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SYSTEM IDENTIFICATION OF MULTI-ROTOR UAV’S USING 
ECHO STATE NETWORKS 

Aldo Vargas,* Murray Ireland,† and David Anderson‡ 

Controller design for aircraft with unusual configurations presents unique chal-
lenges, particularly in extracting valid mathematical models of the MRUAVs 
behaviour. System Identification is a collection of techniques for extracting an 
accurate mathematical model of a dynamic system from experimental input- 
output data. This can entail parameter identification only (known as grey-box 
modelling) or more generally full parameter/structural identification of the non-
linear mapping (known as black-box). In this paper we propose a new method 
for black-box identification of the non-linear dynamic model of a small 
MRUAV using Echo State Networks (ESN), a novel approach to train Recurrent 
Neural Networks (RNN).  

INTRODUCTION 

There is a continuous growing interest in developing unmanned aerial vehicles (UAV) due to 
their ability to perform complex functions and assist human professionals in carrying out danger-
ous missions with on-board autonomous capabilities. Trends for developing UAV with advanced 
autonomous capabilities will continue for the foreseeable future. They offer major advantages 
when used for aerial surveillance, reconnaissance and inspection in complex and dangerous envi-
ronments. Multirotor UAVs (MRUAV) are better suited for many civilian applications than 
manned aircraft and fixed-wing UAVs, particularly those that require vertical take-off and land-
ing (VTOL) and hover capability. However, MRUAV are complex, non-linear and dynamically 
unstable systems that are difficult to control. The model of the MRUAV system, as in other engi-
neering problems1, is a crucial part of the analysis and design of controllers. These models are 
usually not well defined, because of existing uncertainties and non-modelled dynamics. 

With the power of today’s embedded systems processors, hybrid platform concepts (tilt-
multirotor, stop rotor etc.) are now also being considered. Controller design for aircraft with unu-
sual configurations presents unique challenges, particularly in extracting valid mathematical 
models of the MRUAV behaviour.  

One of the most popular MRUAV platforms is the quadrotor. It has four fixed-pitch rotors 
with electric motors, arranged in a cross configuration. Dynamic models of quadrotors can be 
obtained through several techniques.  Grey-box modelling involves measuring system properties 
and dynamic relationships through experimentation. In this way, it can be used to derive non-
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linear models, however obtaining such parameters can be difficult and expensive with the re-
quired level of accuracy and precision. This is just one example of system identification. 

System identification is a collection of techniques for extracting an accurate mathematical 
model of a dynamic system from experimental input-output data. This can range from parameter 
identification only (light-grey-box modelling) or to full parameter/structural identification of the 
non-linear mapping (known as black-box).  

In this paper we propose a new method for black-box identification of the non-linear dynamic 
model of a small MRUAV using Echo State Networks (ESN), a novel approach to train Recurrent 
Neural Networks (RNN). 

RNN have been an important focus of research and development since the 1990s. They are de-
signed to learn sequential or time-varying patterns. A recurrent network is a neural network with 
feedback (closed-loop) connections2. Training a RNN is inherently difficult3. RNNs however, 
represent a very powerful generic tool, integrating both large dynamical memory and highly 
adaptable computational capabilities. They are the Machine Learning (ML) models most closely 
resembling biological brains, the substrate of natural intelligence. 

When flying, for example, a quadrotor is known to be a strongly non-linear, time-varying and 
coupled system4. With this point of view, a dynamic reservoir (RNN) with echo states is proposed 
and used to obtain good system identification.  

The paper is organized as follows. Section II provides an introduction to the quadrotor 
MRUAV and presents the data acquisition system. Section III describes the ESNs. Section IV 
provides the experimental methodology and results. Conclusions are presented in Section V. 

II. QUADROTOR MRUAV 

The quadrotor is a six degree-of-freedom (three translational and three rotational) system con-
trolled by four independent inputs. Quadrotors are under-actuated because the system has a lower 
number of actuators than degrees of freedom. The resulting dynamics are highly non-linear, espe-
cially after accounting for complicated aerodynamic effects. 

 

Figure 1. 3D printer quadrotor in flight 
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Figure 1 shows the vehicle being identified in this instance – a 3D-printed quadrotor built in-
house in the Micro Air Systems Technologies (MAST) Laboratory. Although there are several 
platforms on the market, one of the advantages of building our own platform is economical: a 
MRUAV quadrotor similar to our own is the Asctec Pelican, which is 13 times as expensive as 
than the one produced in the MAST Lab.  

The frame is 3D printed. This approach, also called additive manufacturing, is the process of 
making a three-dimensional solid object from a digital model. For this, a Makerbot Replicator 2 
3D printer was used. 

To track the corresponding position (X, Y, Z) and attitude (roll, pitch, yaw) of the vehicle we 
used the MAST Lab’s motion capture (MoCap) system. This employs 18 MoCap cameras (Figure 
2) for tracking a vehicle within a designated flight volume. The system uses passive markers, 
which are coated with a retro-reflective material to reflect infrared light that is emitted from the 
cameras. 

 

Figure 2. Distribution of cameras in the MAST Lab 

 

The quadrotor is equipped with a flight computer (FC), which includes sensors such as accel-
erometers, gyroscopes, magnetometers and a barometric pressure sensor, which are used to pro-
vide the ability to control and stabilize the MRUAV. This computer calculates the attitude of the 
vehicle and computes the necessary pulse width modulation (PWM) values for each of the rotors 
to keep the vehicle level as well as receiving four desired pilot commands (throttle, roll, pitch and 
yaw). We are using the popular MultiWii platform. Due to the lack of processing power (CPU) of 
this FC, an extra computer is needed to record the inputs of the pilot, the position of the vehicle 
via the MoCap system and the outputs of the flight computer. This extra computer is called the 
Aircraft On-board Intelligence (AOI). Our current AOI is a Raspberry Pi.  
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The data recording flow is as follows: the AOI requests information (pilot commands and atti-
tude) from the FC. At the same time, it receives the position and attitude transmitted from the 
ground station connected to the MoCap system (Figure 3).  

The raw data must be pre-processed before being used to train the ESN due to the fact that the 
data acquisition process has many disturbances. These wild values have a great effect on the ac-
curacy of the identification. Figure 4 shows the trajectory history of one of the flights in the 
MAST Lab. 

 

Figure 3. Data acquisition flow diagram 

 

Figure 4. 3D plot of flight performed in the MAST Lab 
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III. ECHO STATE NETWORKS 

Recurrent neural networks have been an important focus of research and development since 
the 1990s. They are designed to learn sequential or time-varying patterns. Training RNNs is in-
herently difficult. Nevertheless, they represent a very powerful generic tool, integrating both large 
dynamical memory and highly adaptable computational capabilities. 

In order to overcome the downsides of traditional RNN training such as Back Propagation 
Through Time (BPTT) and Real Time Recurrent Learning (RTRL), a novel paradigm of compu-
tation with dynamical systems, namely Reservoir Computing (RC) has been proposed5 which can 
be utilized to achieve efficient training of RNNs. Reservoir computing has emerged as an alterna-
tive to gradient descent methods for training recurrent neural networks. RC-based systems pos-
sess two parts: a recurrent non-linear layer, called the reservoir, and a linear readout output layer 
which is shown in Figure 5. The dashed connections are trainable while solid connections are 
fixed.  

 

Figure 5. Reservoir computing mapping scheme 

 

The main aspect of an RC network is that the recurrent connections of the reservoir are fixed, 
while the readout output weights only are trained. This characteristic simplifies much of the train-
ing of recurrent networks, as any standard classification or regression method can be used to train 
the output layer. 

Echo State Networks are a “flavour” of RC6. The main idea comes from a continuous neural 
hardware micro-circuitry. ESNs have the advantage of overcoming the difficulties of traditional 
dynamic RNN in large-scale training. They can also approximate non-linear systems precisely 
producing excellent results in their predictions. The ESN is practical and conceptually simple, but 
requires some experience and insight to achieve good performance. An ESN is composed of a 
discrete hyperbolic-tangent RNN, the dynamic reservoir, and of a linear readout output layer, 
which maps the reservoir states to the actual output (Figure 5). 
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ESNs are called in this way because the dynamic reservoir contains echo states, a property of 
the network prior to training. ESNs are composed of a discrete hyperbolic-tangent RNN, the dy-
namic reservoir, and a linear readout output layer, which maps the reservoir states to the actual 
output.  

     ESNs are applied to supervised temporal machine learning tasks where, for a given training 
input signal 𝑢(𝑛) of n dimensions, 𝑥(𝑛) is the n-dimensional reservoir activation state and 𝑦(𝑛) 
is the n-dimensional output vector, or desired target output signal. ESNs use an RNN type with 
leaky-integrated discrete-time continuous-value units. The typical update equations are 

 𝑥 𝑛 + 1 = tanh 𝑊!!𝑥 𝑛 +𝑊!
!𝑢 𝑛 +𝑊!!𝑦 𝑛 +𝑊!

!   (1) 

   where tanh is the hyperbolic tangent activation function, commonly used for ESNs. The output 
is computed as 

 y n + 1 = g W!
!x n + 1 +W!

!u n +W!
!y n +W!

!   (2) 

𝑦     = 𝑔(𝑊!"#z(n + 1))     

   where 𝑔 is a post-processing activation function, 𝑊!"# is the concatenation of 𝑊!!, 𝑊!
!, 𝑊!! 

and 𝑊!
! and 𝑧 is the previous input / output and a bias term. 

   All weight matrices representing the connections to the reservoir, denoted as W!, are initialised 
randomly (represented inside input part in Figure 5) while all connections to the output layer, de-
noted as W! are trained (represented by dashed arrows in Figure 2). Figure 2 is a schematic, 
which shows the connections and the respective mappings given by the matrices 𝑊 in equation 1 
and 2. 

Training of an ESN 

   There are two basic classes of learning, supervised and unsupervised training we focus on su-
pervised training. In supervised training, we start with teacher data (or training data), which rep-
resents examples of the desired model behaviour. 

What is desired is a trained ESN (Win, W, Wback, Wout) whose output 𝑦(𝑛) approximates the teach-
er output 𝑦!"#$%!(𝑛), when the ESN is driven by the training input 𝑢(𝑛). 

The original method7 for training ESN is to: 

I. Generate a large random dynamic reservoir RNN (𝑊!"#, 𝑊, α) 

II. Normalize 𝑊!"# to a matrix with unit spectral radius α 

III. Run it using the training input 𝑊!
!u(n) and collect the corresponding reservoir activation 

states 𝑥(𝑛) 

IV. Compute the linear readout weights 𝑊!"# from the reservoir using linear regression, op-
timizing the mean square error of the network output w.r.t. the training target signal     
𝑦!"#$%! 𝑛  

V. Use the trained network on new input data 𝑢(𝑛) by computing 𝑦(𝑛) employing the 
trained output weights 𝑊!"# 

   For this approach to work is important that the dynamic reservoir (DR) possesses the echo state 
property, that is, for every internal signal 𝑥!(𝑛) there exists an echo function which maps the in-
put and the output histories to the current state. Usually to ensure the echo state property the re-
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current connection weights 𝑊 must be appropriately scaled. The spectral radius 𝛼 of the DR is of 
crucial importance for the eventual success of the ESN. A small spectral radius makes the DR 
behave quickly, and a larger spectral radius means the DR will be slow. 

   The task of black-box modelling for a system, like the MRUAV, involves finding a good ap-
proximation to the system function. The network output of the trained network is a linear combi-
nation of the network states, which are ruled by the echo states, so the approximation of the sys-
tem function can be interpreted as a linear combination of echo functions. In order words, the 
black-box model of the highly complex non-linear and dynamically unstable MRUAV is a linear 
combination of the echo state functions. 

IV. EXPERIMENTAL PROCEDURE 

Several flights were performed in the MAST Lab to ensure we had sufficient data to feed into 
the network. As usual in machine learning methodology we obtain several data sets and leave 
them aside while building our models, thus we are left with training data sets and testing data sets 
from a number of different flights. The black-box model derived employs the pilot commands as 
input and position/attitude as outputs, similar to the model used in our previous work8. As output 
position and the attitude of the vehicle were used. 

 

Figure 6. Black Box system model 

 

The pilot commands were designed to keep the vehicle in motion, avoiding hovering in the 
same position as much as possible and not following any particular trajectory. This was due to the 
fact that we required sufficient excitation in the dynamics for the reservoir and thus we needed 
fast target signals. This was to ensure the success of the modelling task4. 

After obtaining the data from several flights, either for training or testing, we proceed with 
training the ESN. The mean square error (MSE) is calculated to gauge performance of the ESN 
training and for the purposes of tuning the parameters. 

Results 

   It’s important to notice that the training data is different than the testing data. This is to en-
sure the ESN had captured the dynamics of the model. The MSE of the testing data is used as 
proof of such an end. The training is done in two stages: sampling and weight computation. 

During the sampling stage, the teacher signal (training data) is written into the output units, 
this technique is often called teacher forcing. We now compute 𝑊!

! for the linear output units 
such that the teacher time series is approximated as a linear combination of the internal activation 
time series 𝑥!(𝑛). 



 8 

The first training was made with a dataset of a flight that lasted approximately 5 minutes, the 
data acquisition system recorded all data at approximately 100 Hz. The parameters used in this 
experiment where a DR size of 100, random percentage noise of standard deviation 1×10!!  and 
a spectral radius of 0.1. This parameters where manually chosen, one at a time. The error pro-
duced at the training stage was 0.00396757 while the testing MSE (using different data) produced 
a value of 0.010322. The output units of the ESN versus the real flight data are shown in Figure 7. 

 

 

Figure 7. Output of ESN vs. real data 

As stated before, the parameters of the first experiment where chosen manually, which in a 
machine learning approach is unavoidable to some extent. The next step was to optimise some of 
the parameters of the ESN in order to reduce the MSE produced at the testing stage.  

In order to optimise these parameters we chose an evolutionary algorithm called CMA-ES 
(Covariance Matrix Adaptation Evolution Strategy), which is a state-of-the-art method in evolu-
tionary continuous parameter optimisation9, it was also proven to be an effective method due to 
its flexibility10. The implantation of the CMA-ES algorithm used in this research closely follows 
the Hansen11 algorithm. 

The CMA-ES algorithm is considered to be almost parameter-free. Only the number of off-
spring ensures the success of evolution. The only parameters that we establish to evolve are: spec-
tral radius, DR size and noise added. The performance in our experiment is shown in Figure 8. It 
is important to note that we had setup the CMA-ES to ensure that it does not break the rules of 
ESN, that is to preserve the echo states. 
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Figure 8. CMA-ES performance 

After approximately 2000 runs, the optimized parameters end up being: a DR size of 127, ran-
dom noise of standard deviation 3.4883×10!! and a spectral radius of 0.9191. This parameter 
produced a MSE of 1.1185×10!! using unknown data to the ESN (testing). The results can be 
seen in Figure 9. The difference between signals is almost imperceptible. 

 

Figure 9. Output of optimized ESN vs. real data 

 

V. CONCLUSIONS 

In this paper, we have presented a new way to use ESN in a practical way, with real flight data 
for performing black-box system identification. Using real flight input and output information, 
the ESN can identify the system dynamics and produce a black-box model that can be used for 
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creating new state-of-the-art controllers, trajectory tracking algorithms or even optimise current 
waypoint following position controllers. 

Figure 10 shows three quadrotors following the same trajectory (offset in X and Y for discrim-
ination). The blue path corresponds to the actual recorded data from the original flights (the test-
ing data), while the other two trajectories correspond to the ESN output to the pilot inputs of the 
same flight. If our classifier has succeeded, the trajectories must be equal. The red path corre-
sponds to the first un-optimised ESN proposed in this paper with a MSE error of 0.010322, while 
the black path is the final optimised ESN with a MSE of 1.1185×10!!. These results show that, 
although there exist errors between the real flight data and the ESN model output, the identified 
model using the ESN have an acceptable accuracy and can reflect the trend of the quadrotor.  

The improvement of the optimised ESN output is clearly visible, therefore we can state that 
the ESN has understood the full non-linear dynamics of the quadrotor MRUAV.  

The evolutionary strategy CMA-ES helps us improve the parameters of the ESN, decreasing 
the error by 99.2%, and it also highlights that the optimal spectral radius for our application must 
be greater than stated at the beginning of the research. The task of identifying a quadrotor 
MRUAV therefore requires a longer memory of the input when using echo state networks.  

Different MRUAV configurations and sizes flight data are needed to further improve the algo-
rithm and make it a more reliable method of black-box identification. 

 

Figure 10. Trajectory comparison 
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NOMENCLATURE 

𝑢 Input signal 

𝑦 Output signal 

𝑥 Reservoir state  

𝑎 Weighted sum for reservoir units 

𝑚 Weighted sum for output units 

𝑊!
! Input to reservoir connection matrix 

𝑊!
! Bias to reservoir connection matrix 

𝑊!
! Reservoir connection matrix 

𝑊!
! Output to reservoir connection matrix 

𝑊!
! Input to reservoir connection matrix 

𝑊!
! Reservoir to output connection matrix 

𝑊!
! Output to output connection matrix 

𝑊!
! Bias to output connection matrix 
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