(Rate filter

bank)

Number of

coefficients

for 9 centre

densities

(scale filter

bank)

Total

number of

coefficients

requiring

storage

LPF-HPF

Cascade
2 2 26 18 44

Coupled-Form

Resonator
4 4 52 36 88

Bandpass 5 5 65 45 110

Peaking

Equaliser
5 5 65 45 110

(b) Volatile Storage Requirements

LPF-HPF

Cascade
2 216 2,808 1,944 4,752

Coupled-Form

Resonator
2 216 2,808 1,944 4,752

Bandpass 5 540 7,020 4,860 11,880

Peaking

Equaliser
6 648 8,424 5,832 14,256

Table 5-2: The four filter configurations reviewed in subsection 5.2.2 and their corresponding number of

coefficients required for (a) non-volatile (permanent) storage and (b) volatile (runtime) storage.

5.2.2.6. Seed Function of the Selected Filter Configuration

In this subsection, the seed function of the selected second-order coupled-form

asymmetric resonator implemented in the CAR-Lite-A1 model is compared with the temporal

seed function, ℎ𝑡, and spectral seed function, ℎ𝑠, from the NSL model. The seed functions

from the NSL model are described in chapter 2 and reiterated in subsection 5.3.1 in this

chapter. The seed function of the selected asymmetric resonator can be found by applying

the inverse z-transform [40] to 𝐻(𝑧) from equation (5-10). Doing so leads to the following

temporal and spectral seed functions differentiated accordingly by 𝑡 (time) and 𝑥 (log

frequency) variables:

 ℎ𝑛𝑡(𝑡) = 𝑎𝛿(𝑡) + (1 − 𝑎)
𝜔𝑟

1 − 𝜁2
𝑒−𝛾𝑡 sin(𝜔𝑟𝑡) (5-14)

 ℎ𝑛𝑠(𝑥) = 𝑎𝛿(𝑥) + (1 − 𝑎)
𝜔𝑟

1 − 𝜁2
𝑒−𝛾𝑥 sin(𝜔𝑟𝑥) (5-15)

where 𝛿(∙) is a Kronecker delta function scaled by 𝑎; 𝜔𝑟 is the ringing resonance

corresponding to either the centre velocity or centre density; 𝜁 is the damping factor.

149

The uniqueness of the two-pole-two-zero configuration is that each of the seed functions

above has two terms separated by a sum operation, which can be illustrated as two parallel

branches fed to a summing junction [41]. The second terms of ℎ𝑛𝑡 and ℎ𝑛𝑠 from above,

containing the exponential and sine functions, are akin to the temporal seed function, ℎ𝑡,

defined by equation (5-22) in the NSL model. ℎ𝑡 is also known as a gammatone filter made

of a sine tone multiplied by a gamma distribution, and it is used for building auditory

filterbanks [42]. Setting 𝑎 = 0, 𝛾 = 1.5, 𝜁 = 0.1, and 𝜔𝑟 = 2𝜋, enables ℎ𝑛𝑡 response displayed

in Figure 5-9(c) to closely resemble ℎ𝑡 response displayed in Figure 5-9(a). An identical

response between ℎ𝑡 and ℎ𝑛𝑡 is not sought as ℎ𝑡 contains an additional parameter, 𝑡2, which

ℎ𝑛𝑡 does not possess.

Moreover, introducing 𝑡2 to ℎ𝑛𝑡 requires a change in the transfer function of the latter

that would require an extra module on the FPGA to be designed solely for ℎ𝑡. Ideally, not

introducing any new parameters to ℎ𝑛𝑡 enables only one module to be used on the FPGA

that can be used by both ℎ𝑡 and ℎ𝑠 as they would both have the same transfer function.

Overall, ℎ𝑛𝑡 is considered appropriately as a modified gammatone filter that has close

characteristics as ℎ𝑡 and hence, is used in the CAR-Lite-A1 model in place of ℎ𝑡.

Figure 5-9(b) displays the nonlinear Gabor seed function used in the NSL model. This

filter can be approximated using a recursive linear IIR filter. To do this, Young et al. used a

sixth-order transfer function comprising a serial cascade of a forward pass (causal) third-

order and a backward pass (anti-causal) third-order IIR filter [12]. In the temporal domain, a

forward pass filter is known as a causal filter, where the output of the filter is determined by

the present, 𝑡, and past, 𝑡 − 𝑘, input samples. In the spatial domain, the output of the forward

pass filter is dependent on the input samples from the current, 𝑛, and previous neighbouring,

𝑛 − 𝑘, space being analysed.

In contrast, a backward pass filter, which is known as an anti-causal filter in the temporal

domain, generates an output sample from the present, 𝑡, and future, 𝑡 + 𝑘, input samples. In

the spatial domain, the output of the backward pass filter is dependent on the samples from

the current, 𝑛, and upcoming neighbouring, 𝑛 + 𝑘, space to be analysed. The combination of

the forward and backward pass filters is feasible considering the upcoming input samples of

the latter are already known and stored in memory when the forward pass filter is processed.

An example of this implementation is the AGC filter [25] in the CAR-FAC model.

David et al. extended Young’s design and incorporated the forward pass (causal) and

backward pass (anti-causal) filters into a parallel cascade in addition to the serial cascade

and reduced the filter order to a minimum of two, using only six coefficients instead of ten

from Young’s implementation [13]. Doing so means that the output of the Gabor filter can be

approximated with a single pass (delay) using the parallel cascade configuration, similar to

the coupled-form configuration. However, the second-order IIR Gabor filter requires non-

volatile storage for up to six coefficients as opposed to four for the coupled-form configured

asymmetric resonator per centre density. Due to its higher memory requirements, the IIR

Gabor filter is not considered for implementation in the CAR-Lite-A1 model. Instead, the

second-order coupled-from configured asymmetric resonator is selected.

The Gabor-like function, ℎ𝑠, used in the NSL model has a bandpass-like response

resembling a “Mexican-hat” as illustrated in Figure 5-9(b). To ensure that ℎ𝑛𝑠 has a response

closely resembling ℎ𝑠, the parameters in equation (5-15) are set as follow: 𝑎 = 0, 𝛾 = 0.1, 𝜁 =

150

0.1, and 𝜔𝑟 = 2𝜋. Doing so results in ℎ𝑛𝑠 having a bandpass-like effect but with two unevenly

suppressed sideband (a nonlinear sideband after octave 2 and a linear sideband below

octave -2) as observed in Figure 5-9(d) instead of two even ones (a nonlinear sideband at

octave 1.5 and another nonlinear one at octave -1.5) for ℎ𝑠 in Figure 5-9(c). This effect is

insignificant as the sidebands represent neuronal inhibition that is meant to suppress the

energy at regions outside the area of interest – in this case at 1 c/o centre density. So, at

octaves below -1.5, the magnitudes of the energy are lower than the energy beyond 1.5

octaves, which are both deemed as insignificant areas outside the region of interest.

Therefore, their respective sideband shapes are inconsequential. Another difference

between ℎ𝑠 and ℎ𝑛𝑠 responses is that the bandwidth of the excitatory neuronal region (areas

above 0) is higher for ℎ𝑛𝑠 at 3 octaves than ℎ𝑠 at 2 octaves. This difference indicates that ℎ𝑛𝑠

is sensitive to energy spread across a larger number of cochlear sections than ℎ𝑠 by 1

octave, which is an allowable compromise at the expense of maintaining low computational

cost.

Figure 5-9: Seed functions used in the NSL model with (a) a causal gammatone function defined by equation
(5-22) for a 1 Hz rate filter; (b) a non-causal Gabor-like function defined by equation (5-23) for a 1 Hz scale filter;
Seed function used in the CAR-Lite-A1 with (c) a causal coupled-form configured asymmetric resonator defined
by equation (5-14) for a 1 Hz rate filter; (d) a causal coupled-form configured asymmetric resonator defined by
equation (5-15) for a 1 c/o scale filter.

5.2.2.7. Selected Filter Configuration Stability

Filter stability is paramount to indicate the presence of spectral and temporal modulation

resonances accurately. Unstable filter operations produce an increase in amplitudes over a

short period resulting in an inaccurate representation of modulation resonances. To ensure

the stability of the AR, the poles of its transfer function should be contained within the unit

circle of a pole-zero (PZ) map. The locations of its poles corresponding to centre velocities of

a rate filterbank ranging from 2 Hz to 128 Hz are displayed in Figure 5-10, while its poles

151

corresponding to centre densities of a scale filterbank ranging 0.25 c/o to 4 c/o are displayed

in Figure 5-11. All the pole pairs for the 13 centre velocities of the rate filterbank and 9 centre

densities for the scale filterbank are within the unit circle. Having so indicates the stabilities

of the rate and scale filterbanks with the aforementioned spectro-temporal modulation

ranges.

Figure 5-10: Pole-zero map of a 2nd-order AR tuned to 13 centre velocities of temporal modulations ranging from
2 Hz to 128 Hz.

152

Figure 5-11: Pole-zero map of a 2nd-order AR tuned to 9 centre densities of spectral modulations ranging from
0.25 c/o to 4 c/o.

5.3. Spectro-Temporal Modulation Directionality

The populations of neurons in a mammalian A1 are sensitive to changes across

spectro-temporal envelopes. In other words, due to the differential sensitivity of neuronal

groups in the A1, these neuronal groups representing receptive fields can detect the

movement of spectral-temporal peaks [43]. The changes in the movement are known as

directionality of the modulated signal (also known as signal envelope). In the next

subsection, this directionality characterised in the NSL model is presented again for clarity

(initially presented in chapter 2), and the following sub-section describes the implementation

of this directionality in the CAR-Lite-A1 model.

5.3.1. NSL Model

In the NSL model [23], the directionality of a spectro-temporal receptive field (STRF) is

defined by:

 𝑆𝑇𝑅𝐹⇓ = ℛ𝑒{ℎ𝐼𝑅𝑇(𝑡↓; 𝜔, 𝜃) ∙ ℎ𝐼𝑅𝑆(𝑠; 𝛺, 𝜙)} (5-16)

 𝑆𝑇𝑅𝐹⇑ = ℛ𝑒{ℎ𝐼𝑅𝑇
∗ (𝑡↓; 𝜔, 𝜃) ∙ ℎ𝐼𝑅𝑆(𝑠; 𝛺, 𝜙)} (5-17)

where 𝑆𝑇𝑅𝐹⇓ is the spectro-temporal response in the downward direction indicating

decreasing temporal envelope velocities and/or spectral envelope densities respectively;

𝑆𝑇𝑅𝐹⇑ is the spectro-temporal response in the upward direction indicating increasing

temporal envelope velocities and/or spectral envelope densities respectively; ℎ𝐼𝑅𝑇 is the

impulse response function of the rate filter; ℎ𝐼𝑅𝑆 is the impulse response function of the scale

153

filter; ∗ denotes a complex conjugate; ω is the temporal envelope velocity in time, t↓ (↓

represents down-sampled 𝑡 in the cochlear stage); Ω is the spectral envelope density across

cochlear section, s; θ and Φ are characteristic phases of the rate and scale filters

respectively. The impulse response functions of the two filters can be represented in a

complex form [23]:

 ℎ𝐼𝑅𝑇(𝑡↓; 𝜔, 𝜃) = ℎ𝑖𝑟𝑡(𝑡↓; 𝜔, 𝜃) + 𝑗ℎ̂𝑖𝑟𝑡(𝑡↓; 𝜔, 𝜃) (5-18)

 ℎ𝐼𝑅𝑆(𝑥; 𝛺, 𝜙) = ℎ𝑖𝑟𝑠(𝑠; 𝛺, 𝜙) + 𝑗ℎ̂𝑖𝑟𝑠(𝑠; 𝛺, 𝜙) (5-19)

where ℎ̂(∙) is a Hilbert transform or 90° phase shifted version of either a temporal function,

ℎ𝑖𝑟𝑡, or a spectral function, ℎ𝑖𝑟𝑠. These functions are defined as:

 ℎ𝑖𝑟𝑡(𝑡↓; 𝜔, 𝜃) = ℎ𝑡(𝑡↓; 𝜔) 𝑐𝑜𝑠 𝜃 + ℎ̂𝑡(𝑡↓; 𝜔) 𝑠𝑖𝑛 𝜃 (5-20)

 ℎ𝑖𝑟𝑠(𝑥; 𝛺, ∅) = ℎ𝑠(𝑥; 𝛺) 𝑐𝑜𝑠 ∅ + ℎ̂𝑠(𝑥; 𝛺) 𝑠𝑖𝑛 ∅ (5-21)

where ℎ𝑡 is a gammatone seed function responding to resonances in time, 𝑡↓; ℎ𝑠 is a Gabor-

like Gaussian seed function responding to resonances in frequency, 𝑥:

 ℎ𝑡(𝑡↓) = 𝑡↓
2𝑒−3.5𝑡 sin(2𝜋𝑡) (5-22)

 ℎ𝑠(𝑥) = (1 − 𝑥2)𝑒−𝑥2/2 (5-23)

5.3.2. CAR-Lite-A1 Model

Aside from the change in the temporal and spectral seed functions, from ℎ𝑡 and ℎ𝑠 to

ℎ𝑛𝑡 and ℎ𝑛𝑠 respectively, another consideration is the inclusion of the calculation of their

respective characteristic phases, 𝜃, and, 𝛷. This calculation involves applying an arc-

tangent on the division between the output values of Hilbert transformed seed function, ℎ̂,

and seed function, ℎ. Here, ℎ refers to either ℎ𝑡 or ℎ𝑠. In the NSL model, this phase

information is required to resynthesize the original sound input stimulus from the spectro-

temporal envelope information extracted from the rate and scale filterbanks. This exercise is

done to evaluate the fidelity of these extracted cues to the original input stimulus. However,

as my objective is to capture timbre cues from a hardware model, input stimulus re-synthesis

is not required.

Furthermore, timbre is representable by envelope information and independently by

phase information [15], [44], [45]. In other words, averaging envelope responses over time

can represent timbre and so, the calculation of phase information is omitted from the CAR-

Lite-A1 model. Doing so removes the need for implementing a lookup table for arc-tangent

approximation as well as the need for a computationally intensive division operation on

FPGA. This omission means that the temporal function, ℎ𝑖𝑟𝑡, and spectral function, ℎ𝑖𝑟𝑠,

need not be implemented and the complex-form impulse responses, ℎ𝐼𝑅𝑇, and, ℎ𝐼𝑅𝑆, can be

formed directly with ℎ𝑛𝑡 and ℎ𝑛𝑠. As a result, the downward and upward STRF functions are

defined as:

154

 𝑆𝑇𝑅𝐹⇓(𝑠, 𝑡↓; 𝜔, 𝛺) = (ℎ𝑛𝑡 + 𝑗ℎ̂𝑛𝑡)(ℎ𝑛𝑠 + 𝑗ℎ̂𝑛𝑠) (5-24)

 𝑆𝑇𝑅𝐹⇑(𝑠, 𝑡↓; 𝜔, 𝛺) = (ℎ𝑛𝑡 − 𝑗ℎ̂𝑛𝑡)(ℎ𝑛𝑠 + 𝑗ℎ̂𝑛𝑠) (5-25)

Expanding the two equations result in:

 𝑆𝑇𝑅𝐹⇓ = ℎ𝑛𝑡 ∙ ℎ𝑛𝑠 + 𝑗ℎ𝑛𝑡 ∙ ℎ̂𝑛𝑠 + 𝑗ℎ̂𝑛𝑡 ∙ ℎ𝑛𝑠 − ℎ̂𝑛𝑡 ∙ ℎ̂𝑛𝑠 (5-26)

 𝑆𝑇𝑅𝐹⇑ = ℎ𝑛𝑡 ∙ ℎ𝑛𝑠 + 𝑗ℎ𝑛𝑡 ∙ ℎ̂𝑛𝑠 − 𝑗ℎ̂𝑛𝑡 ∙ ℎ𝑛𝑠 + ℎ̂𝑛𝑡 ∙ ℎ̂𝑛𝑠 (5-27)

The terms in equations (5-26) and (5-27) can then be separated and characterised based on

the real (Re) and imaginary (Im) components that are contained within them:

 𝑅𝑒{𝑆𝑇𝑅𝐹⇓} = ℎ𝑛𝑡 ∙ ℎ𝑛𝑠 − ℎ̂𝑛𝑡 ∙ ℎ̂𝑛𝑠 (5-28)

 𝑅𝑒{𝑆𝑇𝑅𝐹⇑} = ℎ𝑛𝑡 ∙ ℎ𝑛𝑠 + ℎ̂𝑛𝑡 ∙ ℎ̂𝑛𝑠 (5-29)

 𝐼𝑚{𝑆𝑇𝑅𝐹⇓} = ℎ𝑛𝑡 ∙ ℎ̂𝑛𝑠 + ℎ̂𝑛𝑡 ∙ ℎ𝑛𝑠 (5-30)

 𝐼𝑚{𝑆𝑇𝑅𝐹⇑} = ℎ𝑛𝑡 ∙ ℎ̂𝑛𝑠 − ℎ̂𝑛𝑡 ∙ ℎ𝑛𝑠 (5-31)

In the NSL model, the imaginary component is omitted. However, for the CAR-Lite-A1

model, the imaginary component is retained for the calculation of neuron directionality as

they can be represented by real-valued signals as is presented in subsection 5.3.2.1.

The downward and upward spectro-temporal modulation envelope drifts, r⇓ and r⇑, can

be characterised by convolving a down-sampled 2D time-frequency matrix of inner hair cell

(IHC) values [using equation (5-1)] with either the real or imaginary components of the 4D

STRF filterbanks as follow:

 𝑅𝑒{𝑟⇓} = 𝐼𝐻𝐶↓(𝑠, 𝑡↓) ⊗ 𝑅𝑒{𝑆𝑇𝑅𝐹⇓(𝑠, 𝑡↓; 𝜔, 𝛺)} (5-32)

 𝑅𝑒{𝑟⇑} = 𝐼𝐻𝐶↓(𝑠, 𝑡↓) ⊗ 𝑅𝑒{𝑆𝑇𝑅𝐹⇑(𝑠, 𝑡↓; 𝜔, 𝛺)} (5-33)

 𝐼𝑚{𝑟⇓} = 𝐼𝐻𝐶↓(𝑠, 𝑡↓) ⊗ 𝐼𝑚{𝑆𝑇𝑅𝐹⇓(𝑠, 𝑡↓; 𝜔, 𝛺)} (5-34)

 𝐼𝑚{𝑟⇑} = 𝐼𝐻𝐶↓(𝑠, 𝑡↓) ⊗ 𝐼𝑚{𝑆𝑇𝑅𝐹⇑(𝑠, 𝑡↓; 𝜔, 𝛺)} (5-35)

where ⊗ denotes convolution.

In the next subsection, a representation of the Hilbert transform with IIR filters is

presented to generate A1 neuron directionality response, for FPGA implementation along

with the AR representing rate and scale filters.

5.3.2.1. Characterising the Hilbert Transform

A sinusoid contains two frequency components: a positive frequency component and a

negative frequency component. They are a sum of equal but opposite circular motion and

can be projected on a frequency spectrum. Moreover, they can be analytically derived from

Euler’s identity [46]:

155

𝐴cos(𝜃) =

𝐴(𝑒𝑗𝜃 + 𝑒−𝑗𝜃)

2
 (5-36)

𝐴sin(𝜃) =

𝐴(𝑒𝑗𝜃 + 𝑒−𝑗𝜃)

2𝑗
 (5-37)

where 𝐴 is the amplitude; 𝑗𝜃 is a positive frequency component; −𝑗𝜃 is a negative frequency

component; 𝜃 is defined by frequency, 𝜔, and phase, ∅, of a sinusoid or more specifically by

the equation, 𝜃 = 𝜔𝑡 + ∅.

In demodulation filtering to extract the envelope of an input signal, filtering the negative

frequency, 𝐴𝑒𝑗(−𝜔𝑡+∅), does not result in any information loss in the sinusoid. Hence, the

positive frequency, 𝐴𝑒𝑗(𝜔𝑡+∅) of a real sinusoid, 𝐴 cos(𝜔𝑡 + ∅), is sufficient in representing

the envelope of a signal. Furthermore, the NSL uses complex signal filtering to represent

frequency directionality responses of neurons. In theory, this filtering involves the use of an

imaginary coefficient, which is practically attainable by the 90° phase-shift of the real

sinusoid. This results in a practical representation of a complex signal, known as an analytic

signal, where no negative frequency is present [47]:

 𝐴𝑒𝑗(𝜔𝑡+∅) = 𝐴 cos(𝜔𝑡 + ∅) + 𝑗𝐴 sin(𝜔𝑡 + ∅) (5-38)

Since the cosine and sine terms are real terms, the magnitude of the positive frequency is

doubled.

To generate an analytic signal representation of a signal containing multiple sinusoids at

multiple frequencies, the signal is combined with the 90° phase shift of itself based on

equation (5-38) for all frequencies. This phase shift is attainable with the Hilbert transform of

the signal. In other words, the Hilbert transform of a signal shifts the phases of every Fourier

frequency component of an input signal by 90⁰ [48]. In the time domain, the Hilbert

transform, ℋ[…], is defined as the convolution of an input signal, 𝑥(𝑡) with 1/(𝜋𝑡):

ℋ[𝑥(𝑡)] =

1

𝜋
∫

𝑥(𝑡)

𝑡 − 𝜏

∞

−∞

𝑑𝜏 (5-39)

The Fourier transform, 𝔉{… }, of the Hilbert transform of 𝑥(𝑡) is:

 𝔉{ℋ[𝑥(𝑡)]} = 𝑗𝜔𝑋(𝜔) (5-40)

where 𝑗𝜔 is an imaginary term of a frequency, 𝜔, which also denote a 90⁰ phase shift of the

frequency.

The use of analytic signals is essential in detecting amplitude envelopes in a signal [47].

In the NSL model, the output signals are analytic signals that are a result of only the real

component of the STRF equations defined by (5-16) and (5-17) convolved with the 2D IHC

input signal. In other words, the STRF equations of (5-18) and (5-19) primarily contain the

impulse response of a rate filter, ℎ𝑖𝑟𝑡, an impulse response of a scale filter, ℎ𝑖𝑟𝑠, as well as

156

their respective Hilbert-transformed 90° phase-shifted signal, ℎ̂𝑖𝑟𝑡 and ℎ̂𝑖𝑟𝑠. Here, the ℎ𝑖𝑟𝑡 and

ℎ𝑖𝑟𝑠 are considered two separate real components of an analytic signal and ℎ̂𝑖𝑟𝑡 and ℎ̂𝑖𝑟𝑠 are

their respective imaginary components. Analytic signals also define the outputs of the CAR-

Lite-A1 model defined by equations (5-32) to (5-35). However, the outputs of both the real

and imaginary components are used in the CAR-Lite-A1 instead of only the real component

in the NSL model.

From a signal processing perspective, the Hilbert transform can be realised as a non-

causal, time-invariant filter. In other words, it can be applied to an input signal but can only

be initiated when the entire signal to be analysed is acquired. However, due to its non-

causality, it cannot be implemented in hardware for real-time applications. Alternatively, the

Hilbert transform can be applied to segmented parts of a temporal signal as they become

available. In terms of its application, the Hilbert transform has been used in the construction

of synthesised sounds for specific musical instruments [49]. It can also be used in image [50]

and video [51] processing.

For hardware implementation, the alternative to Hilbert transform is to use a causal all-

pass filter, which allows all frequency components of an input signal to pass through the filter

with equal gain [52]. The 90⁰ phase shift occurs specifically at its cut-off frequency at -3dB.

The phase shifts of all other frequency components occur relative to the single frequency

component at the -3-dB point, which means that the quadrature (90⁰) phase difference

between an input and an output signal occurs only at a single central velocity point for a rate

filter and a single centre density point for a scale filter as opposed to all Fourier components

in a Hilbert transform. This attribute complements the respective real component that is a

bandpass filtered signal at the same specific point of interest. Furthermore, the utilisation of

an all-pass filter can generate an analytic output signal in place of a complex output signal

with a Hilbert transform in the NSL model. Therefore, the all-pass filter is used in the CAR-

Lite-A1 model to generate directional neuron responses based on equations (5-32) to (5-35).

The all-pass filter is configurable with a quadrature mirror Hilbert transformer (QMHT)

[53], which uses a low-pass filter (LPF) and a high-pass filter (HPF) complementary pair in

parallel as illustrated in Figure 5-12(a). Using first-order IIR filters, the phases at the cut-off

frequency are at -45⁰ and 45⁰ for the LPF and HPF respectively, which results in an absolute

differential phase of 90⁰ at -3 dB. Here, the LPF branch is regarded as the real part, and the

HPF is regarded as the imaginary branch of an analytic signal.

157

Figure 5-12: Quadrature mirror Hilbert transformer (QMHT) configuration to achieve a 90⁰ absolute phase

difference in an analytic signal using a) complementary parallel pair of 1st-order LPF-HPF; b) 2nd-order HPF in the
imaginary branch and the real branch scaled by a constant, c, to manually regulate its amplitude with respect to
the signal in the imaginary branch.

For low centre velocities such as a 2 Hz rate filter, the absolute differential phase

generated from a 1st-order QMHT is approximately 90⁰ as observed in Figure 5-13. However,

the phases are not uniform at 90° for different centre velocities – at 32 Hz, the phase falls to

approximately 60° as projected in Figure 5-14. At higher velocities, the phase difference

becomes significantly smaller, especially at centre velocities from 32 Hz to 128 Hz for the

rate filterbank, as well as centre densities from 2 c/o to 4 c/o for the scale filterbank.

Therefore, a 1st-order LPF-HPF parallel configuration is unable to generate the desired

quadrature phase for the entire range of centre velocities and centre densities.

Figure 5-13: Gain and phase responses of a 1st-order IIR low-pass filter (LPF) and a high-pass filter (HPF)
configured as a quadrature mirror Hilbert transformer (QMHT), generating an absolute differential phase of

approximately 90⁰ (≈ |−44.100 − 43.92⁰|) at 2 Hz centre velocity of a rate filter.

158

Figure 5-14: Gain and phase responses of a 1st-order IIR LPF and an HPF configured as a QMHT, generating an

absolute differential phase of approximately 60⁰ (≈ |−21.660 − 37.60⁰|) at 32 Hz centre velocity of a rate filter.

Using either a single second-order HPF or a single LPF results in 90⁰ phase shifts at

cut-off frequencies for all centre velocities and all centre densities of the rate and scale filter-

banks respectively. Hence, a modified QMHT configuration can be attained as illustrated in

Figure 5-12(b) by replacing the 1st-order IIR HPF with a second-order standard IIR

biquadratic HPF on the imaginary branch and by replacing the 1st-order IIR LPF with a scalar

constant to manually regulate the amplitude of the output signal on the real branch. Similarly,

the reverse situation can be applied as well where the HPF is replaced with a scalar

constant on the imaginary branch, and the 1st-order LPF is replaced with a second-order

LPF on the real branch. Using either of these two configurations results in an absolute

differential phase of approximately 90⁰ at the cut-off frequencies for all centre velocities and

centre densities. An example of this quadrature (90⁰) phase is shown for the rate filter with a

128 Hz centre velocity in Figure 5-15 and the scale filter with a 4 c/o centre density in Figure

5-16. The former is generated using a modified QMHT configured with only a second-order

HPF at the imaginary branch and a scalar constant at the real branch, while the latter is

generated with a modified QMHT configured with only a second-order LPF at the real branch

and a scalar constant on the imaginary branch. For the CAR-Lite-A1 model, the former

design is used henceforth, to represent the QMHT, to generate the upward and downward

A1 neuron directional response.

159

Figure 5-15: Gain and phase responses of a modified QMHT using a 2nd-order IIR biquadratic LPF on the
imaginary branch and a scalar constant of 0.7071 on the real branch, generating an absolute differential phase of

approximately 90⁰ (precisely 89.08⁰) at 128 Hz centre velocity of a rate filter.

Figure 5-16: Gain and phase responses of a modified QMHT using a 2nd-order IIR biquadratic HPF on the real
branch and a scalar constant of 0.7071 on the imaginary branch, generating an absolute differential phase of

approximately 90⁰ (precisely 90.33⁰) at 4 c/o centre density of a scale filter.

5.4. Circuit

Figure 5-17 presents a cutaway of the CAR-Lite-A1 model circuit from Figure 5-1 for one

cochlear section. A single cochlear output (shown in a blue-dashed box in Figure 5-17) is

fanned out to 13 parallel branches corresponding to 13 centre velocities of the rate

filterbank, depicted in the red-dashed box in Figure 5-17. Each rate filter output is fanned out

160

to 9 parallel branches corresponding to 9 centre densities of the scale filterbank, represented

in a green-dashed box in Figure 5-17. The outputs of the rate and scale filterbanks feed into

a neuron directional filterbank, which generates pairs of 2D time-frequency upward and

downward responses for all mixed combinations between one (of 13) centre velocity and one

(of 9) centre density. A total of 234 (13 centre velocities × 9 centre densities × 2 directions)

2D time-frequency images are generated using either the real component or the imaginary

component of the analytic signal defined by equations (5-32) to (5-35). Figure 5-18

separately illustrates the circuits of the real and imaginary components of the analytic signal

for any combination of one rate filter centre velocity, and one scale filter centre density.

Figure 5-17: CAR-Lite-A1 model circuit showing one cochlear section (blue-dashed box) connected to a rate
filterbank (red-dashed box), a scale filterbank (green-dashed box), and a neuron directional filterbank (depicted
as “Dir.”). The output of “Dir.” generates responses from either the real (part of an analytic signal) circuit [Figure
5-18(a)] or the imaginary (part of an analytic signal) circuit [Figure 5-18(b)].

161

Figure 5-18: Cascade of rate and scale filters and quadrature mirror Hilbert transformers (QMHT) to generate A1
neuronal directionality for (a) the real and (b) imaginary components of the analytic signal defined by equations

(5-32) to (5-35).

5.5. Fixed-Point Implementation

The floating-point implementation of the CAR-Lite-A1 model is translated to a fixed-point

implementation to accommodate the model on an FPGA. Doing so reduces the bit widths

and therefore the memory utilised for all coefficients as well as input and output samples

represented in 64 bits floating-point format to varying sizes below 32 bits in fixed-point. Each

sample of the input and output signals for every stage in the model are 16 bits wide in fixed-

162

point. All the coefficients of the 108 ARs of the CAR-Lite cochlear model are represented

with 8 bits in fixed-point. Since the coefficients of the AR for the rate and scale filterbanks

are both positive and negative, they are set to 9 bits in fixed-point. The extra bit at the most

significant bit (MSB) accommodates the sign of the coefficients. 16 bits coefficients

characterise the high-pass filter (HPF) used in the QMHT module.

5.5.1. Filter Stability

The stability of the filters must be studied to affirm the set bit widths of the coefficients of

the AR and HPF in the A1 stage of the CAR-Lite-A1 model. The poles of the 9 bits

coefficients of the AR for rate and scale filterbanks are all contained within the unit circle of

the pole-zero maps as observed in Figure 5-19 and hence, the fixed-point implementation of

these two filterbanks are stable. However, the placement of zeros of the ARs for 7 of the 13

centre velocities of the rate filters from 2 Hz to 11.31 Hz and a single centre density of 0.35

c/o from the scale filterbank, are outside the unit circle, which indicates that the inverse of

the AR transfer functions of the centre velocities and centre density mentioned above is

unstable [40]. In other words, for an invertible filter, the input signal can be recovered by

applying the inverse of the rational transfer function of the filter to the output signal.

However, for the aforementioned non-invertible filters, the input signal cannot be recovered

by the same process.

In the NSL model, the rate and scale filters are invertible, which means that the input

signal can be reconstructed. The degree of similarity between the reconstructed and the

original input indicates a measure of fidelity and the capability of the filters to manipulate

timbre cues [23], [54]. In contrast, the fixed-point implementation of the CAR-Lite-A1 model

is unable to reconstruct an input signal due to the non-invertibility characteristic of the filters.

Nonetheless, in the design of the CAR-Lite-A1 model, the stability of the ARs is prioritised

over their invertibility. Instead of using reconstructed signals, an alternative measure of the

fidelity of input signals is used, as demonstrated by the classification of musical instruments

in chapter 7. Therefore, no modifications are necessary to alleviate these non-invertible

characteristics of the ARs.

The fixed-point implementation of the HPFs with 16 bit coefficients in the QMHT rate

and QMHT scale filterbanks are all stable as they have poles within the unit circle, as

observed in Figure 5-20. For coefficients with bit widths lower than 10 bits, the HPFs

become unstable as their poles are outside the unit circle, especially for low centre velocities

of 2 Hz and 2.83 Hz of the QMHT rate filterbank as observed in Figure 5-21. From 10 bits to

15 bits, poles reside on the unit circle resulting in undamped response, which indicates

resonances that do not decay. 16 bits coefficients are selected to ensure all the poles in the

filterbank are within the unit circle resulting in the decay of resonances over time. With 16

bits coefficients, the zeros of all 13 centre velocities and 9 centre densities of the HPFs in

the QMHT rate and QMHT scale filterbanks are outside the unit circle, which means they are

all non-invertible. As mentioned in the preceding paragraph, this is an acceptable

characteristic as there is no need to recover the input signal from the output signal.

163

Figure 5-19: Pole-zero (PZ) map of a fixed-point implementation of a 2nd-order AR with 9 bits coefficients used in
(a) the rate filterbank and (b) the scale filterbank.

164

Figure 5-20: Pole-zero (PZ) map of a fixed-point implementation of a 2nd-order high-pass filter (HPF) with 16 bits
coefficients used in (a) the QMHT rate filterbank and (b) the QMHT scale filterbank.

165

Figure 5-21: Magnified region of the unit circle (dotted blue vertical arc) in the pole-zero (PZ) map of a fixed-point
implementation of a 2nd-order high-pass filter (HPF) with 8 bits coefficients used in the QMHT rate filterbank.

5.6. FPGA Implementation

This section presents the implementation of the CAR-Lite-A1 model on an FPGA. An

Altera Cyclone V starter kit with a 5CGXFC5C6F27C7N FPGA chip is used with a global

clock rate of 250 MHz and a 96 kHz audio sampling rate. The fixed-point implementation,

which is interchangeably known as the hardware model of the CAR-Lite-A1 model, is

implemented via SystemVerilog on Altera Quartus development software application.

Instead of implementing a rate filterbank with 13 centre velocities and a scale filterbank with

9 centre densities on FPGA, only a single 4 Hz rate filter and a single 1 c/o scale filter along

with neuron directionality associated with these filters are implemented. This implementation

is done for comparing FPGA computational resource utilisation between the CAR-Lite-A1

model and other auditory models fitted with envelope extraction capabilities based on a

single set of envelope extraction filter.

Figure 5-22 displays the architecture of the CAR-Lite-A1 model on FPGA with four core

modules. These modules operate using time-division multiplexing, whereby each invoked

module operates modularly by transmitting its output samples to the next module in the

processing queue. Once a module finishes processing an input sample, it continues to

process the next input sample when it becomes available. If an input sample is unavailable,

the module remains inactive. Hence, with time-division multiplexing, the invoked modules

ideally work in parallel when necessary as well as modularly as observed in Figure 5-23. The

supervisor module foresees and regulates the time-division multiplexing operations using a

combination of octave processing control (OPC) and section processing control (SPC) as

explained in detail in chapter 3. In other words, the supervisor module is a top module that

decides which octave and which section to process in the CAR-Lite cochlear model, its

output down-sampling as well as the invocation of the A1 segment comprising the rate,

166

scale, and neuron directional filters respectively. The next subsection provides details of the

operation of the modules.

Figure 5-22: Architecture of the CAR-Lite-A1 model implemented on an FPGA with fixed-point arithmetic.

167

Figure 5-23: FPGA vector waveform of the AR, HPF, and Direction (Dir.) modules as part of the CAR-Lite-A1
model operating at (a) the arrival of an input sample; (b) at the end of 108 cochlear sections. Time duration Tn is
based on 22 clock cycles (latency of 9.5 μsec) from the AR module operating all 22 states – the maximum

number of states corresponding to the AR module out of all four modules.

168

5.6.1. Operation of Modules

The four core modules in the FPGA implementation of the CAR-Lite-A1 model are

Supervisor, AR, HPF, and Direction. The signal processing operations of the four modules

obey the properties of convolution, including commutation, association, and distribution [55].

The AR module hosts the equations of a 2nd-order AR. At startup, the AR module is

instantiated three times with each cloned module characterising a CAR filter of the basilar

membrane (BM), a rate filter and a scale filter. The supervisor module determines the

module to run. Along with the equations of the CAR filter, the AR module also hosts basilar

membrane velocity (BMd) and inner hair cell (IHC) equations. The BMd and IHC equations

are processed only in the instantiated AR module invoked as the CAR filter. The BMd and

IHC computations are bypassed for the AR module instantiated as rate and scale filters.

From the instantiated AR module operating as a CAR filter, its corresponding IHC output

sample is used as input to the A1 model via the supervisor module. As this CAR filter-based

AR module continues to process the next cochlear section, its output IHC sample is down-

sampled to 375 Hz, forming 𝐼𝐻𝐶↓ as defined by equation (5-1) that is output to the supervisor

module. The supervisor module invokes the second instantiated AR module that operates as

the rate filter, with 𝐼𝐻𝐶↓ as its input. The coefficients of this AR module are fixed to one (of

13) centre velocity at 4 Hz. If the other 12 centre velocities are utilised, the AR has to be

cloned 12 more times, with the coefficients for each AR module clone set to one of 12 centre

velocities. Following the conclusion of its processing, the rate filter-based AR module

transmits the rate filter output sample, 𝑦𝑟𝑎𝑡𝑒, to the supervisor module, before temporarily

suspending its operation. It awakens when a subsequent 𝐼𝐻𝐶↓ sample, corresponding to the

next section is available.

At this point, the supervisor module invokes the following two modules simultaneously

and transmits 𝑦𝑟𝑎𝑡𝑒 as their inputs: the third instantiated AR module dedicated to operate as

a scale filter, and the first (of two) instantiated HPF module to perform a 90⁰ phase shift on

𝑦𝑟𝑎𝑡𝑒, to generate 𝑦𝐻𝑟𝑎𝑡𝑒 for use in the quadrature mirror Hilbert transformer (QMHT)

operation depicted as ℎ̂𝑛𝑡 in equations (5-28) to (5-31). Both modules operate identical to the

rate filter-based AR module, i.e. once they are processed, their outputs [𝑦𝑠𝑐𝑎𝑙𝑒 for scale filter

output and 𝑦𝐻𝑟𝑎𝑡𝑒 for high-pass filtered (HPF) rate filter output] are transmitted to the

supervisor module. The two modules are suspended and await a new input (𝑦𝑟𝑎𝑡𝑒) from the

next section.

The output of the scale filter, 𝑦𝑠𝑐𝑎𝑙𝑒, is transmitted to a second instantiated HPF module,

representing a QMHT, which introduces a 90⁰ phase shift to the scale filter output producing

𝑦𝐻𝑠𝑐𝑎𝑙𝑒 that represents ℎ̂𝑛𝑠 in equations (5-28) to (5-31). Once 𝑦𝐻𝑠𝑐𝑎𝑙𝑒 is generated, it is

transmitted to the supervisor module. The supervisor module then transmits 𝑦𝑟𝑎𝑡𝑒, 𝑦𝑠𝑐𝑎𝑙𝑒,

𝑦𝐻𝑟𝑎𝑡𝑒, and 𝑦𝐻𝑠𝑐𝑎𝑙𝑒 to the Direction module, where the downward and upward A1 neuron

directional outputs are calculated using equations (5-32) to (5-35). Table 5-3 illustrates the

latencies of the invoked modules on FPGA. Each projected latency corresponding to an

invoked module is below the threshold latency of 10.41 μsec (2,604 clock cycles) – the time

between the arrivals of two sequential audio samples. This latency ensures that no buffer

overrun occurs, which is necessary to avoid output data corruption during real-time

operation.

169

FPGA Modules Invoked in Parallel 1 Cochlear Section
108 Cochlear

Sections

Module
Number

Module Filter Type
Number
of States

Latency
(nsec)

Number
of States

Latency
(μsec)

1 Supervisor - 9 36 972 3.888

2 AR Cochlea 22 88 2,376 9.504

3 AR Rate 17 68 1,836 7.344

4 AR Scale 17 68 1,836 7.344

5 HPF
90⁰ phase-

shifted Rate
16 64 1,728 6.912

6 HPF

90⁰ phase-

shifted
Scale

16 64 1,728 6.912

7 Direction
A1 Neuron
Directional

11 44 1,188 4.752

Table 5-3: Latencies of modules in the CAR-Lite-A1 model running on an Altera Cyclone V FPGA.

5.6.2. Hardware Resource Utilisation

Table 5-4 shows the computational resources required to run the CAR-Lite-A1 model on

an Altera Cyclone V GX Starter Kit fitted with a 5CGXFC5C6F27C7N FPGA chip.

Computational resources refer to the number of digital signal processors, adaptive logic

modules (ALMs) and registers utilised on the FPGA. For comparison, the CAR-Rate model

[1] is included in Table 5-4 as well. The CAR-Rate model uses a 70-section CAR segment of

the CAR-FAC cochlear model described in chapter 2 and a 4 Hz rate filter configured using

an LPF-HPF cascade configuration described in subsection 5.2.2.3. The 4 Hz rate filter is

invoked 70 times, and for each invocation, its input is one of 70 cochlear section output

sample. The model uses a pipeline architecture and time-division multiplexing for cycling

between the modules to process all the 70 sections.

From Table 5-4, it is clear that the CAR-Lite-A1 model with 108 sections uses more

computational resources than the CAR-Rate model, as the former uses 38 more cochlear

sections than the latter. Furthermore, the CAR-Lite-A1 has more filter modules in its A1

circuit (5 filter modules – 2 AR, 2 HPF, and 1 Direction) as opposed to one rate filter in the

CAR-Rate model per cochlear section output connection. Reducing the number of cochlear

sections of CAR-Lite-A1 model from 108 to 72 (6 octaves instead of 9 octaves with 12

sections per octave) brings the readout of the computational resources to be slightly less

than the CAR-Rate model. The power consumption is 4 mW higher for the 108-section CAR-

Lite-A1 implementation than the 72-section CAR-Rate implementation but can be regarded

as an insignificant increase given the more considerable hardware usage of the former over

the latter.

Model Number of
Cochlear

Filters

Number of ALM
Utilised (out of

29,080)

Number of
Registers
Utilised

Number of
DSPs Utilised

(out of 150)

Power (mW)

CAR-Rate [1] 70 1,793 (6.17%) 3,899 10 (6.67%) -

CAR-Lite-A1 (6
octaves only)

72 1,743 (5.99%) 3,425 10 (6.67%) 240

This work (CAR-
Lite-A1)

108 2,763 (9.5%) 5,043 12 (8.00%) 244

Table 5-4: Computational resources used on an Altera Cyclone V FPGA to implement A1 models.

170

5.6.3. Software Floating-Point vs. Hardware Fixed-Point

Figure 5-24 displays the degree of similarity between the responses of the software-

based floating-point and the hardware-based fixed-point implementations of the CAR-Lite-A1

model simulated in Matlab. A correlation coefficient is used to show this degree of similarity

between two 2D matrices as defined with the following equation:

𝐶𝐶 =

∑ ∑ (𝐴𝑚𝑛 − �̅�)𝑛 (𝐵𝑚𝑛 − �̅�)𝑚

√(∑ ∑ (𝐴𝑚𝑛 − �̅�)2
𝑛𝑚)(∑ ∑ (𝐵𝑚𝑛 − �̅�)2

𝑛𝑚)
 (5-41)

where 𝑚 is the row number; 𝑛 is the column number; 𝐴 and 𝐵 are the two 2D matrices to be

compared; �̅� and �̅� are the mean of the 2D matrices.

Five types of signals are used individually as inputs to the model, which are discussed in

detail in subsections 5.7.1 and 5.7.2. They include a decreasing-frequency log chirp, an

increasing-frequency log chirp, a frequency modulated signal, and two moving ripple signals

– one with decreasing and the other with increasing temporal velocities and spectral

densities. The output signals are 3D (time-frequency-rate) rate filter output signal, 4D (time-

frequency-rate-scale) scale filter output signal, 4D upward and 4D downward neuron

directional output signals. The averages and standard deviations (denoted as average ±

standard deviation) of the correlation coefficients (CC) between the software floating-point

and hardware fixed-point implementations of the five types of output signals for the real and

imaginary analytic circuits are 0.98 ± 0.02 and 0.98 ± 0.02 respectively, indicating high

degrees of similarities between floating-point and fixed-point implementations.

A 4D (time-frequency-rate-scale) matrix output from the CAR-Lite-A1 model is converted

into a 2D summary (rate-scale) matrix to analyse the five signal types. This conversion is

done using two methods: sum and root-mean-square (RMS). The next section provides

details for these methods. Figure 5-25 displays the degree of similarity between the floating-

point and fixed-point implementations of 2D (rate-scale) neuron directional responses

calculated using sum operations from equations (5-42) and (5-43) and RMS operations from

equations (5-44) and (5-45), respectively. The averages and standard deviations of CC for

the sum responses of the real and imaginary analytic circuits between the software floating-

point and hardware fixed-point implementation are 0.94 ± 0.03 and 0.96 ± 0.03 respectively.

For the RMS responses of the real and imaginary analytic circuits between the software

floating-point and hardware fixed-point implementation, these values are at 0.97 ± 0.01 and

0.97 ± 0.02 respectively. These results indicate that when a 4D output from the model is

transformed into a 2D summary matrix, a response from an implementable hardware model

can closely match the response from a software model.

171

Figure 5-24: Correlation coefficients showing the similarity between the software floating-point and hardware
fixed-point implementations of the CAR-Lite-A1 model 3D (rate) and 4D (scale, down, and up) responses for
various input signals: log chirp with (a) decreasing frequency and (b) increasing frequency; (c) frequency-
modulated signal; moving ripple with (d) decreasing and (e) increasing temporal velocity and spectral density

respectively.

Figure 5-25: Correlation coefficients showing the similarity between the software floating-point and hardware
fixed-point implementations of the 2D neuron directional rate-scale response from the CAR-Lite-A1 model for the
same input signal described in Figure 5-24 using the following arithmetic operations to collapse at time-frequency
axes (detailed in section 5.7), while maintaining rate-scale axes: (a) summed (b) RMS.

5.7. Model Responses

The upward and downward neuron directional outputs of the CAR-Lite-A1 model are

each four-dimensional (4D) containing time, frequency, rate, and scale. Figure 5-26 displays

two such 4D responses from the hardware fixed-point implementation specified in section

5.5, using a moving ripple input signal described in subsection 5.7.1 and Table 5-5. In this

Real Imaginary

Real Imaginary

Real Imaginary

172

figure, the two 4D responses are 4D matrices corresponding to the downward and upward

neuron directional filter outputs. Additionally, each 4D matrix displayed contains only 3

arbitrarily selected rate filter settings (4 Hz, 16 Hz, and 128 Hz) out of a total 13, and 3

arbitrarily selected scale filter settings (0.25 c/o, 1 c/o, and 4 c/o) out of a total of 9. Hence,

the size of each 4D matrix displayed here is 108 cochlear sections by 103,217 samples by

three centre velocities (three rate filter settings mentioned earlier) by three centre densities

(three scale filter settings mentioned earlier). A typical 4D output matrix size is 108 ×

103,217 × 13 × 9, considering all 13 rate filter centre velocities and 9 scale filter centre

densities for this specific input signal.

At a low rate (centre velocity) filter or low scale (centre density) filter setting, the output

image has a blurry response. Conversely, at a high rate filter or high scale filter setting, the

output image has a sharper response. This effect is consistent with image processing

filtration outcomes. However, a piece of valuable information that is not observable from a

4D output matrix is a summary of power distribution across all rate and scale settings. To

attain such an observation, it is beneficial to convert the 4D matrix to a conventional 2D

matrix. Doing so would provide more unambiguous visual cues of power distribution over the

two axes on only a single graph instead of multiple graphs laid out on additional two-

dimensional axes (bringing it to 4D). The process of this conversion is presented in the next

paragraph, onwards.

Figure 5-26: Hardware fixed-point representation of a 4D (a) downward and (b) upward neuron directional
responses from the CAR-Lite-A1 model using upward drifting spectro-temporal envelopes in a moving ripple input
signal configured from subsection 5.7.1 and Table 5-5. Note the input signal and its cochleagram representation

are displayed in Figure 5-28(a) and (b), respectively.

According to Chi et al. [23] and Patil et al. [16], a 4D response of a functional A1 model

can be converted to a summary 2D response for analysis. The contents of the response on

the axes belonging to the 2D axes to be excluded are summed up, which enable the 2D

summary matrix to be insensitive to translations to the excluded axes. As an example, to

enable the upward and downward neuron directional 4D matrices to capture only temporal

envelope and spectral envelope changes, containing the degree of modulation over time

173

(rate) as well as the degree of modulation across frequency (scale), high time resolution and

high frequency resolution information should be excluded in the summary 2D responses.

Similarly, in the CAR-Lite-A1 model, this attribute is achievable by summing the contents of

the two 4D matrices over time and frequency using equations (5-42) and (5-43).

Subsequently, the rate and scale dimensions are represented on the x- and y-axes

respectively.

An alternative technique to dimensionality reduction is to apply RMS to the vector

dimensions of the 4D matrix. The RMS of a time-varying vector of a dimension is its average

power calculated as a constant over its finite vector of samples [56]. In electrical circuit

theory, the RMS power of a load in a circuit is the average power when the circuit is supplied

with either an alternating current (AC) or direct current (DC) [57]. The RMS calculation

includes the following operations as determined by equations (5-44) and (5-45): multiply,

sum, divide, square-root. Although these operations are implementable on an FPGA, the

mathematical operations outnumber the mathematical operations from the summation

technique defined by equations (5-42) and (5-43). Hence, the RMS method would use more

computational resources on an FPGA than the summation method. As a result, the RMS

method is regarded as a software solution for dimensionality reduction as it would potentially

run on a computer and process the A1 neuron directional responses output from an FPGA.

The summation method is regarded as a hardware solution for dimensionality reduction as

its operation can be executed entirely on an FPGA.

The sum [equations (5-42) and (5-43)] and root-mean-square (RMS) [equations (5-44)

and (5-45)] functions that are used in the collapse of the time and frequency dimensions are

defined as:

𝑟⇑
𝑠(𝜔, 𝛺) = ∑ ∑ 𝑟⇑(𝑠, 𝑡↓; 𝜔, 𝛺)

𝑇↓

𝑡↓=0

𝑆

𝑠=0

 (5-42)

𝑟⇓
𝑠(−𝜔, 𝛺) = ∑ ∑ 𝑟⇓(𝑠, 𝑡↓; −𝜔, 𝛺)

𝑇↓

𝑡↓=0

𝑆

𝑠=0

 (5-43)

𝑟⇑
𝑟(𝜔, 𝛺) = √

1

𝑆
∑

1

𝑇↓
∑ 𝑟⇑(𝑠, 𝑡↓; 𝜔, 𝛺)2

𝑇↓

𝑡↓=0

𝑆

𝑠=0

 (5-44)

𝑟⇓
𝑟(−𝜔, 𝛺) = √

1

𝑆
∑

1

𝑇↓
∑ 𝑟⇓(𝑠, 𝑡↓; −𝜔, 𝛺)2

𝑇↓

𝑡↓=0

𝑆

𝑠=0

 (5-45)

where 𝑟⇑
𝑠 and 𝑟⇓

𝑠 are the 2D summary upward and downward neuron directional responses

respectively calculated using a sum function; 𝑟⇑
𝑟 and 𝑟⇓

𝑟 are the 2D summary upward and

downward neuron directional responses respectively calculated using an RMS function; 𝑇↓ is

the total number of samples in time; 𝑆 is the total number of cochlear sections at 108. The

downward directional response, 𝑟⇓
𝑠 and 𝑟⇓

𝑟 undergoes a sign change at all centre velocities of

the rate filterbank. This effect flips the 2D matrices horizontally along the x-axis for

174

visualisation purpose, similar to time reversal in signal process theory [55]. Thus, the

downward neuron directional response is presented in negative rates (−𝜔) and upward

neuron directional response is presented in positive rates (𝜔).

Three distinct input signals are used to exhibit the response of the CAR-Lite-A1 model:

moving ripple, frequency-modulated (FM) and logarithmic frequency sweep (log chirp)

signals. Table 5-5 provides the settings of the three input signals used for illustrating the

results in the next two subsections.

Moving Ripple FM Log Chirp

Sampling rate, 𝑓𝑆 = 96 kHz Sampling rate, 𝑓𝑆 = 96 kHz Sampling rate, 𝑓𝑆 = 96 kHz

𝑓0 = 1.5 kHz 𝑓𝑐 = 1 kHz Ascending: 𝑓0 = 0.01 Hz

Signal duration, 𝑡𝐷 = 1 sec Signal duration, 𝑡𝐷 = 1 sec Signal duration, 𝑡𝐷 = 1 sec

Bandwidth, 𝐵 = 0.9 octaves

Frequency spacing, ∆𝑓 =
0.0625 octave

𝑓𝑚 = 16 Hz Ascending: 𝑓1 = 48 kHz

Amplitude, 𝐴 = 0.9

𝑚𝑖 = 100%

Descending: 𝑓0 = 48 kHz
Phase, 𝜑 = 0⁰

Rate, 𝜔 = 16 Hz
Descending: 𝑓1 = 0.01 Hz

Scale, 𝛺 = 1 c/o
Table 5-5: Input signal settings.

5.7.1. Response to Moving Ripple

A moving ripple signal comprises pure tones distributed over a logarithmic frequency

axis. In addition, the pure tones are modulated in time, varying either up or down the

frequency-axis at a constant velocity. It is defined by:

 𝑆(𝑥, 𝑡) = 𝐴 ∙ sin(2𝜋 ∙ (𝜔 ∙ 𝑡 + 𝛺 ∙ 𝑥) + 𝜑) (5-46)

where 𝐴 is the amplitude of the signal; 𝜔 is envelope velocity over time, 𝑡; 𝛺 is the density of

frequency components; 𝑥 is the position over the frequency-axis characterised by 𝑙𝑜𝑔2(𝑓/𝑓0)

– 𝑓 is a pure tone frequency and 𝑓0 is the lowest pure tone frequency; 𝜑 is phase of the

signal.

Figure 5-27(a) illustrates a moving ripple signal traversing in a downward direction using

the settings presented in the first column of Table 5-5. Figure 5-28(b) illustrates a moving

ripple signal traversing in an upward direction using the same settings from Table 5-5. The

downward input signal is time-reversed (flipped along the time axis) to attain the upward

signal. Figure 5-27(b) and Figure 5-28(b) displays the down-sampled IHC output from the

CAR-Lite-A1 model of the two input signals. In the former, the downward moving ripple is

represented by multiple parallel thick illuminated lines with negative gradients (lines from the

upper left to the lower right), while in the latter, the upward moving ripple is represented by

the same lines but with positive gradients (lines from the lower left to the upper right).

Parts (c) – (f) of Figure 5-27 and Figure 5-28 are formed with the combined neuron

directional responses of the downward and upward filterbanks in the CAR-Lite-A1 model.

The downward response is a 2D summary matrix output from the downward directional

filterbank and displayed in negative rates on the x-axis (left-half of image), while the upward

response is a 2D summary matrix output from the upward directional filterbank and

displayed in positive rates on the x-axis (right-half of image). Parts (c) and (e) of Figure 5-27

175

and Figure 5-28 are 2D summary matrices calculated using sum operations defined by

equations (5-42) and (5-43). Parts (d) and (f) of Figure 5-27 and Figure 5-28, are 2D

summary matrices calculated using RMS functions defined by equations (5-44) and (5-45)

respectively. Parts (c) and (d) of Figure 5-27 and Figure 5-28 are the responses of the real

component of the analytic equation circuit from Figure 5-18(a), while parts (e) and (f) are the

responses of the imaginary component of the analytic equation circuit from Figure 5-18(b).

The maximum energy (pixel activation) for the responses calculated with the imaginary

component of the analytic system circuit for both upward and downward directions are

located precisely at the rate-scale coordinates of (16 Hz, 1 c/o), which corresponds to the

rate and scale setting of the moving ripple signal. In contrast, the maximum activations for

the sum and RMS responses calculated with the real component of the analytic system

circuit, regardless of directions, are located at (16 Hz, 1.414 c/o). These shifted responses

are due to the multiplication of the 90° phase-shifted rate, and scale terms to each other, i.e.

ℎ̂𝑛𝑡 ∙ ℎ̂𝑛𝑠, which are then either added or subtracted from the non-phase shifted rate-scale

terms, i.e. ℎ𝑛𝑡 ∙ ℎ𝑛𝑠, in the real component equations defined in (5-28) and (5-29).

Alternatively, the equations in the imaginary component defined in (5-30) and (5-31), have

the 90° phase-shifted rate term multiplied to the non-phase shifted scale, i.e. ℎ̂𝑛𝑡 ∙ ℎ𝑛𝑠, and

the 90° phase-shifted scale term multiplied to the rate term, i.e. ℎ𝑛𝑡 ∙ ℎ̂𝑛𝑠, instead of the two

phase-shifted terms multiplied to each other. As a result, the imaginary component of the

analytic system circuit projects maximum energy more precisely than the real component of

the analytic system circuit.

For the downward drifting moving ripple in Figure 5-27, the sum and RMS responses for

the real component of the analytic circuits show maximum pixel activation (value) in the

negative half of the rate axis and no activation in the positive half. For the imaginary

component analytic circuit using the same downward drifting, moving ripple input signal, the

maximum pixel activation is also on the negative half for the sum response, but it is situated

on the positive half for the RMS response. For an upward drifting moving ripple in Figure

5-28, both the sum and RMS responses for the real component of the analytic circuits show

maximum pixel activation (value) in the positive half of the rate axis and no activation in the

negative half. For the imaginary component analytic circuit, maximum pixel activation is also

at the positive half of the rate axis for the sum response, while it is situated on the negative

half for the RMS response. The inconsistency of the representation of the upward and

downward drifting ripples between the sum and RMS responses is described in the next

subsection (5.7.1.1).

176

177

Figure 5-27: Fixed-point (hardware) representation of (a) a moving ripple signal with decreasing frequencies over
time at (b) the down-sampled IHC stage, and (c) – (f) the responses of the A1 neuron directional filter stage of the
CAR-Lite-A1 model. (c) and (d) are the sum and RMS responses of the real component of the analytic transfer
function, whose circuit is depicted in Figure 5-18(a) respectively. (e) and (f) are the sum and imaginary responses
of the imaginary component of the analytic transfer function, whose circuit is depicted in Figure 5-18(b).

178

Figure 5-28: Fixed-point (hardware) representation of (a) a moving ripple signal with increasing frequencies over
time and its equivalent representation at (b) the down-sampled IHC stage, and (c) – (f) the responses of the A1
neuron directional filter stage of the CAR-Lite-A1 model. (c) and (d) are the sum and RMS responses of the real
component of the analytic transfer function depicted in Figure 5-18(a) respectively. (e) and (f) are the sum and
RMS responses of the imaginary component of the analytic transfer function depicted in Figure 5-18(b).

179

5.7.1.1. Difference between Sum and RMS Profiles

The different RMS response of the imaginary component of the analytic circuit,

mentioned in the preceding subsection, can be attributed to the multiplication of the 90°

phase-shifted terms to the non-phase shifted terms, i.e. ℎ̂𝑛𝑡 ∙ ℎ𝑛𝑠 and ℎ𝑛𝑡 ∙ ℎ̂𝑛𝑠. The effect of

these terms produces a more distributed energy across both the negative half and positive

half of the rate axis, than the real component of the analytic circuit, which has more energy

concentration to a specific half based on the direction of envelope drift. In other words, this

energy distribution in the RMS response is due to the calculation of average power spread

across the 2D summary rate-scale matrix, whereas the sum response puts the highest

accumulative magnitudes from the 4D output matrix to the forefront of the 2D summary rate-

scale matrix.

The sum response can also reproduce the effect observed in the RMS response of the

imaginary component of the analytic circuit by merely including an absolute term before the

summation in equations (5-42) and (5-43):

𝑟⇑
𝑠(𝜔, 𝛺) = ∑ | ∑ |𝑟⇑(𝑠, 𝑡↓; 𝜔, 𝛺)|

𝑇↓

𝑡↓=0

|

𝑆

𝑠=0

 (5-47)

𝑟⇓
𝑠(−𝜔, 𝛺) = ∑ | ∑ |𝑟⇓(𝑠, 𝑡↓; −𝜔, 𝛺)|

𝑇↓

𝑡↓=0

|

𝑆

𝑠=0

 (5-48)

The responses of equations (5-47) and (5-48) is observable in Figure 5-29, which are similar

to the RMS responses shown in Figure 5-27(f) and Figure 5-28(f). Ideally, the absolute term

is explicitly calculated as the root-sum-square of a complex number, i.e. |±𝑥| =

√𝑅𝑒(±𝑥)2 + 𝐼𝑚(±𝑥)2 [55]. If no imaginary numbers exist, as is the case for the output

signals from the CAR-Lite-A1 model, then the equation is simplified to |±𝑥| = √𝑅𝑒(±𝑥)2 = 𝑥.

More specifically, this operation converts any signed real-valued number to a real-valued

positive number. By doing so, neuron directionality information might be lost at the expense

of the average power information calculated with the RMS operation. In other words, neuron

directionality information from the CAR-Lite-A1 model is influenced mainly by the sum and

subtract operations defined in equations (5-28), (5-29), (5-30), and (5-31), which affects the

signs of the output values. However, RMS operations produce only positive output values

regardless of the signs of their input samples, thereby potentially removing vital neuron

directionality information.

Note that in the NSL model [23], Chi et al. showed that the downward response is

displayed on the positive rate axis and the upward response on the negative rate axis. This

effect is in contrast with the CAR-Lite-A1 model responses displayed in Figure 5-27 and

Figure 5-28, as well as Figure 5-30 and Figure 5-31 in the next subsection (5.7.2), i.e. the

downward response is displayed on the negative rate axis, and the upward response is

displayed on the positive rate axis. The sign difference of the rate dimension stems from the

structure of the models: The NSL model is a sophisticated model using three stages of

causal, non-causal, and nonlinear signal processing filters, whereas the CAR-Lite-A1 model

is an abstract of the NSL model made of two stages of causal, linear and analytic signal

180

processing filters. Although the signs of the rate axis can be swapped to correct this

difference, the analytic signal responses from the A1 neuron directional display of the CAR-

Lite-A1 model is maintained here to differentiate with the signal responses from the same

stage of the NSL model.

Figure 5-29: Fixed-point representation of the imaginary A1 neuron directional responses using sum-absolute
operations to indicate similarity to the RMS operations responses [Figure 5-27(f) and Figure 5-28(f)] of (a) a
moving ripple with decreasing frequencies over time and (b) a moving ripple with increasing frequencies over
time.

5.7.2. Response to Frequency-Modulated and Log Chirp Signals

In-vivo physiological recordings of mice auditory cortex using directional frequency

sweeps indicate the presence of ON-OFF receptive fields [58]. This ON-OFF characteristic

should be ideally manifested from the A1 neuron directional response used in the CAR-Lite-

A1 model, which means that a sound signal with an increasing envelope frequency should

activate (ON) the positive half only, while the negative half is deactivated (OFF). A sound

signal with decreasing envelope frequency activates (ON) the negative half while

deactivating (OFF) the positive half.

In section 5.7.1, the mutually exclusive responses described in the preceding paragraph

was observed using moving ripples input signal. To test the consistency of the directional

neuron response of the CAR-Lite-A1 model, two different input signals are used here: a

frequency-modulated (FM) signal and a logarithmically-spaced frequency sweep (log chirp)

signal. The FM signal uses a short frequency range of drifting envelope, while the log chirp

uses a long frequency range of drifting envelope. The FM signal, 𝑥𝐹𝑀, and log chirp signal,

𝑥𝐿𝐶, are defined as follow:

 𝑥𝐹𝑀 = cos(2𝜋𝑓𝑐𝑡 + 𝑚𝑖 cos(2𝜋𝑓𝑚𝑡)) (5-49)

181

𝑥𝐿𝐶 = sin (2𝜋𝑓0 (
(𝑓1/𝑓0)𝑡/𝑡𝐷 − 1

ln((𝑓1/𝑓0)1/𝑡𝐷)
)) (5-50)

where 𝑓𝑐 is the carrier signal frequency; 𝑓𝑚 is the modulation frequency or signal envelope

frequency; 𝑚𝑖 is the modulation index in percent; 𝑓0 is the start frequency; 𝑓1 is the end

frequency; 𝑡𝐷 is the duration of the signal or the final element of a time vector, 𝑡. The settings

of these variables are projected in Table 5-5. Figure 5-30 and Figure 5-31 display the input

signals, down-sampled IHC responses and neuron directional responses to the FM and log

chirp input signals respectively.

From Figure 5-30 and Figure 5-31, the sum and RMS responses of the real and

imaginary analytic circuits to ascending and descending frequency sweeps, are in

agreement with the ON-OFF characteristics described in the first paragraph of this

subsection – for ascending frequency sound signals, maximum values corresponding to the

most salient or highest energy activations are found at the positive half of the rate axis. In

contrast, for descending frequency sound signals, maximum values are found at the

negative half of the rate axis. The exceptions are the RMS responses of the imaginary

analytic circuits, whose responses are indistinguishable for both increasing and decreasing

frequency sweeps. This effect is due to its more evenly distributed energy as opposed to the

other type of responses as mentioned in subsection 5.7.1.1.

182

Figure 5-30: Fixed-point representation of (a) an FM signal configured with settings from the second column of
Table 5-5 and its equivalent representation from (b) the down-sampled IHC stage. Summary A1 neuron
directional filter responses recorded from the CAR-Lite-A1 model for: the increasing frequency segment (in green

183

vertical lines) of the FM signal calculated using (c-1) sum and (c-2) RMS operations with a Real circuit as well as
(c-3) sum and (c-4) RMS operations using an Imaginary circuit; the decreasing frequency segment (in yellow
vertical lines) of the FM signal calculated using (d-1) sum and (d-2) RMS operations with a Real circuit as well as
(d-3) sum and (d-4) RMS operations with an Imaginary circuit. Here, Real circuit refers to the real component of
the analytic signal circuit depicted in Figure 5-18(a) and Imaginary circuit refers to the imaginary component of
the analytic signal circuit depicted in Figure 5-18(b).

Figure 5-31: Fixed-point representation of a log chirp signal with (a) decreasing frequency and (b) increasing
frequency configured with settings from the third column of Table 5-5 along with their corresponding
representation from the down-sampled IHC stage [(a-2) – decreasing and (b-2) – increasing]. Parts (a-3) – (a-6)
are the A1 neuron directional filter responses of the CAR-Lite-A1 model for the log chirp signal with decreasing
frequency, while parts (b-3) – (b-6) are the responses for the log chirp with increasing frequency. Parts (a-3), and
(b-3) are the sum responses, while (a-4), and (b-4), are the RMS responses of the real component of the analytic
signal circuit depicted in Figure 5-18(a) respectively. Parts (a-5), and, (b-5), are the sum responses, while (a-6)

184

and (b-6) are the RMS responses of the imaginary component of the analytic signal circuit depicted in Figure
5-18(b).

5.8. Chapter Summary and Conclusion

This chapter proposes a new functional primary auditory cortical model named CAR-

Lite-A1. This model uses the CAR-Lite model, described in the first half of chapter 3, as its

frontend connected to a functional primary auditory cortical model (A1 segment of CAR-Lite-

A1). The filters in the A1 segment of the CAR-Lite-A1 model are designed with causal,

linear, time-invariant filters with a focus on hardware (FPGA) implementation. These filters

are used for extracting temporal and spectral envelopes as well as the directionality of the

frequency changes in an input sound signal, resulting in a 4D response. Phase calculation is

omitted from the model to maintain a small model size on a single FPGA as well as to lessen

the burden on computational resources utilised. Studies are performed to ensure the stability

of the filters to be implemented on FPGA. Re-synthesis of a sound signal from the output of

the CAR-Lite-A1 model is not possible with the newly designed filters as the inverse of the

transfer functions of these filters yield unstable operations.

The 4D output response of the CAR-Lite-A1 model is condensed into a 2D summary

profile for a compact 2D representation of timbre. The sizes of the 2D summary profile matrix

is fixed regardless of the length of input signals, which is advantageous for timbre

classification.

On FPGA, the resources used by the CAR-Lite-A1 model are compared with a model

that only extracts temporal envelope (CAR-Rate). Furthermore, the CAR-Lite-A1 model is

capable of extracting envelope information from common signals used in other auditory

cortical experiments such as moving ripple, frequency-modulated, and log chirp signals.

Chapter 7 presents the performance of the responses of the CAR-Lite-A1 model with real-

world signals, specifically in regard to musical instruments classification.

5.9. Bibliography

[1] C. S. Thakur, R. M. Wang, S. Afshar, T. J. Hamilton, J. Tapson, S. A. Shamma, and
A. van Schaik, “Sound Stream Segregation: A Neuromorphic Approach to Solve the
‘Cocktail Party Problem’ in Real-Time,” Front. Neurosci., vol. 9, pp. 1–10, 2015, doi:
10.3389/fnins.2015.00309.

[2] J. P. Jones and L. A. Palmer, “An Evaluation of the Two-Dimensional Gabor Filter
Model of Simple Receptive Fields in Cat Striate Cortex,” J. Neurophysiol., vol. 58, no.
6, pp. 1233–1258, 1987.

[3] N. N. Schraudolph, “A Fast, Compact Approximation of the Exponential Function,”
Neural Comput., vol. 11, no. 4, pp. 853–862, 1999, doi:
10.1162/089976699300016467.

[4] R. K. Singh, “A Real-time Implementation of the Primary Auditory Neuron Activities,”
University of Western Sydney, 2012.

[5] R. K. Singh, “RTAP: Real-Time Auditory Periphery.” Singh, Ram Kuber, Sydney,
2014, [Online]. Available: https://github.com/rtap-dev/RTAP.

[6] R. K. Singh, “A Real-Time Implementation of a Dual Resonance Nonlinear Filterbank,”
in International Conference on Engineering and Natural Sciences, 2015, pp. 36–41,
doi: http://iierdl.org/proceeding.php?pid=24.

185

[7] Y. Cheol, P. Cho, S. Bae, Y. Jin, K. M. Irick, and V. Narayanan, “Exploring Gabor
Filter Implementations For Visual Cortex Modeling on FPGA,” in 2011 21st
International Conference on Field Programmable Logic and Applications, 2011, pp.
311–316, doi: 10.1109/FPL.2011.63.

[8] J. A. Hemandez and B. Romero, “Multiscale Image Representation Based on Gabor
Transform Using Reconfigurable FPGA,” in 2003 IEEE International Computer
Architectures for Machine Perception, 2003, pp. 256–262, doi:
10.1109/CAMP.2003.1598171.

[9] Y. C. P. Cho, N. Chadramoorthy, K. M. Irick, and V. Narayanan, “Multiresolution
Gabor Feature Extraction for Real Time Applications,” in 2012 Workshop on Signal
Processing Systems, 2012, pp. 55–60, doi: 10.1109/SiPS.2012.56.

[10] G. Giun, C. Lee, Z. Huang, C. Chen, and C. Chen, “Implementation of Gabor Feature
Extraction Algorithm for Electrocardiogram on FPGA,” in 2015 IEEE International
Symposium on Circuits and Systems (ISCAS), 2015, pp. 798–801, doi:
10.1109/ISCAS.2015.7168754.

[11] S. Qiu, F. Zhou, and P. E. Crandall, “Discrete Gabor transforms with complexity
O(NlogN),” Signal Processing, vol. 77, no. 2, pp. 159–170, 1999, doi:
10.1016/S0165-1684(99)00030-4.

[12] I. T. Young, L. J. van Vliet, and M. van Ginkel, “Recursive Gabor Filtering,” IEEE
Trans. Signal Process., vol. 50, no. 11, pp. 2798–2805, 2002, doi:
10.1109/TSP.2002.804095.

[13] E. David, P. Ungureanu, and M. Ansorge, “A Fast Recursive Implementation of Gabor
Filters,” in International Symposium on Signals, Circuits and Systems, 2005 (ISSCS
2005), 2005, pp. 581–584, doi: 10.1109/ISSCS.2005.1511307.

[14] C. Lin, L. Tao, and H. K. Kwan, “Parallel-Computing-Based Implementation of Fast
Algorithms for Discrete Gabor Transform,” IET Signal Process., vol. 9, no. 7, pp. 546–
552, 2015, doi: 10.1049/iet-spr.2014.0300.

[15] R. Plomp and H. J. M. Steeneken, “Effect of Phase on the Timbre of Complex Tones,”
J. Acoust. Soc. Am., vol. 46, no. 2B, pp. 409–421, 1969, doi: 10.1121/1.1911705.

[16] K. Patil, D. Pressnitzer, S. Shamma, and M. Elhilali, “Music in Our Ears: The
Biological Bases of Musical Timbre Perception,” PLoS Comput. Biol., vol. 8, no. 11,
pp. 1–16, 2012, doi: 10.1371/journal.pcbi.1002759.

[17] S. W. Smith, “Filter Comparison,” in The Scientist and Engineer’s Guide to Digital
Signal Processing, 1st ed., San Diego, CA, USA: California Technical Publishing,
1997, pp. 343–350.

[18] M. Adeli, J. Rouat, S. Wood, S. Molotchnikoff, and E. Plourde, “A Flexible Bio-Inspired
Hierarchical Model for Analyzing Musical Timbre,” IEEE/ACM Trans. Audio Speech
Lang. Process., vol. 24, no. 5, pp. 875–889, 2016, doi:
10.1109/TASLP.2016.2530405.

[19] M. I. T. Opencourseware, “Determining a System’s Causality from its Frequency
Response.” Massachusetts Institute of Technology, pp. 1–2, 2009.

[20] J.-A. Piñeiro, M. D. Ercegovac, and J. D. Bruguera, “Algorithm and Architecture for
Logarithm, Exponential, and Powering Computation,” IEEE Trans. Comput., vol. 53,
no. 9, pp. 1085–1096, 2004, doi: 10.1109/TC.2004.53.

186

[21] D. Wang, M. D. Ercegovac, and Y. Xiao, “Complex Function Approximation Using
Two-Dimensional Interpolation,” IEEE Trans. Comput., vol. 63, no. 12, pp. 2948–
2960, 2014, doi: 10.1109/TC.2013.181.

[22] E. Jamro, K. Wiatr, and M. Wielgosz, “FPGA Implementation of 64-Bit Exponential
Function for HPC,” in 2007 International Conference on Field Programmable Logic
and Applications, 2007, pp. 718–721, doi: 10.1109/FPL.2007.4380753.

[23] T. Chi, P. Ru, and S. A. Shamma, “Multiresolution Spectrotemporal Analysis of
Complex Sounds,” J. Acoust. Soc. Am., vol. 118, no. 2, pp. 887–906, 2005, doi:
10.1121/1.1945807.

[24] R. Patterson, I. Nimmo-smith, J. Holdsworth, and P. Rice, “An efficient auditory
filterbank based on the gammatone function.” Speech-Group meeting of Institute of
Acoustics on Auditory Modelling, RSRE, Malvern, pp. 1–33, 1987, [Online]. Available:
https://www.researchgate.net/publication/245316556_An_efficient_auditory_filterbank
_based_on_the_gammatone_function.

[25] R. F. Lyon, “The AGC Loop Filter,” in Human and Machine Hearing: Extracting
Meaning from Sound, Cambridge University Press, 2017, pp. 331–344.

[26] H. Li, “Configure the Coefficients for Digital Biquad Filters in TLV320AIC3xxx Family,”
2010. [Online]. Available: http://www.ti.com/lit/an/slaa447/slaa447.pdf.

[27] I. Grout, “Introduction to Digital Signal Processing,” in Digital Systems Design with
FPGAs and CPLDs, Newnes, 2008, pp. 475–536.

[28] J. O. Smith III, “Direct-Form I,” Introduction to Digital Filters with Audio Applications,
2007. https://ccrma.stanford.edu/~jos/filters/Direct_Form_I.html (accessed Oct. 05,
2018).

[29] J. O. Smith III, “Direct Form II,” Introduction to Digital Filters with Audio Applications,
2007. https://ccrma.stanford.edu/~jos/filters/Direct_Form_II.html (accessed May 28,
2019).

[30] C. L. Philips, J. M. Parr, and E. A. Riskin, “Continuous-Time Linear-Time Invariant
Systems,” in Signals, Systems, and Transforms, 4th ed., Upper Saddle River, NJ,
USA: Prentice Hall, 2008, pp. 89–149.

[31] T. Lizhe and J. Jean, “Infinite Impulse Response Filter Design,” in Digital Signal
Processing - Fundamentals and Applications, 3rd ed., Academic Press, 2019, pp.
315–419.

[32] R. Bristow-Johnson, “Cookbook formulae for audio equalizer biquad filter coefficients.”
http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt (accessed Oct. 05, 2018).

[33] J. Hodgson, “Mastering The Final Say,” in Understanding Records: A Field Guide to
Recording Practice, 1st ed., Bloomsbury Academic & Professional, 2014, pp. 189–
230.

[34] S. W. Smith, “Introduction to Digital Filters,” in The Scientist and Engineer’s Guide to
Digital Signal Processing, 1st ed., San Diego, CA, USA: California Technical
Publishing, 1997, pp. 261–276.

[35] S. W. Smith, “Applications of the DFT,” in The Scientist and Engineer’s Guide to
Digital Signal Processing, 1st ed., San Diego, CA, USA: California Technical
Publishing, 1997, pp. 169–184.

187

[36] C. M. Rader and B. Gold, “Effects of Parameter Quantization on the Poles of a Digital
Filter,” Proc. IEEE, vol. 55, no. 5, pp. 688–689, 1967, doi: 10.1109/PROC.1967.5634.

[37] R. Lyons, “Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved,”
2012. https://www.dsprelated.com/showarticle/183.php (accessed Oct. 08, 2018).

[38] F. Harris and W. Lowdermilk, “Implementing Recursive Filters with Large Ratio of
Sample Rate to Bandwidth,” in 2007 Conference Record of the Forty-First Asilomar
Conference on Signals, Systems and Computers, 1983, pp. 1149–1153, doi:
10.1109/ACSSC.2007.4487403.

[39] R. F. Lyon, “The Cascade of Asymmetric Resonators,” in Human and Machine
Hearing: Extracting Meaning from Sound, Cambridge University Press, 2017, pp.
293–298.

[40] C. L. Philips, J. M. Parr, and E. A. Riskin, “The z-Tranaform,” in Signals, Systems, and
Transforms, 4th ed., Upper Saddle River, NJ, USA: Prentice Hall, 2008, pp. 546–598.

[41] R. F. Lyon, “Resonators,” in Human and Machine Hearing: Extracting Meaning from
Sound, Cambridge University Press, 2017, pp. 145–168.

[42] M. Slaney, “An Efficient Implementation of the Patterson-Holdsworth Auditory Filter
Bank,” 1993.

[43] D. A. Depireux, J. Z. Simon, D. J. Klein, and S. A. Shamma, “Spectro-Temporal
Response Field Characterization with Dynamic Ripples in Ferret Primary Auditory
Cortex,” J. Neurophysiol., vol. 85, no. 3, pp. 1220–1234, 2001.

[44] R. Plomp, “The perception of timbre of steady-state complex tones,” J. Acoust. Soc.
Am., vol. 86, no. S1, p. S57, 1989, doi: 10.1121/1.2027565.

[45] T. Nagai, S. Mori, H. Ono, and S. Saito, “Effect of phase on the timbre and detection
of timbre of complex tones,” J. Acoust. Soc. Am., vol. 58, no. S1, p. S82, 1975, doi:
10.1121/1.2002342.

[46] J. O. Smith III, “Positive and Negative Frequencies,” Mathematics of the Discrete
Fourier Transform (DFT), with Audio Applications --- Second Edition, 2007.
https://ccrma.stanford.edu/~jos/mdft/Positive_Negative_Frequencies.html (accessed
Sep. 12, 2019).

[47] J. O. Smith III, “Analytic Signals and Hilbert Transform Filters,” Mathematics of the
Discrete Fourier Transform (DFT), with Audio Applications --- Second Edition, 2007.
https://ccrma.stanford.edu/~jos/r320/Analytic_Signals_Hilbert_Transform.html
(accessed Sep. 12, 2019).

[48] P. Singh, “Studies on Generalized Fourier Representations and Phase Transforms,”
arXiv, pp. 1–15, 2018.

[49] J. H. Justice, “Analytic signal processing in music computation,” IEEE Trans. Acoust.,
vol. 27, no. 6, pp. 670–684, 1979, doi: 10.1109/TASSP.1979.1163321.

[50] J. A. Davis, D. E. Mcnamara, and D. M. Cottrell, “Image processing with the radial
Hilbert transform: theory and experiments,” Opt. Lett., vol. 25, no. 2, pp. 99–101,
2000, doi: 10.1364/OL.25.000099.

[51] X. Jin and S. Goto, “Hilbert Transform-Based Workload Prediction and Dynamic
Frequency Scaling for Power-Efficient Video Encoding,” IEEE Trans. Comput. Des.
Integr. Circuits Syst., vol. 31, no. 5, pp. 649–661, 2012, doi:

188

10.1109/TCAD.2011.2180383.

[52] P. A. Regalia, S. K. Mitra, and P. P. Vaidyanathan, “The Digital All-Pass Filter: A
Versatile Processing Building Block,” Proc. IEEE, vol. 76, no. 1, pp. 19–37, 1988, doi:
10.1109/5.3286.

[53] C. Tsai, “Design and Realization of Quadrature Mirror Hilbert Transformers Using
Even-Order Elliptic IIR Filters,” in 2011 4th International Congress on Image and
Signal Processing, 2011, vol. 1, pp. 2271–2274.

[54] T. Chi, Y. Gao, M. C. Guyton, P. Ru, and S. Shamma, “Spectro-temporal modulation
transfer functions and speech intelligibility,” J. Acoust. Soc. Am., vol. 106, no. 5, pp.
2719–2732, 1999, doi: 10.1121/1.428100.

[55] C. L. Philips, J. M. Parr, and E. A. Riskin, Signals, Systems, and Transforms, 4th ed.
Upper Saddle River, NJ: Prentice Hall, 2008.

[56] L. L. Beranek and T. J. Mellow, Acoustics: Sound Fields and Transducers. Academic
Press, 2012.

[57] H. Zumbahlen, “Other Linear Circuits,” in Linear Circuit Design Handbook, Elsevier
Newnes, 2008, pp. 84–191.

[58] J. Sollini, G. A. Chapuis, C. Clopath, and P. Chadderton, “ON-OFF receptive fields in
auditory cortex diverge during development and contribute to directional sweep
selectivity,” Nat. Commun., vol. 9, no. 1, pp. 1–12, 2018, doi: 10.1038/s41467-018-
04548-3.

189

6. Pitch Estimation and Classification of Musical Notes

In this chapter, the auditory models described from chapters 3 to 4 are tested with real-

world musical signals. The CAR-Lite cochlear model described in chapter 3 is the first

module to be tested. The musical signals are monophonic, which means that the input signal

contains a musical note from a single musical instrument. These musical signals are sourced

from the Real World Computing (RWC) musical instrument database [1]. The fundamental

frequencies of the selected musical notes are verified with the PitchPerfect Musical

Instrument Tuner software application.

The output of the CAR-Lite cochlear algorithm is transmitted to an algorithm that

generates an autocorrelogram containing pitch information. Together, these two algorithms

result in the formation of an auditory pitch model, CAR-Lite-ACF, described in chapter 4.

Pitch estimation algorithms described in this chapter approximate fundamental frequencies

from the autocorrelograms. A classifier is then used to determine whether the estimated

fundamental frequencies are related to the ground truths of musical pitch. Here, musical

pitch refers specifically to the fundamental frequencies of musical notes. The distinction

between the pitch estimation and classifier algorithms allows dedicated functional hardware

blocks to be implemented for dedicated processing if required.

The proposed classification algorithms presented in this chapter are implementable on

hardware, i.e. a field-programmable gate array (FPGA). The Occam’s Razor principle is

evoked to ensure that the design of the pitch extraction and classification algorithms remain

simple for FPGA implementation while maintaining low computational resource usage. As

such, this chapter is divided into four parts to investigate the classification accuracies of the

hardware-implementable algorithms.

Section 6.1 details the settings of the CAR-Lite-ACF model to prepare the monophonic

musical signal as input to the classifier, as well as the determination of the ground truth

information to validate the fundamental frequency, 𝑓0, of an input signal. Section 6.2

describes algorithms for estimating 𝑓0 from an autocorrelogram generated from the CAR-

Lite-ACF model. Section 6.3 presents the results of the classification, while section 6.4

provides the chapter summary and conclusion.

6.1. Pathway to Pitch Estimation: Model Settings and Ground Truth

According to Bigand and Tillmann [2], “musical notes define the smallest building block

of Western tonal music”. Plack and Oxenham further remarked [3], “If a sound does not

produce a sensation of pitch, it cannot be used to produce a melody.” In other words,

musical melody is perceivable through musical pitch [4]. The fundamental frequency of a

sound stimulus is one dimension of musical pitch, and is acquirable from an autocorrelogram

(AC).

In chapter 4, two methods are presented to calculate an AC matrix. One method

involves conventional multiply-accumulate (MAC) operations, and another involves the

computationally less expensive logical-AND-accumulate (AAC) operations. However, its

capability of representing pitch information from real-world sound signals is unknown.

Therefore, AC matrices generated by AAC algorithms are tested in this section to see how

well they can represent musical pitch in the form of fundamental frequencies from

190

monophonic musical notes. This exercise paves the way for the AAC-generated AC matrices

to be tested with more complex polyphonic musical signals as well as other complex sound

stimuli in the future.

AAC-generated AC matrices are produced from binary spikes calculated from leaky-

integrate-and-fire (LIF) neurons representing the auditory nerve (AN) stage of the CAR-Lite

cochlear model. These spikes are generated when the internal voltages of the LIF neurons

cross a firing threshold. This firing threshold, as well as all other variables in the CAR-Lite-

ACF model, are identical to the ones used in chapter 4, i.e. the firing threshold is set at 0.27

V based on 0 dBFS intensity level. This threshold is based on the highest correlation

coefficients of the comparison of the AC generated between multiply-accumulate (MAC) and

logical-AND-accumulate (AAC) operations – the MAC generated matrices are used as a

benchmark in the comparison.

For the exercise in this chapter, the fundamental frequencies extracted from AAC-

generated AC are compared with the fundamental frequencies extracted from MAC-

generated AC. The CAR-Lite-ACF model that produces the MAC-generated AC matrices

(calculated from the half-wave rectified signals output from the CAR-Lite model representing

the inner hair cell stage) have the same system parameter settings as the ones described in

chapter 4. This comparison provides a quantitative performance measurement of the novel

AAC-generated AC in relation to the conventional MAC-generated AC.

The algorithms for acquiring and classifying musical pitch are primarily aimed at the

estimation of the fundamental frequency, 𝑓0, of a monophonic musical signal. The pitch

estimation algorithm that extracts 𝑓0 information from the AC matrix is detailed in section 6.2.

Subsection 6.2.5 describes the algorithm for classifying musical notes. These algorithms are

designed to be implementable on an FPGA. Their designs are based explicitly on selected

piano musical notes from the fourth octave and are used for estimating 𝑓0 from musical

notes ranging from the second octave to the seventh octave, selected from various musical

instruments. The fourth octave range contains the largest number of common musical notes

that can be produced across a wide range of musical instruments and is thus, used in many

musical pieces. The musical instrument, piano, has the largest range of musical notes that

also covers the diverse ranges of notes from many other instruments. Hence, the musical

notes from the piano are selected to design the pitch estimation algorithms highlighted in

upcoming subsections.

The estimated 𝑓0 from AC matrices are compared with a ground truth vector, 𝑓𝐺𝑇, which

contains the 𝑓0 corresponding to musical notes. These ground truth frequencies are

calculated as follow:

 𝑓𝐺𝑇(𝑖) = 2(𝑖−49)/12 × 440 (6-1)

where 𝑖 is an index of notes ranging from 1 (A0 – note A at octave 0) to 108 (G#9 – note G

sharp at octave 9). Section 6.3 presents the results of classifying musical notes from the AC

matrices. The full details of the musical notes and musical instruments used in this exercise

as well as their classification accuracy scores are covered in appendices B and C.

191

6.2. Pitch (f0) Estimation from Autocorrelogram (AC)

The estimation of an 𝑓0 from a 2D 108×2048 autocorrelogram (AC) calculated from the

CAR-Lite-ACF model is mainly dependent on which part of a monophonic musical signal the

input signal is extracted from. This section presents the study of which point in a musical

note signal provides an ideal representation of the 𝑓0. A musical note is selected for this

study, as mentioned in the next paragraph. Once this location is known, this method is of

extracting the input signal is applied to other monophonic notes across octaves and other

musical instruments for the classification of musical notes described in section 6.3.

A preliminary study is conducted here to determine the ideal location in a musical note

to estimate the 𝑓0. An A4 piano note is arbitrarily selected as the monophonic reference

signal. The first step involves selecting multiple starting points in the entirety of the A4 signal.

This number is set arbitrarily at fourteen. The locations are also arbitrarily selected, as

displayed in Figure 6-1. There are more starting points placed close to the maximum of the

A4 signal to understand the impact of the magnitude levels on 𝑓0 estimation. From each of

the fourteen starting points, fourteen input vectors, each containing 2,048 samples, are

extracted to generate fourteen ACs. Figure 6-2 displays all fourteen ACs cross-correlated to

one another.

The region of interest in this similarity matrix is the area with the highest correlation

coefficients (CC) that indicates the highest degree of similarity, which happens to be from

windows 3 to 6 and from windows 10 to 13. Windows 3 to 6 is close to the peak positive

(maximum) point in the sound signal (denoted by the red asterisk in Figure 6-1), but windows

10 to 13 have no prominent feature to enable signal extraction. Hence, the maximum point is

selected as the starting point of the input signal to generate an AC. An example of an AC

generated by this method is shown in Figure 6-3(a) using the same A4 note signal. As

described in chapter 4, summing all the rows of the AC in Figure 6-3(a) results in a temporal

profile displayed in Figure 6-3(c). From the temporal profile, an 𝑓0 of 442 Hz (≈ 96 𝑘𝐻𝑧/217)

is estimated, which is close to the ground truth 𝑓0 of A4 note at 440 Hz (≈ 2(0−49)/12 × 440).

Subsection 6.2.1 further elaborates on this technique.

Subsections 6.2.1 to 6.2.3 present three characteristics for estimating 𝑓0, which lead to

the formation of six 𝑓0 estimation algorithms, as summarised in subsection 6.2.4. The

classifier algorithm is presented in subsection 6.2.5. Subsection 6.2.6 presents an FPGA

implementation of the three characteristic algorithms as well as the classification algorithm.

192

Figure 6-1: Fourteen arbitrarily selected discrete starting points from the A4 musical signal played on the piano
for ACF windowed analyses. The red asterisk, ‘*’ indicates the starting point of the input signal ultimately selected
for generating an AC.

Figure 6-2: A similarity matrix displaying the correlation coefficients between fourteen autocorrelograms (ACs)
indicating the degree of similarity between the ACs. The ACs are generated from fourteen input signals selected
from the fourteen arbitrarily selected starting points scattered throughout the monophonic musical signal of piano
note, A4, in Figure 6-1.

193

Figure 6-3: (a) Autocorrelogram (AC) response calculated from the maximum magnitude point of an A4 piano
note. Calculation is in fixed-point arithmetic from leaky-integrate-and-fire (LIF) neurons using AND-accumulate
(AAC) operations representing auditory nerve (AN) signals originating from the CAR-Lite-ACF model. The AC
can be represented as (b) a spectral profile, and (c) a temporal profile.

6.2.1. Peak-Picking

A fundamental frequency, 𝑓0, can be calculated from the peaks in the temporal profile of

an AC. The peaks themselves can be divided into two types: high-level and intermediate-

level, as seen in the labels in Figure 6-3(c). All algorithms for calculating 𝑓0 from an

autocorrelogram generated from the CAR-Lite-ACF model involve only the high peaks. The

upcoming paragraphs describe the detection of these high peaks.

The automated process of finding peaks in the temporal profile of the AC involves a

peak-picking algorithm [5] implemented in an iterative loop spanning the length of a temporal

profile. The algorithm has two parts: (1) the detection of all peaks in the temporal profile of

an AC, and (2) differentiate high peaks from ordinary peaks. The first part involves in the

formation of a vector, np, containing sample numbers, n, of detected peaks. For every

iteration, it uses the current sample and past two samples to determine a peak. This iterative

three-sample peak detection is a simple form of peak detection that is implementable on

hardware:

𝑛𝑝 = {

𝑛 − 1, 𝑚𝑛−2 < 𝑚𝑛−1 ≥ 𝑚𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6-2)

where 𝑚 is a magnitude in the temporal profile at sample 𝑛 − 𝑘; 𝑘 can be any number

between 0 to 2 to select any one of three adjacent samples and 𝑝 is a peak index.

The second part of the peak-picking algorithm involves the formation of a new vector,

nhp, containing the samples of only the high peaks extracted from all the peaks found in the

temporal profile in np. Like equation (6-2), this part uses the current peak and two past

detected peaks for every iteration within the same loop that houses equation (6-2):

194

𝑛ℎ𝑝 = {

𝑛𝑝−1, ∆𝑚−< ∆𝑚0> ∆𝑚+

 𝑜𝑟 ∆𝑚−< ∆𝑚0< ∆𝑚+

𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6-3)

 ∆𝑚−= 𝑚(𝑛ℎ𝑝−1) − 𝑚(𝑛𝑝−2) (6-4)

 ∆𝑚0= 𝑚(𝑛ℎ𝑝−1) − 𝑚(𝑛𝑝−1) (6-5)

 ∆𝑚+= 𝑚(𝑛ℎ𝑝−1) − 𝑚(𝑛𝑝) (6-6)

where Δk is the difference in the magnitude of a last known high peak, 𝑚(𝑛ℎ𝑝−1), and a

detected peak at 𝑚(𝑛𝑝−𝑘), in the temporal profile. Two conditions are formulated in

equation (6-3) to define a high peak as observed in the temporal profile of the A4 piano note.

The first condition checks if the middle peak is the highest out of the three adjacent peaks.

The second condition checks if the first peak is the highest out of all three peaks with

decreasing magnitudes. If any of these two conditions are met, the sample number (index) of

the detected peak is recorded in the 𝑛ℎ𝑝 vector. When this algorithm is first initiated, the first

peak detected is set as a high peak by default (see Figure 6-4 for reference).

The fundamental frequency, 𝑓0, of a perceived pitch [6] is defined by two adjacent high

peaks in the 𝑛ℎ𝑝 vector. The high peak to high peak period, 𝑇𝑝𝑝, and its corresponding

frequency, 𝑓𝑝𝑝, between two adjacent high peaks in the temporal profile [7] are calculated as:

𝑇𝑝𝑝 =

𝑛ℎ𝑝 − 𝑛ℎ𝑝−1

𝑓𝑠
 (6-7)

𝑓𝑝𝑝 =
1

𝑇𝑝𝑝
 (6-8)

where fs is the sampling rate.

Figure 6-4 displays the extracted high peaks using the abovementioned peak-picking

method from a temporal profile of a piano note, A4. The temporal profile in Figure 6-4(a) is

the profile from Figure 6-3(c) (generated using AAC operations) that has been further

conditioned by a 2nd-order low-pass filter to remove high-frequency artefacts, as suggested

in chapter 4. Applying equations (6-7) and (6-8) to all adjacent pairs of high peaks result in

the 𝑓𝑝𝑝 vector. The mean and the median of the 𝑓𝑝𝑝 vector are found to be 446 Hz and 444

Hz, respectively. Using pitch matching classifier from subsection 6.2.5, the closest ground

truth musical frequency, 𝑓𝐺𝑇, defined by equation (6-1), which corresponds to these values,

is 440 Hz. Incidentally, this is the fundamental frequency of the A4 note.

195

Figure 6-4: Automatic peak detection of an A4 piano note: (a) from a 2nd-order low-pass filtered temporal profile
computed using AND-accumulate (AAC) operations in fixed-point arithmetic; (b) display of all detected peaks
from the temporal profile using equation (6-2); (c) display of detected high peaks, ℎ𝑝𝑖, from the temporal profile

using equation (6-3). The numbers on the top of the high peaks are sample numbers that can be used to

calculate the 𝑓𝑝𝑝 using equations (6-7) and (6-8), which corresponds to the estimated 𝑓0 of the A4 note.

6.2.2. Weighting High Peaks

If the distance between any two detected high peaks in a temporal profile results in 𝑇𝑝𝑝,

which in turn leads to frequency, 𝑓𝑝𝑝, then only one pair of successive peak magnitudes can

be ideally selected to achieve this. The preferred pair would be ℎ𝑝1 and ℎ𝑝2, at the start of

the temporal profile since it is the quickest to find out of all other high peaks. They are also

likely to be the most reliable as the high peaks here are distinguishable from adjacent

intermediate peaks, i.e. magnitude difference between the first high peak, ℎ𝑝1 and any

intermediate peaks before the second high peak, ℎ𝑝2, is significant.

There are instances, where anomalous peaks with intermediate magnitudes are

detected that result in a falsely estimated 𝑓𝑝𝑝. One example of this is observable from the

temporal profile of an E4 piano note in Figure 6-5(a). The peak-picking algorithm from

equations (6-2) to (6-6) has detected an additional erroneous peak, ℎ𝑝2. Calculating 𝑓𝑝𝑝 from

this erroneous point, using either ℎ𝑝1 or ℎ𝑝3, results in an 𝑓𝑝𝑝 that does not match the

ground truth of 330 Hz (𝑓𝐺𝑇 of E4). A three-step solution is taken to resolve this issue.

The first part of the solution is to sort the magnitudes of the high peaks in a decreasing

order. Doing so also rearranges their respective sample indices. This action puts the high

peaks at the start of the sorted vector, followed by the intermediate peaks. The advantage of

this arrangement is that the resultant 𝑓𝑝𝑝 calculations between the high peaks can be done

iteratively at fixed increments of 1 instead of variable increments if they are not sorted. The

search for the number of high peaks in a group is set arbitrarily to nine. In other words, only

the top-9 high peaks are regarded as reliable in the calculation of 𝑓𝑝𝑝 and thus, are retained.

All other peak indices outside the detected high peaks indices are set to 0.

196

The second part of the solution consists of comparing eight 𝑓𝑝𝑝 values calculated from

these nine peaks with the elements of the ground truth musical frequency vector, 𝑓𝐺𝑇. The

𝑓𝐺𝑇 elements closest to 𝑓𝑝𝑝 values are recorded in a separate vector, 𝑓𝑝𝑝𝑚. Their

corresponding indices are recorded in 𝑘𝑝𝑝𝑚:

𝑓𝑝𝑝𝑚(𝑖) = {

𝑓𝐺𝑇(𝑗 − 1), 𝑖𝑓 ∆𝑓1 < ∆𝑓2

𝑓𝐺𝑇(𝑗), 𝑖𝑓 ∆𝑓1 > ∆𝑓2

𝑓𝐺𝑇(𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6-9)

𝑘𝑝𝑝𝑚(𝑖) = {

𝑗 − 1, 𝑖𝑓 ∆𝑓1 < ∆𝑓2

𝑗, 𝑖𝑓 ∆𝑓1 > ∆𝑓2

𝑗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6-10)

 ∆𝑓1 = 𝑓𝑝𝑝(𝑖) − 𝑓𝐺𝑇(𝑗 − 1) (6-11)

 ∆𝑓2 = 𝑓𝐺𝑇(𝑗) − 𝑓𝑝𝑝(𝑖) (6-12)

where the ith peak-to-peak frequency and index from the sorted vector containing decreasing

peak magnitudes, is closest to the 𝑗𝑡ℎ 𝑓𝐺𝑇.

The third part of the solution is to assign weights to the top-8 detected musical peak-to-

peak frequency, 𝑓𝑝𝑝𝑚. The weights are required to ensure that if all eight 𝑓𝑝𝑝𝑚 elements are

unique, then the most influential element in the 𝑓𝑝𝑝𝑚 vector is used for representing 𝑓0.

Otherwise, the most commonly occurring element in the 𝑓𝑝𝑝𝑚 vector is the estimated 𝑓0.

Hence, the first element in 𝑓𝑝𝑝𝑚 corresponding to the first two detected high peaks in the

temporal profile is assigned the highest weight of 8 points. The weight reduces by 1 for the

next element in the 𝑓𝑝𝑝𝑚 vector. So, the eighth 𝑓𝑝𝑝𝑚 element has a weight of 1. A winner-

take-all (WTA) algorithm determines the 𝑓𝑝𝑝𝑚 element with the highest score as the

estimated 𝑓0. The score, 𝑠𝑓𝑝𝑝𝑚, for the 𝑖𝑡ℎ 𝑓𝑝𝑝𝑚 is calculated using:

 𝑠𝑓𝑝𝑝𝑚(𝑖) = ∑ 𝑖 ∙ 𝑤𝑓𝑝𝑝(𝑖)

𝑘

 (6-13)

where 𝑖 is the index of an element in 𝑓𝑝𝑝𝑚; 𝑤𝑓𝑝𝑝 is a position-based weight of an 𝑓𝑝𝑝𝑚

element.

One advantage of this exercise is that if a false positive 𝑓𝑝𝑝𝑚 element is detected with a

significant weight, and an alternate 𝑓𝑝𝑝𝑚 element is detected several times with lower rank,

the combined high 𝑠𝑓𝑝𝑝𝑚 score may elevate the alternate 𝑓𝑝𝑝𝑚 element to a higher priority.

An illustration of this effect is observable from the detected high peaks of the E4 piano note

in Figure 6-5(b), where the first 𝑓𝑝𝑝𝑚 element of 349 Hz is a false positive (𝑠𝑓𝑝𝑝𝑚 = 2 × 7 =

14) but is overridden by the combined score (𝑠𝑓𝑝𝑝𝑚 = 3 × 6 + 4 × 5 = 38) of the two lower

197

weighted 𝑓𝑝𝑝𝑚 elements at 330 Hz. In this case, the higher-scoring 𝑓𝑝𝑝𝑚 element

corresponding to 330 Hz matches the 𝑓𝐺𝑇 of E4 (330 Hz).

Figure 6-5: (a) High peaks detected from the temporal profile of piano note, E4 (𝑓𝐺𝑇 = 330 Hz), and (b) top-8

weighted peak-to-peak musical frequency, 𝑓𝑝𝑝𝑚, sorted based on decreasing magnitude of detected high peaks.

6.2.3. Threshold-Bound Search

In the context of the threshold-bound algorithm presented in this subsection, the

following definitions are used: An inharmonic frequency is calculated between any two

adjacent high peaks. It is not equal to 𝑓𝑝𝑝𝑈(1) [a unique frequency element from the 𝑓𝑝𝑝𝑚

vector described in the next paragraph] as well as being not an integer multiple of 𝑓𝑝𝑝𝑈(1). In

contrast, a harmonic frequency is calculated from any two adjacent high peaks and is also

not equal to 𝑓𝑝𝑝𝑈(1) but is an integer multiple of 𝑓𝑝𝑝𝑈(1).

One issue with the weight-based winner-take-all (WTA) approach described in section

6.2.2 is that the number of inharmonic frequency elements, 𝑓𝑝𝑝𝑚(> 1) – [calculated from

high peaks beyond the first two], can outnumber the principal frequency element, 𝑓𝑝𝑝𝑚(1),

calculated from the first two high peaks. This is observable in Figure 6-6(b), where the

combined score is larger for the 208 Hz ((5 × 4) + (3 × 6) = 38) frequency element than the

311 Hz (2 × 7 = 14) element. This algorithm results in a wrongly estimated 𝑓0 of 208 Hz

instead of one that matches the ground truth frequency at 311 Hz. To alleviate this issue, a

new vector, 𝑓𝑝𝑝𝑈, is formulated, which only holds unique elements of 𝑓𝑝𝑝𝑚, i.e. only a single

frequency element is stored in 𝑓𝑝𝑝𝑈 even if repeated frequency elements are encountered in

𝑓𝑝𝑝𝑚. Another vector, 𝑘𝑝𝑝𝑈, holds the sample indices, 𝑘, corresponding to the unique

frequency elements in 𝑓𝑝𝑝𝑈:

𝑘𝑝𝑝𝑈(𝑖) = {

𝑘(𝑗), 𝑖𝑓 𝑓𝑝𝑝𝑚(𝑖) ≠ 𝑓𝑝𝑝𝑚(𝑗)

−1, 𝑖𝑓 𝑓𝑝𝑝𝑚(𝑖) = 𝑓𝑝𝑝𝑚(𝑗)
 (6-14)

198

where -1 indicates repeated elements from the vector that are omitted.

From the unique frequency elements, two conditions are defined to filter out inharmonic

𝑓𝑝𝑝𝑈 elements. The first condition tests for the presence of harmonics related to the principal

frequency element, 𝑓𝑝𝑝𝑈(1), which has the most significant weight, 𝑤𝑓𝑝𝑝, indicating the

highest priority and probable frequency related to the ground truth frequency, 𝑓𝐺𝑇. This test is

characterised using a modulo operation to see if the unique frequency elements are an

integer multiple of 𝑓𝑝𝑝𝑈(1):

 𝑓𝑚𝑜𝑑 = 𝑓𝑝𝑝𝑈(𝑖) 𝑚𝑜𝑑 𝑓𝑝𝑝𝑈(1) (6-15)

A zero in 𝑓𝑚𝑜𝑑, indicates the presence of a harmonic component of 𝑓𝑝𝑝𝑈(1), whereas a non-

zero 𝑘𝑚𝑜𝑑 indicates the presence of an inharmonic component.

In the RWC database [1], all twelve piano notes (in the 011PFNOF.wav file) in the fourth

octave contain inharmonic components with respect to 𝑓𝑝𝑝𝑈(1). Each of more than half of the

twelve notes contains at least two frequency components that are separated by a semitone,

which is the minimum interval between two consecutive notes in a Western musical scale.

Figure 6-5(b) illustrates an example of such a behaviour from the E4 note, where the

difference between the 350 Hz (𝑓0 of F4) component is one semitone apart from the 330 Hz

(𝑓0 of E4) component – musically, E4 and F4 are one semitone apart. In other words,

although there is a difference in these two frequency components, both of them are still

essential in defining the 𝑓0 of the input signal.

The second condition involves calculating the distance between the principal frequency

element, 𝑓𝑝𝑝𝑈(1), and an inharmonic component. The distance plays a significant part in

either the retention or omission of the inharmonic component for consideration in the 𝑓0

estimation as an inharmonic component. In other words, if an inharmonic component is near

𝑓𝑝𝑝𝑈(1), it is included in the estimation of 𝑓0; otherwise, it is not included:

 |𝑓𝑝𝑝𝑈(𝑖) − 𝑓𝑝𝑝𝑈(1)| > 𝑡ℎ𝑠𝑒𝑚𝑖𝑡𝑜𝑛𝑒 (6-16)

where 𝑡ℎ𝑠𝑒𝑚𝑖𝑡𝑜𝑛𝑒 is a threshold of one semitone. Hence, if any 𝑓𝑝𝑝𝑈 element [excluding

𝑓𝑝𝑝𝑈(1)], whether it is a harmonic of 𝑓𝑝𝑝𝑈(1) or not, is one semitone apart from 𝑓𝑝𝑝𝑈(1), it is

retained in the 𝑓0 estimation. If it is more than one semitone apart, it is omitted from the 𝑓0

estimation. Here, the 𝑓0 estimation uses the weights method described in subsection 6.2.2.

Applying this threshold-bound algorithm to the D#4 piano note results in the omission of the

208 Hz elements, as displayed in Figure 6-6(c). This omission is due to the 208 Hz (𝑓0 of

G#3) element being seven semitones apart from the 311 Hz (𝑓0 of D#4) element. As a result,

only the 311 Hz, which is considered as a high priority element in terms of its magnitude, is

retained.

199

Figure 6-6: (a) High peaks detected from the temporal profile of piano note, D#4 (fGT = 311 Hz); (b) top-8

weighted peak-to-peak musical frequency, 𝑓𝑝𝑝𝑚, sorted based on decreasing magnitude of the detected high

peaks; (c) a threshold-bound omission of 208 Hz elements, which is larger than 1 semitone from the 𝑓
𝑝𝑝𝑈

(1), of

311 Hz calculated from the first two detected high peaks.

6.2.4. Summary of Algorithms

Algorithm Description

1 𝑓0 estimated from the first two high peaks only using peak-picking
algorithm from subsection 6.2.1.

2 𝑓0 estimated from the most commonly occurring frequency component
calculated from all the peaks encountered throughout the temporal
profile, using the peak-picking algorithm from subsection 6.2.1.

3 𝑓0 estimated from the most commonly occurring frequency calculated
from only the high peaks encountered throughout the temporal profile –
non-weighted winner-take-all (WTA) algorithm described in subsection
6.2.2.

4 𝑓0 estimated from the weighted winner-take-all (WTA) algorithm applied
to frequency components calculated from only the high peaks, as
described in subsection 6.2.2.

5 𝑓0 estimated from the threshold-bound algorithm applied to frequency
components calculated from only the high peaks, as described in
subsection 6.2.3.

6 𝑓0 estimated from the conditional combination of algorithms 4 and 5. If
there are eight different frequency elements encountered from all the
nine high peaks (top-9 peaks) encountered, then execute algorithm 4;
else if less than eight different frequency elements are calculated (less
than nine high peaks encountered), execute algorithm 5.

Table 6-1: Summary of algorithms for estimating 𝑓0 from the temporal profile of an autocorrelogram (AC) for use

in classifying musical notes, whose results are presented in section 6.3.

Table 6-1 summarises the algorithms for estimating an 𝑓0 described in subsections

6.2.1, 6.2.2, and 6.2.3. The 𝑓0 calculated from these algorithms are used for the

classification of musical notes, whose results are presented in section 6.3.

200

6.2.5. Classifier Algorithm

This subsection describes the operation of a pitch matching algorithm for classifying

musical notes implemented in Matlab. The subsequent paragraph elaborates on the

contents of the classification algorithm, which is implemented in both Matlab and

SystemVerilog. All ACs corresponding to the musical notes from various musical instruments

used as inputs to the classifier are generated offline and permanently stored. When the

classification algorithm starts, it loads all the ACs in working memory and their respective

temporal profiles are calculated before entering an iterative loop. In the iterative loop, each

of the six 𝑓0 estimation algorithms described in Table 6-1 are run on the temporal profiles.

After an 𝑓0 is estimated, it is checked against a vector of ground truth musical notes

frequency, 𝑓𝐺𝑇. When an estimated 𝑓0 equals an 𝑓𝐺𝑇 for a specific musical note, it is

considered a successful match. Otherwise, it is considered a failed match. This pitch

matching algorithm is a simple derivative of the k-nearest neighbour method [8] of classifying

musical notes. This process is done iteratively for each estimated 𝑓0. The results are

consolidated outside the iterative loop, and the classification accuracy scores are shown

based on the following criteria: the algorithms used for generating the ACs using either

multiply-accumulate (MAC) or logical-AND-accumulate (AAC) operations together with either

floating-point (software) or fixed-point (hardware) arithmetic.

6.2.6. FPGA Implementation

This subsection describes the FPGA implementation of the three AC 𝑓0 estimation

algorithms described from subsections 6.2.1 to 6.2.3 using SystemVerilog. It also describes

the pitch matching classifier described in subsection 6.2.5 for classifying the estimated 𝑓0.

The frequency calculations in these algorithms are replaced with periodicity calculations,

which alleviates the need to use computationally expensive division operations and rely

simply on addition and subtraction operations. The FPGA used here is an Altera Cyclone V

GX starter kit with a 5CGXFC5C6F27C7 FPGA chip operating at a system clock rate of 100

MHz. A single top module hosts a finite state machine with 14 states, which are processed

serially. The combined latency of all 14 states is 140 ns, where each state requires 1 clock

cycle (10 ns) to process. However, the algorithms are designed to run iteratively in multiple

cycles for the duration of a given input signal. Hence, the combined latency varies based on

the input signal attributes, such as the length of the input signal and the number of peaks

present in the temporal profile of the AC.

The FSM starts with state 0, where all the constants are initialised. States 1 to 3 detect

peaks from the input temporal profile signal based on the peak-picking algorithm in

subsection 6.2.1 and record their respective sample indices, y_p. States 4 to 7 sort the

detected peaks in the order of decreasing magnitude and store them in y_xhp, as described

in subsection 6.2.2. Their corresponding sample indices, y_hp, are also recorded. States 8

to 11 calculate the peak-to-peak distance between the sorted sample numbers, y_dhp, and

search for the distances that is in agreement with the distance of the two largest magnitudes

based on the description in subsection 6.2.3. The number of equal distances is counted and

compared with one another. The count for the equal distance between the two largest

magnitude is given priority over other distances. If this count, y_WTA, is the largest, then the

distance is known as the estimated fundamental period, y_T0_estimate, corresponding to a

fundamental frequency. Otherwise, the highest count is chosen. The classifier is

201

implemented in states 12 and 13 that predicts a musical fundamental period,

y_T0_predicted, close to y_T0_estimate.

As an illustration of the FPGA implementation of the AC 𝑓0 estimation and classification

algorithms, a 48-sample input temporal profile signal is generated based on the properties of

the D#4 piano note illustrated in Figure 6-6. Figure 6-7 displays the input signal and the

three red arrows depict the three common peak-to-peak distances that yield a fundamental

period of 10 samples. Figure 6-8 depict the corresponding FPGA output vector waveform of

the AC 𝑓0 estimation and classification.

y_detected in Figure 6-8(a) illustrates nine pulses indicating nine detected peaks from

the input signal. y_p1 to y_p9 in Figure 6-8(b) depicts the sample numbers of these nine

peaks. These peaks are then sorted in decreasing magnitude order. y_xhp1 to y_xhp5

depict the top-five largest of these magnitudes, and y_hp1 to y_hp5 are their corresponding

sample numbers. y_dhp1 and y_dhp2 display the differences between the sample numbers

of the neighbouring high peaks. A y_WTA of 3 and y_T0_estimated of 10 indicate that a

peak-to-peak distance of 10 samples occurs most frequently (3 times) in the input signal as

opposed to any other peak-to-peak distances. This result corresponds to the three distances

illustrated by three arrowed red lines having a distance of 10 samples in Figure 6-7. Given

ten known trained classes of known fundamental periodicity ranging from 6 to 15 samples,

the predicted fundamental period, y_T0_predicted, is correctly depicted at 10 samples.

Table 6-2 presents the FPGA computational resources used for implementing the AC 𝑓0

estimation and classification algorithms. A temporal profile with 2,048 samples would

increase the resources utilised. However, the scaled-down 48-sample input signal was

selected to showcase that the algorithms are implementable and operable on hardware. The

AC 𝑓0 algorithms require no digital signal processors (DSPs), as no multiplication operations

exist in the algorithms. Despite the low logic utilisation by the algorithms, the power

consumed is at 239 mW.

FPGA Number of
ALM Utilised

(out of 29,080)

Number of
Registers
Utilised

Number of
DSPs Utilised

(out of 150)

Power (mW)

Altera Cyclone
V

1,879 (6.5%) 1,810 0 (0%) 239

Table 6-2: Computational resources used by an Altera Cyclone V FPGA to implement the AC 𝑓0 estimation and

classification algorithms.

202

Figure 6-7: A 48-sample temporal profile generated based on properties of the D#4 piano note illustrated in
Figure 6-6. The red arrows show the common peak-to-peak distances that yield the estimated 𝑓0.

203

Figure 6-8: Output vector waveform of an FPGA implementation of the AC 𝑓0 estimation and classification
algorithms described from subsections 6.2.1 to 6.2.5: (a) The 9 pulses depict the 9 peaks detected within the first
960 ns. (b) Classification results depict the correctly predicted musical 𝑇0 of 10 samples with the estimated 𝑇0 of

10 samples used as an input into the classifier. The estimated 𝑇0 is determined based on the most commonly

occurring peak-to-peak distance, which is depicted quantitatively from the counter, y_WTA.

6.3. Results and Evaluation

The following three subsections present the results of the classification of monophonic

musical notes. Subsection 6.3.1 presents the classification results using the pitch estimation

algorithms from section 6.2 on the autocorrelogram responses from the CAR-Lite-ACF

model. The classification results of the responses from the model are differentiated based on

204

the computational method of generating the output autocorrelogram: either floating-point

(software) and fixed-point (hardware) arithmetic calculated with either multiply-accumulate

(MAC) or logical-AND-accumulate (AAC) operations. Subsection 6.3.2 presents the

classification results based on the varying intensity and signal-to-noise ratio (SNR) levels of

musical notes as well as the automatic gain control (AGC) algorithm presented in appendix

A applied to the notes. Subsection 6.3.3 presents the difference in sizes of the output

autocorrelograms used in the classification exercise in subsection 6.3.1. Subsection 6.3.4

compares the results of the classification presented in subsection 6.3.1 with work done by

other authors.

6.3.1. Accuracy of Pitch Estimation (0 dBFS Intensity Level)

The results of the classification of musical notes displayed below are broken into three

octave-group ranges: low (octaves 2 and 3), as illustrated in Figure 6-9; middle (octaves 4

and 5), as illustrated in Figure 6-10; high (octaves 6 and 7), as illustrated in Figure 6-11.

Each octave comprises 12 musical notes in the following order based on increasing

frequency: C, C#, D, D#, E, F, F#, G, G#, A, A#, B. Figure 6-12 displays the overall

performance based on the mean results across all three groups. The result for each octave

group is calculated as a mean of the results across various musical instruments listed in the

three respective tables as follows: mean results in Figure 6-9 calculated from Table B-1;

Figure 6-10 from Table B-2; Figure 6-11 from Table B-3. An accuracy score in each of the

three tables results from a specific algorithm listed in Table 6-1 for a temporal profile from an

autocorrelogram (AC) output matrix. It is further segregated based on how each output

matrix is generated, i.e. either by multiply-accumulate (MAC) operations or by AND-

accumulate (AAC) operations in either floating-point (software) or fixed-point (hardware)

arithmetic.

The musical instruments are selected based on the availability of musical notes for the

specific octave groups in the RWC database [1]. Ten octaves (12 notes per octave) from ten

musical instruments are selected from the RWC database representing low-range octave

groups (octaves 2 and 3) that dominantly play musical notes in the bass (low frequency)

range, as seen in Table B-1. Musical notes from most musical instruments in the RWC

database reside in the mid-range octave groups (octaves 4 and 5). Given the abundance of

musical notes in this range, eleven octaves from ten random musical instruments are

selected, as projected in Table B-2. The high-range octave groups (octaves 6 and 7) has the

least number of musical instruments available to generate musical notes, and so only three

musical instruments are selected for this range, as observed in the low number of musical

instruments listed in Table B-3.

The algorithm with the weakest performance (lowest accuracy score) across the three-

octave groups is algorithm 2, as observed in Figure 6-12. This poor performance is expected

as the 𝑓0 here is estimated from all the peaks found in the temporal profile, which include

high and intermediate peaks. In contrast, 𝑓0 estimated from the first two high peaks alone

from algorithm 1 yields approximately two times higher accuracy scores. The next higher-

performing score is from algorithm 4 – weighted high peaks, and a winner-take-all (WTA)

algorithm, whose mean accuracy score is 27% higher than that of algorithm 1. This

performance is followed by algorithm 5 – the threshold-bound algorithm, whose score is 5%

higher than algorithm 4. The non-weighted high peaks WTA algorithm (algorithm 3) and the

205

hybrid combined algorithms 4 and 5, known as algorithm 6, have equal performance, both

outranking the accuracy score of algorithm 5 by 10%.

Since the algorithms for estimating an 𝑓0 are designed based on notes from octave 4 of

a piano, the highest results observed in Figure 6-12 are expectedly from the mid-range,

precisely due to the algorithms 3 and 6. Furthermore, the accuracy scores do not vary much

across musical instruments as well as between octaves 4 and 5, as observed in Table B-2.

In contrast, there is a significant difference in accuracy scores based on octave 6 notes

(high-range) generated by a flute and a piano, as highlighted in Table B-3 for all algorithms.

In the same table, another significant difference in accuracy scores is observable between

octaves 6 and 7. A similar observation is made for the low-range octave group from Table

B-1, where there is a significant performance difference between string instruments (piano

and guitars) and wind instruments (trombone and tenor saxophone) as well as between

octaves 2 and 3. These contrasts show the lack of robustness of the algorithms to predict 𝑓0

across octaves and musical notes. Hence, the 𝑓0 estimation algorithms have to be designed

around various musical instruments besides the piano to enhance their robustness of

accurately approximating 𝑓0 from these instruments. These observations also suggest that

the timbre and pitch relation across octaves represented in autocorrelograms affect the

performance of these algorithms to predict an 𝑓0, as was reported in [9].

Figure 6-13 illustrates the capability of the temporal profile calculated from the

autocorrelogram (AC) to represent low pitch (C2 note) and high pitch (C7 note) musical

piano notes. A low pitch note has a low fundamental frequency, whereas a high pitch note

has a high fundamental frequency. For a low pitch note, the peak-to-peak distance on the

AC is irregular, as observed in Figure 6-13(a). This observation indicates the presence of

inharmonic frequencies, which are frequencies that are multiple integers of other frequencies

besides 𝑓0. Thus, the peak-to-peak 𝑓0 estimation becomes highly obscured as they usually

contain information on the inharmonic frequency. Instead, the estimation algorithms have to

be designed to consider peaks not directly adjacent to a single peak. For example, the 𝑓𝐺𝑇

for C2 of 65 Hz corresponds to a peak with an insignificant magnitude immediately after the

0.015 s mark in Figure 6-13(a) with respect to the first detected peak at p1. Since the 𝑓0

estimation algorithms described in this chapter analyse only peak-to-peak information, this

results in an inaccurate 𝑓0 estimation. In contrast, the peak-to-peak distance on the AC is

regular for a high pitch note, as observed in Figure 6-13(b). This observation indicates that

the 𝑓0 is not affected by inharmonic frequencies for this specific high pitch monophonic

signal and that it can be estimated accurately by using peak-to-peak algorithms described in

this chapter.

Despite the significant performance differences across octaves and musical

instruments, the mean accuracy score difference across the computational response per

algorithm (MAC floating-point vs MAC fixed-point vs AAC floating-point vs AAC fixed-point)

is generally on par with one another with small differences across them for all the octave

groups, as observed in Figure 6-12. This observation is mainly applicable to algorithms 2, 3,

5, and 6 on responses calculated from the hardware-based AAC operations. The only

exception is for algorithm 4, where the hardware-based AAC operations have the lowest

score of the four computation types with the difference between the closest computation

(hardware-based MAC operation) being only 3%. Overall, the results indicate that the

hardware-based AAC operations have a highly similar performance with the MAC operations

206

in terms of representing monophonic musical pitch information in addition to consuming

lesser hardware resources than the latter, as presented in chapter 4.

 Figure 6-9: Classification of musical notes average scores for low-range octave groups 2 and 3.

 Figure 6-10: Classification of musical notes average scores for middle-range octave groups 4 and 5.

207

 Figure 6-11: Classification of musical notes average scores for high-range octave groups 6 and 7.

Figure 6-12: Classification of musical notes average scores across all three-octave groups with the vertical lines
on the bars showing standard deviation.

208

Figure 6-13: A comparison of low pitch (C2) and high pitch (C7) musical notes represented on a temporal profile:
(a) note C2; (b) note C7. Note: Red dots indicate wrong 𝑓0 estimation, while green dots indicate correct 𝑓0

estimation.

6.3.2. Varying Intensity and Noise Levels

As real-world sound signals vary in intensity levels and are affected by noise, it is

necessary to understand how much varying the intensity and signal-to-noise ratio (SNR)

levels affect 𝑓0 estimation and classification accuracy. This section presents the results of

such effects. Additionally, the influence of an automatic gain control (AGC) algorithm to

condition the amplitudes of the input signals is also presented. Computation of the

autocorrelograms is segmented based on combinations of two calculation types: either MAC

or AAC and either floating-point or fixed-point. Twelve piano notes are selected: A4 – G#4.

Section 3.2.8 presented the limitation of the dynamic range (DR) of the CAR-Lite model

when the intensity levels of the input signals vary. This limitation is observed as the

saturation of amplitude levels of the BM signal when the input signal is saturated at intensity

levels above 0 dB full-scale (FS). An AGC algorithm is utilised to condition an input signal so

that its amplitude levels are maintained between 2𝑁−1 − 1 and −2𝑁−1for an N bits fixed-point

implementation. For a 16 bits BM signal, this range is from 32,767 to -32,768. Details of the

AGC algorithm are presented in appendix A. This algorithm is not implemented on FPGA

209

because the Cyclone V FPGA starter kit [10] used for the implementation of the CAR-Lite-

ACF model has an audio codec that comprises an AGC circuit [11].

Figure 6-14 display the waveforms of a C4 piano note at an intensity level of 0 dBFS.

The left column displays the waveforms when the AGC is disabled while the right column

displays the waveforms when the AGC is enabled. The varying gain conditioning applied by

the AGC normalises the energy across frequencies, as observed in the broader area of

energy present in the autocorrelogram in Figure 6-14(d). The temporal profile generated

from this autocorrelogram introduces more intermediate peaks, as observed in Figure

6-14(f), which consequently reduces the accuracy scores of the pitch estimation algorithms

(3, 5, and 6) with the three highest performance described in Figure 6-12. Their inabilities to

estimate the correct 𝑓0 is evident in the lower classification accuracy scores in Figure 6-16(a)

as opposed to when AGC is disabled – shown in the scores of algorithms 3, 5, and 6 under

“AGC enabled”.

Applying the second-order low-pass filter (LPF) to the temporal profile in Figure 6-14(f)

reduces the magnitudes of all the peaks, including the largest peak close to time lag 0

resulting in the temporal profile in Figure 6-14(h). Note that the position of this peak varies

but is close to 0. In the latter temporal profile, both intermediate and high peaks are still

present, unlike the temporal profile of Figure 6-14(g) generated with the AGC disabled.

However, with the suppression of the largest peak close to time lag 0 after applying the LPF,

the time lag of the new largest peak from the time lag precisely at 0 corresponds to the pitch

of the note. Hence, a new algorithm (# 7) is devised to estimate pitch frequency by simply

finding the time lag of the maximum peak and taking its inverse, as illustrated in Figure

6-14(h). This algorithm is applicable only when the AGC is enabled, as it has a poor

performance when the AGC is disabled. These results are observable in Figure 6-16, as

shown in the contrasting scores of algorithm 7 between “AGC off” and “AGC on”.

Figure 6-15 presents the classification accuracy across varying intensity levels ranging

from -20 dBFS to 20 dBFS in increments of 10 dBFS for every SNR level. Each bar score in

Figure 6-15 is the average of the accuracy scores of the four pitch estimation algorithms (3,

5, 6, and 7) in Figure 6-16. The SNR levels range from 20 dB to -20 dB in increments of 20

dB, where the input signal is mixed with white Gaussian noise. For every SNR level, three

accuracy scores are recorded from each specific pitch estimation algorithm at a specific

intensity level, as presented in appendix C. Each bar score in Figure 6-15(b), (c), and (d) is

an average all the scores across the four pitch estimations algorithms under a specific

intensity level.

When the AGC is disabled, the accuracy scores in Figure 6-15 generally remain uniform

at levels from -20 dBFS to 0 dBFS. At 10 dBFS, they improve for both MAC-based and AAC-

based temporal profiles, but at 20 dBFS, the accuracy only improves for AAC-based

temporal profiles while the performance remains the same for MAC-based temporal profiles.

Input signals larger than 0 dBFS are amplified but have saturated amplitudes due to a limited

DR as opposed to signals below 0 dBFS that have no saturation issues. These two

combined effects of amplification and saturation improve the performance of the pitch

estimation algorithms to detect peaks in the temporal profile adhering to the ground truth 𝑓0

regardless of the SNR levels. Since this attribute is more prominent for the temporal profiles

calculated with AAC operations, the AAC-based temporal profiles represent pitch information

more reliably than MAC-based temporal profiles, especially for signals at high intensity levels

210

with limited DR. Noise introduced to the AAC-based temporal profiles via quantisation errors

between consecutive amplitude levels is a likely cause for this improvement.

When the AGC is enabled, the accuracy scores under the four computational settings in

Figure 6-15 remain the same throughout the intensity levels. This is because the AGC

algorithm normalises the amplitudes of the input signal to the full dynamic range of the CAR-

Lite model at 96 dB regardless of the intensity levels, which ensures uniform performance

across levels. The accuracy scores are generally lower than the scores when the AGC is

disabled, but this is attributable to the lack of robustness of the pitch estimation algorithms –

the algorithms (3, 5, and 6) were designed using signals that are not conditioned by the AGC

with the exception of algorithm 7. Also, the MAC-based temporal profiles have higher

accuracy scores than the AAC-based temporal profiles. This performance contrast is due to

the sophistication of the AGC algorithm that varies the gain of an input signal across several

bandwidths of frequencies, which results in the weakening of salient foreground harmonic

components while strengthening background subharmonic components, as observed in

Figure 6-14(d) in comparison to Figure 6-14(b). Since the AAC computation of temporal

profile captures salient features, the lack of such salient features in an input signal reduces

the performance of the pitch estimation algorithm when estimating 𝑓0 from AAC-based

temporal profiles.

Figure 6-17(a) displays how much the accuracy scores vary across the intensity levels.

Here, each bar score is calculated from the mean of the standard deviations calculated from

the four settings under the four algorithms across the four SNR levels. A low bar score

shows performances of the settings are close to the average scores of the settings, and a

high bar score indicates more fluctuations in the performance. Generally, the accuracy

scores are more varying when the AGC is enabled than when it is disabled, which indicate

that the performance of the pitch estimation and classification is more consistent when the

AGC is disabled than when the AGC is enabled. The exception is at 20 dBFS, where the

scores are more varying when the AGC is disabled than when it is enabled. This large

varying factor is due to the significant contrast in accuracy scores, especially with the high

scores at 20 dBFS noiseless and saturated input signals and the low scores at -20 dB SNR.

Figure 6-16 presents the pitch estimation performance for each of the four

computational settings under the four algorithms averaged across intensity levels from -20

dBFS to 20 dBFS for four SNR levels. Each bar is the average of the scores from all five

intensity levels under each of the four pitch estimation algorithms. The result indicates how

algorithms perform with a white Gaussian noise that may be part of real-world sound signals.

The accuracy scores of algorithms 3, 5, and 6 are higher when the AGC is disabled than

when the AGC is enabled. This is the case only when there is no noise and at 20 dB SNR.

At higher noise levels below 20 dB SNR, the accuracy scores of the three algorithms are

further reduced but are similar to one another regardless of the AGC. In contrast, the

accuracy scores of algorithm 7 are expectedly higher when the AGC is enabled than when

the AGC is disabled because the algorithm is designed for use specifically with the AGC

enabled. Overall, the performance of the four algorithms degrades as the noise levels

increase.

Figure 6-17(b) displays the mean of the standard deviation of accuracy scores across

the four SNR levels calculated from the four computational settings under the four algorithms

(3, 5, 6, and 7) and five intensity levels (-20 dBFS to 20 dBFS in increments of 10 dBFS).

211

When the AGC is disabled, the accuracy scores of the algorithms is most varied at 0 dB

SNR, which shows the impact of the white Gaussian noise on maximising the contrast in

performance across the settings. The variations in accuracy scores remain small for other

noise levels. When the AGC is enabled, the variations in accuracy scores and the accuracy

scores themselves reduce with decreasing SNR. So, assuming that the signals used in this

section are akin to real-world signals, the pitch estimation algorithms presented in this

chapter do not perform well when they are exposed to real-world signals with increasing

noise.

Generally, varying intensity levels affects the perceived loudness of a sound signal.

Although loudness, together with pitch affects timbre cue such as brightness [12], loudness

does not affect the pitch of a sound signal, especially its fundamental frequency, 𝑓0 [13].

Hence, it can also be concluded that varying intensity levels of a sound signal does not

affect its 𝑓0. This conclusion is validated by the results of the classification of musical notes

across varying intensity levels in this subsection. Furthermore, the introduction of increasing

noise levels to the musical signals degrades the performance of the classification due to

distortion of the wavelengths of the musical signals and consequently their 𝑓0 representation.

Figure 6-14: Fixed-point response of the CAR-Lite-ACF model calculated with the AAC algorithm of a C4 piano
note (0 dBFS) as input. The left column displays output response with the note signal input directly into the
model, and the right column shows note signal conditioned by an automatic gain control (AGC) algorithm. *

indicates maximum amplitude found in (g) and (h). Note that the ground truth for C4 is 𝑓0 = 262 Hz.

212

Figure 6-15: Musical pitch estimation and classification accuracy results across multiple intensity levels for four
signal-to-noise ratios (SNR). Each score under every SNR level is an average of three scores (see appendix C)
as well as the average of scores from the four algorithms (3, 5, 6, and 7).

Figure 6-16: Musical pitch estimation and classification accuracy scores across algorithms for varying signal-to-
noise ratios (SNR). Each score under every SNR level is an average of three scores, as well as across intensity
levels (see appendix C for details).

213

Figure 6-17: Mean of the standard deviation of accuracy scores from Figure 6-15 and Figure 6-16 shown across
(a) intensity levels and (b) SNR levels. Mean values here are calculated from the accuracy scores of four

computational settings under algorithms 3, 5, 6, and, 7, and (a) across SNR, and (b) across intensity levels.

6.3.3. Autocorrelogram File Sizes

The storage of 2D autocorrelograms for pitch estimations of music notes is crucial for

the identification of patterns of musical notes. A similar application is the use of over millions

of 2D spectrograms for representing musical tracks in an extensive database for automatic

music identification [14]. The storage size of these spectrograms is dependent on how they

are computed, i.e. using either floating-point or fixed-point arithmetic, which consequently

indicates how much electronic memory is required. Similarly, the same notion can be used

on the autocorrelograms used in this chapter for pitch estimation. Thus, this section presents

the difference in storage sizes of autocorrelograms computed in floating-point and fixed-point

arithmetic.

Figure 6-18 illustrates the file sizes of the autocorrelograms (AC) at 0 dBFS used as

inputs to the musical notes pitch estimation algorithm described in subsection 6.3.1. ACs

generated in software-based floating-point with multiply-accumulate (MAC) operations have

the largest file sizes due to each sample in an AC matrix having formed with a double-

precision number as opposed to a single-precision number for each sample in an AC

generated in hardware-based fixed-point arithmetic. As a result, floating-point generated

ACs with MAC operations require more than 1.5 times storage space than fixed-point

generated ACs with MAC operations.

For the logical-AND-accumulated (AAC) generated ACs, each sample is an

accumulation of single bits as opposed to double and single precision numbers for floating-

point MAC and fixed-point MAC ACs respectively. This difference results in AAC-generated

ACs having even lower storage than the MAC-generated ACs, i.e. a fixed-point AAC-

generated AC requires 24 times less storage space than a floating-point MAC-generated

AC.

214

Figure 6-18: (a) Autocorrelogram (AC) file sizes distributed across 0 dBFS three-octave group ranges for four
different computation types; (b) Total AC file sizes for all three octave groups differentiated by the four
computation types. Flt: Floating-point; Fix: Fixed-point; MAC: Multiply-accumulate; AAC: Logical AND-
Accumulate.

6.3.4. Comparison with Other Models: Accuracy

This subsection presents the comparison of the classification of monophonic musical

notes with two other studies at only 0 dBFS. The reason behind this scarcity in comparison

is that studies on pitch detection revolve mainly around speech [15] and polyphonic music

[16]. With the RWC database, many studies are also undertaken with polyphonic music

database [17]–[19] rather than the monophonic music database. Therefore, no comparison

is performed for performances based on multiple intensity and SNR levels. The classification

results from algorithm 7 (AGC enabled) is also not considered.

Table 6-3 displays the results of the classification of musical notes extracted from the

temporal profile of autocorrelograms (AC) generated from subsection 6.3.1 at 0 dBFS

intensity level with two other publications. Cerezuela-Escudero et al. [20] used a binaural 64-

channel biologically-inspired model to generate spike trains that encode pitch information

from a monophonic musical note. The spike trains are input to a two-layer neural network

comprising a convolutional spiking layer and a winner-take-all (WTA) layer. The neural

network is trained with four notes: F3, F4, F5, and F6. Fifty different musical notes played

from an electric piano, are used to test the classifier to match the same four notes used for

training the classifier, which resulted in a 97.5% classification accuracy.

Avci et al. [21] used time and frequency features extracted from monophonic musical

signals, specifically from the viola and violin as inputs to the classification algorithms. Four

classifiers are used for classifying the musical notes: (1) linear distinction analysis; (2) k-

nearest neighbour (3) support vector machine; (4) random forests. Each classifier is trained

with four notes (G3, D4, A4, and E5) from a viola and a violin. The classifiers are then tested

215

with 512 different notes from each of the two instruments to match with the four notes used

for training the classifier. The classification results are then segregated based on the

following extracted features: temporal, spectral and a combination of temporal and spectral

features. The highest classification accuracy was reported for the combined temporal and

spectral feature using the random forests classifier at 79.6%.

Since Cerezuela-Escudero et al. [20] used four notes across four octaves (3 to 6) as

inputs, the AC pitch estimation results from octaves 3 to 6 for the piano are extracted from

subsection 6.3.1. Here, an octave result refers to the classification of twelve notes per

octave. Classification accuracies for viola and violin are also extracted from subsection 6.3.1

and included in the accuracy scores presented in Table 6-3, as Avci et al. [21] used musical

notes from these two musical instruments as inputs. Hence, a total of 84 notes are used for

testing the classifier described in this chapter. The AC responses are generated using AAC

operations from the fixed-point (hardware) implementation of the CAR-Lite-ACF model.

Algorithm 6 from Table 6-1 is used for estimating 𝑓0 from the AC responses. The estimated

𝑓0 from the ACs are used independently as inputs to the classification algorithm described in

subsection 6.2.5, whose accuracy scores are averaged and presented in Table 6-3.

The highest classification accuracy occurs for [20] at 97.5% while the classification

accuracy of the work presented in this chapter is the next highest at 89%. The key to the

classification exercise in this chapter is the pitch estimation algorithm. These algorithms are

designed based on three notes (A4, E4, and D#4) from the fourth octave of the piano. It

estimates the fundamental frequency of a note and compares it with a ground truth

frequency vector that is generated with equation (6-2). Hence, only a vector of 84 numbers

representing the 𝑓0 of 84 classes of notes is used as training data in the classifier instead of

four classes of notes from [20] and [21], whereby the length of each note signal is

significantly larger than 84 numbers. Moreover, with a larger set of trained data, the classifier

in this chapter is capable of classifying ten times more classes of notes than in [20] and [21]

combined as observed in Table 6-3.

Overall, although the 𝑓0 estimation algorithms used in this chapter have limited musical

octave and musical instrument estimation ranges, they are still capable of operating beyond

the three notes range as well as the musical instrument range (piano) that their designs are

based on – which [20] and [21] do not showcase.

Index Author Trained
Notes
Range

Number of
Tested
Notes

Instrument Accuracy

1 Cerezuela-Escudero et al.
[20]

F3, F4, F5,
and F6

50 Electric
Piano

97.5%

2 Avci et al. [21] G3, D4, A4,
and E5

512 Viola and
Violin

79.6%

3 This work – AC C3-B6 (P),
C3-B3 (V1),
C5-B5 (V1),
C5-B5 (V2)

84 Piano (P),
Viola (V1)
and Violin

(V2)

89%

Table 6-3: Comparison of the results of classifying musical notes between the work in this chapter and other
works.

216

6.4. Summary and Conclusion

This chapter presents algorithms for estimating fundamental frequency, 𝑓0, from the

temporal profile of an autocorrelogram (AC). The AC is generated from the CAR-Lite-ACF

model, which is described in chapter 4. The 𝑓0 estimation algorithms are designed using

three piano notes from the fourth octave: A, E, and D#. The inputs to the 𝑓0 estimation

algorithms are monophonic musical signals (single note from a single instrument) from

several musical instruments across six octaves (2 to 7) with twelve notes per octave. A pitch

matching classifier is used to match the estimated 𝑓0 with a ground truth vector of musical

notes frequency for classification. Both the 𝑓0 estimation and pitch matching classification

algorithms are implementable on FPGA to indicate that hardware-based classification of

musical notes is achievable.

The AC has a high accuracy for representing 𝑓0 only at mid-range octaves (4 and 5).

The AC results also vary across different musical instruments but are generally inadequate

for low-range (octaves 2 and 3), suggesting that a more robust algorithm should account for

musical pitch as well as general cross-octave features. The results are consistent regardless

of the computation types used to generate the input signals for classification, i.e. either

multiply-accumulate (MAC), AND-accumulate (AAC), floating-point (software) arithmetic or

fixed-point (hardware) arithmetic.

Using musical signals from the fourth octave, the performances of the pitch estimation

algorithms do not vary much across intensity levels. However, when an automatic gain

control (AGC) algorithm is used for varying the gain of the input musical signals, there are

more considerable variations across the performances of the algorithms than when the AGC

is disabled. Furthermore, noise levels degrade the performances of these algorithms. These

results indicate that the pitch estimation algorithms are not sufficiently robust in extracting

pitch information when an AGC algorithm is used and when noise is added to the input

signal.

In conclusion, the hardware-based fixed-point implementation of the CAR-Lite-ACF

model is capable of generating responses for representing musical pitch and consume lower

storage space (also presented in chapter 4) than its software-based floating-point

counterpart. However, their robustness must be improved to accommodate complex real-

world signals. One method to improve robustness is to use a running autocorrelation

function [7] to ensure that peaks in the temporal summary profile do not decay for increasing

lags, plausibly yielding a more reliable and simplified fundamental frequency estimation

algorithm than the ones presented in this chapter.

6.5. Bibliography

[1] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC Music Database: Music
Genre Database and Musical Instrument Sound Database,” in Proceedings of the 4th
International Conference on Music Information Retrieval (ISMIR 2003), 2003, pp.
229–230.

[2] E. Bigand and B. Tillmann, “Effect of Context on the Perception of Pitch Structures,” in
Pitch: Neural Coding and Perception, C. J. Plack, A. J. Oxenham, R. R. Fay, and A.
N. Popper, Eds. New York, NY, USA: Springer, New York, NY, 2005, pp. 306–351.

[3] C. J. Plack and A. J. Oxenham, “The Psychophysics of Pitch,” in Pitch: Neural Coding

217

and Perception, C. J. Plack, A. J. Oxenham, R. R. Fay, and A. N. Popper, Eds. New
York, NY, USA: Springer, New York, NY, 2005, pp. 7–55.

[4] C. J. Plack and A. J. Oxenham, “Overview: The Present and Future of Pitch,” in Pitch:
Neural Coding and Perception, C. J. Plack, A. J. Oxenham, R. R. Fay, and A. N.
Popper, Eds. New York, NY, USA: Springer, New York, NY, 2005, pp. 1–6.

[5] J. Gao and D. Xu, “Noise-robust Pitch Detection Algorithm Based on AMDF with
Clustering Analysis Picking Peaks,” in 2016 IEEE Information Technology,
Networking, Electronic and Automation Control Conference, 2016, pp. 1144–1148,
doi: 10.1109/ITNEC.2016.7560544.

[6] R. Meddis and M. J. Hewitt, “Virtual pitch and phase sensitivity of a computer model
of the auditory periphery. I : Pitch identification,” J. Acoust. Soc. Am., vol. 89, no. 6,
pp. 2866–2882, 1991, doi: 10.1121/1.400725.

[7] R. F. Lyon, “The Auditory Image,” in Human and Machine Hearing: Extracting
Meaning from Sound, Cambridge University Press, 2017, pp. 355–378.

[8] A. Klapuri and M. Davy, Signal Processing Methods for Music Transcription. New
York: Springer Science+Business Media LLC, 2006.

[9] J. Marozeau, A. de Cheveigné, S. Mcadams, and S. Winsberg, “The dependency of
timbre on fundamental frequency,” J. Acoust. Soc. Am., vol. 114, no. 5, pp. 2946–
2957, 2003, doi: 10.1121/1.1618239.

[10] Terasic and Altera Corporation, “Cyclone V GX Starter Kit - User Manual.” Terasic,
pp. 1–103, 2014.

[11] Analog Devices, “SSM2603: Low Power Audio Codec (Rev. B).” Analog Devices, pp.
1–32, 2012.

[12] L. E. Marks, “On Cross-Modal Similarity: The Perceptual Structure of Pitch, Loudness,
and Brightness,” J. Exp. Psychol. Hum. Percept. Perform., vol. 15, no. 3, pp. 586–
602, 1989, doi: 10.1037/0096-1523.15.3.586.

[13] G. Kochanski, E. Grabe, J. Coleman, and B. Rosner, “Loudness predicts prominence:
Fundamental frequency lends little,” J. Acoust. Soc. Am., vol. 118, no. 2, pp. 1038–
1054, 2005, doi: 10.1121/1.1923349.

[14] A. L. Wang and K. H. Street, “An Industrial-Strength Audio Search Algorithm,” in 2003
ISMIR International Symposium on Music Information Retrieval, 2003.

[15] B. S. Lee, “Noise robust pitch tracking by subband autocorrelation classification,”
Columbia University, 2012.

[16] E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, and A. Klapuri, “Automatic Music
Transcription: Challenges and Future Directions,” J. Intell. Inf. Syst., vol. 41, no. 3, pp.
407–434, Jul. 2013, doi: 10.1007/s10844-013-0258-3.

[17] V. Emiya, R. Badeau, and B. David, “Multipitch estimation of quasi-harmonic sounds
in colored noise,” in Proceedings of the 10th International Conference on Digital Audio
Effects, DAFx 2007, 2007, pp. 93–98.

[18] E. Benetos and S. Dixon, “A Shift-Invariant Latent Variable Model for Automatic Music
Transcription,” Comput. Music J., vol. 36, no. 4, pp. 81–94, 2012, doi:
10.1162/COMJ_a_00146.

218

[19] L. Song, M. Li, and Y. Yan, “Melody extraction for vocal polyphonic music based on
bayesian framework,” in Proceedings - 2014 10th International Conference on
Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2014, 2014,
pp. 570–573, doi: 10.1109/IIH-MSP.2014.147.

[20] E. Cerezuela-Escudero, A. Jimenez-Fernandez, R. Paz-Vicente, M. Dominguez-
Morales, A. Linares-Barranco, and G. Jimenez-Moreno, “Musical notes classification
with Neuromorphic Auditory System using FPGA and a Convolutional Spiking
Network,” in 2015 International Joint Conference on Neural Networks (IJCNN), 2015,
pp. 1–7, doi: 10.1109/IJCNN.2015.7280619.

[21] K. Avci, M. Arican, and K. Polat, “Machine Learning Based Classification of Violin and
Viola Instrument Sounds for the Same Notes,” in 2018 26th Signal Processing and
Communications Applications Conference (SIU), 2018, pp. 4–7, doi:
10.1109/SIU.2018.8404422.

[22] D. P. W. Ellis, “tf_agc - Time-frequency automatic gain control,” 2010.
https://labrosa.ee.columbia.edu/matlab/tf_agc/ (accessed May 10, 2020).

[23] M. Slaney, “Auditory Toolbox Version 2,” 1998. [Online]. Available:
https://engineering.purdue.edu/~malcolm/interval/1998-
010/AuditoryToolboxTechReport.pdf.

219

7. Classification of Musical Instruments

In this chapter, the auditory model described in chapter 5 (CAR-Lite-A1) is tested with

real-world musical signals. The CAR-Lite cochlear model described in chapter 3 is used with

monophonic input signals, which means that the input signal represents a musical note from

a single musical instrument. These musical signals are sourced from the Real World

Computing (RWC) musical instruments database [1].

The output of the CAR-Lite cochlear model is transmitted to a spectro-temporal

envelope extraction algorithm. This combined model is inspired by a mammalian primary

auditory cortex (A1) model and is used for the classification of musical instruments described

in this chapter.

Two musical instruments classification algorithms are presented in this chapter. One of

them is implementable on digital hardware such as a field-programmable gate array (FPGA).

Again, the Occam’s Razor principle is adhered to ensure that the design of the classification

algorithms remain simple for FPGA implementation while maintaining low computational

resource utilisation.

Besides the focus on an FPGA-implementable classification algorithm, the emphasis is

also on the types of input signals used and their various combinations. Hence, the two

proposed classification algorithms are used to test various possible input combinations to

determine which combination generates the highest classification accuracy score.

This chapter is divided into six parts to investigate the classification accuracies of the

hardware-implementable algorithms. Section 7.1 details the manner timbre can be extracted

from a sound signal. Section 7.2 describes the selection of musical notes and instruments.

Section 7.3 describes the various representations of the input signals from the CAR-Lite-A1

model, which are used as inputs to the classification algorithm. Section 7.4 details the

classification algorithm and subsection 7.4.4 specifically details FPGA implementation.

Section 7.5 presents the classification results. Finally, section 7.6 summarises and

concludes this chapter.

7.1. Timbre Representation

Timbre describes the quality of a sound stimulus [2] regardless of its pitch [3] and

loudness [4]. The quality of a sound is the shape of temporal and spectral features [5] that

are unique to a sound source, which enables it to be an ideal cue for source recognition [6]

and classification [7]. The temporal and spectral features of timbre are describable by

several parameters. Essential temporal parameters include the time of the initial transient of

a sound stimulus or attack time [8] and the temporal envelope of a sound stimulus [9].

Essential spectral parameters include the centre of gravity of a sound stimulus spectral

energy, also known as spectral centroid, stimulus power spectrum around the spectral

centroid, also known as spectral spread [10], and the variation of the stimulus spectrum over

time or spectral flux [11]. According to Caclin et al. [12], the attack time and the spectral

centroid parameters are the most widely reported timbre cues. This notion is reinforced by

Kong et al. [13].

Another manner timbre is encoded is through spectro-temporal receptive fields (STRF)

found in the mammalian primary auditory cortex, which capture spectro-temporal envelopes

220

from a sound stimulus [14]. Using mathematical STRF transfer functions to represent

spectro-temporal envelopes, Patil et al. demonstrated a significant musical timbre

classification success at approximately 98% accuracy conforming to psychoacoustical

results [15]. Here, musical timbre is confined to monophonic musical signals from various 11

classes of musical instruments. Since the CAR-Lite-A1 model described in chapter 5 is an

abstract of the model used by Patil et al., this chapter is dedicated to musical timbre

classification using the responses from the CAR-Lite-A1 model. The objective is to

understand how well the responses of the CAR-Lite-A1 model perform in the classification of

monophonic signals from musical instruments. From this exercise, more difficult

classification tasks can be designed, such as segmenting and classifying polyphonic musical

signals.

7.2. Musical Notes Selection

A total of 12 classes of musical instruments are used from the RWC database [1] for the

classification of musical instruments. Each instrument class is divided into two subclasses

based on its respective manufacturer. Four notes with normal playing styles are selected

from each instrument. Three of the four notes, A3, D4, and G#4, selected are based on [15]

while the fourth note A4, is randomly selected. If any one of these notes is unavailable, then

the next higher or lower note is selected if available. Similarly, if the notes in octaves 3 and 4

are unavailable, then the set of notes are selected from the next lower or higher octave if

available. An example of this particular selection is for the harmonica (A4, G4, A5, and C5)

and the flute (A4, D4, G#4, and A5).

 Each of the four notes is further divided into three loudness levels: high, middle, and

low. Hence, a total of 24 (3 loudness levels × 4 musical notes × 2 musical instruments per

class) notes are used from each musical instrument class, which brings the combined total

musical notes to 288 from 12 different musical instruments. Table 7-1 displays the musical

instruments and their respective musical notes used for musical instruments classification. A

further deliberation of musical notes selection based on pitch and loudness are presented in

subsections 7.2.1 and 7.2.2, respectively.

7.2.1. Timbre Invariance

In psychoacoustic experiments, timbre invariance is the ability of a human listener to

judge whether two different musical notes emanate from the same musical source, i.e. either

a musical instrument or a singer [16]. Handel and Erickson found that non-musicians were

able to successfully identify musical wind instruments if a series of musical notes emanating

from the instruments are at most, one octave apart [16]. If the notes were more than an

octave apart, the subjects were unable to identify the instruments correctly. Marozeau et al.

extended the experiments to include musical stringed instruments and found similar findings

to Handel and Erickson [10]. Hence, for non-musicians, the timbre invariance bandwidth is

one octave. Steele and Williams also had the same findings regarding non-musician using

musical wind instruments but found that the timbre invariance bandwidth was higher for

musicians, up to 2.5 octaves [17].

To characterise timbre invariance described in the aforementioned psychoacoustic

experiments, the response of a computational model must not be affected by changes in

pitch in the range of 1 to 2.5 octaves. Calhoun and Schreiner reported that the response of

ripple transfer function characterising the functional primary auditory cortex (A1) remains a

221

constant shape regardless of the change in the fundamental frequency, 𝑓0, or the changes in

the number of frequency components [18]. In other words, the ripple transfer functions are

capable of representing timbre invariance, similar to those in the NSL model. Indeed, Patil et

al. demonstrated a high classification accuracy of musical instruments (11 classes) with

responses from such ripple transfer functions in the NSL model [15]. He used three musical

notes distributed within two octaves, per musical instrument, to perform the classification

task. The usage of three notes distributed in two octaves is within the timbre invariance

maximum bandwidth limit of 2.5 octaves mentioned in the preceding paragraph.

For the classification of musical instruments using the CAR-Lite-A1 model responses as

input to a classifier described within this subsection, four notes are used per musical

instrument distributed over two octaves, i.e., within the timbre invariance maximum

bandwidth (of 2.5 octaves). The selected notes include two notes that are an octave apart

(e.g. start note, A3, and A4 – note A from the third and fourth octaves) and two additional

randomly selected notes within two octaves above the start note [e.g. D4 and G#4 – notes D

and G# (known as G-sharp) from the fourth octave]. Table 7-1 details the notes used from

12 musical instrument classes for the classification exercise.

7.2.2. Dynamics and Articulation

The previous subsection (7.2.1) presented the relationship between timbre and pitch. In

this subsection, the relationship between timbre and loudness is explored as well as the

playing style of a musical instrument.

Melara and Marks found crosstalk between timbre and loudness, which led to bright

sounds perceived by human listeners to be louder than dull sounds [19]. Here, bright sounds

are sound that contains more high-frequency components than dull sounds. The change in

the loudness levels in a series of musical notes is known as the dynamics of a musical piece

[20]. According to Nakamura [21] as well as Fabiani and Friberg [22], the perception of

dynamics does not correspond to a fixed sound level but is attributed more to the playing

style of a specific musical instrument. In other words, it is largely dependent on a musician’s

style of playing a musical instrument based on a musical context that the musician wishes to

convey to a listener. However, from the perspective of gauging the capability of software and

hardware models in classifying musical instruments involving monophonic musical signals,

the dynamics of each note is fixed at three discrete sound levels. They include forte (high)

[23], mezzo (medium) [24], and piano (low) [25].

The playing style, also known as articulation, is the manner of separation of single notes

or a group of notes usually indicated by the composer as markings in a musical score [26].

Musical notes with several articulation styles are used across all musical instruments from

Table 7-1. However, they can be classified generally as normal [labelled in Table 7-1 for 12

musical instrument classes as normal (NO), hard mallet / normal (HN), soft mallet / normal

(SN), apoyando / finger (AF), al aire / finger (RF), apoyando / pick (AP), al aire / pick (RP)]

and staccato [labelled in Table 7-1 for 12 instrument classes as staccato (ST), tonguing

(TO), and spiccato (SP)]. A normal articulation is when the resonance of a musical note is

allowed to either gradually decay to silence or resonate to a duration equivalent to the point

of transition from gradual decay to silence. For a wind instrument, this duration is subject to

a musician’s judgement to allow the instrument to resonate as long as possible. In contrast,

222

a staccato articulation is when a musical note ends before its normal articulation duration

[26].

Table 7-1: Twelve classes of musical instruments and their respective notes from the RWC database [1] used in
the classification of musical instruments using the responses of the CAR-Lite-A1 model. Each instrument class is
further divided into two subclasses based on two separate manufacturers, with each subclass containing the
same notes played from the instrument, e.g. 1 set of notes (A3, D4, G#4, and A4) recorded from a Yamaha piano
and another set of the same notes recorded from a Steinway piano for classification. Note that ‘S’ in the ”Note
Used” column represents string number for musical notes generated by musical stringed instruments. Also note
the following abbreviation – NO: Normal; ST: Staccato; HN: Hard mallet / Normal; SN: Soft mallet / Normal; TO:
Tonguing; AF: Apoyando / Finger; RF: Al aire / Finger; AP: Apoyando / Pick; RP: Al aire / Pick; SP: Spiccato.

7.3. Feature Representation

This subsection presents how features of musical notes from various musical

instruments are extracted for the classification of musical instruments. Subsection 7.3.1

addresses the usage of monophonic musical notes regardless of their respective varying

lengths (time durations). This notion then results in the use of summary profiles, as

presented in subsection 7.3.2.

7.3.1. Temporal Invariance

The musical notes extracted from the RWC database have varying time durations. A 4D

CAR-Lite-A1 model output response of a musical note has the following dimensions based

on the same settings as chapter 5: 𝑠𝑓 × 𝑛 × 𝑠𝑠 × 𝑠𝑟. Here, 𝑠𝑓 is the number of cochlear

sections, fixed at 108; 𝑠𝑠 is the number of scale filters, fixed at 9; 𝑠𝑟 is the number of rate

filters, fixed at 13; 𝑛 is the number of samples corresponding to the time duration of a

Index Instrument Articulation Manufacturer Subclass 1 Subclass 2

1 Yamaha

2 Steinway & Sons

3 Musser

4 Saito

5 Musser

6 Yamaha

7 Hohner - Blues Harp

8 Hohner - Chromatic

9 Stafford

10 Kohno Masaru

11 Ovation

12 Yamaha

13 Andre Dugad

14 Iida Yu

15 Conn

16 S.E. Shires

17 Yamaha

18 Yanagisawa

19 Heckel

20 Puchner

21 Buffer Crampon

22 Selmer

23 Sankyo

24 Louis Lot

Clarinet NO and ST A3, D4, G#4, A4

Flute NO and ST A4, D4, G#4, A5

Bassoon NO and ST A3, D4, G#4, A4

Trombone NO and ST A3, D4, G#4, A4

Soprano Sax NO and ST A3, D4, G#4, A4

Viola NO and SP
A3-S3, D4-S2, G#4-S2,

A4-S1

Acoustic Guitar AP and RP
A3-S3, D4-S2, G#4-S1,

A4-S1

Harmonica NO and TO A4, G4, A5, C5

Classical Guitar AF and RF
A3-S3, D4-S2, G#4-S1,

A4-S1

Vibraphone HN and SN A3, D4, G#4, A4

Marimba HN and SN A3, D4, G#4, A4

Notes Used

Piano NO and ST A3, D4, G#4, A4

223

musical note. In image classification, the size of the images is fixed [27]. With this principle, it

is ideal to keep dimension sizes constant for the classification task in this exercise. One

method is to truncate the sample size, 𝑛, to a small fixed sample size. This act involves

finding the ‘attack’ or onset segment of a musical note up to either its ‘sustain’ segment,

where the amplitude of the input signal remains constant or its ‘decay’ segment, where the

amplitude of the input signal decays, whichever exists and is encountered first. The

truncation size is dependent on the selected musical note from the database with the

smallest time duration. The disadvantage of this method is that a small sample size would

result in the loss of information critical to timbre characteristics of the instrument.

Instead of truncating the sample size down, an alternative method is to use all the

samples in the signal and generate a summarised representation, similar to summary

autocorrelation profile used by Meddis [28], and summary rate-scale profile used by Chi et

al. [29]. Although high temporal resolution information is replaced with low temporal

resolution information in this method, the latter captures the envelope summary of an entire

musical note (all the samples corresponding to the time duration of the note) instead of a

truncated segment of the note. The reduced number of dimensions also ensures a reduction

in computational resources such as memory as well as processing time. Another advantage

is that a summarised representation provides intuitive visual cues that may not be captured

with a large high-resolution 4D matrix.

7.3.2. Summary Profiles

The features used for the classification of musical instruments are represented by four

types of input signals corresponding to recordings from four stages of the CAR-Lite-A1

model. They include a 1D summary spectral profile of the inner hair cell (IHC) stage denoted

as 𝐴1𝑥; a 2D summary scale filter output (𝐴1𝑦); a 2D summary upward (𝑈𝑝) and a 2D

summary downward (𝐷𝑜𝑤𝑛) neuron directional response. Figure 7-1 illustrates the signals

for an A3 musical note (normal style and forte dynamics) played on a piano. The IHC

summary spectral profile consists of the summed columns of a 2D IHC output matrix. As

there are 108 cochlear sections, an IHC summary spectral profile is a 1 × 108 vector. The

remaining three signals are each a 2D matrix transformed from a 4D matrix. It involves

collapsing the time and frequency dimension while retaining 13 temporal velocity and 9

spectral density components. In other words, fine spectro-temporal information is removed,

while coarse spectro-temporal envelope information is retained.

As an illustration, a 4D 108 × 375 × 9 × 13 matrix is transformed into a 2D 9 × 13 matrix.

Each element in the transformed 9 × 13 matrix is a summary of a 108 × 375 matrix

corresponding to a specific rate (centre velocity of a rate filter) and scale (centre density of a

scale filter) term. There is a total of 13 rate filters and 9 scale filters. Two methods are used

to achieve this summarised transformation as detailed in chapter 5: finding the a) RMS and

b) the sum of every 108 × 375 example matrix. The result of either the RMS or sum

operation of one 108 × 375 example matrix leads to a single number. Combining this

number from each of 13 rate filters and each of 9 scale filters, leads to the generation of a 9

× 13 matrix. For each instrument, six 9 × 13 matrices are generated in addition to the IHC

spectral profile (𝐴1𝑥), i.e. three (𝐴1𝑦, 𝑈𝑝, and 𝐷𝑜𝑤𝑛) from the RMS operation and three

(𝐴1𝑦, 𝑈𝑝, and 𝐷𝑜𝑤𝑛) from the sum operation.

224

Figure 7-1: Fixed-point response of (a) an A3 note played from a piano recorded from the following stages of the
CAR-Lite-A1 model: (b) Summary spectral profile of the 2D IHC matrix; summary rate-scale cascaded filter
output calculated using (c) sum and (d) RMS operations; summary upward neuronal response calculated using
(e) sum and (f) RMS operations; summary downward neuronal response calculated using (g) sum and (h) RMS
operations.

225

7.4. Input Similarity and Classification Algorithms

The simplest method of finding the similarity between two images (2D matrices) is to

calculate the 2D correlation between them. This equation results in the generation of a single

floating-point value that defines the similarity between the two images. However, the 2D

correlation equation comprises several nonlinear mathematical operations, which are

obstacles in the implementation of the equation on an FPGA as is presented in subsection

7.4.1. Subsection 7.4.2 presents the timbre distance algorithm as an alternative to the 2D

correlation. This algorithm does not contain any nonlinear mathematical operations and thus,

is implementable on an FPGA.

Subsection 7.4.3 introduces two classification algorithms: a linear classifier using the 2D

correlation coefficient algorithm from subsection 7.4.1 and a k-nearest neighbour (KNN)

classifier using the timbre distance algorithm from subsection 7.4.2. Subsection 7.4.4

presents the FPGA implementation of the timbre distance algorithm presented in subsection

7.4.2 as well as the KNN classifier in subsection 7.4.3. Finally, subsection 7.4.5 describes

the application of the two classification algorithms on the musical notes from various musical

instruments. Here, each note is represented by the summary profiles described in

subsection 7.3.2.

7.4.1. 2D Correlation Coefficient (CC)

The basic algorithm used in the linear classifier is a 2D correlation coefficient equation.

This algorithm has been used by Dau et al. to find similarities between a predictive model

response (described in chapter 2 under the section of functional primary auditory cortical

model review) and the performance responses of subjects in psychoacoustic experiments

[30]. The 2D correlation coefficient equation is defined as:

𝐶𝐶 =

∑ ∑ (𝐴𝑚,𝑛 − �̅�)𝑛 (𝐵𝑚,𝑛 − �̅�)𝑚

√(∑ ∑ (𝐴𝑚,𝑛 − �̅�)
2

𝑛𝑚) (∑ ∑ (𝐵𝑚,𝑛 − �̅�)
2

𝑛𝑚)

(7-1)

where 𝐶𝐶 is a correlation coefficient showing the degree of similarity between two 𝑚 × 𝑛

sized matrices, 𝐴 and 𝐵; �̅� and �̅� are the averages of 𝐴 and 𝐵 respectively. A 𝐶𝐶 score of 1

indicates identical matrices; 0 shows no resemblance; -1 shows two images that are

inverted, e.g. if matrix 𝐴 contains all positive elements, then 𝐵 = −𝐴 or if matrix 𝐵 has same

the elements as matrix 𝐴 with the elements in the former swapped horizontally and vertically.

As an example of the similarity indication with the 2D correlation coefficient (CC), let us

consider finding the CC, between the following four 2D matrices:

𝑎 = [
1 2
3 4

] ; 𝑏 = [
11 12
13 14

] ; 𝑐 = [
1 3
4 2

] ; 𝑑 = [
9 2
6 9

]

The CC between matrices 𝑎 and 𝑏 is 1.0, indicating the difference between the elements in

the two matrices is the same despite all the elements in 𝑏 being different from 𝑎. However,

all the elements in 𝑏 are shifted from 𝑎 by 10, i.e., each component in 𝑎 is nonlinearly scaled.

In such a case, 𝑏 represents a larger intensity signal than 𝑎 but both are still considered

identical to each other. In other words, a 2D summary representation of a high intensity

226

(forte) musical signal is highly similar to a 2D summary representation of a low intensity

(piano) musical signal, and therefore, the CC between them is close to 1 (see chapter 5 for a

description of how 2D summary profiles are generated). The CC between 𝑏 and 𝑐 is 0.4,

indicating low similarity. The CC between c and d is -0.6, indicating non-similarity as well as

image inversion.

Despite containing square root and division operations, the implementation of the 2D

correlation coefficient defined by equation (7-1) on FPGA is possible. This practice involves

the use of numerical methods such as the Newton-Raphson method [31] to implement the

square-root and division operations. The numerical methods aim to minimise the errors

between an input variable and a function output. The error for a square-root operation is

calculated as:

 𝑒𝑠𝑞𝑟𝑡 = 𝑥 − (𝑦𝑠𝑞𝑟𝑡 ∙ 𝑦𝑠𝑞𝑟𝑡) (7-2)

where 𝑦𝑠𝑞𝑟𝑡 is the square of an input variable, 𝑥. The error for a division operation is

calculated as:

 𝑒𝑑𝑖𝑣 = 𝑥𝑛𝑢𝑚 − (𝑥𝑑𝑒𝑛 ∙ 𝑦𝑑𝑖𝑣) (7-3)

where 𝑦𝑑𝑖𝑣 is the resultant division output value, and 𝑥𝑛𝑢𝑚 is the numerator input value and

𝑥𝑑𝑒𝑛 is the denominator input value. The errors in both equations are calculated iteratively.

The outputs 𝑦𝑠𝑞𝑟𝑡 and 𝑦𝑠𝑞𝑟𝑡 are increased in increment of 1 per iteration until the errors, 𝑒𝑠𝑞𝑟𝑡

and 𝑒𝑑𝑖𝑣 fall below a threshold error set at 1. The final values of 𝑦𝑠𝑞𝑟𝑡 and 𝑦𝑠𝑞𝑟𝑡 are ideally

the approximation of the square root and division operations, respectively. Since this

implementation is targeted for an FPGA, the input values are expected to be in fixed-point

integers.

Figure 7-2 depicts the degree of similarity calculated using various two input

combinations of matrices 𝑎 to 𝑑. CC is a vector of correlation coefficients calculated using

equation (7-1). 𝑦𝑑𝑖𝑣 is a vector of 16 bit variables representing the fixed-point approximations

of the CC using equations (7-2) and (7-3). 𝑒𝑠𝑞𝑟𝑡 and 𝑒𝑑𝑖𝑣 are two vectors containing 16 bit

numbers calculated from equations (7-2) and (7-3) and normalised by their respective

maximum vector values.

The mean of each input matrix (�̅�, and �̅�) is calculated using the average of the all the

values from each matrix. This algorithm is implementable on FPGA with a right-shift

operation on the sum of all the values. As the CC values range between -1 to 1, the output of

𝑦𝑑𝑖𝑣 does not vary as the fixed-point numbers are rounded to the nearest whole number. In

this case, the rounded number is 1. Hence, the fixed-point CC does not correspond to the

conventionally calculated CC. An alternative method of calculating the CC is by using the

two error values, 𝑒𝑠𝑞𝑟𝑡 and 𝑒𝑑𝑖𝑣. This characteristic is observable in Figure 7-2, where their

responses follow the responses of the CC, even though they are offset vertically.

227

Figure 7-2: A comparison of correlation coefficients (CCs) calculated from equation (7-1), 𝑦𝑑𝑖𝑣, 𝑒𝑠𝑞𝑟𝑡, and 𝑒𝑑𝑖𝑣 that

are based on various two input combinations between matrices a to d. Note that the lines for 𝑒𝑠𝑞𝑟𝑡, and 𝑒𝑑𝑖𝑣 are

normalised to their respective maximum values.

7.4.2. Timbre Distance (TD)

The 2D correlation coefficient defined by equation (7-1) uses several mathematical

operations such as average, square-root, and division, which require numerical methods for

evaluation. Although the numerical methods in subsection 7.4.1 are implementable on

FPGA, the latencies of the numerical methods vary and are mostly dependent on the bit

width of the sample values in the input matrices. Hence, numbers with large bit widths

require a longer time to process than numbers with short bit widths. Furthermore, there is a

likelihood that the approximated correlation coefficient (CC) is affected as observed by 𝑦𝑑𝑖𝑣

in Figure 7-2, whose approximated CC values are all 1 for various 2D input correlations –

different from the actual CC depicted in the same graph. This effect, in turn, results in

inaccurate hardware-based classification scores.

An alternative to the 2D-correlation algorithm in subsection 7.4.1 is to calculate the

timbre distance. This method is inspired by the calculation of the Euclidean distance used by

Meddis and O’Mard to find the distance between peaks in a temporal profile of an

autocorrelogram to acquire pitch information, i.e. fundamental frequency [32]. The first of

three steps involves calculating the differences between the samples in the two 2D input

matrices [from equation (7-1)]:

 ∆𝑚,𝑛= |𝐴𝑚,𝑛 − 𝐵𝑚,𝑛| (7-4)

Summing all the error samples in ∆𝑚,𝑛 yields:

 𝑠𝑒 = ∑ ∑ ∆𝑚,𝑛

𝑛𝑚

 (7-5)

228

where 𝑠𝑒 is the sum of error samples which defines the similarity between the two input

images, i.e. a small 𝑠𝑒 shows a larger degree of similarity, whereas a large 𝑠𝑒 shows a

smaller degree of similarity.

As an example, calculating 𝑠𝑒 for matrix 𝑎 and 𝑏 (defined in subsection 7.4.1) and for

matrix 𝑏 and 𝑐 matrices yield two values: 40 and 40. These numbers indicate that matrices 𝑎

and 𝑐 are not similar to matrix 𝑏 but are most likely identical to each other. However, this

conclusion is inaccurate if the contents of the two matrices are observed from subsection

7.4.1. This characteristic is reinforced in the same subsection, where the CC between 𝑎 and

𝑏 is 1.00, and for matrices 𝑏 and 𝑐, it is 0.40. In other words, despite matrix 𝑏 having

samples with larger magnitudes than those from matrix 𝑎, the distance (error) between the

neighbouring magnitudes of samples in 𝑎 and 𝑏 are the same. Hence, an alternative

approach is required, as presented next.

Finding the sums of horizontal differences of neighbouring samples in 𝑎, 𝑏, and 𝑐 yield

𝑠ℎ𝑎, 𝑠ℎ𝑏 and 𝑠ℎ𝑐, respectively:

𝑠ℎ𝑎 = ∑ [
|1 − 2|
|3 − 4|

] = ∑ [
1
1

] = 2

𝑠ℎ𝑏 = ∑ [
|11 − 12|
|13 − 14|

] = ∑ [
1
1

] = 2

𝑠ℎ𝑐 = ∑ [
|1 − 3|
|4 − 2|

] = ∑ [
2
2

] = 4

Since 𝑠ℎ𝑎 and 𝑠ℎ𝑏 are equal at 2, these results coincide with the CC between 𝑎 and 𝑏 being

1.00, indicating similarity. Conversely, 𝑠ℎ𝑎 and 𝑠ℎ𝑐 are different at 2 and 4, respectively,

which correspond to the low degree of similarity of 0.40 between matrix 𝑎 and 𝑐.

So, the sum of magnitude errors between neighbouring horizontal samples is applicable

directly to ∆𝑚,𝑛 calculated from equation (7-4), which results in the timbre distance

concentrated in the horizontal direction, 𝑇𝐷ℎ, between two 2D sound images. Hence, the

second of the three steps is the calculation of the directional timbre distance variable:

 𝑇𝐷ℎ = ∑ ∑|∆𝑚,𝑛 − ∆𝑚,𝑛+1|

𝑛𝑚

 (7-6)

Applying this formula across vertically neighbouring samples yields:

 𝑇𝐷𝑣 = ∑ ∑|∆𝑚,𝑛 − ∆𝑚+1,𝑛|

𝑛𝑚

 (7-7)

The final step involves summing both 𝑇𝐷ℎ and 𝑇𝐷𝑣 yielding the overall timbre distance, 𝑇𝐷

between the two input matrices representing the two sound signals:

 𝑇𝐷 = 𝑇𝐷ℎ + 𝑇𝐷𝑣 (7-8)

229

As an example, let us find the timbre distance between matrices 𝑎 and 𝑏 (𝑎 vs 𝑏), 𝑎 and

𝑐 (𝑎 vs 𝑐) as well as 𝑎 and 𝑑 (𝑎 vs 𝑑). The first step is to use equation (7-4) to find the

difference between each of the three pairs of matrices mentioned before:

∆𝑚,𝑛(𝑎 𝑣𝑠 𝑏) = |[
1 2
3 4

] − [
11 12
13 14

]| = [
10 10
10 10

]

∆𝑚,𝑛(𝑎 𝑣𝑠 𝑐) = |[
1 2
3 4

] − [
1 3
4 2

]| = [
0 1
1 2

]

∆𝑚,𝑛(𝑎 𝑣𝑠 𝑑) = |[
1 2
3 4

] − [
9 2
6 9

]| = [
8 0
3 5

]

The second step involves applying equations (7-6) and (7-7) to find the horizontal (𝑇𝐷ℎ) and

vertical (𝑇𝐷𝑣) timbre distances between the magnitudes of samples from the three matrices

from above:

𝑇𝐷ℎ(𝑎 𝑣𝑠 𝑏) = ∑ ∑ [
|10 − 10|
|10 − 10|

]

𝑛𝑚

= ∑ [
0
0

]

𝑛

= 0

𝑇𝐷𝑣(𝑎 𝑣𝑠 𝑏) = ∑ ∑[|10 − 10| |10 − 10|]

𝑛𝑚

= ∑[0 0]

𝑚

= 0

𝑇𝐷ℎ(𝑎 𝑣𝑠 𝑐) = ∑ ∑ [
|0 − 1|
|1 − 2|

]

𝑛𝑚

= ∑ [
1
1

]

𝑛

= 2

𝑇𝐷𝑣(𝑎 𝑣𝑠 𝑐) = ∑ ∑[|0 − 1| |1 − 2|]

𝑛𝑚

= ∑[1 1]

𝑚

= 2

𝑇𝐷ℎ(𝑎 𝑣𝑠 𝑑) = ∑ ∑ [
|8 − 0|
|3 − 5|

]

𝑛𝑚

= ∑ [
8
2

]

𝑛

= 10

𝑇𝐷𝑣(𝑎 𝑣𝑠 𝑑) = ∑ ∑[|8 − 3| |0 − 5|]

𝑛𝑚

= ∑[5 5]

𝑚

= 10

Finally, the combined timbre distances (𝑇𝐷) between 𝑇𝐷ℎ and 𝑇𝐷𝑣 are calculated:

𝑇𝐷(𝑎 𝑣𝑠 𝑏) = 𝑇𝐷ℎ(𝑎 𝑣𝑠 𝑏) + 𝑇𝐷𝑣(𝑎 𝑣𝑠 𝑏) = 0 + 0 = 𝟎

𝑇𝐷(𝑎 𝑣𝑠 𝑐) = 𝑇𝐷ℎ(𝑎 𝑣𝑠 𝑐) + 𝑇𝐷𝑣(𝑎 𝑣𝑠 𝑐) = 2 + 2 = 𝟒

𝑇𝐷(𝑎 𝑣𝑠 𝑑) = 𝑇𝐷ℎ(𝑎 𝑣𝑠 𝑑) + 𝑇𝐷𝑣(𝑎 𝑣𝑠 𝑑) = 10 + 10 = 𝟐𝟎

So, if two input matrices are similar as is the case between 𝑎 and 𝑏, the timbre distance

between them is close to 0 (bold number highlighted in yellow). A 2D correlation between

them results in a CC of 1. If the two input matrices are not similar, the timbre distance

between them is non-zero (bold numbers highlighted in blue and green), while the 2D

correlation between the input matrix pairs result in CCs close to 0. The TD is larger between

𝑎 and 𝑑 (TD = 20) than 𝑎 and 𝑐 (TD = 4). The CCs between 𝑎 and 𝑑 is at 0.16, which is

lesser than the CC between 𝑎 and 𝑐 at 0.40. Thus, the larger the timbre distance, the lower

the CC, which indicates a higher degree of dissimilarity between the two input matrices.

230

7.4.3. Classification

This subsection presents two classification algorithms used for the classification of

musical instruments. The first involves a linear classifier using the 2D correlation coefficient

described in subsection 7.4.1. The second involves a k-nearest neighbour (KNN) classifier

using timbre distance described in subsection 7.4.2.

The main difference between the linear and the KNN classifiers is the method a

prediction is made for a test signal. For an input musical (test) signal corresponding to an

unknown musical instrument, this characteristic refers to the prediction of a musical

instrument from a known (trained) set of signals of musical instruments most similar to the

input signal. This similarity corresponds to the maximum of a vector of correlation

coefficients (CC) for the 2D correlation coefficient algorithm as part of a linear classifier:

 𝐶𝐶𝑚𝑎𝑥 = max
𝑖 ∈ 𝑁

𝐶𝐶(𝑖) (7-9)

where 𝑖 is the index of a single CC out of a total of 𝑁 CCs. For example, the comparison

between matrix a and matrices b [CC(1) = 1.00], c [CC(2) = 0.40], and d [CC(3) = 0.16] in

subsection 7.4.1 results in a maximum CC of 1.00. This result indicates that matrix b is the

most similar to matrix a.

Conversely, the similarity in a KNN classifier is the minimum value from a timbre

distance (TD) vector:

 𝑇𝐷𝑚𝑖𝑛 = min
𝑖 𝜖 𝑁

𝑇𝐷(𝑖) (7-10)

As an example, comparing the TD between matrix a and matrices b [TD(1) = 0], c [TD(2) =

4], and d [TD(3) = 20] results in a minimum TD of 0. This result also indicates that matrix b is

the most similar to matrix a.

7.4.4. FPGA Implementation

This subsection describes the FPGA implementation of the timbre distance algorithm as

well as the k-nearest neighbour (KNN) classification algorithm described in subsections 7.4.2

and 7.4.3, respectively. The Altera Cyclone V starter kit with a 5CGXFC5C6F27C7 FPGA

chip operating at a system clock rate of 100 MHz is utilised for implementing a finite state

machine (FSM) with nine states in a single top module using SystemVerilog. The minimum

latency for processing all nine states serially is 90 ns. However, as several states within the

FSM are iteratively processed, the overall latency is dependent on the size of the input

matrices.

State 0 initialises all constants. State 1 processes equation (7-4) to calculate y_d

corresponding to the difference between two input matrices, ∆𝑚,𝑛. States 2, 3, and 4 process

equations (7-6) and (7-7) to calculate y_TD_h and y_TD_v corresponding to the directional

timbre distances, 𝑇𝐷ℎ and 𝑇𝐷𝑣, respectively. The input numbers to the summation algorithm

to generate y_TD_h and y_TD_v are stored in y_Horz_Dir and y_Vert_Dir, respectively.

State 5 processes equation (7-8) to calculate y_TD corresponding to the combined timbre

distance, 𝑇𝐷. State 6 updates the state indices and decides the next state to process. If

there are more one input matrix in the queue, the FSM returns to state 1 to process them.

231

Otherwise, it goes to state 7, where the KNN classification algorithm is processed. Here, the

minimum of all combined timbre distances (𝑇𝐷), y_min_TD, is determined in accordance

with equation (7-10). The output of the classifier is made available in state 8.

Figure 7-3 illustrates the FPGA implementation of the application of the KNN classifier to

the example presented in the latter half of 7.4.2, i.e. finding the minimum timbre distance

between the following input matrices: a vs b, a vs c, and a vs d. The numbers bounded

between two yellow vertical lines or highlighted in yellow correspond to the results of the

algorithms applied to input matrices a and b. The ones in blue and green show the results of

a vs c and a vs d, respectively. y_d1 to y_d4 projects ∆𝑚,𝑛 corresponding to the difference

between the samples in the two input matrices, where y_d1 and y_d2 are the numbers in the

top row of ∆𝑚,𝑛 and y_d3 and y_d4 are numbers in the bottom row. From y_d1 to y_d4,

y_Horz_Dir_1 to y_Horz_Dir_4 as well as y_Vert_Dir1 to y_Vert_Dir4 are calculated.

Subsequently, the directional and combined timbre distances, y_TD_h, y_TD_v, and y_TD

are calculated. y_TD is used as input to the classifier using the three combined timbre

distance values, 0, 4, and 20 related to a vs b, a vs c, and a vs d, respectively. Here, a is the

test data, and b, c and are the trained data. y_min_TD illustrates the minimum timbre

distance of 0, which corresponds to matrix b as depicted by y_min_TD_Mat as 1. In other

words, since matrix b has the lowest timbre distance to matrix a, it is the most similar to a as

opposed to c and d. Note that the sample indices of matrices, a, b, c, and d are represented

on FPGA as 0, 1, 2, and 3.

Table 7-2 presents the computational resources required by an Altera Cyclone V FPGA

to process the timbre distance and KNN classification algorithms. The number of ALM and

registers utilised for the algorithm here is lower than the resources used for the AC 𝑓0

estimation algorithms in chapter 6, due to two reasons. Firstly, the number of samples used

in the input signals here is smaller than the number of samples used in the input signals of

AC 𝑓0 estimation algorithms. Since the algorithms described in this subsection is scalable,

the computational resources increase if the number of input samples grows. Secondly, the

AC 𝑓0 estimation algorithms are each a culmination of three (subsections 6.2.1, 6.2.2, and

6.2.3) algorithms, respectively, in comparison to a single algorithm (timbre distance) here. As

a result, the power consumed by an FPGA is smaller for the timbre distance and KNN

classification algorithms described here than the AC 𝑓0 estimation algorithms. Finally, no

digital signal processors (DSPs) are used as expected, as the timbre distance and KNN

classification algorithms do not contain any multiplication operation.

FPGA Number of
ALM Utilised

(out of 29,080)

Number of
Registers
Utilised

Number of
DSPs Utilised

(out of 150)

Power (mW)

Altera Cyclone
V

332 (1.1%) 655 0 (0%) 239

Table 7-2: Computational resources used by an Altera Cyclone V to implement the timbre distance and KNN
classification algorithms.

232

233

Figure 7-3: Output vector waveform of an FPGA implementation of the timbre distance and the KNN classifier
algorithms presented in subsections 7.4.2 and 7.4.3, respectively. Part (a) displays the results of a vs b, and the
partial results of a vs c, while part (b) is a continuation of (a) showing the remaining results of a vs c as well as a
vs d. Classification results are in orange highlight.

7.4.5. Application to Musical Signals

This subsection describes how the musical signals are used in the classification of the

musical instruments. As there are equal number of trained and test signal sets, each test

signal under a musical instrument class comprising the four notes and three loudness levels

are compared to the trained signals for all musical instrument classes. The trained signal

with the highest match score is the instrument class that matches the test signal instrument

class. This match is considered successful if the labels associated with the trained and test

classes match. Otherwise, it is a considered classification failure. An example of this

classification is presented the following paragraphs.

234

Figure 7-4 displays the layout of the musical classification algorithm with four musical

instrument classes as an example. Its output is a 4 × 4 matrix of 𝑃 variables. Here, 𝑃

represents either CC from a linear classifier or TD from a KNN classifier. In the classification

task of musical instruments presented in section 7.5, twelve instrument classes are used to

generate a 12 × 12 output matrix. The inputs, 𝑥𝑖𝑎𝑘 and 𝑥𝑗𝑏𝑘, correspond to either one of the

four input signals [𝐴1𝑥 (𝑘 = 1), 𝐴1𝑦 (𝑘 = 2), 𝑈𝑝 (𝑘 = 3), or 𝐷𝑜𝑤𝑛 (𝑘 = 4)] addressed by

index, 𝑘. To calculate the 4 × 4 output matrix, the four musical instrument classes are

divided into two groups based on its manufacturer, whereby 𝑎 is the trained group and 𝑏 is

the test group. The input signal of instruments in groups 𝑎 (input signal, 𝑥𝑖𝑎) and 𝑏 (input

signal, 𝑥𝑗𝑏) are individually addressed by indices 𝑖 and 𝑗 respectively – for illustration in

Figure 7-4, 𝑖 and 𝑗 range from 1 to 4. Each musical instrument class has four notes at three

dynamic levels, and so there are a total of twelve notes per instrument, which means that a

4 × 4 × 12 output matrix is generated and averaging the 𝑃 values across the twelve notes

result in a 4 × 4 matrix, 𝑃𝑖𝑎𝑘,𝑗𝑏𝑘, as seen in Figure 7-4. At this stage, 𝑃𝑖𝑎𝑘,𝑗𝑏𝑘 corresponding to

one of the four signal types can be combined with the other three signal types (or more) by

further averaging, to form 𝑃𝑖𝑎,𝑗𝑏.

In the case of a linear classifier, all 𝑃 elements from Figure 7-4 are replaced with 𝐶𝐶

values. The index of the maximum 𝐶𝐶, 𝑃𝑚, is extracted from every column of 𝐶𝐶𝑖𝑎,𝑗𝑏 based

on equation (7-9):

𝑃𝑚 = max
𝑗𝑏 ∈ 𝐼

(∑
1

𝐷
∑

1

𝑁
∑ 𝐶𝐶𝑖𝑎𝑘,𝑗𝑏𝑘,𝑛,𝑑

𝑁

𝑛=1

𝐷

𝑑=1

𝐾

𝑘=1

) (7-11)

where 𝐼 is the total number of musical instrument classes with 𝑖 addressing instrument labels

from group 𝑎 and 𝑗 addressing instrument labels from group 𝑏; 𝐾 is the total number of input

signals used with each input addressed by 𝑘; 𝐷 is the total number of dynamic levels with 𝑑

addressing individual dynamic level for groups 𝑎 and 𝑏; 𝑁 is the total number of musical

notes per instrument with 𝑛 addressing individual note per instrument for groups 𝑎 and 𝑏.

In the case of a KNN classifier, all 𝑃 elements from Figure 7-4 are replaced with 𝑇𝐷

values. The index of the minimum 𝑇𝐷, 𝑃𝑚, is extracted from every column of 𝑇𝐷𝑖𝑎,𝑗𝑏 based

on equation (7-10), which is described as the minimum distance between a trained signal

from group 𝑎 and a test signal from group 𝑏:

𝑃𝑚 = min
𝑗𝑏 ∈ 𝐼

(∑
1

𝐷
∑

1

𝑁
∑ 𝑇𝐷𝑖𝑎𝑘,𝑗𝑏𝑘,𝑛,𝑑

𝑁

𝑛=1

𝐷

𝑑=1

𝐾

𝑘=1

) (7-12)

The row index, 𝑙𝑖𝑎 corresponding to the ground truth label of a trained signal class, is

compared with the column index label, 𝑙𝑗𝑏, corresponding to the test signal label with the

highest matching score, 𝑃𝑚. Since the trained and test set classes are aligned (piano-piano,

guitar-guitar, etc.), their respective labels ideally match. However, the labels of the test

signal classes are defined exclusively by 𝑃𝑚, which may not match with the same label as

235

the trained signal after classification. The correct classification is defined by in a binary

vector, 𝑢𝑏:

𝑢𝑏 = {
1, 𝑙𝑖𝑎 = 𝑙𝑗𝑏

0, 𝑙𝑖𝑎 ≠ 𝑙𝑗𝑏
 (7-13)

The classification accuracy, 𝑦, is then calculated by summing the binary vector:

𝑦 =
1

𝐼
∑ 𝑢𝑏(𝑖)

𝐼

𝑖=1

 (7-14)

where 𝐼 is the number of classes of musical instrument.

Figure 7-4: Algorithm for classifying musical instruments adapted from Dau et al. [30]. Here, 𝑥𝑖𝑎𝑘 is the training

set signals and 𝑥𝑖𝑏𝑘 are the test set input signals for four musical instrument classes. P represents either CC from

the linear classifier or TD from the KNN classifier.

7.5. Results and Evaluation

This subsection presents the results of the classification of musical instruments in three

parts. Subsection 7.5.1 presents classification results based on the combinations of various

responses recorded from the CAR-Lite-A1 model. Subsection 7.5.2 presents classification

accuracies based on varying input signal intensity and signal-to-noise (SNR) levels.

236

Subsection 7.5.3 presents the difference in file sizes of the four types of input signals

calculated in floating-point (software) and fixed-point (hardware) arithmetic used in the

classification. Subsection 7.5.4 compares the highest classification result of the responses

from the CAR-Lite-A1 model presented in subsection 7.5.1 with five other models.

7.5.1. Accuracy Comparison of 0 dBFS Input Signals

The input signals recorded from the CAR-Lite-A1 model and described in Table 7-1 for

classification are available in two formats: floating-point and fixed-point. The former is known

as the software implementation response based on the original design of the CAR-Lite-A1

model, whereas the latter is a hardware (FPGA) implementation response of the same

model. Chapter 5 describes the configurations of the model corresponding to the two

responses. Each response is further divided into two types of circuit as part of an analytic

signal representation described in chapter 5: real, 𝑅𝑒, and imaginary, 𝐼𝑚. Two additional

circuits are introduced for classification based on the additive and multiplicative

combinations of 𝑅𝑒 and 𝐼𝑚 circuits: 𝑅𝑒 + 𝐼𝑚, and 𝑅𝑒 × 𝐼𝑚. The use of these different

combinations provides a broader and more diverse range of input signal combinations than

the two responses 𝑅𝑒 and 𝐼𝑚. These signals are classified using the linear and KNN

classifiers described in section 7.4 and with the input signals at 0 dBFS intensity level (no

amplitude clipping).

Figure 7-5 displays a pair of confusion matrices following the classification of the

hardware-based fixed-point signals of 𝐴1𝑥, 𝐴1𝑦, and 𝑈𝑝 from a 𝑅𝑒 circuit, whose results are

averaged (described in subsection 7.4). The FPGA implementable KNN classifier is used on

these signals. Note that the summary profiles for 𝐴1𝑦 and 𝑈𝑝 are calculated using sum

operation (the alternative is RMS as described in chapter 5). Figure 7-5(a) displays the raw

timbre distances (TD) and Figure 7-5(b) displays ternary-state representation of the Figure

7-5(a), where only the minimum TD from every row of Figure 7-5(a) is displayed. The

minimum TD falling on the diagonal of the confusion matrix depicts accurate classification,

and if it falls outside the diagonal, it depicts inaccurate classification. The classification

accuracy of Figure 7-5 is 91.67% - the highest accuracy encountered among 240

classification accuracies for various input signal combinations (TD averaged) that includes

120 accuracies of software floating-point responses in Table D-3 and 120 accuracies of

hardware fixed-point responses in Table D-4.

The highest KNN classification accuracy score corresponding to the hardware-based

fixed-point RMS-calculated input summary profiles is 75%. This score is from the input signal

combinations of 𝑈𝑝, and 𝐷𝑜𝑤𝑛 responses using the 𝑅𝑒 + 𝐼𝑚 circuit. For the sum-calculated

summary profiles, the same score of 75% is found for four input signal combinations – one

for floating-point and one for fixed-point responses from 𝐼𝑚 and 𝑅𝑒 + 𝐼𝑚 circuits

respectively. In contrast, the highest KNN classification accuracy score corresponding to the

floating-point RMS-calculated input summary profiles is lower than fixed-point signals

mentioned above at 67% for 42 input signal combinations. The highest classification

accuracy score for the sum-calculated floating-point summary profiles is 91.67% for 𝑅𝑒

circuit with 𝐴1𝑦, 𝑈𝑝, and 𝐷𝑜𝑤𝑛 combined input signals. The same score is found for 22 input

combinations under sum-calculated fixed-point summary profiles – 7 𝑅𝑒, 7 𝐼𝑚, 7 𝑅𝑒 + 𝐼𝑚, 1

𝑅𝑒 × 𝐼𝑚. Refer to Table D-3 and Table D-4 for the specific combinations of input signals for

the attainment of the classification accuracy scores mentioned in this paragraph.

237

Table 7-4 presents a summary of the KNN classification results of musical instruments.

Out of 120 input signal configurations, the fixed-point responses outscore floating-point

responses by 14 (see row 2 in Table 7-4) – 35 fixed-point scores are higher than floating-

point scores, while only 21 floating-point scores are higher than fixed-point scores. Of the 35

fixed-point responses, 29 summary profiles are calculated using sum operations, and 6 are

calculated using RMS operations. Out of the 21 lower fixed-point scores, 5 summary profiles

are calculated using RMS operations, and 16 are calculated using sum operations. The

remaining 64 input signal configurations have identical scores between fixed-point and

floating-point responses.

The highest linear classification accuracy score is 100% from two hardware-based fixed-

point input sum-calculated summary profiles – 𝐴1𝑥 and 𝐷𝑜𝑤𝑛 combination using a 𝑅𝑒 +

𝐼𝑚𝑎𝑔 circuit as well as 𝐴1𝑥, 𝐴1𝑦, 𝑈𝑝, and 𝐷𝑜𝑤𝑛 combination using a 𝑅𝑒 × 𝐼𝑚𝑎𝑔 circuit. The

highest linear classification score is lower for software-based floating-point input sum-

calculated summary profiles at 83.33% – 𝐴1𝑥 and 𝑈𝑝 using a 𝐼𝑚 circuit. The highest linear

classification score is the same at 83.33% for ten floating-point RMS-calculated summary

profiles but is found for 18 fixed-point input sum-calculated summary profiles. The highest

linear classification accuracy is 91.67% for a single fixed-point RMS-calculated input

summary profile – 𝐴1𝑥 and 𝐷𝑜𝑤𝑛 combination using an 𝐼𝑚 circuit. The same score is found

for ten fixed-point sum-calculated input summary profiles.

Table 7-3 presents a summary of the linear classification results. Out of 120 input signal

configurations, 59 fixed-point scores are higher than floating-point scores. Of the 59 fixed-

point responses, 47 summary profiles are calculated using sum operations, and 12 are

calculated using RMS operations. Of the remaining 61 input signal configurations, only 19

fixed-point scores are lower than floating-point scores, and 42 have identical scores. Out of

the 19 lower fixed-point scores, 17 summary profiles are calculated using RMS operations,

and 2 are calculated using sum operations.

The software-based linear classifier outperforms the hardware-based KNN classifier, as

observed in Table 7-3 and Table 7-4. The former has a higher maximum, mean, and median

classification accuracy scores than the latter. The linear classifier has approximately 1.6- (≈

47 / 29) and 2-times (≈ 12 / 6) more fixed-point input combinations with higher classification

accuracies than floating-point input combinations in comparison with the KNN classifier.

However, the KNN classifier has approximately 1.5 times more input combinations with

fixed-point and floating-point responses having equal classification accuracies than the linear

classifier. These results indicate that the 2D correlation algorithm in the linear classifier is

more capable of quantifying small non-similar effects between two 2D matrices than the

timbre distance algorithm in the KNN classifier. Conversely, the KNN classifier is more

capable of quantitatively projecting salient (prominent magnitude) differences between two

2D matrices that are more ambiguous than the linear classifier, resulting in lower accuracy

scores.

The fixed-point response produces a more accurate classification of the musical

instruments than the floating-point response with input combinations of the former having

more than 3- and 1.5-times higher accuracy scores than the latter for linear classification

(59-to-19 accuracy score ratio) and KNN classification (35-to-21 accuracy score ratio),

respectively. One possible explanation is that large magnitudes represented in a fixed-point

response create more substantial magnitude differences between neighbouring elements in

238

a summary profile than in a floating-point response. This notion means that the fixed-point

system overlooks small-amplitude variations that are captured by the floating-point system

due to quantisation error. In other words, a higher precision floating-point representation may

capture minor differences across pixels that affect correlation coefficient (CC), and timbre

distance (TD) scores more significantly than a lower precision fixed-point representation that

overlooks such insignificant differences, but still manages to successfully classify musical

instruments based on salient timbre cues in the input signal. This notion suggests that the

fixed-point responses accentuates salient timbre features while ignoring non-salient timbre

features more capably than the floating-point responses.

The results also indicate that sum-calculated summary profiles are capable of attaining

up to 2- and 1.6-times higher classification accuracy scores than RMS-calculated summary

profiles in fixed-point arithmetic using linear classification (30-to-15 accuracy score ratio) and

KNN classification (31-to-19 accuracy score ratio), respectively. In other words, these results

suggest that a hardware implementation of the CAR-Lite-A1 model represents timbre as

capably as a software implementation of the same model. Conversely, the RMS-calculated

summary profiles have a lower average classification accuracy score and standard

deviations than sum-calculated summary profiles for both floating-point and fixed-point

arithmetic. These results indicate that RMS-calculated summary profiles represent timbre

more consistently for various input combinations of monophonic signals. In contrast, sum-

calculated summary profiles represent timbre well for only a selected number of input

combinations of monophonic signals. Hence, the performance of the hardware model is

higher than the software model for only a small number of input signals, whereas the

software model has more consistent performance levels than the hardware model.

239

Figure 7-5: Confusion matrix from musical instruments classification using FPGA-implementable timbre distance
and KNN classifier of a fixed-point representation of summary profiles of 𝐴1𝑦 and 𝑈𝑝 signals using sum operation

as well as 𝐴1𝑥 signal from the CAR-Lite-A1 model. (a) Confusion matrix with raw timbre distance values following

classification and (b) ternary-state confusion matrix with minimum timbre distances extracted from (a).

240

Floating-Point
(Flt)

Fixed-Point
(Fix)

Sum
(Flt)

Sum
(Fix)

RMS
(Flt)

RMS
(Fix)

Input configurations:

1) Quantity (Qty): 120 120 60 60 60 60

2) Flt vs. Fix (Qty
with higher
accuracies):

19 59 - - - -

3) Flt vs. Fix (Qty
with equal
accuracies):

42 - - - -

4) Flt vs. Fix (Sum
qty with higher
accuracies):

2 47 - - - -

5) Flt vs. Fix (RMS
qty with higher
accuracies):

17 12 - - - -

6) Flt vs. Fix (%
with higher
accuracies):

16% 49% - - - -

7) Flt vs. Fix (Qty
with equal
accuracies):

35% - - - -

8) Flt vs. Fix (Sum
% with higher
accuracies):

2% 39% - - - -

9) Flt vs. Fix (RMS
% with higher
accuracies):

14% 10% - - - -

10) Sum vs. RMS
(Qty with
higher
accuracies):

- - 5 30 34 15

11) Sum vs. RMS (%
with higher
accuracies):

- - 8% 50% 57% 25%

Classification Accuracies

Maximum: 83% 100% 83% 100% 83% 92%

Mean: 69% 74% 66% 77% 73% 71%

Median: 75% 75% 67% 79% 75% 75%

Standard Deviation: 9.79% 11.45% 10% 12% 8% 10%
Table 7-3: Summary of musical instruments classification results with a linear classifier. The maximum, mean,
median, and standard deviation under each column correspond to the different input signal configurations and the
arithmetic type used to calculate the input signals, i.e. either floating-point or fixed-point.

241

Floating-Point
(Flt)

Fixed-Point
(Fix)

Sum
(Flt)

Sum
(Fix)

RMS
(Flt)

RMS
(Fix)

Input configurations:

1) Quantity (Qty): 120 120 60 60 60 60

2) Flt vs. Fix (Qty
with higher
accuracies):

21 35 - - - -

3) Flt vs. Fix (Qty
with equal
accuracies):

64 - - - -

4) Flt vs. Fix (Sum
qty with higher
accuracies):

16 29 - - - -

5) Flt vs. Fix (RMS
qty with higher
accuracies):

5 6 - - - -

6) Flt vs. Fix (%
with higher
accuracies):

18% 29% - - - -

7) Flt vs. Fix (Qty
with equal
accuracies):

53% - - - -

8) Flt vs. Fix (Sum
% with higher
accuracies):

13% 24% - - - -

9) Flt vs. Fix (RMS
% with higher
accuracies):

4% 5% - - - -

10) Sum vs. RMS
(Qty with
higher
accuracies):

- - 35 31 11 19

11) Sum vs. RMS (%
with higher
accuracies):

- - 58% 52% 18% 32%

Classification Accuracies

Maximum: 92% 92% 92% 92% 67% 75%

Mean: 66% 66% 73% 72% 60% 60%

Median: 67% 67% 83% 75% 67% 67%

Standard Deviation: 14% 16% 13% 19% 11% 10%
Table 7-4: Summary of musical instruments classification results with an FPGA implementable KNN classifier.
The maximum, mean, median, and standard deviation under each column correspond to the different input signal
configurations and the arithmetic type used to calculate the input signals, i.e. either floating-point or fixed-point.

7.5.2. Varying Intensity and Noise Levels

Real-world sound signals vary in intensity levels and are affected by noise. So, this

subsection presents the results of classification of musical instruments based on musical

signals with varying intensity and noise levels. The effect of an automatic gain control (AGC)

algorithm to condition the amplitudes of the musical signals is also presented. The intensity

242

levels range from -20 dB full-scale (FS) to 20 dBFS in increments of 10 dBFS. The added

noise is white Gaussian noise with the signal-to-noise ratio (SNR) ranging from -20 dB to 20

dB in increments of 20 dB.

Input signals from three musical instruments are selected based on how the notes are

generated, as denoted in brackets: piano (string), vibraphone (percussion), and flute (wind).

The musical notes used are the same as those from the exercise described in subsection

7.5.1 at three loudness levels: forte (high), mezzo (medium), and piano (low). The output

responses of the notes are selected based on the highest accuracy scores from subsection

7.5.1, namely 𝐴1𝑥, 𝐴1𝑦 and 𝑈𝑝. The musical signals are further categorised in the order of

the computing arithmetic utilised for calculating the output response from the CAR-Lite-A1

model: floating-point (Flt), fixed-point output (Fix).

Accuracy results are also presented based on the use of an AGC algorithm on the

musical signals before they are input to the CAR-Lite-A1 model. Details of the AGC

algorithm are presented in appendix A. An example of the use of the AGC is presented in

Figure 7-6 on an A3 signal from a piano at two intensity levels: 0 dBFS and 20 dBFS. At 0

dBFS [Figure 7-6(ia)], the input signal is well represented because its amplitudes are within

a range of 2𝑁−1 − 1 and −2𝑁−1. This range is 32,767 and -32,768 for an input signal bit

width of 16 bits (𝑁 = 16) yielding a dynamic range of 96 dB, as specified in section 3.2.8.

However, at 20 dBFS, the amplification of the input signal results in the saturation of its

amplitudes. So, amplitudes beyond 32,767 and below -32,768 are clipped at 32,767 and

32768, respectively, as shown in Figure 7-6(ib), which consequently generates audible

distortion.

The AGC algorithm minimises amplitude saturation by varying the input signal to ensure

that its amplitudes are not clipped, as observed in Figure 7-6(id). However, the application of

the AGC to an input signal changes the temporal and spectral contents of the signal, as

observed in Figure 7-6. Consequently, these changes affect the timbre of the signal. If the

AGC is applied to a group of signals from a musical instrument, the timbre changes

uniformly throughout all the signals. Therefore, the group of input signals is considered as a

separate class as opposed to the same signals not conditioned by the AGC. In other words,

the classification of musical instruments has to be further segregated based on whether the

AGC is enabled.

The AGC algorithm is not implemented on FPGA because an AGC circuit has already

been implemented as part of the audio codec circuit [33] on board the Cyclone V FPGA

starter kit [34]. However, the AGC algorithm described in appendix A is more akin to intensity

level conditioning in a cochlear model such as the AGC used in the CAR-FAC model [35]

and hence, provides an alternative perspective to a conventional hardware AGC.

Figure 7-7 displays the accuracy results of varying the intensity levels of the musical

signals presented to the CAR-Lite-A1 model. The accuracy of each level is the average of

the output responses across varying SNR levels (three recordings per SNR level), which

include output responses unaffected by noise. The full results are shown in appendix E.

Without noise, and AGC disabled, accuracy scores of floating-point (Flt) and fixed-point (Fix)

responses at all intensity levels are at 100% using the 2D correlation coefficient (CC)

algorithm in the linear classifier and 67% using the timbre distance (TD) algorithm in the

classifier. This is regardless of the clipping of the input signals above 0 dBFS and up to 20

243

dBFS, as observed in Figure 7-6(ib), which indicates that the responses of the CAR-Lite-A1

model can be represented capably even though their respective notes’ amplitudes are

saturated.

When the AGC is enabled, the envelope of the musical signal is altered from the

original, as observed in Figure 7-6(ic) and (id) and (ii). Although the A1y and Up profiles are

different with and without the AGC activation, their timbre cues remain categorically similar

when either AGC is enabled or disabled regardless of the change in intensity. The accuracy

results are at 100% from both the linear and KNN classifiers, which are improvements over

the scores when the AGC is disabled, as mentioned above, especially for the KNN classifier.

This attribute indicates that the musical timbral features are retained despite envelope

alterations with the introduction of the AGC.

Figure 7-8 displays the accuracy scores of varying the noise levels of the musical signal.

Each noise level has three sets of recordings for every intensity level, which are then

averaged. Multiple recordings are done here as white Gaussian noise introduces

randomness to the contents of the output signals. When noise is introduced at 20 dB SNR,

there are instances where the accuracy is maintained, as observed in Figure 7-8(id) and

(iid), or improved, as seen in Figure 7-8(ib) and (iib). This attribute indicates that the

presence of mild noise may maintain and even improve the capability of the classifiers

especially, the KNN classifier to distinguish between musical instruments regardless of

whether the AGC is enabled and irrespective of the summary output responses calculated

using either sum or RMS operations. However, this is only the case for 50% of the

recordings at 20 dB SNR. A more general observation is that the accuracy reduces as the

SNR reduces especially below 20 dB SNR, which indicates that a more prominent noise

level commonly obscures the classifiers from distinguishing musical instruments than when

there is milder noise.

Figure 7-9(a) displays the average of standard deviations of accuracy scores across the

intensity levels from Figure 7-7, which indicate how much the scores vary at each intensity

level. Below 0 dBFS, the scores calculated using the TD algorithm in the KNN classifier

fluctuate the most. Above 0 dBFS, the scores calculated using the CC algorithm in the linear

classifier fluctuate the most. These fluctuations occur when the AGC is disabled. In contrast,

when the AGC is enabled, the fluctuations reduce. This attribute indicates that the AGC

algorithm aids in maintaining the accuracy scores, but these scores are generally lower than

the scores when the AGC is disabled, especially for the sum-based response as observed in

Figure 7-7.

Figure 7-9(b) displays the average of the standard deviations of accuracy scores across

the SNR levels from Figure 7-8, indicating how much the scores vary at each SNR level. At

no noise levels, the scores expectedly do not vary at all. At 20 dB SNR and below, the

fluctuation of the scores increases with decreasing SNR levels. In other words, as noise

level grows, the variations of accuracy scores grow. Furthermore, the contrast between the

linear classifier scores are more significant across floating-point and fixed-point responses

as well as summed and RMS responses at every SNR level, especially when the AGC is

disabled. This attribute indicates that the scores calculated from the CC algorithm in the

linear classifier when the AGC is disabled fluctuate more than any other settings.

244

Generally, varying intensity levels changes the perceived loudness of a sound signal.

However, perceived loudness does not affect timbre [19], [36]. Hence, intensity levels should

not affect timbre. In this subsection, it was found that the results of musical instruments

classification are not affected significantly by intensity level changes, thereby adhering to the

conclusions of [19], [36]. Additionally, increasing noise levels added to the sound expectedly

reduced the performance of the classification indicating the degradation of timbral cues with

increasing noise levels.

Figure 7-6: (i) Fixed-point representation of the A3 piano note signal at two intensity levels, 0 dBFS and 20 dBFS,
with the AGC algorithm, enabled and disabled and (ii) their corresponding A1y and Up profiles showing
differences with and without the AGC enabled but are categorically similar despite different intensity levels.

245

Figure 7-7: Accuracy scores based on varying intensity levels of musical signals for their (i) summed and (ii) RMS
output responses from the CAR-Lite-A1 model that are averaged across varying SNR levels. Vertical bars
represent standard deviations. Note: ∇ represents linear classifier; * represents KNN classifier; Flt is the
classification scores of the responses of input signals calculated with floating-point arithmetic; Fix is the
classification of the responses of input signals calculated with fixed-point arithmetic.

246

Figure 7-8: Accuracy results based on varying signal-to-noise (SNR) levels of musical signals for their (i) summed
and (ii) RMS output responses from the CAR-Lite-A1 model that are averaged across varying intensity levels.
Vertical bars represent standard deviations. Note: ∇ represents linear classifier; * represents KNN classifier; Flt is
the classification scores of the responses of input signals calculated with floating-point arithmetic; Fix is the
classification of the responses of input signals calculated with fixed-point arithmetic.

247

Figure 7-9: Mean of the standard deviation of accuracy scores from Figure 7-7 and Figure 7-8 shown across (a)
intensity levels and (b) SNR levels. CC: 2D correlation coefficient algorithm in the linear classifier; TD: Timbre

distance algorithm in the KNN classifier.

7.5.3. In-model Comparison: 4D and 2D Matrix File Sizes

Commercial automatic music identification requires the use of over millions of 2D

spectrograms representing musical tracks in an extensive database, which consequently

requires large electronic memory for storage [37]. In section 6.3.3, it was reported that 2D

autocorrelograms computed in fixed-point arithmetic has lower storage size than

autocorrelograms computed in floating-point arithmetic. In this section, the storage size

difference is explored for 4D matrices and 2D summary matrices generated using floating-

point and fixed-point arithmetic.

Figure 7-10 displays the file sizes of 4D and summary 2D matrices (𝐴1𝑦, 𝑈𝑝, and 𝐷𝑜𝑤𝑛)

generated from the CAR-Lite-A1 model as well as the IHC spectral profile (𝐴1𝑥) at 0 dBFS

without noise. A significant contrast in file sizes is observable in (a) and (b) of Figure 7-10 –

the 4D fixed-point response requires 15 times less storage space [946.4 Gigabytes (GB) /

62.56 GB] than the 4D floating-point response. This file size contrast is due to the former

using double-precision numbers, as opposed to single-precision numbers used by the latter.

The fixed-point sum-calculated 2D summary response requires two times less storage

space [15.19 Megabytes (MB) / 6.58 MB] than its floating-point equivalent. However, the file

sizes of the RMS-calculated 2D summary responses are similar (7.93 MB / 7.712 MB) for

both floating-point and fixed-point arithmetic. This is because the RMS operation is

calculated in floating-point arithmetic regardless of the input signal format. Another

observation is the significant storage space difference between the 4D and 2D responses:

the 2D floating-point response for both sum-calculated and RMS-calculated summary

profiles require at least 40,000 times less [946.4 GB / (7.93 MB + 15.19 MB)] storage space

than the 4D floating-point response and the 2D fixed-point response for both sum-calculated

and RMS-calculated summary profiles require 4,400 times less [62.56 GB / (7.71 MB + 6.58

MB)] storage space than the 4D fixed-point response.

248

Figure 7-10: File sizes of the CAR-Lite-A1 model output from the inner hair cell (IHC), scale filter, upward and
downward neuron directional matrices calculated using one of the four following circuit configurations: Real (Re),
Imaginary (Im), Re + Im, and Re × Im. File sizes displayed are for (a) 4D output matrices across all four circuits;
(b) 4D output matrices accumulated from all four circuits; (c) summary 2D output matrices across all circuits and

(d) summary 2D output matrices accumulated from all four circuits.

7.5.4. Comparison with Other Models: Accuracy

Table 7-5 displays the highest classification accuracy scores of musical instruments

from five publications as well as the work presented from subsection 7.5.1. The comparison

is only for studies at 0 dBFS, as the majority of the musical timbre studies revolve around

single intensity levels for monophonic musical signals as outlined in Table 7-5 as well as of

polyphonic musical signals [38]–[40], which are excluded from the table.

The highest classification accuracy score of 100% from the linear classifier used in the

first half of this work is ranked the highest out of the seven scores presented. Alternatively,

the highest classification accuracy score of 91.7% from the k-nearest neighbour (KNN)

classifier used in the second half of this work is ranked fourth, outranking the linear classifier

used by Barbedo and Tzanetakis [41], single hidden layer artificial neural network (ANN)

with back-propagation used by Kostek [42], and support vector machine (SVM) configured

with nonlinear radial basis function used by Essid et al. [43]. These three outranked works

use conventional spectral-only and temporal-only algorithms to extract features as detailed

in Table 7-6 for classification. In contrast, the higher accuracy scores from this work as well

as the works of Patil et al. [15] and Burred et al. [44] are extracted using spectro-temporal

algorithms.

As mentioned, in subsection 7.5.1, the software-based linear classifier using the 2D

correlation coefficient algorithm is capable of quantitatively capturing small magnitude

differences between two classes. Thus, it is sufficiently robust to attain 100% classification

accuracy for two separate input combinations. Alternatively, the timbre distance algorithm in

the hardware-based KNN classifier is a simple algorithm that is designed to be

249

implementable on an FPGA. The simple design of the KNN classifier means that it is not as

robust as the linear classifier. This characteristic is evident as the former has a lower

classification accuracy of 91.7% over the latter.

In the case of Burred et al., the high classification accuracy score is achieved by

applying principal component analysis to rank the errors of detectable spectro-temporal

envelopes. This high accuracy score is attributable to a small number of musical instrument

classes used in the classification task - it is not known how much the accuracy score is

affected if the number of musical instrument classes is increased. In the case of Patil et al., a

nonlinear support vector machine (SVM) with Gaussian kernel, similar to Essid et al., was

used to achieve a very high score. Alternatively, even with a linear SVM, Patil et al. achieved

an accuracy score of 96.2%, which is close to the maximum accuracy score of 98.7% he

achieved using a nonlinear SVM, as presented in Table 7-5.

The classification accuracy errors encountered in this work, specifically by the

hardware-based KNN classifier, stem from several factors. Firstly, the mechanics of the KNN

classification is simple as it is designed to be implementable on FPGA. So, the matching of

two musical instrument classes is a straightforward measure of a timbre distance between

them. Conversely, Patil et al. used a more computationally intensive and mathematically-

involved classifier than the KNN classifier, known as a support vector machine (SVM) to

classify musical instruments – the nonlinear kernels in the SVM projects data to a higher

dimensional plane, known alternatively as a hyperplane, so that the data is linearly

separable. In contrast, the KNN classifier does not project data on to a higher plane, which

plausibly cause lower classification accuracy.

Secondly, data dimensionality reduction (from 4D to 2D) used by Patil et al. to achieve

the 98.7% accuracy involved the use of tensor singular value decomposition that had

parameters tuned to match psychoacoustical timbre experiments, which allowed distinct

musical timbre features to be extracted. Conversely, dimensionality reduction in this work

was achieved by sum operations that are implementable without high computational cost on

FPGA, and RMS operations that are implementable in software to work in real-time. These

algorithms cannot be optimised to extract distinct features corresponding to the same

psychoacoustic experiments used by Patil et al. As a result, the lack of distinct feature

selectivity is another cause for the errors in classification accuracy.

Thirdly, the number of instrument classes used by the KNN classifier in this work is

slightly higher than the work of Patil et al. and equal to Kostek. Incidentally, Kostek achieved

the lowest accuracy of 71% out of the six other works presented in Table 7-5. Only the work

of Barbedo and Tzanetakis has a higher number of instrument classes at 25 but yields a

lower classification accuracy score than this work. Hence, a general observation from Table

7-5 is that as the number of instrument classes increases, there is a likelihood of a reduction

in classification accuracy owing to the variances in timbre cue. However, the effect of

increasing instrument classes may be overlooked if a sophisticated classification algorithm

and feature extraction methods are considered.

In closing, the common theme in the top-four classification accuracy scores from Table

7-5 is the use of spectro-temporal features for classification as summarised in Table 7-6.

Hence, in all the seven cases presented, it can be concluded that in addition to the

classification algorithms and their respective linearity, the feature extraction methods and the

250

number of instrument classes are crucial in achieving high accuracy scores as is the case

primarily when spectro-temporal envelope features are used.

Index Author Number of Instrument
Classes

Classifier Accuracy

1 Patil et al. [15] 11 SVM 98.7%

2 Burred et al. [44] 5 PCA 94.9%

3 Essid et al. [43] 10 SVM 87.0%

4 Barbedo and Tzanetakis
[41]

25 Linear 80.3%

5 Kostek [42] 12 ANN 71.3%

6 This work 12 Linear 100%

7 This work 12 KNN 91.7%
Table 7-5: Comparison of the classification of musical instruments between this work and other works with the

highest classification accuracy score displayed from each work.

Index Author Features

1 Patil et al. [15] Multiple spectro-temporal modulation profiles.

2 Burred et al. [44] Spectro-temporal envelope descriptors, fundamental
frequency (𝑓0) correlated descriptors, and 𝑓0-invariant
descriptors.

3 Essid et al. [43] Autocorrelation coefficients, zero crossing rates, mel-
frequency cepstral coefficients, spectral centroid,
spectral widths, spectral asymmetry, spectral
skewness, spectral flatness, and octave band signal
intensities.

4 Barbedo and Tzanetakis
[41]

Bandwidth, crest factor, onset duration, slope of
amplitude decay, amplitude roughness, amplitude
envelope variation, centroid, note spread, skewness,
kurtosis, amplitude modulation (AM) frequency, AM
amplitude, and frequency trajectory.

5 Kostek [42] MPEG7 feature vectors and wavelet-based feature
vectors.

6,
and 7

This work Summary inner hair cell spectral profile, summary
spectro-temporal modulation (rate-scale filter output)
profile, and summary spectro-temporal modulation
directional (upward and downward) neuron profiles.

Table 7-6: Features used for the classification of musical instruments from the works mentioned in Table 7-5.

7.6. Summary and Conclusion

This chapter presents the classification of musical instruments using the responses of

the CAR-Lite-A1 model described in chapter 5 as inputs to the classifiers. Four musical

notes at three discrete loudness levels are selected from 12 classes of musical instruments.

Each class is divided into two subclasses, which denote the same musical instrument type

built by two different manufacturers. For each musical note, four types of responses from the

CAR-Lite-A1 model are used for musical instruments classification: a summary inner hair cell

spectral profile, a summary rate-scale filter output profile, a summary upward neuron

directional profile and a summary downward neuron directional profile. The summary profiles

are generated using either a sum or RMS operation. The responses of the CAR-Lite-A1

model are further segregated based on floating-point (software) arithmetic and fixed-point

(hardware) arithmetic as well as the four analytic circuit combinations: ‘real’, ‘imaginary’,

251

‘real+imaginary’, and ‘real×imaginary’, which offers a broader range of input signal

combinations to formulate a classification accuracy than if only the ‘real’ component is used.

Two classification algorithms are used for the classification. One is a linear classifier that

uses a 2D correlation coefficient equation whose correlation coefficient defines the similarity

between two 2D input matrices. The other is a KNN classifier that uses a simpler algorithm

known as timbre distance, whose design is based on the principle Occam Razor to match

two 2D input matrices, which is implementable on an FPGA. The linear classifier generates

the highest musical instruments classification accuracy score at 100%, while the maximum

accuracy score for the KNN classifier stood closely at 92%. Both results are from sum-

calculated input summary profiles using hardware-based fixed-point arithmetic. The

accuracy scores are approximately 2.3 times higher for input summary profiles calculated

with hardware-based fixed-point arithmetic than software-based floating-point arithmetic. The

accuracy scores are also relatively uniform across multiple intensities of the input musical

signals. Furthermore, with the introduction of an automatic gain control (AGC), the scores

also remain relatively uniform regardless of the intensities. The introduction of noise

predictably reduces the accuracy scores – more noise reduces performance.

In conclusion, the hardware-based fixed-point auditory model of the CAR-Lite-A1 model

presented in chapter 5 is capable of generating responses for representing musical timbre,

and consume lower storage space than its software-based floating-point counterpart, as

observed from the results presented in this chapter. However, to gauge its robustness, the

model has to be fully implemented on FPGA and tested with a more diverse range of sound

signals.

7.7. Bibliography

[1] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC Music Database: Music
Genre Database and Musical Instrument Sound Database,” in Proceedings of the 4th
International Conference on Music Information Retrieval (ISMIR 2003), 2003, pp.
229–230.

[2] D. L. Wessel, “Timbre Space as a Musical Control Structure,” Comput. Music J., vol.
3, no. 2, pp. 45–52, 1979, [Online]. Available: http://www.jstor.org/stable/3680283.

[3] C. L. Krumhansl and P. Iverson, “Perceptual Interactions Between Musical Pitch and
Timbre,” J. Exp. Psychol. Hum. Percept. Perform., vol. 18, no. 3, pp. 739–751, 1992,
doi: 10.1037/0096-1523.18.3.739.

[4] S. Samson, R. J. Zatorre, and J. O. Ramsay, “Multidimensional Scaling of Synthetic
Musical Timbre: Perception of Spectral and Temporal Characteristics,” Can. J. Exp.
Psychol., vol. 51(4), no. Dec., pp. 307–315, 1997, doi: 10.1037/1196-1961.51.4.307.

[5] G. Yu and J.-J. Slotine, “Audio Classification from Time-Frequency Texture,” in 2009
IEEE International Conference on Acoustics, Speech and Signal Processing, 2009,
pp. 1677–1680, doi: 10.1109/ICASSP.2009.4959924.

[6] T. R. Agus, C. Suied, S. J. Thorpe, and D. Pressnitzer, “Fast recognition of musical
sounds based on timbre,” J. Acoust. Soc. Am., vol. 131, no. 5, pp. 4124–4133, 2012,
doi: 10.1121/1.3701865.

[7] M. a Loureiro, H. B. De Paula, and H. C. Yehia, “Timbre Classification Of A Single
Musical Instrument,” in ISMIR 2004, 2004, pp. 546–549, doi: 10.1.1.106.416.

252

[8] J. W. Gordon, “The perceptual attack time of musical tones,” J. Acoust. Soc. Am., vol.
82, no. 1, pp. 88–105, 1987, doi: 10.1121/1.395441.

[9] G. Peeters, B. L. Giordano, P. Susini, N. Misdariis, and S. McAdams, “The Timbre
Toolbox: Extracting Audio Descriptors from Musical Signals,” J. Acoust. Soc. Am., vol.
130, no. 5, p. 2902, 2011, doi: 10.1121/1.3642604.

[10] J. Marozeau, A. de Cheveigné, S. Mcadams, and S. Winsberg, “The dependency of
timbre on fundamental frequency,” J. Acoust. Soc. Am., vol. 114, no. 5, pp. 2946–
2957, 2003, doi: 10.1121/1.1618239.

[11] S. McAdams, S. Winsberg, S. Donnadieu, G. De Soete, and J. Krimphoff, “Perceptual
Scaling of Synthesized Musical Timbres: Common Dimensions, Specificities, and
Latent Subject Classes,” Psychol. Res., vol. 58, no. 3, pp. 177–192, 1995, doi:
10.1007/BF00419633.

[12] A. Caclin, E. Brattico, M. Tervaniemi, R. Näätänen, D. Morlet, M.-H. Giard, and S.
McAdams, “Separate Neural Processing of Timbre Dimensions in Auditory Sensory
Memory,” J. Cogn. Neurosci., vol. 18, no. 12, pp. 1959–1972, 2006, doi:
10.1162/jocn.2006.18.12.1959.

[13] Y. Kong, A. Mullangi, J. Marozeau, and M. Epstein, “Temporal and Spectral Cues for
Musical Timbre Perception in Electric Hearing,” J. Speech, Lang. Hear. Res., vol. 54,
no. June, pp. 981–995, 2011, doi: 10.1044/1092-4388(2010/10-0196)b.

[14] S. Shamma, “Encoding Sound Timbre in the Auditory System,” IETE J. Res., vol. 49,
no. 2, pp. 145–156, 2003, doi: 10.1080/03772063.2003.11416333.

[15] K. Patil, D. Pressnitzer, S. Shamma, and M. Elhilali, “Music in Our Ears: The
Biological Bases of Musical Timbre Perception,” PLoS Comput. Biol., vol. 8, no. 11,
pp. 1–16, 2012, doi: 10.1371/journal.pcbi.1002759.

[16] S. Handel and M. L. Erickson, “A Rule of Thumb: The Bandwidth for Timbre
Invariance Is One Octave,” Music Percept. An Interdiscip. J., vol. 19, no. 1, pp. 121–
126, 2001, doi: 10.1525/mp.2001.19.1.121.

[17] K. M. Steele and A. K. Williams, “Is the Bandwidth for Timbre Invariance only One
Octave?,” Music Percept. An Interdiscip. J., vol. 23, no. 3, pp. 215–220, 2006, doi:
10.1525/mp.2006.23.3.215.

[18] B. M. Calhoun and C. E. Schreiner, “Spectral envelope coding in cat primary auditory
cortex: linear and non-linear effects of stimulus characteristics,” Eur. J. Neurosci., vol.
10, no. 3, pp. 926–940, 1998, doi: 10.1046/j.1460-9568.1998.00102.x.

[19] R. D. Melara and L. E. Marks, “Interaction among auditory dimensions: Timbre, pitch,
and loudness,” Percept. Psychophys., vol. 48, no. 2, pp. 169–178, 1990, doi:
10.3758/BF03207084.

[20] M. Thiemel, “Dynamics,” Grove Music Online, 2019. .

[21] T. Nakamura, “The communication of dynamics between musicians and listeners
through,” Percept. Psychophys., vol. 41, no. 6, pp. 525–533, 1987, doi:
10.3758/BF03210487.

[22] M. Fabiani and A. Friberg, “Influence of pitch, loudness, and timbre on the perception
of instrument dynamics,” J. Acoust. Soc. Am., vol. 130, no. 4, pp. EL193–EL199,
2011, doi: 10.1121/1.3633687.

253

[23] OnMusic Dictionary, “forte,” 2015. http://dictionary.onmusic.org/terms/1487-forte
(accessed Feb. 06, 2019).

[24] OnMusic Dictionary, “mezzo,” 2015. http://dictionary.onmusic.org/terms/2162-mezzo
(accessed Feb. 06, 2019).

[25] OnMusic Dictionary, “piano,” 2015. http://dictionary.onmusic.org/terms/2594-piano
(accessed Feb. 06, 2019).

[26] Y. Feng, Y. Zhuang, and Y. Pan, “Music Information Retrieval by Detecting Mood via
Computational Media Aesthetics,” in Proceedings IEEE/WIC International Conference
on Web Intelligence (WI 2003), 2003, doi: 10.1109/WI.2003.1241199.

[27] M. D. McDonnell, M. D. Tissera, T. Vladusich, A. Van Schaik, J. Tapson, and F.
Schwenker, “Fast, Simple and Accurate Handwritten Digit Classification by Training
Shallow Neural Network Classifiers with the ‘Extreme Learning Machine’ Algorithm,”
PLoS One, vol. 10, no. 8, pp. 1–20, 2015, doi: 10.1371/journal.pone.0134254.

[28] R. Meddis and M. J. Hewitt, “Virtual pitch and phase sensitivity of a computer model
of the auditory periphery. I : Pitch identification,” J. Acoust. Soc. Am., vol. 89, no. 6,
pp. 2866–2882, 1991, doi: 10.1121/1.400725.

[29] T. Chi, P. Ru, and S. A. Shamma, “Multiresolution Spectrotemporal Analysis of
Complex Sounds,” J. Acoust. Soc. Am., vol. 118, no. 2, pp. 887–906, 2005, doi:
10.1121/1.1945807.

[30] T. Dau, B. Kollmeier, and A. Kohlrausch, “Modeling auditory processing of amplitude
modulation. II. Spectral and temporal integration,” J. Acoust. Soc. Am., vol. 102, no. 5,
pp. 2906–2919, 1997, doi: 10.1121/1.420345.

[31] A. Hasnat, T. Bhattacharyya, A. Dey, S. Halder, and D. Bhattacharjee, “A Fast FPGA
Based Architecture for Computation of Square Root and Inverse Square Root,” in
2017 Devices for Integrated Circuit (DevIC), 2017, no. 1, pp. 383–387, doi:
10.1109/DEVIC.2017.8073975.

[32] R. Meddis and L. O’Mard, “A unitary model of pitch perception,” J. Acoust. Soc. Am.,
vol. 102, no. 3, pp. 1811–1820, 1997, doi: 10.1121/1.420088.

[33] Analog Devices, “SSM2603: Low Power Audio Codec (Rev. B).” Analog Devices, pp.
1–32, 2012.

[34] Terasic and Altera Corporation, “Cyclone V GX Starter Kit - User Manual.” Terasic,
pp. 1–103, 2014.

[35] R. F. Lyon, “The AGC Loop Filter,” in Human and Machine Hearing: Extracting
Meaning from Sound, Cambridge University Press, 2017, pp. 331–344.

[36] R. D. Melara and L. E. Marks, “Hard and soft interacting dimensions: Differential
effects of dual context on classification,” Percept. Psychophys., vol. 47, no. 4, pp.
307–325, 1990, doi: 10.3758/BF03210870.

[37] A. L. Wang and K. H. Street, “An Industrial-Strength Audio Search Algorithm,” in 2003
ISMIR International Symposium on Music Information Retrieval, 2003.

[38] J.-J. Aucouturier, F. Pachet, and M. Sandler, “‘The Way It Sounds’: Timbre Models for
Analysis and Retrieval of Music Signals,” IEEE Trans. Multimed., vol. 7, no. 6, pp.
1028–1035, 2005, doi: 10.1109/TMM.2005.858380.

254

[39] T. Kitahara, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, “Instrument
Identification in Polyphonic Music: Feature Weighting with Mixed Sounds, Pitch-
Dependent Timbre Modeling, and Use of Musical Context,” Proc. 6th Int. Soc. Music
Inf. Retr. Conf., pp. 558–563, 2005.

[40] T. Heittola, A. Klapuri, and T. Virtanen, “MUSICAL INSTRUMENT RECOGNITION IN
POLYPHONIC AUDIO USING SOURCE-FILTER MODEL FOR SOUND
SEPARATION,” in International Society for Music Information Retrieval Conference,
2009, [Online]. Available: http://www.cs.tut.fi/sgn/arg/klap/ismir09-heittola.pdf.

[41] J. G. A. Barbedo and G. Tzanetakis, “Musical Instrument Classification Using
Individual Partials,” IEEE Trans. Audio. Speech. Lang. Processing, vol. 19, no. 1, pp.
111–122, 2011, doi: 10.1109/TASL.2010.2045186.

[42] B. Kostek, “Musical Instrument Classification and Duet Analysis Employing Music
Information,” Proc. IEEE, vol. 92, no. 4, pp. 712–729, 2004, doi:
10.1109/JPROC.2004.825903.

[43] S. Essid, G. Richard, and B. David, “Musical Instrument Recognition by Pairwise
Classification Strategies,” IEEE Trans. Audio. Speech. Lang. Processing, vol. 14, no.
4, pp. 1401–1412, 2006, doi: 10.1109/TSA.2005.860842.

[44] J. Burred, A. Robel, and T. Sikora, “Dynamic Spectral Envelope Modeling for Timbre
Analysis of Musical Instrument Sounds,” Audio, Speech, Lang. …, vol. 18, no. 3, pp.
663–674, 2010, doi: 10.1109/TASL.2009.2036300.

[45] D. P. W. Ellis, “tf_agc - Time-frequency automatic gain control,” 2010.
https://labrosa.ee.columbia.edu/matlab/tf_agc/ (accessed May 10, 2020).

[46] M. Slaney, “Auditory Toolbox Version 2,” 1998. [Online]. Available:
https://engineering.purdue.edu/~malcolm/interval/1998-
010/AuditoryToolboxTechReport.pdf.

255

8. Summary, Conclusion, and Future Work

This chapter is divided into three sections. Section 8.1 summarises and concludes this

dissertation. Section 8.2 suggests ideas for continuing on the work presented in this

dissertation. Section 8.3 presents publications resulting from the work presented.

8.1. Summary and Conclusion

In this dissertation, several neuromorphic auditory models are presented. These models

are designed in software in floating-point arithmetic before being implemented on an FPGA

in fixed-point arithmetic. These models are designed to keep computational cost low when

running on hardware and so, they are all designed to characterise optimal operations of

mammalian auditory models. For all the models presented, the computational resources

used on an FPGA are also presented, which include logic modules utilisation, registers

utilisation as well as power consumption.

The first model presented is a simple cochlear model described in the first half of

chapter 3, titled CAR-Lite. Using multiple sampling rates, the CAR-Lite is capable of using

nine times fewer coefficients than a model that uses a single sampling rate, resulting in

smaller non-volatile storage of variables for the former than the latter. This low storage

reduces the use of memory chips, yielding low power consumption and manufacturing cost

and also reduces the silicon area of a circuit that is appealing for mobile devices. The

response of the CAR-Lite model is also investigated with a musical input signal at multiple

intensity levels where it was found that signals with amplitudes larger than 0 dBFS are

saturated to the largest smallest number representable for a 16 bit signal. To correct this

issue, an automatic gain control (AGC) algorithm is used for smoothly varying the levels to

ensure that the input signal is fully representable within the dynamic range of the model

before they are injected into the model.

The second half of chapter 3 discusses the inability of the CAR-Lite model to represent

spike trains at multiple intensity levels, which leads to the formation of the CAR-Lite-SI. This

model involves the modification and the extension of the CAR-Lite model to include a

biologically inspired spiking algorithm with multiple neuronal firing thresholds as a

demonstration of its capability to represent sound intensity (SI), which the CAR-Lite model is

unable to achieve.

In chapter 4, the CAR-Lite model is used with an algorithm for generating an

autocorrelogram (AC) to represent auditory pitch. Known as CAR-Lite-ACF, the model

generates an AC using the autocorrelation function, which involves the correlation of signals

from individual cochlear sections with delayed version of themselves. A novel method of

approximating the autocorrelation function is presented using logical AND-accumulate (AAC)

operations instead of the conventional multiply-accumulate (MAC) operations. This novel

algorithm is similar to the biologically inspired spiking algorithm from the CAR-Lite-SI model

except that it utilises a single neuron firing threshold instead of multiple firing thresholds.

Using this novel method, salient information corresponding to high energy above the firing

threshold is retained in regard to the fundamental frequency represented in the input signal.

Conversely, low energy that may contribute to general pitch information in regard to the

harmonics of the fundamental frequency is removed from the ACs, as the spiking algorithm

contributes to more significant quantisation error introduced here from the AAC operations

256

over the conventional MAC operations. Moreover, the use of spike streams as input to the

autocorrelation function instead of a smoothed input signal introduces noises in ACs that

require additional computation for smoothing. However, the CAR-Lite-ACF model equipped

with AAC operations utilises less computational resources on FPGA than the model

equipped with MAC operations in addition to representing fundamental frequencies.

In chapter 5, the CAR-Lite-A1 model is presented, where the CAR-Lite model is used

with a functional primary auditory cortical (A1) model, primarily designed for representing

musical timbre – sound unique to a specific musical instrument. The A1 segment of the

model comprises a rate filterbank and a scale filterbank for extracting spectro-temporal

envelopes respectively from an input sound signal, to generate a 4D output. The two

filterbanks are designed with the same filters as the ones used in the CAR-Lite cochlear

model due to their low coefficient utilisation. The model also has a spectro-temporal

envelope directional filterbank to detect the rise and fall in the amplitudes of the spectral and

temporal envelopes for use as timbral features. However, the directional filterbank does not

calculate phase information of the rate and scale filterbanks, which are disregarded to

maintain a low computational cost. The 4D response of the directional filterbank comprising

time, frequency, rate (temporal envelopes), and scale (spectral envelopes) is transformed

into a 2D rate-scale summary profile for a compact timbre representation. This

transformation is beneficial in musical timbre classification, as a 2D summary profile

representing a musical signal has a fixed matrix size, despite the varying time durations

(lengths) of musical signals from various musical instruments.

In chapter 6, a description of the classification of musical notes is presented using

autocorrelograms (ACs) generated from real-world musical signals. The pitch information

extracted from an AC is a fundamental frequency, which is estimated using algorithms

designed with musical notes from the fourth octave of a piano. Additionally, the

implementations of these algorithms grow in complexity to increasing pitch estimation

accuracies. The estimated fundamental frequencies are compared with the ground truth of

musical note frequencies. It is shown that both the fundamental frequency estimation and

classification algorithms are implementable on an FPGA (hardware). The pitch estimation

algorithm is found to produce the highest accuracies at 100% specifically at the fourth and

fifth musical octaves (24 classes of notes per instrument) for six musical instruments (piano,

viola, violin, trumpet, and clarinet) generated using fixed-point arithmetic (hardware model).

However, their performances reduce for musical notes from other octaves indicating the lack

of robustness in the pitch estimation algorithms in estimating fundamental frequencies

outside the fourth and fifth octaves.

Across intensity levels from -20 dB full-scale (FS) to 0 dBFS for musical signals from the

fourth octave of a piano, the performances of the pitch estimation algorithms are similar. The

performances improve slightly for saturated musical signals above 0 dBFS, indicating that

saturated amplitude levels do not affect the representation of fundamental frequency in a

sound signal. However, with an AGC algorithm enabled to vary the gain of the input signals,

the performances reduce. This is because the selected AGC algorithm attempts to normalise

the energy by enhancing the amplitude levels of high-frequency components while reducing

those of other frequencies, which renders the pitch estimation algorithms from incorrectly

extracting the fundamental frequencies. A separate pitch algorithm is designed to work

specifically with the AGC enabled producing 100% accuracies but it in turn has low

accuracies (below 30%) when the AGC is disabled. When noise is introduced, and its levels

257

are increased from 20 dB signal-to-noise-ratio (SNR) to -20 dB SNR, the performances for

all pitch estimation algorithms reduce, as noise expectedly introduces more random peaks

and obscures the prominent peaks in the ACs pertaining to fundamental frequencies.

In chapter 7, a description of the classification of musical instruments is presented using

the responses of the CAR-Lite-A1 model. Summary 2D profiles are used instead of the 4D

response generated directly from the model to conserve classifier runtime memory and

processing time. A timbre distance (TD) algorithm is designed to be part of the classifier

algorithm, which is implementable on an FPGA. A classification accuracy comparison

between floating-point (software) and fixed-point (hardware) implementations are made. It is

found that the highest accuracy for the fixed-point (hardware) implementation is 92% using a

k-nearest neighbour (KNN) classifier with the TD algorithm for 12 classes of musical

instruments.

Across intensity levels from -20 dBFS to 20 dBFS, the accuracies of the hardware-

based classification mentioned above do not vary significantly. They remain approximately at

60% for three of the 12 classes of musical instruments. Hence, the saturated musical signals

above 0 dBFS do not significantly affect timbre. However, the timbre of the signals changes

when the AGC algorithm is enabled because timbral cues are dependent on time and

frequency information, which are altered by the AGC. However, these changes occur

uniformly for all the signals from the three classes of musical instruments, so they are still

distinguishable when compared to one another. In this case, not only is the accuracy

maintained, but it increases approximately to 80% across the intensity levels suggesting that

the normalisation of time and frequency information provided by the AGC enhances unique

timbral cues. When noise is added from 20 dB SNR to -20 dB SNR, the performances

expectedly reduce due to the introduction of random amplitudes that obscure timbral cues.

For the classification exercises of both musical notes and instruments, it is found that

the fixed-point generated responses used significantly less storage than floating-point

generated responses for the two models, i.e. AC: 24 times less; 2D summary A1 profiles: 2

times less. This attribute is crucial for real-world applications, which rely on algorithms with

low computational resources and limited power supply.

Overall, the results of the auditory hardware-based models presented in this

dissertation, which are designed with basic operations derived from more sophisticated

auditory software models are capable of capturing primary auditory responses. However,

these results do not mean that an auditory hardware-based model is superior to its software-

based counterpart. Instead, they should pave the way for further tests and improvements in

robustness. In other words, although the hardware-based models in this dissertation show

promising results, they have to be tested rigorously with a diverse range of input signals

including complex real-world input signals in addition to those presented in this dissertation.

8.2. Future Work

This scholarly journey has allowed me to explore work from a diverse range of

disciplines. My focus on musical signals stems from a perspective of learning music

intuitively through machine hearing models as a complementary learning platform. As such,

the work in this dissertation is only the start of my journey of learning and improving the

presented models. Future funding will undoubtedly aid in the development of these

hardware-based models and will provide opportunities to test their robustness with complex

258

signals such as polyphonic musical signals. As the characteristics of these models evolve

through future research and development, these models can be applied to other fields

beyond musical signal processing, such as speech and environmental sound signal

processing, mechanical vibration analysis, multimedia and communications technology and

even biomedical applications.

For any aspiring enthusiast or scholar, I present the following areas in my work

presented in this dissertation that can be improved:

1) Design a feedback pathway to the multi-sampling rate CAR-Lite cochlear model to

adjust the poles and zeros of the asymmetric resonator in the model as an input

signal is streamed. This feedback represents the effect of the outer hair cell (OHC)

response, which influences the BM response. Hence, for loud sound levels, this

feedback model reduces BM response. One such feedback model is the fast-acting

compression (FAC) used in the CAR-FAC model [1].

2) Randomise the firing thresholds of the leaky-integrate-and fire (LIF) neurons in the

CAR-Lite-SI model instead of fixing them. An alternative is to implement spike rate

variation through adaptive threshold adjustment at the auditory nerve stage of the

CAR-Lite-SI cochlear model in place of fixed spike firing rates. This adjustment

leads to a sparser spike representation that adheres to biology as well as possibly

reduces power consumption on hardware during runtime.

3) Investigate the performance of sound identification tasks with and without the added

binary spike-based noise in the spontaneous rate fibres of the auditory nerve stage

of the CAR-Lite-SI model described in section 3.3 in chapter 3.

4) Classification of musical notes using the spike-based responses of the CAR-Lite-

ACF models calculated from logical-AND-accumulate (AAC) operations using

spiking neural networks [2].

5) Implement multiple fundamental frequencies, 𝑓0, estimation suitable for polyphonic

musical signals [3] instead of the single 𝑓0 estimation used in this dissertation for

monophonic musical signals.

6) Implement phase angle calculations for the temporal modulation (rate) filter and

spectral modulation (scale) filter that are hardware implementable. These phase

angles can be used for calculating neuronal directionality of varying degrees rather

than the binary neuronal directionalities used in the CAR-Lite-A1 model presented in

this dissertation.

7) Implement a spike-based model of the CAR-Lite-A1 adhering to known spiking

attributes of the mammalian primary auditory cortex (A1) [4].

8) Compare the performance of the CAR-Lite-ACF models with a biologically plausible

model such as Jones’s neuromorphic pitch extraction system [5] (derived from

Meddis’s virtual pitch physiological model presented in chapter 2 [6]) using 𝑓0

estimation from monophonic musical signals.

9) Extract harmonic and inharmonic pitch information from the autocorrelogram (AC)

for musical pitch classification instead of merely using 𝑓0 estimation algorithms on

them.

10) Reduce the number of parameters of the coupled-form asymmetric resonator in the

rate and scale filterbanks in the CAR-Lite-A1 model by removing 𝑊0, 𝑊1, ℎ, and 𝑔,

and tune 𝑎 and 𝑐 to the respective centre velocities and centre densities.

259

11) Design filter stability by picking the closest pole location inside the unit circle instead

of only checking for filter stability.

12) Use a backward and forward smoothing filter as an alternative for the scale filter

such as the one implemented in the AGC filter [7] in the CAR-FAC model.

13) Use a lower sampling rate at 6 or 12 kHz for generating the autocorrelogram using

the CAR-Lite-ACF model.

14) Use strobed temporal integration [8] to generate autocorrelogram, as demonstrated

by Lyon [9] at higher fidelity than the one mentioned in this dissertation.

15) Use a coupled-form filter as the high-pass filters (HPF) in the quadrature mirror

Hilbert transformer (QMHT) in the CAR-Lite-A1 model if the tuned filter variables are

capable of generating a 90° phase shift.

16) Use the entire 4D responses from the CAR-Lite-A1 model for musical timbre

classification instead of their summary profiles used in this dissertation.

17) Use classifiers such as support vector machine [10], extreme learning machine

(ELM) [11] and deep convolution neural network [12] for the classifications of

musical notes and instruments.

18) Use running autocorrelation function [9] to yield a more robust and simplified

fundamental frequency estimation algorithm than the one presented in chapter 6.

8.3. Publications

R. K. Singh, Y. Xu, R. Wang, T. J. Hamilton, S. L. Denham, and A. van Schaik, “CAR-Lite: A

Multi-Rate Cochlear Model on FPGA for Spike-based Sound Encoding,” IEEE Trans. Circuits

Syst. I Regul. Pap., vol. 66, no. 5, pp. 1805–1817, 2019.

R. K. Singh, Y. Xu, R. Wang, T. J. Hamilton, S. L. Denham, and A. van Schaik, “CAR-Lite: A

Multi-Rate Cochlea Model on FPGA,” in 2018 IEEE International Symposium on Circuits and

Systems (ISCAS), 2018, pp. 1–5.

Y. Xu, S. Afshar, R. K. Singh, R. Wang, A. Van Schaik, and T. J. Hamilton, “A Binaural

Sound Localization System using Deep Convolutional Neural Networks,” in 2019 IEEE

International Symposium on Circuits and Systems (ISCAS), 2019, pp. 2–6.

Y. Xu, C. S. Thakur, R. K. Singh, T. J. Hamilton, R. Wang, and A. van Schaik, “A FPGA

Implementation of the CAR-FAC Cochlear Model,” Front. Neurosci., vol. 12, no. April, pp. 1–

14, 2018.

Y. Xu, S. Afshar, R. K. Singh, R. Wang, T. J. Hamilton, and A. van Schaik, “A Machine

Hearing System for Binaural Sound Localization Based on Instantaneous Correlation,” in

IEEE International Symposium on Circuits and Systems, 2018.

Y. Xu, C. S. Thakur, R. K. Singh, R. Wang, J. Tapson, and A. van Schaik, “Electronic

Cochlea: CAR-FAC Model on FPGA,” in 2016 IEEE Biomedical Circuits and Systems

Conference (BioCAS), 2016, pp. 564–567.

8.4. Bibliography

[1] R. F. Lyon, “The CARFAC Digital Cochlear Model,” in Human and Machine Hearing:
Extracting Meaning from Sound, Cambridge University Press, 2017, pp. 293–298.

260

[2] E. Cerezuela-Escudero, A. Jimenez-Fernandez, R. Paz-Vicente, M. Dominguez-
Morales, A. Linares-Barranco, and G. Jimenez-Moreno, “Musical Notes Classification
with Neuromorphic Auditory System Using FPGA and a Convolutional Spiking
Network,” in 2015 International Joint Conference on Neural Networks (IJCNN), 2015,
pp. 1–7, doi: 10.1109/IJCNN.2015.7280619.

[3] A. Klapuri, “Auditory Model-Based Methods for Multiple Fundamental Frequency
Estimation,” in Signal Processing Methods for Music Transcription, A. Klapuri and M.
Davy, Eds. New York, USA: Springer US, 2006, pp. 229–265.

[4] M. Elhilali, J. B. Fritz, D. J. Klein, J. Z. Simon, and S. A. Shamma, “Dynamics of
Precise Spike Timing in Primary Auditory Cortex,” J. Neurosci., vol. 24, no. 5, pp.
1159–1172, 2004, doi: 10.1523/JNEUROSCI.3825-03.2004.

[5] S. Jones, R. Meddis, S. C. Lim, and A. R. Temple, “Toward a Digital Neuromorphic
Pitch Extraction System,” IEEE Trans. Neural Networks, vol. 11, no. 4, pp. 978–987,
2000, doi: 10.1109/72.857777.

[6] R. Meddis and L. P. O’Mard, “Virtual Pitch in a Computational Physiological Model,” J.
Acoust. Soc. Am., vol. 120, no. 6, pp. 3861–3869, 2006, doi: 10.1121/1.2372595.

[7] R. F. Lyon, “The AGC Loop Filter,” in Human and Machine Hearing: Extracting
Meaning from Sound, Cambridge University Press, 2017, pp. 331–344.

[8] R. D. Patterson and J. Holdsworth, “A functional model of neural activity patterns and
auditory images,” Adv. Speech, Hear. Lang. Process., vol. 3, pp. 547–563, 1996.

[9] R. F. Lyon, “The Auditory Image,” in Human and Machine Hearing: Extracting
Meaning from Sound, Cambridge University Press, 2017, pp. 355–378.

[10] K. Patil, D. Pressnitzer, S. Shamma, and M. Elhilali, “Music in Our Ears: The
Biological Bases of Musical Timbre Perception,” PLoS Comput. Biol., vol. 8, no. 11,
pp. 1–16, 2012, doi: 10.1371/journal.pcbi.1002759.

[11] M. D. McDonnell, M. D. Tissera, T. Vladusich, A. Van Schaik, J. Tapson, and F.
Schwenker, “Fast, Simple and Accurate Handwritten Digit Classification by Training
Shallow Neural Network Classifiers with the ‘Extreme Learning Machine’ Algorithm,”
PLoS One, vol. 10, no. 8, pp. 1–20, 2015, doi: 10.1371/journal.pone.0134254.

[12] Y. Xu, S. Afshar, R. K. Singh, R. Wang, A. Van Schaik, and T. J. Hamilton, “A
Binaural Sound Localization System using Deep Convolutional Neural Networks,” in
2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019, pp. 2–6,
doi: 10.1109/ISCAS.2019.8702345.

261

A. Automatic Gain Control (AGC)

An automatic gain control (AGC) algorithm is used for smoothly varying the gain of a

sound signal. The advantage of the AGC algorithm described below is that it corrects the

amplitudes of a sound signal, whereby a low-intensity sound signal is amplified, and a high-

intensity sound signal is reduced. In this case, the AGC accepts only a floating-point sound

signal. The modified sound signal is then converted to a fixed-point format before it is input

to the CAR-Lite model.

The AGC algorithm selected for use in this dissertation is designed by Ellis [1], which

emulates the functionality of the outer hair cells in a cochlea to control the mechanical

motions of the basilar membrane (BM). It does this by computing the short-time Fourier

transform (STFT) of a sound signal and smooths that energy using time and frequency

scales before normalising the scaled energy.

The algorithm starts by taking the STFT of the input signal, 𝑥:

𝑋𝑚(𝑓) = ∑ 𝑥(𝑛) ∙ 𝑔(𝑛 − 𝑚𝑅) ∙ 𝑒−𝑗2𝜋𝑓𝑛

𝑁

𝑛=1

 (A-1)

where 𝑛 is the sample number; 𝑁 is the size of the input signal; 𝑋𝑚(𝑓) is the discrete Fourier

transform of a window of the input signal centred at 𝑚𝑅 and at a specific frequency, 𝑓; 𝑚 is

the sliding analysis window number; 𝑔(𝑛) is the analysis window function of size 𝑀 – here 𝑀

is set at a default of 4,096; and 𝑅 is the hop size set at a default of 2,048.

The next step is to smoothen the STFT response by multiplying it with weights, 𝑤:

 𝐴(𝑓) = 𝑤 ∙ |𝑋𝑚(𝑓)| (A-2)

where 𝐴(𝑓) is the smoothened response of the STFT; 𝑤 is a weighted value calculated using

the proximity of a nonlinear frequency, 𝑓𝑀𝑒𝑙(𝑛), to a linear centre frequency, 𝑓𝐹𝐹𝑇, within a

frequency bin:

 𝑤 = max(0, min(𝑙, ℎ)) (A-3)

where 𝑙 is the proximity of 𝑓𝑀𝑒𝑙(𝑛) to 𝑓𝐹𝐹𝑇, where 𝑓𝑀𝑒𝑙(𝑛) < 𝑓𝐹𝐹𝑇 and 𝑛 = 1 for a group of 3

𝑓𝑀𝑒𝑙; ℎ is the proximity of 𝑓𝐹𝐹𝑇 to 𝑓𝑀𝑒𝑙(𝑛), where 𝑓𝑀𝑒𝑙(𝑛) > 𝑓𝐹𝐹𝑇, and 𝑛 = 3. They are

calculated as:

𝑙 =

𝑓𝐹𝐹𝑇 − 𝑓𝑀𝑒𝑙(1)

𝑓𝑀𝑒𝑙(2) − 𝑓𝑀𝑒𝑙(1)
 (A-4)

ℎ =

𝑓𝑀𝑒𝑙(3) − 𝑓𝐹𝐹𝑇

𝑓𝑀𝑒𝑙(3) − 𝑓𝑀𝑒𝑙(2)
 (A-5)

Here, 𝑓𝐹𝐹𝑇 is a vector comprising 20 linearly scaled frequencies calculated with fast Fourier

transform; the FFT bins, 𝑓𝑀𝑒𝑙 is a nonlinear frequency vector computed with a logarithmic

transformation of 𝑓𝐹𝐹𝑇 [2]. 𝑓𝑀𝑒𝑙 is known as a melody scale, where the perceived pitch is

distributed linearly [3]. For every element of 𝑓𝐹𝐹𝑇, groups of 3 𝑓𝑀𝑒𝑙 elements are iteratively

extracted to calculate 𝑙 and ℎ. At the end of the iteration, weights are calculated as per

equation (A-3).

262

The next part is to normalise 𝑋𝑚 with a factor, 𝐸. The first of the two steps of acquiring 𝐸

is to calculate the smooth attack and decay of the signal, which requires the calculation of its

weights as:

 𝑎𝑖 = max
𝑖∈𝑓𝑠𝑐

(𝑎𝑖 ∙ 𝑒−𝑅/(𝑓𝑠∙𝑡𝑠𝑐), 𝐴(𝑖)) (A-6)

where 𝑓𝑠 is the sampling rate of the input signal set at 96,000 Hz; 𝑡𝑠𝑐 is the time scale set at

0.5. The second step involves the calculation of 𝐸:

𝐸 = 𝑑𝑖𝑎𝑔 (

1

𝑠 + 𝑠′
∙ 𝑤𝑇 ∙ 𝑎) (A-7)

where 𝑑𝑖𝑎𝑔 represents matrix diagonal; 𝑠 is the weight summed across the frequency scales

and 𝑠′ is the binary activation of 𝑠:

𝑠 = ∑ 𝑤

𝑓𝑠𝑐

𝑖=1

 (A-8)

𝑠′ = {

1 𝑖𝑓 𝑠𝑖𝑗 = 0

0 𝑖𝑓 𝑠𝑖𝑗 ≠ 0
 (A-9)

After normalisation, the signal, 𝑋𝑚, is transformed from the Fourier domain to the time

domain with an inverse STFT involving the calculation of an inverse fast Fourier transform of

a discrete Fourier transform of the signal:

𝑥′(𝑛) = 𝑅𝑒 (∑ ∫
𝑋𝑚(𝑓)

𝐸(𝑓)
∙ 𝑒𝑗2𝜋𝑓𝑛𝑑𝑓

1/2

−1/2

𝑀

𝑚=1

) (A-10)

where 𝑥′ is the real-valued input signal processed with the AGC algorithm; and 𝑀 is the total

number of sliding analysis windows. To ensure, the signal remains between an amplitude of

-1 to 1, the signal is normalised as follows:

𝑥′′ =

𝑥′

max(|𝑥′|)
 (A-11)

Figure A-1 illustrates the effect of the AGC algorithm with a 20 dBFS speech signal [1].

Figure A-1(b) displays the output of the AGC algorithm in floating-point, while Figure A-1(c)

displays the same output represented in 16 bits fixed-point. The AGC reduces the

amplitudes of the input signal to be smaller than the original signal with the floating-point

signal bounded within ±1, and the fixed-point signal bounded within +32767 and -32768. In

other words, the AGC corrects the amplitude levels of an input signal to be bounded within a

specific range, which is beneficial for maintaining a fixed bit width regardless of changes in

the intensity levels of the signal.

263

Figure A-1: (a) 20 dBFS floating-point representation of a speech signal [1] input to the AGC algorithm. (b) The
output of the AGC (b) in floating-point and (c) in 16 bits fixed-point.

Bibliography

[1] D. P. W. Ellis, “tf_agc - Time-frequency automatic gain control,” 2010.
https://labrosa.ee.columbia.edu/matlab/tf_agc/ (accessed May 10, 2020).

[2] M. Slaney, “Auditory Toolbox Version 2,” 1998. [Online]. Available:
https://engineering.purdue.edu/~malcolm/interval/1998-
010/AuditoryToolboxTechReport.pdf.

[3] S. S. Stevens, J. Volkmann, and E. B. Newman, “A Scale for the Measurement of the
Psychological Magnitude Pitch,” J. Acoust. Soc. Am., vol. 8, no. 3, pp. 185–190, 1937,
doi: 10.1121/1.1915893.

264

B. Classification of Musical Notes (0 dBFS, No Noise)

Algorithm

Index Instrument Note
Range

Computation 1 2 3 4 5 6

1 Piano C2-B2 Fixed-Point AAC 0% 0% 0% 0% 0% 0%

Fixed-Point MAC 0% 0% 0% 0% 0% 0%

Floating-Point AAC 0% 0% 0% 0% 0% 0%

Floating-Point MAC 0% 0% 0% 0% 0% 0%

C3-B3 Fixed-Point AAC 8% 8% 58% 58% 33% 58%

Fixed-Point MAC 33% 8% 33% 42% 0% 33%

Floating-Point AAC 8% 8% 58% 58% 42% 58%

Floating-Point MAC 33% 0% 25% 33% 0% 25%

2 Classical
Guitar

C3-B3 Fixed-Point AAC 8% 25% 25% 8% 33% 8%

Fixed-Point MAC 75% 25% 25% 25% 8% 25%

Floating-Point AAC 8% 17% 17% 8% 33% 8%

Floating-Point MAC 67% 8% 8% 8% 25% 8%

3 Electric
Guitar

C3-B3 Fixed-Point AAC 0% 0% 0% 0% 0% 0%

Fixed-Point MAC 42% 25% 25% 33% 8% 25%

Floating-Point AAC 0% 0% 8% 0% 0% 0%

Floating-Point MAC 67% 8% 17% 17% 25% 17%

4 Viola C3-B3 Fixed-Point AAC 17% 0% 75% 75% 25% 75%

Fixed-Point MAC 42% 0% 75% 75% 0% 75%

Floating-Point AAC 17% 0% 75% 75% 25% 75%

Floating-Point MAC 42% 0% 67% 67% 17% 67%

5 Cello C3-B3 Fixed-Point AAC 0% 8% 42% 42% 17% 42%

Fixed-Point MAC 8% 8% 58% 58% 0% 58%

Floating-Point AAC 0% 8% 42% 42% 8% 42%

Floating-Point MAC 8% 0% 50% 50% 0% 50%

6 Trombone C3-B3 Fixed-Point AAC 17% 8% 83% 83% 50% 83%

Fixed-Point MAC 17% 0% 92% 92% 25% 92%

Floating-Point AAC 17% 8% 92% 92% 58% 92%

Floating-Point MAC 17% 0% 83% 83% 42% 83%

7 Tenor
Saxophone

C3-B3 Fixed-Point AAC 67% 0% 67% 58% 58% 67%

Fixed-Point MAC 75% 25% 83% 75% 67% 75%

Floating-Point AAC 58% 0% 67% 50% 58% 67%

Floating-Point MAC 83% 33% 75% 67% 67% 75%

8 Baritone
Saxophone

C2-B2 Fixed-Point AAC 0% 0% 25% 25% 0% 25%

Fixed-Point MAC 0% 0% 33% 33% 0% 33%

Floating-Point AAC 0% 0% 25% 25% 0% 25%

Floating-Point MAC 0% 0% 33% 33% 0% 33%

9 Electric
Bass

C2-B2 Fixed-Point AAC 0% 0% 8% 8% 0% 8%

Fixed-Point MAC 17% 0% 0% 8% 0% 0%

Floating-Point AAC 0% 0% 0% 0% 0% 0%

Floating-Point MAC 8% 0% 8% 8% 0% 8%

10 Contrabass C2-B2 Fixed-Point AAC 0% 0% 0% 0% 0% 0%

265

Fixed-Point MAC 0% 0% 0% 0% 0% 0%

Floating-Point AAC 0% 0% 0% 0% 0% 0%

Floating-Point MAC 0% 0% 0% 0% 0% 0%

Table B-1: Accuracy scores for classifying musical notes from various musical instruments having musical notes
under low-range octave groups (octaves 2 and 3). The numbers denoted after the musical notes (under ‘Note
Range’) are the octave numbers.

Algorithm

Index Instrument Note
Range

Computation 1 2 3 4 5 6

1 Piano C4-B4 Fixed-Point AAC 50% 17% 100% 58% 92% 100%

Fixed-Point MAC 75% 42% 92% 50% 92% 83%

Floating-Point AAC 42% 8% 100% 58% 92% 100%

Floating-Point MAC 75% 50% 83% 50% 92% 75%

2 Piano C5-B5 Fixed-Point AAC 42% 42% 50% 33% 92% 50%

Fixed-Point MAC 67% 8% 67% 33% 100% 67%

Floating-Point AAC 42% 33% 50% 33% 92% 50%

Floating-Point MAC 58% 25% 67% 33% 100% 67%

3 Vibraphone C5-B5 Fixed-Point AAC 33% 17% 83% 75% 67% 83%

Fixed-Point MAC 42% 0% 92% 83% 83% 92%

Floating-Point AAC 25% 0% 83% 75% 67% 83%

Floating-Point MAC 33% 25% 92% 83% 75% 92%

4 Accordion C5-B5 Fixed-Point AAC 83% 0% 92% 83% 58% 92%

Fixed-Point MAC 92% 0% 92% 92% 58% 92%

Floating-Point AAC 83% 8% 92% 83% 58% 92%

Floating-Point MAC 83% 17% 92% 92% 58% 92%

5 Violin C5-B5 Fixed-Point AAC 67% 33% 100% 100% 100% 100%

Fixed-Point MAC 67% 33% 100% 100% 100% 100%

Floating-Point AAC 67% 42% 100% 100% 100% 100%

Floating-Point MAC 75% 42% 100% 100% 100% 100%

6 Viola C5-B5 Fixed-Point AAC 75% 25% 100% 100% 100% 100%

Fixed-Point MAC 75% 17% 100% 100% 92% 100%

Floating-Point AAC 58% 25% 100% 100% 100% 100%

Floating-Point MAC 67% 25% 100% 100% 92% 100%

7 Cello C4-B4 Fixed-Point AAC 58% 17% 83% 75% 83% 83%

Fixed-Point MAC 58% 8% 83% 58% 75% 83%

Floating-Point AAC 75% 17% 83% 75% 83% 83%

Floating-Point MAC 67% 25% 50% 42% 58% 50%

8 Trumpet C5-B5 Fixed-Point AAC 83% 67% 100% 100% 100% 100%

Fixed-Point MAC 83% 50% 100% 100% 100% 100%

Floating-Point AAC 75% 58% 100% 100% 100% 100%

Floating-Point MAC 92% 83% 100% 100% 100% 100%

9 Soprano
Sax

C5-B5 Fixed-Point AAC 17% 25% 92% 42% 83% 92%

Fixed-Point MAC 33% 25% 83% 75% 83% 83%

Floating-Point AAC 17% 17% 92% 42% 83% 92%

Floating-Point MAC 33% 17% 83% 83% 83% 83%

266

10 Oboe C5-B5 Fixed-Point AAC 83% 67% 92% 100% 83% 92%

Fixed-Point MAC 83% 50% 83% 83% 50% 83%

Floating-Point AAC 83% 67% 100% 100% 100% 100%

Floating-Point MAC 83% 67% 83% 83% 50% 83%

11 Clarinet C5-B5 Fixed-Point AAC 58% 42% 100% 92% 92% 100%

Fixed-Point MAC 67% 75% 100% 100% 92% 100%

Floating-Point AAC 58% 42% 100% 92% 92% 100%

Floating-Point MAC 75% 58% 100% 100% 92% 100%

Table B-2: Accuracy scores for classifying musical notes from various musical instruments having musical notes
under middle-range octave groups (octaves 4 and 5). The numbers denoted after the musical notes (under ‘Note
Range’) are the octave numbers.

Algorithm

Index Instrument Note
Range

Computation 1 2 3 4 5 6

1 Piano C6-B6 Fixed-Point AAC 58% 33% 83% 75% 92% 83%

Fixed-Point MAC 58% 17% 92% 75% 92% 92%

Floating-Point AAC 58% 33% 83% 75% 92% 83%

Floating-Point MAC 58% 8% 92% 75% 92% 92%

C7-B7 Fixed-Point AAC 25% 17% 17% 17% 33% 17%

Fixed-Point MAC 8% 17% 25% 17% 42% 25%

Floating-Point AAC 25% 0% 17% 17% 25% 17%

Floating-Point MAC 17% 0% 25% 8% 58% 25%

2 Marimba C6-B6 Fixed-Point AAC 67% 25% 92% 75% 83% 92%

Fixed-Point MAC 58% 17% 92% 75% 92% 92%

Floating-Point AAC 67% 17% 92% 75% 83% 92%

Floating-Point MAC 58% 25% 92% 83% 92% 92%

3 Flute C6-B6 Fixed-Point AAC 67% 33% 75% 58% 83% 75%

Fixed-Point MAC 67% 33% 83% 83% 83% 83%

Floating-Point AAC 67% 42% 75% 58% 83% 75%

Floating-Point MAC 67% 8% 83% 8% 83% 83%

Table B-3: Accuracy scores for classifying musical notes from various musical instruments having musical notes

under high-range octave groups (octaves 6 and 7). The numbers denoted after the musical notes (under ‘Note

Range’) are the octave numbers.

267

C. Classification of Musical Notes based on Varying Intensity

and SNR Levels
Accuracy: MAC, No Noise, Fix, AGC off Accuracy: MAC, No Noise, Fix, AGC on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 75% 75% 75% 67% 92% 1 0% 0% 0% 0% 0%

2 42% 42% 42% 17% 17% 2 0% 0% 0% 0% 0%

3 92% 92% 92% 83% 83% 3 67% 67% 67% 67% 67%

4 50% 50% 50% 33% 50% 4 67% 67% 67% 67% 67%

5 92% 92% 92% 100% 92% 5 25% 25% 25% 25% 25%

6 83% 83% 83% 83% 75% 6 67% 67% 67% 67% 67%

7 8% 8% 8% 58% 67% 7 100% 100% 100% 100% 100%

Accuracy: AAC, No Noise, Flt, AGC off Accuracy: AAC, No Noise, Flt, AGC on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 33% 33% 33% 58% 75% 1 0% 0% 0% 0% 0%

2 17% 17% 17% 8% 17% 2 0% 0% 0% 0% 0%

3 92% 92% 92% 75% 92% 3 42% 42% 42% 42% 42%

4 58% 58% 58% 25% 75% 4 50% 50% 50% 50% 50%

5 83% 83% 83% 100% 100% 5 25% 25% 25% 25% 25%

6 83% 83% 83% 75% 92% 6 42% 42% 42% 42% 42%

7 0% 0% 0% 50% 75% 7 100% 100% 100% 100% 100%

Accuracy: AAC, No Noise, Fix, AGC off Accuracy: AAC, No Noise, Fix, AGC on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 33% 42% 33% 67% 75% 1 0% 0% 0% 0% 0%

2 17% 8% 8% 8% 17% 2 0% 0% 0% 0% 0%

3 92% 100% 100% 75% 92% 3 42% 42% 42% 42% 42%

4 67% 75% 67% 25% 75% 4 50% 50% 50% 50% 50%

5 83% 92% 92% 100% 100% 5 17% 17% 17% 17% 17%

6 92% 100% 92% 75% 92% 6 50% 50% 50% 50% 50%

7 0% 0% 0% 58% 75% 7 100% 100% 100% 100% 100%

Table C-1: Pitch estimation accuracy results for 12 musical notes (A4 – G#4) without white Gaussian noise.

Accuracy (Recording 1): MAC, 20 dB SNR, Flt,
AGC off

Accuracy (Recording 1): AAC, 20 dB SNR, Flt, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 67% 75% 75% 50% 58% 1 42% 42% 17% 50% 75%

2 8% 33% 42% 17% 8% 2 8% 8% 8% 0% 17%

3 83% 83% 67% 83% 92% 3 100% 100% 92% 75% 92%

4 58% 50% 33% 25% 50% 4 50% 50% 75% 33% 75%

5 92% 83% 83% 100% 92% 5 92% 92% 92% 100% 100%

6 83% 83% 67% 83% 83% 6 100% 92% 83% 75% 92%

268

7 17% 17% 17% 58% 58% 7 0% 8% 8% 50% 75%

Accuracy (Recording 1): MAC, 20 dB SNR, Fix,
AGC off

Accuracy (Recording 1): AAC, 20 dB SNR, Fix, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 58% 67% 67% 75% 75% 1 42% 25% 33% 42% 67%

2 8% 33% 8% 25% 17% 2 8% 0% 8% 17% 42%

3 92% 92% 83% 83% 83% 3 100% 92% 92% 75% 92%

4 75% 50% 67% 25% 58% 4 58% 75% 67% 33% 83%

5 92% 92% 92% 100% 92% 5 92% 92% 83% 100% 100%

6 92% 75% 83% 83% 75% 6 100% 92% 92% 75% 92%

7 8% 8% 8% 58% 58% 7 0% 0% 0% 42% 75%

Accuracy (Recording 2): MAC, 20 dB SNR, Flt,
AGC off

Accuracy (Recording 2): AAC, 20 dB SNR, Flt, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 67% 67% 75% 50% 83% 1 58% 25% 50% 58% 67%

2 17% 25% 8% 0% 17% 2 8% 8% 8% 8% 17%

3 83% 83% 75% 83% 83% 3 92% 92% 100% 75% 92%

4 67% 58% 58% 42% 50% 4 67% 58% 83% 25% 75%

5 92% 92% 92% 100% 92% 5 83% 83% 92% 100% 100%

6 83% 83% 75% 83% 75% 6 92% 92% 100% 75% 92%

7 8% 8% 17% 58% 58% 7 0% 0% 8% 50% 75%

Accuracy (Recording 2): MAC, 20 dB SNR, Fix,
AGC off

Accuracy (Recording 2): AAC, 20 dB SNR, Fix, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 67% 75% 67% 67% 83% 1 33% 50% 58% 33% 50%

2 33% 42% 42% 17% 17% 2 8% 8% 0% 8% 17%

3 92% 92% 83% 83% 83% 3 92% 92% 100% 75% 92%

4 50% 42% 42% 33% 50% 4 67% 67% 83% 42% 75%

5 92% 92% 92% 100% 92% 5 83% 83% 92% 92% 100%

6 83% 92% 75% 83% 75% 6 92% 83% 100% 67% 92%

7 8% 8% 17% 67% 67% 7 0% 0% 8% 50% 75%

Accuracy (Recording 3): MAC, 20 dB SNR, Flt,
AGC off

Accuracy (Recording 3): AAC, 20 dB SNR, Flt, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 67% 67% 75% 58% 75% 1 33% 33% 25% 42% 75%

2 17% 17% 17% 25% 25% 2 8% 8% 8% 17% 17%

3 83% 92% 75% 83% 83% 3 100% 92% 100% 83% 92%

4 67% 67% 50% 33% 58% 4 75% 58% 58% 33% 75%

5 92% 92% 92% 100% 92% 5 92% 83% 92% 100% 100%

6 83% 92% 75% 83% 75% 6 100% 92% 92% 83% 92%

7 8% 8% 17% 58% 83% 7 0% 0% 0% 58% 75%

Accuracy (Recording 3): MAC, 20 dB SNR, Fix, Accuracy (Recording 3): AAC, 20 dB SNR, Fix, AGC

269

AGC off off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 75% 75% 75% 67% 67% 1 25% 33% 42% 42% 67%

2 33% 8% 17% 25% 33% 2 8% 8% 8% 8% 8%

3 92% 83% 83% 83% 83% 3 92% 92% 100% 75% 92%

4 42% 58% 67% 33% 50% 4 75% 67% 75% 33% 75%

5 92% 92% 92% 100% 92% 5 83% 83% 92% 100% 100%

6 83% 83% 83% 83% 75% 6 92% 83% 100% 75% 92%

7 8% 8% 8% 50% 50% 7 0% 8% 0% 50% 75%

Table C-2: Pitch estimation accuracy results for 12 musical notes (A4 – G#4) with 20 dB SNR (white Gaussian

noise) and AGC disabled.

Accuracy (Recording 1): MAC, 20 dB SNR, Flt, AGC
on

Accuracy (Recording 1): AAC, 20 dB SNR, Flt, AGC
on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 67% 67% 67% 67% 67% 3 50% 50% 42% 50% 50%

4 67% 67% 67% 67% 67% 4 50% 58% 58% 58% 58%

5 17% 25% 25% 17% 25% 5 17% 17% 17% 8% 8%

6 67% 67% 67% 67% 67% 6 42% 50% 50% 42% 50%

7 100% 100% 100% 100% 100% 7 100% 100% 100% 100% 100%

Accuracy (Recording 1): MAC, 20 dB SNR, Fix,
AGC on

Accuracy (Recording 1): AAC, 20 dB SNR, Fix, AGC
on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 67% 67% 67% 67% 67% 3 50% 50% 50% 58% 42%

4 67% 67% 67% 67% 67% 4 58% 58% 58% 58% 50%

5 25% 25% 25% 25% 25% 5 17% 8% 17% 8% 17%

6 67% 67% 67% 67% 67% 6 58% 58% 58% 58% 50%

7 100% 100% 100% 100% 100% 7 100% 100% 100% 100% 100%

Accuracy (Recording 2): MAC, 20 dB SNR, Flt, AGC
on

Accuracy (Recording 2): AAC, 20 dB SNR, Flt, AGC
on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 67% 67% 67% 67% 67% 3 42% 50% 50% 50% 42%

4 67% 67% 67% 67% 67% 4 58% 50% 50% 58% 50%

5 25% 17% 25% 17% 17% 5 17% 8% 8% 17% 17%

6 67% 67% 67% 67% 67% 6 42% 50% 42% 50% 42%

7 100% 100% 100% 100% 100% 7 100% 100% 100% 100% 100%

270

Accuracy (Recording 2): MAC, 20 dB SNR, Fix,
AGC on

Accuracy (Recording 2): AAC, 20 dB SNR, Fix, AGC
on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 8% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 67% 67% 67% 67% 67% 3 42% 42% 42% 50% 50%

4 67% 67% 58% 67% 67% 4 50% 50% 50% 58% 58%

5 17% 17% 17% 25% 17% 5 17% 8% 17% 8% 8%

6 67% 67% 67% 67% 67% 6 50% 50% 50% 58% 58%

7 100% 100% 100% 100% 100% 7 100% 100% 100% 100% 100%

Accuracy (Recording 3): MAC, 20 dB SNR, Flt, AGC
on

Accuracy (Recording 3): AAC, 20 dB SNR, Flt, AGC
on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 67% 67% 67% 67% 67% 3 42% 50% 42% 42% 50%

4 67% 67% 67% 67% 67% 4 42% 33% 42% 50% 42%

5 25% 17% 25% 17% 17% 5 17% 8% 8% 8% 8%

6 67% 67% 67% 67% 67% 6 42% 42% 42% 42% 50%

7 100% 100% 100% 100% 100% 7 100% 100% 100% 100% 100%

Accuracy (Recording 3): MAC, 20 dB SNR, Fix,
AGC on

Accuracy (Recording 3): AAC, 20 dB SNR, Fix, AGC
on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 67% 67% 58% 67% 67% 3 42% 42% 42% 50% 42%

4 67% 58% 67% 67% 67% 4 50% 50% 50% 58% 50%

5 17% 33% 25% 25% 25% 5 8% 8% 17% 8% 8%

6 67% 67% 67% 67% 67% 6 50% 50% 50% 58% 50%

7 100% 100% 100% 100% 100% 7 100% 100% 100% 100% 100%

Table C-3: Pitch estimation accuracy results for 12 musical notes (A4 – G#4) with 20 dB SNR (white Gaussian
noise) and AGC enabled.

Accuracy (Recording 1): MAC, 0 dB SNR, Flt, AGC
off

Accuracy (Recording 1): AAC, 0 dB SNR, Flt, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 8% 1 0% 8% 0% 0% 8%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 42% 50% 42% 50% 83% 3 58% 50% 58% 42% 75%

4 17% 25% 25% 42% 67% 4 50% 33% 42% 25% 50%

5 50% 50% 50% 67% 75% 5 58% 42% 50% 67% 92%

6 42% 42% 42% 50% 83% 6 58% 42% 50% 42% 75%

7 25% 0% 25% 58% 58% 7 0% 0% 8% 42% 58%

271

Accuracy (Recording 1): MAC, 0 dB SNR, Fix, AGC
off

Accuracy (Recording 1): AAC, 0 dB SNR, Fix, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 8% 1 0% 0% 8% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 58% 33% 58% 42% 58% 3 50% 75% 67% 67% 83%

4 42% 25% 50% 25% 50% 4 33% 58% 75% 33% 50%

5 50% 42% 33% 50% 75% 5 50% 58% 58% 42% 92%

6 50% 33% 58% 42% 58% 6 42% 67% 75% 50% 83%

7 25% 0% 17% 33% 75% 7 8% 0% 0% 50% 75%

Accuracy (Recording 2): MAC, 0 dB SNR, Flt, AGC
off

Accuracy (Recording 2): AAC, 0 dB SNR, Flt, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 8% 8% 0% 0% 1 0% 0% 0% 8% 17%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 58% 58% 75% 42% 58% 3 67% 42% 83% 75% 92%

4 33% 50% 50% 17% 42% 4 50% 17% 83% 42% 58%

5 58% 50% 58% 58% 75% 5 67% 50% 75% 83% 100%

6 58% 58% 67% 33% 58% 6 50% 33% 83% 75% 92%

7 8% 17% 17% 58% 67% 7 8% 8% 17% 58% 67%

Accuracy (Recording 2): MAC, 0 dB SNR, Fix, AGC
off

Accuracy (Recording 2): AAC, 0 dB SNR, Fix, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 17% 0% 8% 0% 1 0% 8% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 58% 58% 42% 50% 58% 3 67% 83% 67% 75% 83%

4 50% 58% 42% 42% 42% 4 50% 33% 58% 25% 58%

5 33% 42% 50% 58% 75% 5 58% 67% 33% 75% 92%

6 58% 50% 50% 50% 58% 6 50% 58% 67% 75% 83%

7 25% 0% 8% 42% 50% 7 0% 0% 0% 42% 75%

Accuracy (Recording 3): MAC, 0 dB SNR, Flt, AGC
off

Accuracy (Recording 3): AAC, 0 dB SNR, Flt, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 8% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 58% 50% 58% 42% 67% 3 50% 67% 42% 58% 75%

4 33% 58% 33% 42% 42% 4 33% 50% 33% 42% 67%

5 58% 50% 33% 50% 83% 5 42% 50% 33% 92% 92%

6 50% 50% 33% 42% 50% 6 50% 67% 42% 58% 75%

7 8% 17% 8% 50% 67% 7 17% 0% 8% 42% 75%

Accuracy (Recording 3): MAC, 0 dB SNR, Fix, AGC
off

Accuracy (Recording 3): AAC, 0 dB SNR, Fix, AGC
off

272

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 8% 8% 0% 0% 0% 1 0% 0% 0% 0% 8%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 33% 42% 58% 58% 58% 3 42% 58% 58% 58% 83%

4 33% 25% 42% 50% 42% 4 17% 42% 50% 25% 67%

5 58% 50% 42% 83% 92% 5 58% 67% 75% 83% 100%

6 33% 33% 50% 58% 58% 6 25% 58% 50% 58% 83%

7 17% 8% 0% 33% 75% 7 0% 8% 0% 42% 67%

Table C-4: Pitch estimation accuracy results for 12 musical notes (A4 – G#4) with 0 dB SNR (white Gaussian
noise) and AGC disabled.

Accuracy (Recording 1): MAC, 0 dB SNR, Flt, AGC
on

Accuracy (Recording 1): AAC, 0 dB SNR, Flt, AGC
on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 67% 58% 67% 67% 42% 3 58% 50% 58% 58% 58%

4 67% 58% 67% 83% 50% 4 75% 75% 75% 75% 67%

5 25% 25% 25% 33% 17% 5 8% 33% 17% 8% 8%

6 67% 58% 67% 83% 50% 6 42% 50% 42% 42% 42%

7 100% 100% 92% 100% 100% 7 100% 92% 100% 100% 100%

Accuracy (Recording 1): MAC, 0 dB SNR, Fix, AGC
on

Accuracy (Recording 1): AAC, 0 dB SNR, Fix, AGC
on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 50% 67% 58% 58% 50% 3 58% 58% 58% 58% 67%

4 50% 67% 67% 58% 58% 4 58% 58% 50% 58% 75%

5 33% 25% 33% 25% 17% 5 8% 8% 42% 8% 8%

6 58% 67% 67% 58% 50% 6 58% 58% 50% 58% 67%

7 100% 100% 100% 92% 100% 7 100% 100% 100% 100% 100%

Accuracy (Recording 2): MAC, 0 dB SNR, Flt, AGC
on

Accuracy (Recording 2): AAC, 0 dB SNR, Flt, AGC
on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 58% 58% 50% 67% 42% 3 50% 50% 67% 58% 58%

4 58% 67% 50% 67% 42% 4 50% 58% 50% 50% 50%

5 8% 25% 25% 25% 25% 5 8% 42% 8% 17% 33%

6 58% 67% 50% 67% 42% 6 50% 50% 42% 50% 42%

7 92% 100% 100% 100% 100% 7 100% 92% 92% 100% 92%

Accuracy (Recording 2): MAC, 0 dB SNR, Fix, AGC
on

Accuracy (Recording 2): AAC, 0 dB SNR, Fix, AGC
on

273

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 67% 58% 67% 58% 67% 3 58% 58% 67% 50% 67%

4 67% 58% 58% 58% 67% 4 58% 58% 67% 50% 75%

5 25% 8% 33% 17% 42% 5 8% 17% 25% 17% 8%

6 67% 58% 67% 58% 67% 6 58% 58% 67% 50% 67%

7 100% 100% 100% 92% 100% 7 100% 100% 100% 100% 100%

Accuracy (Recording 3): MAC, 0 dB SNR, Flt, AGC
on

Accuracy (Recording 3): AAC, 0 dB SNR, Flt, AGC
on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 67% 50% 58% 67% 58% 3 50% 58% 50% 50% 50%

4 58% 58% 58% 58% 58% 4 50% 58% 58% 50% 50%

5 17% 25% 17% 25% 25% 5 8% 8% 42% 17% 25%

6 58% 50% 58% 58% 58% 6 42% 50% 50% 42% 50%

7 100% 100% 100% 100% 100% 7 100% 100% 100% 92% 92%

Accuracy (Recording 3): MAC, 0 dB SNR, Fix, AGC
on

Accuracy (Recording 3): AAC, 0 dB SNR, Fix, AGC
on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 58% 58% 75% 50% 67% 3 58% 67% 58% 50% 67%

4 58% 58% 83% 50% 50% 4 67% 67% 50% 58% 67%

5 25% 25% 42% 8% 25% 5 25% 8% 25% 8% 17%

6 58% 58% 83% 50% 58% 6 67% 67% 50% 58% 67%

7 100% 100% 100% 100% 100% 7 100% 100% 100% 100% 100%

Table C-5: Pitch estimation accuracy results for 12 musical notes (A4 – G#4) with 0 dB SNR (white Gaussian

noise) and AGC enabled.

Accuracy (Recording 1): MAC, -20 dB SNR, Flt,
AGC off

Accuracy (Recording 1): AAC, -20 dB SNR, Flt, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 0% 33% 8% 17% 0% 3 17% 0% 8% 25% 8%

4 0% 33% 8% 17% 0% 4 8% 8% 17% 8% 8%

5 17% 17% 17% 25% 0% 5 17% 8% 8% 17% 25%

6 0% 33% 8% 17% 0% 6 8% 8% 8% 17% 8%

7 42% 25% 0% 17% 17% 7 8% 17% 33% 17% 42%

Accuracy (Recording 1): MAC, -20 dB SNR, Fix,
AGC off

Accuracy (Recording 1): AAC, -20 dB SNR, Fix,
AGC off

274

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 17% 8% 25% 0% 8% 3 0% 42% 42% 25% 33%

4 25% 8% 33% 0% 8% 4 0% 42% 33% 25% 33%

5 17% 17% 8% 0% 17% 5 0% 33% 17% 17% 17%

6 25% 8% 33% 0% 8% 6 0% 42% 33% 25% 33%

7 33% 17% 8% 25% 17% 7 8% 42% 25% 33% 42%

Accuracy (Recording 2): MAC, -20 dB SNR, Flt,
AGC off

Accuracy (Recording 2): AAC, -20 dB SNR, Flt, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 8% 25% 8% 8% 17% 3 0% 8% 0% 8% 25%

4 0% 25% 0% 0% 17% 4 0% 17% 0% 8% 17%

5 25% 33% 17% 0% 8% 5 0% 17% 17% 8% 17%

6 8% 25% 0% 0% 25% 6 0% 17% 0% 8% 25%

7 33% 33% 17% 17% 25% 7 8% 33% 25% 8% 17%

Accuracy (Recording 2): MAC, -20 dB SNR, Fix,
AGC off

Accuracy (Recording 2): AAC, -20 dB SNR, Fix,
AGC off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 8% 17% 8% 8% 33% 3 17% 0% 17% 8% 25%

4 8% 17% 8% 8% 33% 4 8% 8% 17% 8% 33%

5 8% 8% 17% 8% 17% 5 8% 8% 17% 0% 33%

6 8% 17% 8% 8% 33% 6 8% 8% 17% 8% 25%

7 42% 17% 33% 33% 42% 7 33% 33% 8% 17% 25%

Accuracy (Recording 3): MAC, -20 dB SNR, Flt,
AGC off

Accuracy (Recording 3): AAC, -20 dB SNR, Flt, AGC
off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 25% 8% 0% 25% 17% 3 17% 25% 17% 17% 17%

4 25% 8% 0% 17% 25% 4 25% 17% 17% 33% 8%

5 17% 0% 8% 25% 25% 5 8% 8% 25% 25% 25%

6 25% 8% 0% 17% 25% 6 17% 17% 17% 33% 8%

7 25% 25% 33% 33% 25% 7 17% 25% 17% 33% 33%

Accuracy (Recording 3): MAC, -20 dB SNR, Fix,
AGC off

Accuracy (Recording 3): AAC, -20 dB SNR, Fix,
AGC off

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

275

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 25% 17% 25% 0% 8% 3 25% 33% 0% 0% 42%

4 25% 33% 25% 0% 8% 4 25% 25% 0% 8% 33%

5 25% 0% 0% 8% 8% 5 17% 25% 8% 8% 25%

6 25% 33% 25% 0% 8% 6 25% 25% 0% 8% 42%

7 25% 33% 17% 33% 17% 7 17% 33% 17% 25% 42%

Table C-6: Pitch estimation accuracy results for 12 musical notes (A4 – G#4) with -20 dB SNR (white Gaussian
noise) and AGC disabled.

Accuracy (Recording 1): MAC, -20 dB SNR, Flt,
AGC on

Accuracy (Recording 1): AAC, -20 dB SNR, Flt,
AGC on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 17% 8% 0% 8% 17% 3 8% 17% 25% 25% 17%

4 17% 8% 0% 8% 17% 4 8% 8% 33% 25% 17%

5 17% 8% 0% 0% 8% 5 8% 8% 0% 8% 0%

6 17% 8% 0% 8% 17% 6 8% 17% 25% 25% 8%

7 42% 33% 33% 25% 58% 7 42% 67% 33% 50% 50%

Accuracy (Recording 1): MAC, -20 dB SNR, Fix,
AGC on

Accuracy (Recording 1): AAC, -20 dB SNR, Fix,
AGC on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 8% 0% 17% 8% 8% 3 17% 8% 8% 42% 0%

4 8% 0% 17% 8% 8% 4 17% 8% 8% 42% 0%

5 8% 0% 0% 8% 8% 5 17% 0% 0% 25% 0%

6 8% 0% 17% 8% 8% 6 17% 8% 8% 42% 0%

7 50% 25% 50% 42% 58% 7 25% 67% 58% 58% 33%

Accuracy (Recording 2): MAC, -20 dB SNR, Flt,
AGC on

Accuracy (Recording 2): AAC, -20 dB SNR, Flt,
AGC on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 17% 0% 8% 17% 0% 3 25% 8% 17% 0% 8%

4 17% 0% 8% 8% 0% 4 8% 17% 17% 33% 0%

5 8% 0% 0% 8% 0% 5 0% 0% 17% 8% 8%

6 17% 0% 8% 8% 0% 6 17% 8% 8% 0% 0%

7 50% 17% 50% 33% 25% 7 50% 67% 75% 67% 42%

Accuracy (Recording 2): MAC, -20 dB SNR, Fix,
AGC on

Accuracy (Recording 2): AAC, -20 dB SNR, Fix,
AGC on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

276

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 8% 8% 8% 0% 17% 3 0% 17% 17% 8% 0%

4 8% 8% 8% 0% 17% 4 0% 17% 17% 17% 0%

5 8% 0% 0% 8% 8% 5 0% 8% 8% 17% 0%

6 8% 8% 8% 0% 17% 6 0% 17% 17% 8% 0%

7 50% 25% 25% 42% 58% 7 50% 67% 42% 17% 58%

Accuracy (Recording 3): MAC, -20 dB SNR, Flt,
AGC on

Accuracy (Recording 3): AAC, -20 dB SNR, Flt,
AGC on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 0% 33% 0% 0% 8% 3 25% 0% 0% 8% 17%

4 0% 33% 0% 0% 8% 4 25% 17% 0% 17% 25%

5 0% 0% 0% 8% 17% 5 8% 0% 8% 0% 0%

6 0% 33% 0% 0% 8% 6 33% 8% 0% 17% 25%

7 42% 42% 50% 42% 25% 7 50% 33% 25% 42% 67%

Accuracy (Recording 3): MAC, -20 dB SNR, Fix,
AGC on

Accuracy (Recording 3): AAC, -20 dB SNR, Fix,
AGC on

Intensity
(dBFS):

-20 -10 0 10 20 Intensity
(dBFS):

-20 -10 0 10 20

Algorithm Algorithm

1 0% 0% 0% 0% 0% 1 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 2 0% 0% 0% 0% 0%

3 17% 17% 8% 17% 17% 3 17% 17% 17% 8% 25%

4 17% 17% 17% 17% 17% 4 17% 17% 17% 8% 25%

5 8% 17% 8% 17% 25% 5 0% 25% 8% 8% 0%

6 17% 17% 17% 17% 17% 6 17% 17% 17% 8% 25%

7 25% 17% 58% 25% 33% 7 50% 42% 58% 50% 58%

Table C-7: Pitch estimation accuracy results for 12 musical notes (A4 – G#4) with -20 dB SNR (white Gaussian

noise) and AGC enabled.

277

D. Classification of Musical Instruments (0 dBFS, No Noise)

 Profile Circuit Response

Index Sum RMS Real Imag
Real +
Imag

Real ×
Imag

A1x A1y Up Down Accuracy

1 ✓ ✓ ✓ 75.00%

2 ✓ ✓ ✓ 50.00%

3 ✓ ✓ ✓ 66.67%

4 ✓ ✓ ✓ 58.33%

5 ✓ ✓ ✓ ✓ 58.33%

6 ✓ ✓ ✓ ✓ 75.00%

7 ✓ ✓ ✓ ✓ 75.00%

8 ✓ ✓ ✓ ✓ 66.67%

9 ✓ ✓ ✓ ✓ 58.33%

10 ✓ ✓ ✓ ✓ 58.33%

11 ✓ ✓ ✓ ✓ ✓ 75.00%

12 ✓ ✓ ✓ ✓ ✓ 75.00%

13 ✓ ✓ ✓ ✓ ✓ 75.00%

14 ✓ ✓ ✓ ✓ ✓ 66.67%

15 ✓ ✓ ✓ ✓ ✓ ✓ 75.00%

16 ✓ ✓ ✓ 75.00%

17 ✓ ✓ ✓ 50.00%

18 ✓ ✓ ✓ 41.67%

19 ✓ ✓ ✓ 50.00%

20 ✓ ✓ ✓ ✓ 58.33%

21 ✓ ✓ ✓ ✓ 83.33%

22 ✓ ✓ ✓ ✓ 66.67%

23 ✓ ✓ ✓ ✓ 66.67%

24 ✓ ✓ ✓ ✓ 66.67%

25 ✓ ✓ ✓ ✓ 41.67%

26 ✓ ✓ ✓ ✓ ✓ 66.67%

27 ✓ ✓ ✓ ✓ ✓ 75.00%

28 ✓ ✓ ✓ ✓ ✓ 75.00%

29 ✓ ✓ ✓ ✓ ✓ 66.67%

30 ✓ ✓ ✓ ✓ ✓ ✓ 75.00%

31 ✓ ✓ ✓ 75.00%

32 ✓ ✓ ✓ 50.00%

33 ✓ ✓ ✓ 50.00%

34 ✓ ✓ ✓ 50.00%

35 ✓ ✓ ✓ ✓ 58.33%

36 ✓ ✓ ✓ ✓ 66.67%

37 ✓ ✓ ✓ ✓ 58.33%

38 ✓ ✓ ✓ ✓ 66.67%

39 ✓ ✓ ✓ ✓ 75.00%

278

 Profile Circuit Response

Index Sum RMS Real Imag
Real +
Imag

Real ×
Imag

A1x A1y Up Down Accuracy

40 ✓ ✓ ✓ ✓ 50.00%

41 ✓ ✓ ✓ ✓ ✓ 50.00%

42 ✓ ✓ ✓ ✓ ✓ 58.33%

43 ✓ ✓ ✓ ✓ ✓ 66.67%

44 ✓ ✓ ✓ ✓ ✓ 75.00%

45 ✓ ✓ ✓ ✓ ✓ ✓ 66.67%

46 ✓ ✓ ✓ 75.00%

47 ✓ ✓ ✓ 50.00%

48 ✓ ✓ ✓ 66.67%

49 ✓ ✓ ✓ 75.00%

50 ✓ ✓ ✓ ✓ 58.33%

51 ✓ ✓ ✓ ✓ 75.00%

52 ✓ ✓ ✓ ✓ 75.00%

53 ✓ ✓ ✓ ✓ 66.67%

54 ✓ ✓ ✓ ✓ 75.00%

55 ✓ ✓ ✓ ✓ 66.67%

56 ✓ ✓ ✓ ✓ ✓ 75.00%

57 ✓ ✓ ✓ ✓ ✓ 75.00%

58 ✓ ✓ ✓ ✓ ✓ 75.00%

59 ✓ ✓ ✓ ✓ ✓ 75.00%

60 ✓ ✓ ✓ ✓ ✓ ✓ 75.00%

61 ✓ ✓ ✓ 75.00%

62 ✓ ✓ ✓ 58.33%

63 ✓ ✓ ✓ 58.33%

64 ✓ ✓ ✓ 58.33%

65 ✓ ✓ ✓ ✓ 75.00%

66 ✓ ✓ ✓ ✓ 75.00%

67 ✓ ✓ ✓ ✓ 75.00%

68 ✓ ✓ ✓ ✓ 75.00%

69 ✓ ✓ ✓ ✓ 75.00%

70 ✓ ✓ ✓ ✓ 58.33%

71 ✓ ✓ ✓ ✓ ✓ 75.00%

72 ✓ ✓ ✓ ✓ ✓ 75.00%

73 ✓ ✓ ✓ ✓ ✓ 75.00%

74 ✓ ✓ ✓ ✓ ✓ 75.00%

75 ✓ ✓ ✓ ✓ ✓ ✓ 75.00%

76 ✓ ✓ ✓ 75.00%

77 ✓ ✓ ✓ 58.33%

78 ✓ ✓ ✓ 75.00%

79 ✓ ✓ ✓ 66.67%

80 ✓ ✓ ✓ ✓ 75.00%

81 ✓ ✓ ✓ ✓ 83.33%

279

 Profile Circuit Response

Index Sum RMS Real Imag
Real +
Imag

Real ×
Imag

A1x A1y Up Down Accuracy

82 ✓ ✓ ✓ ✓ 83.33%

83 ✓ ✓ ✓ ✓ 66.67%

84 ✓ ✓ ✓ ✓ 58.33%

85 ✓ ✓ ✓ ✓ 75.00%

86 ✓ ✓ ✓ ✓ ✓ 75.00%

87 ✓ ✓ ✓ ✓ ✓ 66.67%

88 ✓ ✓ ✓ ✓ ✓ 75.00%

89 ✓ ✓ ✓ ✓ ✓ 75.00%

90 ✓ ✓ ✓ ✓ ✓ ✓ 66.67%

91 ✓ ✓ ✓ 75.00%

92 ✓ ✓ ✓ 58.33%

93 ✓ ✓ ✓ 66.67%

94 ✓ ✓ ✓ 75.00%

95 ✓ ✓ ✓ ✓ 75.00%

96 ✓ ✓ ✓ ✓ 83.33%

97 ✓ ✓ ✓ ✓ 83.33%

98 ✓ ✓ ✓ ✓ 66.67%

99 ✓ ✓ ✓ ✓ 58.33%

100 ✓ ✓ ✓ ✓ 66.67%

101 ✓ ✓ ✓ ✓ ✓ 83.33%

102 ✓ ✓ ✓ ✓ ✓ 75.00%

103 ✓ ✓ ✓ ✓ ✓ 75.00%

104 ✓ ✓ ✓ ✓ ✓ 75.00%

105 ✓ ✓ ✓ ✓ ✓ ✓ 83.33%

106 ✓ ✓ ✓ 75.00%

107 ✓ ✓ ✓ 58.33%

108 ✓ ✓ ✓ 75.00%

109 ✓ ✓ ✓ 75.00%

110 ✓ ✓ ✓ ✓ 75.00%

111 ✓ ✓ ✓ ✓ 83.33%

112 ✓ ✓ ✓ ✓ 83.33%

113 ✓ ✓ ✓ ✓ 75.00%

114 ✓ ✓ ✓ ✓ 75.00%

115 ✓ ✓ ✓ ✓ 75.00%

116 ✓ ✓ ✓ ✓ ✓ 83.33%

117 ✓ ✓ ✓ ✓ ✓ 75.00%

118 ✓ ✓ ✓ ✓ ✓ 83.33%

119 ✓ ✓ ✓ ✓ ✓ 83.33%

120 ✓ ✓ ✓ ✓ ✓ ✓ 75.00%
Table D-1: Accuracy results for classifying musical instruments using 2D correlation coefficient equation in a
linear classifier on floating-point responses of various input signal configurations recorded from the CAR-Lite-A1
model.

280

 Profile Circuit Responses

Index Sum RMS Real Imag
Real +
Imag

Real ×
Imag

A1x A1y Up Down Accuracy

1 ✓ ✓ ✓ 75.00%

2 ✓ ✓ ✓ 58.33%

3 ✓ ✓ ✓ 91.67%

4 ✓ ✓ ✓ 58.33%

5 ✓ ✓ ✓ ✓ 66.67%

6 ✓ ✓ ✓ ✓ 83.33%

7 ✓ ✓ ✓ ✓ 83.33%

8 ✓ ✓ ✓ ✓ 91.67%

9 ✓ ✓ ✓ ✓ 66.67%

10 ✓ ✓ ✓ ✓ 75.00%

11 ✓ ✓ ✓ ✓ ✓ 83.33%

12 ✓ ✓ ✓ ✓ ✓ 83.33%

13 ✓ ✓ ✓ ✓ ✓ 91.67%

14 ✓ ✓ ✓ ✓ ✓ 83.33%

15 ✓ ✓ ✓ ✓ ✓ ✓ 83.33%

16 ✓ ✓ ✓ 75.00%

17 ✓ ✓ ✓ 58.33%

18 ✓ ✓ ✓ 66.67%

19 ✓ ✓ ✓ 66.67%

20 ✓ ✓ ✓ ✓ 66.67%

21 ✓ ✓ ✓ ✓ 83.33%

22 ✓ ✓ ✓ ✓ 83.33%

23 ✓ ✓ ✓ ✓ 91.67%

24 ✓ ✓ ✓ ✓ 83.33%

25 ✓ ✓ ✓ ✓ 58.33%

26 ✓ ✓ ✓ ✓ ✓ 83.33%

27 ✓ ✓ ✓ ✓ ✓ 91.67%

28 ✓ ✓ ✓ ✓ ✓ 91.67%

29 ✓ ✓ ✓ ✓ ✓ 83.33%

30 ✓ ✓ ✓ ✓ ✓ ✓ 91.67%

31 ✓ ✓ ✓ 75.00%

32 ✓ ✓ ✓ 58.33%

33 ✓ ✓ ✓ 66.67%

34 ✓ ✓ ✓ 58.33%

35 ✓ ✓ ✓ ✓ 66.67%

36 ✓ ✓ ✓ ✓ 83.33%

37 ✓ ✓ ✓ ✓ 100.00%

38 ✓ ✓ ✓ ✓ 75.00%

39 ✓ ✓ ✓ ✓ 75.00%

40 ✓ ✓ ✓ ✓ 58.33%

41 ✓ ✓ ✓ ✓ ✓ 91.67%

42 ✓ ✓ ✓ ✓ ✓ 75.00%

281

 Profile Circuit Responses

Index Sum RMS Real Imag
Real +
Imag

Real ×
Imag

A1x A1y Up Down Accuracy

43 ✓ ✓ ✓ ✓ ✓ 83.33%

44 ✓ ✓ ✓ ✓ ✓ 75.00%

45 ✓ ✓ ✓ ✓ ✓ ✓ 83.33%

46 ✓ ✓ ✓ 75.00%

47 ✓ ✓ ✓ 58.33%

48 ✓ ✓ ✓ 58.33%

49 ✓ ✓ ✓ 66.67%

50 ✓ ✓ ✓ ✓ 66.67%

51 ✓ ✓ ✓ ✓ 75.00%

52 ✓ ✓ ✓ ✓ 75.00%

53 ✓ ✓ ✓ ✓ 83.33%

54 ✓ ✓ ✓ ✓ 83.33%

55 ✓ ✓ ✓ ✓ 66.67%

56 ✓ ✓ ✓ ✓ ✓ 83.33%

57 ✓ ✓ ✓ ✓ ✓ 91.67%

58 ✓ ✓ ✓ ✓ ✓ 91.67%

59 ✓ ✓ ✓ ✓ ✓ 83.33%

60 ✓ ✓ ✓ ✓ ✓ ✓ 100.00%

61 ✓ ✓ ✓ 75.00%

62 ✓ ✓ ✓ 75.00%

63 ✓ ✓ ✓ 50.00%

64 ✓ ✓ ✓ 50.00%

65 ✓ ✓ ✓ ✓ 75.00%

66 ✓ ✓ ✓ ✓ 66.67%

67 ✓ ✓ ✓ ✓ 75.00%

68 ✓ ✓ ✓ ✓ 50.00%

69 ✓ ✓ ✓ ✓ 66.67%

70 ✓ ✓ ✓ ✓ 50.00%

71 ✓ ✓ ✓ ✓ ✓ 58.33%

72 ✓ ✓ ✓ ✓ ✓ 41.67%

73 ✓ ✓ ✓ ✓ ✓ 75.00%

74 ✓ ✓ ✓ ✓ ✓ 75.00%

75 ✓ ✓ ✓ ✓ ✓ ✓ 83.33%

76 ✓ ✓ ✓ 75.00%

77 ✓ ✓ ✓ 75.00%

78 ✓ ✓ ✓ 75.00%

79 ✓ ✓ ✓ 66.67%

80 ✓ ✓ ✓ ✓ 75.00%

81 ✓ ✓ ✓ ✓ 83.33%

82 ✓ ✓ ✓ ✓ 91.67%

83 ✓ ✓ ✓ ✓ 75.00%

84 ✓ ✓ ✓ ✓ 66.67%

282

 Profile Circuit Responses

Index Sum RMS Real Imag
Real +
Imag

Real ×
Imag

A1x A1y Up Down Accuracy

85 ✓ ✓ ✓ ✓ 75.00%

86 ✓ ✓ ✓ ✓ ✓ 83.33%

87 ✓ ✓ ✓ ✓ ✓ 66.67%

88 ✓ ✓ ✓ ✓ ✓ 75.00%

89 ✓ ✓ ✓ ✓ ✓ 75.00%

90 ✓ ✓ ✓ ✓ ✓ ✓ 75.00%

91 ✓ ✓ ✓ 75.00%

92 ✓ ✓ ✓ 75.00%

93 ✓ ✓ ✓ 66.67%

94 ✓ ✓ ✓ 50.00%

95 ✓ ✓ ✓ ✓ 75.00%

96 ✓ ✓ ✓ ✓ 75.00%

97 ✓ ✓ ✓ ✓ 58.33%

98 ✓ ✓ ✓ ✓ 66.67%

99 ✓ ✓ ✓ ✓ 58.33%

100 ✓ ✓ ✓ ✓ 75.00%

101 ✓ ✓ ✓ ✓ ✓ 75.00%

102 ✓ ✓ ✓ ✓ ✓ 58.33%

103 ✓ ✓ ✓ ✓ ✓ 75.00%

104 ✓ ✓ ✓ ✓ ✓ 75.00%

105 ✓ ✓ ✓ ✓ ✓ ✓ 58.33%

106 ✓ ✓ ✓ 75.00%

107 ✓ ✓ ✓ 75.00%

108 ✓ ✓ ✓ 75.00%

109 ✓ ✓ ✓ 66.67%

110 ✓ ✓ ✓ ✓ 75.00%

111 ✓ ✓ ✓ ✓ 83.33%

112 ✓ ✓ ✓ ✓ 83.33%

113 ✓ ✓ ✓ ✓ 75.00%

114 ✓ ✓ ✓ ✓ 66.67%

115 ✓ ✓ ✓ ✓ 66.67%

116 ✓ ✓ ✓ ✓ ✓ 83.33%

117 ✓ ✓ ✓ ✓ ✓ 75.00%

118 ✓ ✓ ✓ ✓ ✓ 83.33%

119 ✓ ✓ ✓ ✓ ✓ 83.33%

120 ✓ ✓ ✓ ✓ ✓ ✓ 83.33%
Table D-2: Accuracy results for classifying musical instruments using 2D correlation coefficient equation in a
linear classifier on fixed-point responses of various signal input configurations recorded from the CAR-Lite-A1
model.

283

 Profile Circuit Response

Index Sum RMS Real Imag
Real +
Imag

Real ×
Imag

A1x A1y Up Down Accuracy

1 ✓ ✓ ✓ 66.67%

2 ✓ ✓ ✓ 83.33%

3 ✓ ✓ ✓ 41.67%

4 ✓ ✓ ✓ 50.00%

5 ✓ ✓ ✓ ✓ 83.33%

6 ✓ ✓ ✓ ✓ 66.67%

7 ✓ ✓ ✓ ✓ 66.67%

8 ✓ ✓ ✓ ✓ 83.33%

9 ✓ ✓ ✓ ✓ 83.33%

10 ✓ ✓ ✓ ✓ 50.00%

11 ✓ ✓ ✓ ✓ ✓ 66.67%

12 ✓ ✓ ✓ ✓ ✓ 83.33%

13 ✓ ✓ ✓ ✓ ✓ 83.33%

14 ✓ ✓ ✓ ✓ ✓ 83.33%

15 ✓ ✓ ✓ ✓ ✓ ✓ 83.33%

16 ✓ ✓ ✓ 66.67%

17 ✓ ✓ ✓ 83.33%

18 ✓ ✓ ✓ 50.00%

19 ✓ ✓ ✓ 50.00%

20 ✓ ✓ ✓ ✓ 83.33%

21 ✓ ✓ ✓ ✓ 83.33%

22 ✓ ✓ ✓ ✓ 75.00%

23 ✓ ✓ ✓ ✓ 83.33%

24 ✓ ✓ ✓ ✓ 83.33%

25 ✓ ✓ ✓ ✓ 50.00%

26 ✓ ✓ ✓ ✓ ✓ 66.67%

27 ✓ ✓ ✓ ✓ ✓ 83.33%

28 ✓ ✓ ✓ ✓ ✓ 83.33%

29 ✓ ✓ ✓ ✓ ✓ 83.33%

30 ✓ ✓ ✓ ✓ ✓ ✓ 83.33%

31 ✓ ✓ ✓ 66.67%

32 ✓ ✓ ✓ 83.33%

33 ✓ ✓ ✓ 66.67%

34 ✓ ✓ ✓ 58.33%

35 ✓ ✓ ✓ ✓ 83.33%

36 ✓ ✓ ✓ ✓ 66.67%

37 ✓ ✓ ✓ ✓ 58.33%

38 ✓ ✓ ✓ ✓ 83.33%

39 ✓ ✓ ✓ ✓ 83.33%

40 ✓ ✓ ✓ ✓ 58.33%

41 ✓ ✓ ✓ ✓ ✓ 66.67%

42 ✓ ✓ ✓ ✓ ✓ 91.67%

284

 Profile Circuit Response

Index Sum RMS Real Imag
Real +
Imag

Real ×
Imag

A1x A1y Up Down Accuracy

43 ✓ ✓ ✓ ✓ ✓ 83.33%

44 ✓ ✓ ✓ ✓ ✓ 83.33%

45 ✓ ✓ ✓ ✓ ✓ ✓ 75.00%

46 ✓ ✓ ✓ 66.67%

47 ✓ ✓ ✓ 83.33%

48 ✓ ✓ ✓ 50.00%

49 ✓ ✓ ✓ 58.33%

50 ✓ ✓ ✓ ✓ 83.33%

51 ✓ ✓ ✓ ✓ 66.67%

52 ✓ ✓ ✓ ✓ 66.67%

53 ✓ ✓ ✓ ✓ 83.33%

54 ✓ ✓ ✓ ✓ 83.33%

55 ✓ ✓ ✓ ✓ 50.00%

56 ✓ ✓ ✓ ✓ ✓ 66.67%

57 ✓ ✓ ✓ ✓ ✓ 83.33%

58 ✓ ✓ ✓ ✓ ✓ 83.33%

59 ✓ ✓ ✓ ✓ ✓ 83.33%

60 ✓ ✓ ✓ ✓ ✓ ✓ 83.33%

61 ✓ ✓ ✓ 66.67%

62 ✓ ✓ ✓ 41.67%

63 ✓ ✓ ✓ 66.67%

64 ✓ ✓ ✓ 66.67%

65 ✓ ✓ ✓ ✓ 66.67%

66 ✓ ✓ ✓ ✓ 66.67%

67 ✓ ✓ ✓ ✓ 66.67%

68 ✓ ✓ ✓ ✓ 41.67%

69 ✓ ✓ ✓ ✓ 41.67%

70 ✓ ✓ ✓ ✓ 66.67%

71 ✓ ✓ ✓ ✓ ✓ 66.67%

72 ✓ ✓ ✓ ✓ ✓ 41.67%

73 ✓ ✓ ✓ ✓ ✓ 66.67%

74 ✓ ✓ ✓ ✓ ✓ 66.67%

75 ✓ ✓ ✓ ✓ ✓ ✓ 66.67%

76 ✓ ✓ ✓ 66.67%

77 ✓ ✓ ✓ 41.67%

78 ✓ ✓ ✓ 66.67%

79 ✓ ✓ ✓ 58.33%

80 ✓ ✓ ✓ ✓ 66.67%

81 ✓ ✓ ✓ ✓ 66.67%

82 ✓ ✓ ✓ ✓ 66.67%

83 ✓ ✓ ✓ ✓ 41.67%

84 ✓ ✓ ✓ ✓ 41.67%

285

 Profile Circuit Response

Index Sum RMS Real Imag
Real +
Imag

Real ×
Imag

A1x A1y Up Down Accuracy

85 ✓ ✓ ✓ ✓ 66.67%

86 ✓ ✓ ✓ ✓ ✓ 66.67%

87 ✓ ✓ ✓ ✓ ✓ 41.67%

88 ✓ ✓ ✓ ✓ ✓ 66.67%

89 ✓ ✓ ✓ ✓ ✓ 66.67%

90 ✓ ✓ ✓ ✓ ✓ ✓ 66.67%

91 ✓ ✓ ✓ 66.67%

92 ✓ ✓ ✓ 41.67%

93 ✓ ✓ ✓ 66.67%

94 ✓ ✓ ✓ 50.00%

95 ✓ ✓ ✓ ✓ 66.67%

96 ✓ ✓ ✓ ✓ 66.67%

97 ✓ ✓ ✓ ✓ 66.67%

98 ✓ ✓ ✓ ✓ 41.67%

99 ✓ ✓ ✓ ✓ 41.67%

100 ✓ ✓ ✓ ✓ 66.67%

101 ✓ ✓ ✓ ✓ ✓ 66.67%

102 ✓ ✓ ✓ ✓ ✓ 41.67%

103 ✓ ✓ ✓ ✓ ✓ 66.67%

104 ✓ ✓ ✓ ✓ ✓ 66.67%

105 ✓ ✓ ✓ ✓ ✓ ✓ 66.67%

106 ✓ ✓ ✓ 66.67%

107 ✓ ✓ ✓ 41.67%

108 ✓ ✓ ✓ 66.67%

109 ✓ ✓ ✓ 66.67%

110 ✓ ✓ ✓ ✓ 66.67%

111 ✓ ✓ ✓ ✓ 66.67%

112 ✓ ✓ ✓ ✓ 66.67%

113 ✓ ✓ ✓ ✓ 41.67%

114 ✓ ✓ ✓ ✓ 41.67%

115 ✓ ✓ ✓ ✓ 66.67%

116 ✓ ✓ ✓ ✓ ✓ 66.67%

117 ✓ ✓ ✓ ✓ ✓ 41.67%

118 ✓ ✓ ✓ ✓ ✓ 66.67%

119 ✓ ✓ ✓ ✓ ✓ 66.67%

120 ✓ ✓ ✓ ✓ ✓ ✓ 66.67%
Table D-3: Accuracy results for classifying musical instruments using timbre distance algorithm in a k-nearest
neighbour (KNN) classifier on floating-point responses of various input signal configurations recorded from the
CAR-Lite-A1 model.

286

 Profile Circuit Responses

Index Sum RMS Real Imag
Real +
Imag

Real ×
Imag

A1x A1y Up Down Accuracy

1 ✓ ✓ ✓ 66.67%

2 ✓ ✓ ✓ 91.67%

3 ✓ ✓ ✓ 50.00%

4 ✓ ✓ ✓ 58.33%

5 ✓ ✓ ✓ ✓ 83.33%

6 ✓ ✓ ✓ ✓ 83.33%

7 ✓ ✓ ✓ ✓ 83.33%

8 ✓ ✓ ✓ ✓ 91.67%

9 ✓ ✓ ✓ ✓ 91.67%

10 ✓ ✓ ✓ ✓ 58.33%

11 ✓ ✓ ✓ ✓ ✓ 83.33%

12 ✓ ✓ ✓ ✓ ✓ 91.67%

13 ✓ ✓ ✓ ✓ ✓ 91.67%

14 ✓ ✓ ✓ ✓ ✓ 91.67%

15 ✓ ✓ ✓ ✓ ✓ ✓ 91.67%

16 ✓ ✓ ✓ 66.67%

17 ✓ ✓ ✓ 91.67%

18 ✓ ✓ ✓ 41.67%

19 ✓ ✓ ✓ 58.33%

20 ✓ ✓ ✓ ✓ 83.33%

21 ✓ ✓ ✓ ✓ 75.00%

22 ✓ ✓ ✓ ✓ 58.33%

23 ✓ ✓ ✓ ✓ 91.67%

24 ✓ ✓ ✓ ✓ 91.67%

25 ✓ ✓ ✓ ✓ 50.00%

26 ✓ ✓ ✓ ✓ ✓ 58.33%

27 ✓ ✓ ✓ ✓ ✓ 91.67%

28 ✓ ✓ ✓ ✓ ✓ 91.67%

29 ✓ ✓ ✓ ✓ ✓ 91.67%

30 ✓ ✓ ✓ ✓ ✓ ✓ 91.37%

31 ✓ ✓ ✓ 66.67%

32 ✓ ✓ ✓ 91.67%

33 ✓ ✓ ✓ 66.67%

34 ✓ ✓ ✓ 58.33%

35 ✓ ✓ ✓ ✓ 83.33%

36 ✓ ✓ ✓ ✓ 66.67%

37 ✓ ✓ ✓ ✓ 75.00%

38 ✓ ✓ ✓ ✓ 91.67%

39 ✓ ✓ ✓ ✓ 91.67%

40 ✓ ✓ ✓ ✓ 58.33%

41 ✓ ✓ ✓ ✓ ✓ 66.67%

42 ✓ ✓ ✓ ✓ ✓ 91.67%

287

 Profile Circuit Responses

Index Sum RMS Real Imag
Real +
Imag

Real ×
Imag

A1x A1y Up Down Accuracy

43 ✓ ✓ ✓ ✓ ✓ 91.67%

44 ✓ ✓ ✓ ✓ ✓ 91.67%

45 ✓ ✓ ✓ ✓ ✓ ✓ 91.67%

46 ✓ ✓ ✓ 66.67%

47 ✓ ✓ ✓ 91.67%

48 ✓ ✓ ✓ 41.67%

49 ✓ ✓ ✓ 41.67%

50 ✓ ✓ ✓ ✓ 83.33%

51 ✓ ✓ ✓ ✓ 41.67%

52 ✓ ✓ ✓ ✓ 41.67%

53 ✓ ✓ ✓ ✓ 58.33%

54 ✓ ✓ ✓ ✓ 50.00%

55 ✓ ✓ ✓ ✓ 41.67%

56 ✓ ✓ ✓ ✓ ✓ 41.67%

57 ✓ ✓ ✓ ✓ ✓ 41.67%

58 ✓ ✓ ✓ ✓ ✓ 58.33%

59 ✓ ✓ ✓ ✓ ✓ 50.00%

60 ✓ ✓ ✓ ✓ ✓ ✓ 41.67%

61 ✓ ✓ ✓ 66.67%

62 ✓ ✓ ✓ 41.67%

63 ✓ ✓ ✓ 66.67%

64 ✓ ✓ ✓ 58.33%

65 ✓ ✓ ✓ ✓ 66.67%

66 ✓ ✓ ✓ ✓ 66.67%

67 ✓ ✓ ✓ ✓ 66.67%

68 ✓ ✓ ✓ ✓ 41.67%

69 ✓ ✓ ✓ ✓ 41.67%

70 ✓ ✓ ✓ ✓ 58.33%

71 ✓ ✓ ✓ ✓ ✓ 66.67%

72 ✓ ✓ ✓ ✓ ✓ 41.67%

73 ✓ ✓ ✓ ✓ ✓ 66.67%

74 ✓ ✓ ✓ ✓ ✓ 66.67%

75 ✓ ✓ ✓ ✓ ✓ ✓ 66.67%

76 ✓ ✓ ✓ 66.67%

77 ✓ ✓ ✓ 41.67%

78 ✓ ✓ ✓ 66.67%

79 ✓ ✓ ✓ 66.67%

80 ✓ ✓ ✓ ✓ 66.67%

81 ✓ ✓ ✓ ✓ 66.67%

82 ✓ ✓ ✓ ✓ 66.67%

83 ✓ ✓ ✓ ✓ 41.67%

84 ✓ ✓ ✓ ✓ 41.67%

288

 Profile Circuit Responses

Index Sum RMS Real Imag
Real +
Imag

Real ×
Imag

A1x A1y Up Down Accuracy

85 ✓ ✓ ✓ ✓ 66.67%

86 ✓ ✓ ✓ ✓ ✓ 66.67%

87 ✓ ✓ ✓ ✓ ✓ 41.67%

88 ✓ ✓ ✓ ✓ ✓ 66.67%

89 ✓ ✓ ✓ ✓ ✓ 66.67%

90 ✓ ✓ ✓ ✓ ✓ ✓ 66.67%

91 ✓ ✓ ✓ 66.67%

92 ✓ ✓ ✓ 41.67%

93 ✓ ✓ ✓ 66.67%

94 ✓ ✓ ✓ 58.33%

95 ✓ ✓ ✓ ✓ 66.67%

96 ✓ ✓ ✓ ✓ 66.67%

97 ✓ ✓ ✓ ✓ 66.67%

98 ✓ ✓ ✓ ✓ 41.67%

99 ✓ ✓ ✓ ✓ 41.67%

100 ✓ ✓ ✓ ✓ 75.00%

101 ✓ ✓ ✓ ✓ ✓ 66.67%

102 ✓ ✓ ✓ ✓ ✓ 41.67%

103 ✓ ✓ ✓ ✓ ✓ 66.67%

104 ✓ ✓ ✓ ✓ ✓ 66.67%

105 ✓ ✓ ✓ ✓ ✓ ✓ 66.67%

106 ✓ ✓ ✓ 66.67%

107 ✓ ✓ ✓ 41.67%

108 ✓ ✓ ✓ 58.33%

109 ✓ ✓ ✓ 58.33%

110 ✓ ✓ ✓ ✓ 66.67%

111 ✓ ✓ ✓ ✓ 66.67%

112 ✓ ✓ ✓ ✓ 66.67%

113 ✓ ✓ ✓ ✓ 66.67%

114 ✓ ✓ ✓ ✓ 58.33%

115 ✓ ✓ ✓ ✓ 58.33%

116 ✓ ✓ ✓ ✓ ✓ 66.67%

117 ✓ ✓ ✓ ✓ ✓ 66.67%

118 ✓ ✓ ✓ ✓ ✓ 66.67%

119 ✓ ✓ ✓ ✓ ✓ 66.67%

120 ✓ ✓ ✓ ✓ ✓ ✓ 66.67%
Table D-4: Accuracy results for classifying musical instruments using timbre distance algorithm in a k-nearest
neighbour (KNN) classifier on fixed-point responses of various input signal configurations recorded from the
CAR-Lite-A1 model.

289

E. Classification of Musical Instruments based on Varying

Intensity and SNR Levels
 SUM

 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Fix: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 67% 67% 67% 67% 100% 100% 100% 100% 100%

Fix: 67% 67% 67% 67% 67% 100% 100% 100% 100% 100%

 RMS
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Fix: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 67% 67% 67% 67% 100% 100% 100% 100% 100%

Fix: 67% 67% 67% 67% 100% 100% 100% 100% 100% 100%
Table E-1: Accuracy results for classifying musical instruments based on varying intensity levels of musical
signals without noise. Flt: Floating-point; Fix: Fixed-point; Re: Real component of a complex signal output from

the CAR-Lite-A1 model.

 SUM (Recording 1)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 100% 67% 100% 100% 100% 67% 67% 67% 67% 67%

Fix: 100% 100% 100% 67% 67% 67% 67% 67% 67% 67%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 100% 100% 100% 67% 67% 100% 100% 100% 100% 100%

Fix: 67% 67% 67% 67% 100% 100% 100% 100% 100% 100%

 RMS (Recording 1)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 67% 100% 100% 100% 100% 100% 100% 100% 100%

Fix: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
 Timbre Distance (Re)

290

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 100% 67% 100% 67% 67% 100% 100% 100% 100% 100%

Fix: 100% 67% 67% 67% 67% 100% 100% 100% 100% 100%

 SUM (Recording 2)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 100% 100% 100% 100% 67% 67% 67% 67% 67%

Fix: 100% 100% 100% 100% 100% 67% 67% 67% 67% 67%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 100% 67% 67% 67% 100% 100% 100% 100% 100%

Fix: 100% 67% 100% 67% 100% 100% 100% 100% 100% 100%

 RMS (Recording 2)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 100% 100% 100% 100% 67% 100% 100% 100% 100% 100%

Fix: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 100% 100% 67% 67% 67% 100% 100% 100% 100% 100%

Fix: 100% 67% 67% 100% 100% 100% 100% 100% 100% 100%

 SUM (Recording 3)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 100% 100% 67% 67% 67% 100% 67% 67% 67% 67%

Fix: 100% 100% 100% 100% 67% 67% 67% 67% 67% 67%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 100% 67% 67% 67% 67% 100% 100% 100% 100% 100%

Fix: 67% 67% 67% 67% 100% 100% 100% 100% 100% 100%

 RMS (Recording 3)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 100% 100% 100% 67% 100% 67% 100% 100% 100% 100%

Fix: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
 Timbre Distance (Re)

291

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 67% 100% 67% 67% 100% 100% 100% 100% 100%

Fix: 67% 100% 67% 100% 100% 100% 100% 100% 100% 100%
Table E-2: Three sets of accuracy results for classifying musical instruments based on varying intensity levels of
musical signals at 20 dB SNR. Flt: Floating-point; Fix: Fixed-point; Re: Real component of a complex signal
output from the CAR-Lite-A1 model.

 SUM (Recording 1)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 67% 67% 67% 67% 67% 67% 33% 33% 33%

Fix: 100% 100% 67% 67% 67% 67% 33% 67% 33% 33%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 100% 67% 67% 100% 100% 100% 100% 100% 100%

Fix: 100% 100% 100% 67% 67% 100% 100% 100% 100% 100%

 RMS (Recording 1)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 67% 33% 67% 67% 67% 67% 33% 67% 67%

Fix: 67% 67% 67% 67% 67% 100% 33% 67% 33% 67%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 67% 100% 67% 33% 100% 100% 100% 100% 100%

Fix: 67% 100% 100% 67% 67% 100% 100% 100% 100% 100%

 SUM (Recording 2)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 33% 67% 33% 33% 67% 67% 67% 33% 33%

Fix: 67% 67% 100% 33% 67% 33% 33% 33% 33% 67%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 100% 100% 67% 100% 67% 100% 100% 100% 100% 100%

Fix: 67% 67% 67% 67% 67% 100% 67% 67% 100% 100%

 RMS (Recording 2)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 33% 67% 100% 67% 67% 33% 67% 67% 67% 33%

292

Fix: 67% 67% 67% 100% 33% 67% 100% 33% 33% 100%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 33% 67% 100% 67% 67% 100% 100% 100% 100%

Fix: 33% 67% 33% 67% 67% 100% 67% 100% 100% 100%

 SUM (Recording 3)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 100% 67% 100% 67% 33% 33% 33% 33% 67%

Fix: 67% 67% 67% 67% 67% 33% 33% 33% 67% 33%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 33% 67% 67% 67% 100% 100% 100% 100% 67%

Fix: 100% 67% 67% 67% 67% 100% 67% 67% 67% 100%

 RMS (Recording 3)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 100% 33% 33% 33% 67% 33% 33% 67% 67%

Fix: 33% 67% 100% 67% 67% 67% 33% 33% 33% 33%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 33% 100% 100% 33% 67% 67% 67% 67% 100% 100%

Fix: 100% 100% 67% 33% 67% 100% 100% 67% 100% 100%
Table E-3: Three sets of accuracy results for classifying musical instruments based on varying intensity levels of
musical signals at 0 dB SNR. Flt: Floating-point; Fix: Fixed-point; Re: Real component of a complex signal output
from the CAR-Lite-A1 model.

 SUM (Recording 1)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 67% 67% 0% 67% 0% 0% 0% 33% 33%

Fix: 0% 33% 33% 33% 33% 0% 0% 0% 33% 0%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 0% 33% 0% 33% 0% 0% 0% 33% 67% 33%

Fix: 0% 0% 33% 33% 33% 33% 0% 67% 0% 33%

 RMS (Recording 1)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

293

Flt: 33% 33% 33% 67% 33% 33% 0% 0% 67% 0%

Fix: 33% 33% 0% 33% 33% 33% 33% 0% 33% 67%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 33% 33% 33% 0% 67% 0% 0% 67% 33% 0%

Fix: 33% 0% 67% 33% 67% 0% 33% 33% 0% 33%

 SUM (Recording 2)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 0% 33% 33% 67% 33% 33% 67% 67% 33% 67%

Fix: 33% 33% 67% 33% 33% 33% 0% 33% 33% 67%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 33% 0% 67% 0% 33% 67% 33% 33% 67% 67%

Fix: 33% 0% 67% 33% 33% 0% 33% 33% 67% 33%

 RMS (Recording 2)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 67% 67% 67% 0% 100% 0% 67% 0% 33% 67%

Fix: 67% 100% 67% 67% 0% 33% 67% 67% 0% 33%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 0% 0% 33% 33% 0% 67% 33% 33% 0% 33%

Fix: 0% 67% 33% 0% 33% 33% 33% 33% 33% 67%

 SUM (Recording 3)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 33% 0% 0% 0% 0% 0% 0% 33% 33% 0%

Fix: 33% 33% 0% 33% 33% 0% 33% 33% 0% 0%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 33% 67% 0% 67% 67% 33% 33% 33% 0% 33%

Fix: 33% 33% 0% 0% 0% 33% 33% 0% 33% 33%

 RMS (Recording 3)
 2D Correlation (Re)
 No AGC AGC Enabled

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

294

Flt: 67% 67% 67% 67% 67% 33% 33% 67% 33% 33%

Fix: 33% 0% 33% 0% 100% 33% 67% 33% 67% 33%
 Timbre Distance (Re)

Intensity (dBFS): -20 -10 0 10 20 -20 -10 0 10 20

Flt: 33% 67% 67% 33% 33% 67% 33% 0% 33% 100%

Fix: 33% 0% 33% 67% 0% 33% 67% 67% 33% 0%
Table E-4: Three sets of accuracy results for classifying musical instruments based on varying intensity levels of
musical signals at -20 dB SNR. Flt: Floating-point; Fix: Fixed-point; Re: Real component of a complex signal
output from the CAR-Lite-A1 model.

