386,038 research outputs found

    Simulator study of the effect of control-system time delays on the occurrence of pilot-induced oscillations and on pilot tracking performance with a space-shuttle-orbiter configuration

    Get PDF
    Using a six degree-of-freedom motion-base simulator, the effect of control-system time delays on the occurrence of pilot-induced oscillations (PIO's) on the vehicle handling qualities and on pilot tracking performance for a landing-approach configuration of the Space Shuttle orbiter was studied. A linearized math model was employed which represented a 300-knot orbiter with almost all time delays removed. Additional time delays were then inserted following the pilot's hand-controller signals. Only pitch and roll commands were used for vehicle control. The simulation employed an air to air tracking task as a means of emphasizing PIO tendencies. Two astronauts, two research pilots, and one simulation engineer served as test subjects. Results showed that PIO's occurred when the amount of added time delay approximated that existing for the orbiter configuration flown in the approach and landing tests. Increasing the amount of delay increased PIO occurrences and resulted in degraded tracking performance. Decreasing the amount of time delay eliminated the PIO's

    Minimization of Negative Effects of Time Delay in Smart Grid System

    Get PDF
    Previous studies found that using remote signals can stabilize inner oscillation, so the research on wide area control in power fields has been taken seriously. However, communication delay is one of the inevitable problems when using wide area measurement system (WAMS) and it has adverse effects on control systems. This paper aims at explaining current research on communication delay in power systems and providing a new method to minimize negative effects brought by time delay. Simulation takes place on an IEEE nine-bus system using Matlab/Simulink software. Circuit breakers in the system are controlled by the optimal reclosing time (OPRT) method. Different types of faults and different time delays had been considered. The performance of the system considering time delays with and without the proposed predictor has been compared. From the simulation results, it is shown that the proposed predictor performs well in minimizing the negative effects of time delays

    Cross-layer design for single-cell OFDMA systems with heterogeneous QoS and partial CSIT

    Get PDF
    Abstract— This paper proposes a novel cross-layer scheduling scheme for a single-cell orthogonal frequency division multiple access (OFDMA) wireless system with partial channel state information (CSI) at transmitter (CSIT) and heterogeneous user delay requirements. Previous research efforts on OFDMA resource allocation are typically based on the availability of perfect CSI or imperfect CSI but with small error variance. Either case consists to typify a non tangible system as the potential facts of channel feedback delay or large channel estimation errors have not been considered. Thus, to attain a more realistic resolution our cross-layer design determines optimal subcarrier and power allocation policies based on partial CSIT and individual user’s quality of service (QoS) requirements. The simulation results show that the proposed cross-layer scheduler can maximize the system’s throughput and at the same time satisfy heterogeneous delay requirements of various users with significant low power consumption

    A delay-dependent approach to H∞ filtering for stochastic delayed jumping systems with sensor non-linearities

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Taylor & Francis Ltd.In this paper, a delay-dependent approach is developed to deal with the stochastic H∞ filtering problem for a class of It type stochastic time-delay jumping systems subject to both the sensor non-linearities and the exogenous non-linear disturbances. The time delays enter into the system states, the sensor non-linearities and the external non-linear disturbances. The purpose of the addressed filtering problem is to seek an H∞ filter such that, in the simultaneous presence of non-linear disturbances, sensor non-linearity as well as Markovian jumping parameters, the filtering error dynamics for the stochastic time-delay system is stochastically stable with a guaranteed disturbance rejection attenuation level γ. By using It's differential formula and the Lyapunov stability theory, we develop a linear matrix inequality approach to derive sufficient conditions under which the desired filters exist. These conditions are dependent on the length of the time delay. We then characterize the expression of the filter parameters, and use a simulation example to demonstrate the effectiveness of the proposed results.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Nuffield Foundation of the U.K.under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    An Approximate Model of Load Frequency Control Systems with Time Delay

    Get PDF
    In this paper we present an approximate model for load frequency control system with time delay. The load frequency control is one of the conventional power system control problems. In order to secure the stability of the grid the frequency must remain within its limited range which is achieved through the load frequency control. The load frequency control signals experience time delay that could destabilize the power systems. The presence of the time delay complicates the analysis of the load frequency control system. In this paper we present a stability method based on the Direct Frequency Response approximation for the time delay. This approximation transforms the transcendental time delay equation into linear equation. This results in a simple stability criterion for the load frequency control system with time delay. A one-area load frequency control system is chosen as a case study. The effectiveness of the proposed approximation has been tested through simulation and comparison with the published research work. By tracking the eigenvalues or using Routh's criterion the maximum delay margin can be estimated. The proposed stability criterion has been compared with the most recent methods and showed it is merit. The range of the PI controller parameters for a given time delay can be determined which is very important in practice

    Ethernet-based AFDX simulation and time delay analysis

    Get PDF
    Nowadays, new civilian aircraft have applied new technology and the amount of embedded systems and functions raised. Traditional avionics data buses design can‘t meet the new transmission requirements regarding weight and complexity due to the number of needed buses. On the other hand, Avionics Full Duplex Switched Ethernet (AFDX) with sufficient bandwidth and guaranteed services is considered as the next generation of avionics data bus. One of the important issues in Avionics Full Duplex Switched Ethernet is to ensure the data total time delay to meet the requirements of the safety-critical systems on aircraft such as flight control system. This research aims at developing an AFDX time delay model which can be used to analyse the total time delay of the AFDX network. By applying network calculus approach, both (σ,ρ) model and Generic Cell Rate Algorithm (GCRA) model are introduced. For tighter time-delay result, GCRA model is applied. Meanwhile, the current AFDX network simulation platform, FACADE, will be enhanced by adding new functions. Moreover, avionics application simulation modules are developed to exchange data with FACADE. The total time delay analysis will be performed on the improved FACADE to validate this AFDX network simulation platform in several scenarios. Moreover, each scenario is appropriated to study the association between total time delay performance and individual variable. The results from updated FACADE reflect the correlation between total time delay and certain variables. Larger BAG and more switches between source and destination end systems introduce larger total time delay while Lmax could also affect the total time delay. However, the results illustrate that the total time delays from updated FACADE are much larger than GCRA time delay model which could up to 10 times which indicates that this updated FACADE needs further improvement

    Evaluation of the communication delay in a hybrid real-time simulator for weak grids

    Get PDF
    Real-time Simulation (RTS) is one of the effective means via which to study device level or system level dynamics, such as power converter online testing, evaluation, and control, and power system stability analysis. The RTS -enabled design-chain offers a time -effective, low-cost, and fail-safe development process. As the penetration of renewable energy is becoming higher, the demand in hybrid system real-time simulation becomes imperative, where fast-dynamic device level power converters and slow -dynamic large -scale power systems are simulated at the same time. This paper introduces a novel hybrid real-time simulation architecture based on the central processing unit (CPU) and the field-programmable gate array (FPGA). Compared with the off-the-shelf power system real-time simulation system, it offers both wide time scale simulation and high accuracy. The multi-time scale model can perform electromechanical electromagnetic transient hybrid simulation, which can be applied to the research of power systems penetrated with power converters. In the proposed simulation platform, the communication delay is introduced when different RTS platforms exchange real-time data. The communication delay should be considered in the stability analysis of the grid-connected inverters in a weak grid environment. Based on the virtual impedance characteristic formed by the control loop with and without communication delay, the impedance characteristics are analyzed and inter-simulator delay impacts are revealed in this paper. Theoretical analysis indicates that the communication delay, contrary to expectation, can improve the virtual impedance characteristics of the system. With the same hardware simulation parameters, the grid-converter system is verified on both the Typhoon system alone and the Typhoon-dSPACE-SpaceR hybrid simulation platform. The THD value of grid current in a weak grid environment that works in the Typhoon system is 4.98%, and 2.38% in the Typhoon-dSPACE-SpaceR hybrid simulation platform. This study eventually reveals the fact that the inter-simulation delay creates the illusion that the control system built in the novel hybrid real-time simulation is more stable under weak grid conditions

    Computer aided design and simulation of an intergrated photonic delay line system for phased array antenna and other microve signal processing applications

    Get PDF
    Over the past few years, phased array antennas and variable RF/Microwave delay lines have been the subject of much research. This thesis presents a photonic solution to the generation of multiple, compact delay lines. Variable time delays are generated by optically tapping points on an acousto-optic cell by the use of a deformable mirror device. Isolation of a particular time delay is accomplished by the conversion of a time delay point into a corresponding spatial frequency by the use of appropriate optics. The desired time delay is recovered by heterodyning a local oscillator with the desired spatial frequency, selected by a tiltable mirror device. Multiple delay lines are produced by the use of a binary optic device. The design and simulation of the integrated optical system was carried out using a real ray tracing program written by the author. Theoretical signal to noise calculations are also carried out

    Realizable optimal control for a remotely piloted research vehicle

    Get PDF
    The design of a control system using the linear-quadratic regulator (LQR) control law theory for time invariant systems in conjunction with an incremental gradient procedure is presented. The incremental gradient technique reduces the full-state feedback controller design, generated by the LQR algorithm, to a realizable design. With a realizable controller, the feedback gains are based only on the available system outputs instead of being based on the full-state outputs. The design is for a remotely piloted research vehicle (RPRV) stability augmentation system. The design includes methods for accounting for noisy measurements, discrete controls with zero-order-hold outputs, and computational delay errors. Results from simulation studies of the response of the RPRV to a step in the elevator and frequency analysis techniques are included to illustrate these abnormalities and their influence on the controller design
    corecore