705 research outputs found

    A Study of Medium Access Control Protocols for Wireless Body Area Networks

    Get PDF
    The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent WBAN requirements.Comment: 13 pages, 8 figures, 7 table

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Wireless Sensor Networks:A case study for Energy Efficient Environmental Monitoring

    No full text
    Energy efficiency is a key issue for wireless sensor networks, since sensors nodes can often be powered by non-renewable batteries. In this paper, we examine four MAC protocols in terms of energy consumption, throughput and energy efficiency. A forest fire detection application has been simulated using the well-known ns-2 in order to fully evaluate these protocols

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Distributed Time Division Multiple Access (DTDMA) Medium Access Control Protocol For Wireless Sensor Networks [TK7872.D48 W872 2008 f rb].

    Get PDF
    Rangkaian sensor tanpa wayar menerima perhatian yang memberangsangkan sejak beberapa tahun yang lalu disebabkan oleh peningkatan permintaan terhadap perisian kadar rendah, murah dan menjimatkan tenaga seperti operasi perkilangan, ketenteraan, kesihatan, pengawasan alam sekitar, sekuriti, operasi penyelamatan dan komunikasi tanpa wayar. Wireless Sensor Networks (WSNs) received tremendous attention over the last few years due to increasing demand for low data rate, low-cost and low power applications in industries like factory automation, military, health and hospitality,environment monitoring, security, search and rescue, and wireless communications

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Optimization of IEEE 802.15.4 : overview, theoretical study and simulation

    Get PDF
    In this paper we study, through theoretical analysis and simulation, the impact of Beacon Order (BO) and Superframe Order (SO) parameters of IEEE 802.15.4 on the networks performance and we investigate their optimal values for different classes of traffic. The traffic is dimensioned according to the requirements of the CANet project in which a cane becomes a mean of communication and a surveillance system embedding several sensors to monitor the elderly health and environment(voice, pressure, temperature, etc.). The cane's sensors impose different QoS constraints. Depending on the expected throughput, a sensor's traffic will fall within one of three classes that we defined. Therefore, in order to ease the understanding of our optimization, we introduce a classification scheme which applies to the existing quality of service algorithms. We derive by theoretical study the optimal values of BO and SO that should be used to fit each traffic class QoS requirements and we validate our results by simulation

    IEEE 802.15.4 MAC Protocol Study and Improvement

    Get PDF
    IEEE 802.15.4 is a standard used for low rate personal area networks (PANs). It offers device level connectivity in applications with limited ower and relaxed throughput requirements. Devices with IEEE 802.15.4 technology can be used in many potential applications, such as home networking, industry/environments monitoring, healthcare equipments, etc, due to its extremely low power features. Although the superframe beacons play the key role in synchronizing channel access in IEEE 802.15.4, they are sources for energy inefficiency. This research focuses on exploring how to optimize the beacons, and designing novel schemes to distribute the information that are supposed to be delivered to a subset of PAN devices. In this work, an acknowledgement based scheme is proposed to reduce the energy consumption in the distribution of guaranteed time slot (GTS) descriptors. Based on the observation that the superframe beacon frame has global impact on all PAN devices, an energy-efficient channel reservation scheme is presented to deliver the information (GTS descriptors and pending addresses). In addition, the problem of channel underutilization is studied in the contention free period. To address the problem, a new GTS allocation scheme is proposed to improve the bandwidth utilization
    corecore