302 research outputs found

    Bidirectional deep-readout echo state networks

    Full text link
    We propose a deep architecture for the classification of multivariate time series. By means of a recurrent and untrained reservoir we generate a vectorial representation that embeds temporal relationships in the data. To improve the memorization capability, we implement a bidirectional reservoir, whose last state captures also past dependencies in the input. We apply dimensionality reduction to the final reservoir states to obtain compressed fixed size representations of the time series. These are subsequently fed into a deep feedforward network trained to perform the final classification. We test our architecture on benchmark datasets and on a real-world use-case of blood samples classification. Results show that our method performs better than a standard echo state network and, at the same time, achieves results comparable to a fully-trained recurrent network, but with a faster training

    Short-term Memory of Deep RNN

    Full text link
    The extension of deep learning towards temporal data processing is gaining an increasing research interest. In this paper we investigate the properties of state dynamics developed in successive levels of deep recurrent neural networks (RNNs) in terms of short-term memory abilities. Our results reveal interesting insights that shed light on the nature of layering as a factor of RNN design. Noticeably, higher layers in a hierarchically organized RNN architecture results to be inherently biased towards longer memory spans even prior to training of the recurrent connections. Moreover, in the context of Reservoir Computing framework, our analysis also points out the benefit of a layered recurrent organization as an efficient approach to improve the memory skills of reservoir models.Comment: This is a pre-print (pre-review) version of the paper accepted for presentation at the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges (Belgium), 25-27 April 201

    System Identification of multi-rotor UAVs using echo state networks

    Get PDF
    Controller design for aircraft with unusual configurations presents unique challenges, particularly in extracting valid mathematical models of the MRUAVs behaviour. System Identification is a collection of techniques for extracting an accurate mathematical model of a dynamic system from experimental input-output data. This can entail parameter identification only (known as grey-box modelling) or more generally full parameter/structural identification of the nonlinear mapping (known as black-box). In this paper we propose a new method for black-box identification of the non-linear dynamic model of a small MRUAV using Echo State Networks (ESN), a novel approach to train Recurrent Neural Networks (RNN)
    • …
    corecore