

CRANFIELD UNIVERSITY

TAO FENG

ETHERNET-BASED AFDX SIMULATION AND

TIME DELAY ANALYSIS

SCHOOL OF AEROSPACE, TRANSPORT AND

MANUFACTURING

MSc by Research Thesis

Academic Year: 2015 - 2016

Supervisor: Dr Huamin Jia

February 2016

CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE, TRANSPORT AND

MANUFACTURING

MSc by Research Thesis

Academic Year 2015 - 2016

TAO FENG

ETHERNET-BASED AFDX SIMULATION AND

TIME DELAY ANALYSIS

Supervisor: Dr Huamin Jia

February 2016

© Cranfield University 2016. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

i

ABSTRACT

Nowadays, new civilian aircraft have applied new technology and the amount of

embedded systems and functions raised. Traditional avionics data buses design

can‘t meet the new transmission requirements regarding weight and complexity

due to the number of needed buses. On the other hand, Avionics Full Duplex

Switched Ethernet (AFDX) with sufficient bandwidth and guaranteed services is

considered as the next generation of avionics data bus. One of the important

issues in Avionics Full Duplex Switched Ethernet is to ensure the data total time

delay to meet the requirements of the safety-critical systems on aircraft such as

flight control system.

This research aims at developing an AFDX time delay model which can be used

to analyse the total time delay of the AFDX network. By applying network

calculus approach, both (σ,ρ) model and Generic Cell Rate Algorithm (GCRA)

model are introduced. For tighter time-delay result, GCRA model is applied.

Meanwhile, the current AFDX network simulation platform, FACADE, will be

enhanced by adding new functions. Moreover, avionics application simulation

modules are developed to exchange data with FACADE. The total time delay

analysis will be performed on the improved FACADE to validate this AFDX

network simulation platform in several scenarios. Moreover, each scenario is

appropriated to study the association between total time delay performance and

individual variable.

The results from updated FACADE reflect the correlation between total time

delay and certain variables. Larger BAG and more switches between source

and destination end systems introduce larger total time delay while Lmax could

also affect the total time delay. However, the results illustrate that the total time

delays from updated FACADE are much larger than GCRA time delay model

which could up to 10 times which indicates that this updated FACADE needs

further improvement.

Keywords:

ii

Avionics Full-Duplex Switched Ethernet, Network Calculus, Arrival Curve,

Service Curve, GCRA, Total Time Delay

iii

ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor, Dr. Huamin Jia, for his constant

support and guidance to my research. Without his advice, my research could

not be completed successfully.

Some people help me with my research. I would like to express my appreciation

to Mr. Baochua Wu, Mr. Qingming Song, Mr. Yu Lu, Mr. Chaoqun Chen, Mr.

Jian Zhang, Mr. Dexin Xu, Mr. Yang Guo, Ms. Xiaojie Zeng, Ms. Lijuan Sun, Ms.

Wenjing Wang, for their generous help either on study and living during the

research.

I would like to thank COMAC (Commercial Aircraft Corporation of China) for

giving me this opportunity to undertake this research, as well as the constant

support and help. Special thanks also to Cranfield University, for giving me the

chance to promote myself.

Finally, I deeply appreciate my wife, my family and friends for having supported

me at all the times.

iv

v

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS... iii

LIST OF FIGURES .. vii

LIST OF TABLES ... x

1 INTRODUCTION ... 1

1.1 Background and Motivation .. 1

1.2 Research Objectives ... 2

1.3 Thesis Structure .. 3

1.4 Summary .. 5

2 LITERATURE REVIEW ... 7

2.1 AFDX Introduction... 7

2.1.1 End System .. 8

2.1.2 Virtual Links .. 10

2.1.3 AFDX Switch .. 12

2.1.4 Latency and Jitter ... 13

2.1.5 Network Topology .. 14

2.2 AFDX Delay Research Techniques .. 15

2.3 AFDX Simulation Techniques ... 18

2.3.1 Real-time Software AFDX Network Simulation 18

2.3.2 Programming Software AFDX Network Simulation 21

2.4 Summary .. 22

3 Network Calculus Model and AFDX Delay Analysis 24

3.1 Data Flow Features in Data Network Concepts Cumulative Functions ... 24

3.2 Virtual Delay ... 26

3.3 Arrival Curves ... 27

3.3.1 Definition of Arrival Curve ... 27

3.3.2 Affine Arrival Curves... 28

3.3.3 Stair Functions as Arrival Curves ... 28

3.3.4 Leaky Bucket and Generic Cell Rate Algorithm 30

3.4 Service Curves ... 32

3.5 Network Delay Bound ... 34

3.6 AFDX Network Time Delay Analysis ... 35

3.6.1 AFDX Network Time Delay Model .. 35

3.6.2 AFDX Traffic and Service Model .. 38

3.6.3 End-to-End Delay of GCRA Model ... 43

3.7 Total Time Delay Analysis .. 46

3.8 Summary .. 48

4 DEVELOPMENT OF FACADE AND AVIONICS APPICATION

SIMULATION PLATFORM ... 49

4.1 The Framework of FACADE ... 49

vi

4.2 Data Exchange Behaviour .. 52

4.3 Detailed Design of Avionics Application Simulation Modules 54

4.3.1 Avionics Data Transmission Application Module 54

4.3.2 Avionics Data Reception Application Module 58

4.4 Detailed Function Design of FACADE Platform 61

4.4.1 Af Module ... 61

4.4.2 Raf Module ... 63

4.4.3 CreateDB Module ... 65

4.4.4 FACADE Module .. 66

4.5 Execution of Simulation Platform .. 84

4.5.1 Execution of FACADE Platform .. 84

4.5.2 Execution of Avionics Application Simulation Modules 85

4.6 Validation of Platform .. 85

4.7 Summary .. 87

5 EXPERIMENT DESIGN AND EXECUTION .. 89

5.1 Introduction ... 89

5.2 Time Synchronization ... 90

5.3 Experiment Detailed Design and Total Time Delay Calculus 92

5.3.1 Experiment 1(Variable Lmax) ... 92

5.3.2 Experiment 2 (Variable BAG) ... 94

5.3.3 Experiment 3 (Variable Amount of Destination End Sources) 95

5.3.4 Experiment 4 (Variable Amount of Virtual Links) 97

5.3.5 Experiment 5 (Variable Amount of Traverse Switches) 99

5.4 Experiment States... 100

5.5 Experiment Data Analysis ... 102

5.5.1 Normal Distribution Test ... 102

5.5.2 Experiment Data Analysis .. 105

5.6 Summary .. 120

6 CONCLUSIONS AND FUTURE WORK .. 121

6.1 Introduction ... 121

6.2 Conclusions .. 122

6.3 Future Work .. 123

REFERENCES ... 126

vii

LIST OF FIGURES

Figure 1-1 Thesis Structure .. 5

Figure 2-1 Illustration of AFDX Network ... 8

Figure 2-2 Source End System .. 9

Figure 2-3 Unregulated and Regulated Flow .. 9

Figure 2-4 Destination End System .. 10

Figure 2-5 AFDX Network Packet Format .. 11

Figure 2-6 Chart of Virtual Link ... 11

Figure 2-7 AFDX Switch ... 12

Figure 2-8 AFDX Star Topology ... 15

Figure 2-9 The AFDX End System and Switch System Simulation Model [26] 19

Figure 2-10 The Architecture of The Experiments [33] 20

Figure 2-11 MAST Toolset Environment [34] ... 21

Figure 2-12 TrueTime Simulation Model [4] ... 22

Figure 3-1 Cumulative Function in Network ... 24

Figure 3-2 Input and Output Function [53] .. 25

Figure 3-3 Horizontal Deviation .. 27

Figure 3-4 Arrival Curve [53] .. 28

Figure 3-5 Leaky Bucket Controller [53] ... 30

Figure 3-6 Service Curve [53] ... 34

Figure 3-7 The Horizontal Deviation Between f and g 35

Figure 3-8 AFDX Network Time Delay ... 35

Figure 3-9 End System Delay Model .. 36

Figure 3-10 AFDX Switch Time Delay Model ... 37

Figure 3-11 Virtual Link Model Cross End System and Switch......................... 39

Figure 3-12 Delay Bound For Single Virtual Link Cross Scheduler 40

Figure 3-13 Switch Scheduling [39] .. 43

Figure 4-1 Architecture of FACADE ... 49

Figure 4-2 Simulation Platform Data Exchange Behaviour 54

viii

Figure 4-3 Flow Chart of Avionics Data Transmission Application Module 57

Figure 4-4 Flow Chart of Avionics Data Reception Application Module 60

Figure 4-5 Flow Chart of Af Module .. 62

Figure 4-6 Flow Chart of Raf Module ... 64

Figure 4-7 Flow Chart of Txer Sub module .. 69

Figure 4-8 Flow Chart of Sequencer Sub module .. 72

Figure 4-9 Flow Chart of Round Robin Scheduler Sub module 74

Figure 4-10 Flow Chart of Virtual Link Scheduler Sub module 76

Figure 4-11 Flow Chart of Rxer Sub module .. 79

Figure 4-12 Flow Chart of Dispatcher Sub module ... 81

Figure 4-13 Flow Chart of Assembler Sub module ... 83

Figure 4-14 Preparation of FACADE and Avionics Application Simulation
platform .. 86

Figure 4-15 Data Exchange of FACADE and Avionics Application Simulation
Platform ... 87

Figure 5-1 Diagram of Experiment 1 .. 93

Figure 5-2 Diagram of Experiment 2 .. 95

Figure 5-3 Diagram of Experiment 3 .. 97

Figure 5-4 Diagram of Experiment 4 .. 98

Figure 5-5 Diagram of Experiment 5 .. 99

Figure 5-6 Normality Test Result of Experiment 1 .. 102

Figure 5-7 Normality Test Result of Experiment 2 .. 103

Figure 5-8 Normality Test Result of Experiment 3 .. 103

Figure 5-9 Normality Test Result of Experiment 4 .. 104

Figure 5-10 Normality Test Result of Experiment 5 .. 104

Figure 5-11 Scatter Chart of Experiment 1 ... 106

Figure 5-12 Box Chart of Experiment 1 .. 107

Figure 5-13 Statistics Data of Experiment 1 ... 107

Figure 5-14 Scatter Chart of Experiment 2 ... 108

Figure 5-15 Box Chart of Experiment 2 .. 110

ix

Figure 5-16 Statistics Data of Experiment 2 ... 110

Figure 5-17 Scatter Chart of Experiment 3 ... 112

Figure 5-18 Box Chart of Experiment 3 .. 113

Figure 5-19 Statistics Data of Experiment 3 ... 113

Figure 5-20 Scatter Chart of Experiment 4 ... 114

Figure 5-21 Box Chart of Experiment 4 .. 116

Figure 5-22 Statistics Data of Experiment 4 ... 116

Figure 5-23 Scatter Chart of Experiment 5 ... 117

Figure 5-24 Box Chart of Experiment 5 .. 118

Figure 5-25 Statistics Data of Experiment 5 ... 119

x

LIST OF TABLES

Table 4-1 Functions in ADTA Module ... 55

Table 4-2 Functions in ADRA Module .. 58

Table 4-3 Functions in CreateDB Module .. 65

Table 5-1 Total Time Delay of Experiment 1 .. 94

Table 5-2 Total Time Delay of Experiment 2 .. 95

Table 5-3 Total Time Delay of Experiment 3 .. 96

Table 5-4 Total Delay Time of Experiment 4 .. 99

Table 5-5 Total Time Delay of Experiment 5 .. 100

Table 5-6 Comparison between Calculus Delay and Experiment Delay
(Experiment 1) ... 108

Table 5-7 Comparison between Calculus Delay and Experiment Delay
(Experiment 2) ... 111

Table 5-8 Comparison between Calculus Delay and Experiment Delay
(Experiment 3) ... 114

Table 5-9 Comparison between Calculus Delay and Experiment Delay
(Experiment 4) ... 117

Table 5-10 Comparison between Calculus Delay and Experiment Delay
(Experiment 5) ... 119

xi

LIST OF ABBREVIATIONS

ADRA

ADTA

AFDX

API

ARINC

BAG

BIP

CRC

CSMA/CD

DSPN

FIFO

GCRA

GPS

IEEE

IMA

IP

LAN

LRU

MAC

RTA

UDP

Avionics Data Reception Application

Avionics Data Transmission Application

Avionics Full Duplex Switched Ethernet

Application Programming Interface

Aeronautical Radio, Incorporated

Band Allocated Gap

Behaviour, Interaction, Priority

Cyclic Redundancy Code

Carrier Sense Multiple Access with Collision Detection

Deterministic and Stochastic Petri Nets

First In First Out

Generic Cell Rate Algorithm

Generalized Processor Sharing

Institute of Electrical and Electronics Engineers

Integrated Modular Avionics

Internet Protocol

Local Area Network

Line-replaceable Unit

Media Access Control

Response Time Analysis

User Datagram Protocol

xii

1

1 INTRODUCTION

1.1 Background and Motivation

Since the demands of transportation growing rapidly, new civilian aircraft are

designed and manufactured. These new aircraft have applied new technology

and the amount of embedded systems and functions are raise. IMA (Integrated

Modular Avionics) at platform level and communication multiplexing at network

level have been proposed for keeping both system capacity and maintainability.

Traditional avionics data buses such as ARINC 429 and MIL-STD-1553 with

limited bandwidth can‘t meet the data exchange capacity of those new civilian

aircraft.

Avionics Full Switched Ethernet (AFDX), also known as ARINC 664 P7, has

been widely applied in modern aircraft, such as A380 and B787. With sufficient

bandwidth (100 times larger than MIL-STD-1553), low cost and redundancy

management, AFDX is considered as the next generation avionics data bus.

AFDX network multiplexes huge amounts of data flows over a full duplex

switched Ethernet. All these data flows have to compete for sharing network

resource which makes the data exchange behaviour uncertain. AFDX

introduces specific mechanisms such as the virtual link to guarantee the

deterministic of data communication behaviour. Upper bound time delay could

be employed to prove this determinism. Moreover, time delay reflects the

transmission capacity of the network. Thus, studies on AFDX time delay should

be conducted.

It is not common for every researcher studies the AFDX network performance

on industrial AFDX network. Simulation approaches could be proposed since it

simulates the AFDX network environment with conventional software and

hardware. Thus, the cost of the simulation is acceptable. With the simulation

environment, studies of the AFDX network could be quickly conducted.

Moreover, it could be utilised by the AFDX system designers for AFDX network

design. Moreover, the simulation environment could help AFDX system

2

designers during their design period. The duration of design could be reduced

and the cost could be decreased.

Recently, studies on AFDX time delay analyses have several approaches.

Theoretical approaches propose mathematical techniques to obtain the tighter

AFDX network time delay. Meantime, the simulation approaches are used for

verification and give more accurate results. Simulation with real-time software

which excluded network hardware is proposed to simulate certain scenario.

Without hardware influence considering, this simulation is not similar to the

industrial environment. Programming software simulation with network

hardware, on the other hand, tries to simulate the industrial environment which

is more realistic. Till now, few researchers focus on AFDX simulation with

software implementation combined network hardware.

In this project, the time delay model of AFDX network is introduced by applying

Network Calculus. Then programming software simulation with network

hardware involved AFDX network simulation platform FACADE is developed.

Moreover, this simulation platform is suitable for AFDX network experiment

purposes. Besides, the total time delay of the AFDX network and the

associations between total time delay and several variables are deduced and

the comparison between calculus and experiment delay is made. In conclusion,

this project plans to benefit the design of avionics data bus by offering

designers possible approaches to optimise the performance of total time delay,

in the academic or industrial area.

1.2 Research Objectives

This research aims to develop methods and platform to analyse and evaluate

AFDX system design requirements and network time delays to provide AFDX

system designer with a design verification tool. Several measurable research

objectives have been identified and outlined as follows:

a) Modelling the AFDX time delay.

b) Improving the current AFDX network simulation platform, FACADE by

introducing three new functions, including the loss data detect function,

3

invalid data detect function and communication time record function.

Developing avionics application simulation modules which could

communicate with FACADE platform.

c) Testing the improved FACADE simulation platform.

d) Detecting the associations between the total time delay and certain

variables.

1.3 Thesis Structure

This project consists of five main phases which are background knowledge

comprehension, AFDX time delay model by Network Calculus, platform

understanding and modifications, experiments design and execution as well as

data collection and analysis. These steps act as the time sequence. All these

phases are listed below:

Phase 1: Background knowledge comprehension

In this phase, contextual comprehension of the research and related knowledge

should be studied first. AFDX network standard and its related standard should

be investigated elaborative. It is essential for the researcher to understand

AFDX network characteristics as well as data exchange behaviour. Since the

simulation bases on the AFDX standard, a literature review on AFDX network is

conducted. After that, the research approaches proposed by other researchers

were reviewed.

Phase 2: AFDX time delay model by Network Calculus

This section aims to study the time delay model of the AFDX network using

Network Calculus. The whole AFDX network consists of three main components

which are end system, AFDX switch and physical propagation. In this project,

traffic regulator in end system is considered as powerful enough which will not

impose extra delay to transmission. The primary analysis part of the switch is

scheduler. Moreover, the physical propagation can be assumed upper bound by

some constant value. All these three delays compose the total delay time of the

AFDX network.

Phase 3: Platform understanding and modifications

4

Since the simulation platform framework architecture proposed in this research

is as same as the previous work, comprehension of this simulation platform

should be carried out instantly. At first, the theses written by previous

researchers are studied. The requirement analyses contained in those articles

help the author to understand the initial motivation of this platform easily. The

detailed framework description makes the author comprehend the grand

architecture effortlessly. Certain modifications have been made to develop this

platform suitable for the following experiment after containing the previous

simulation platform. The Af module has been modified into an AFDX data

packets reception interface of the AFDX network while Raf module has been

changed into an AFDX data packets transmission interface of the AFDX

network. The particular part of the data has been proposed for data check

function. Time record function and data packet counting function are also invited

for experiment purpose. Moreover, two new modules are implemented as

avionics application on the end system. One is used to send AFDX data while

the other module is proposed to receive AFDX data.

Phase 4: Experiments design and execution

In this phase, the experiments which focus on computing total time delay and

associations between target variables and total time delay are design first.

Several variables which may influence the total time delay performance of

AFDX network are listed as below: lmax, BAG of virtual link, the amount of

destination end systems in one specific virtual link, the amount of virtual links in

one AFDX network and the amount of switches between source end system

and target destination end system. After design, each experiment will be

executed and the experiment issues will be stated as well as the experiment

data.

Phase 5: Data collection and analysis.

This phase is employed to collect and analyse the data of those five

experiments. Firstly, data are gathered from each experiment separately. Then

those data will be examined respectively. In this phase, the associations

between total time delay and lmax, BAG, the amount of destination end systems

5

in one particular virtual link, the amount of virtual links in one AFDX network and

the amount of switches between source end system and target destination end

system will be studied. The normal test is executed to detect whether student's

t-test can analyse the obtained data. The scatter chart, as well as box chart, are

applied to the data analysis section. The comparison between calculus total

time delay and experiment total time delay are carried out.

As represent in Figure 1-1, there are six chapters in this thesis including chapter

1. In chapter 2, studies on AFDX network and recently related studies are

summarised. Chapter 3 invites the Network Calculus and then time delay model

of the AFDX network will be analysed. The detailed design of AFDX network

simulation platform and avionics application simulation modules are described

in chapter 4. Chapter 5 focuses on the design of the experiments which are

utilised to detect the associations between total time delay and several

variables. Moreover, chapter 5 represents the experiments states, analysis and

deduction of those obtained data. The comparison between calculus delay and

experiment delay is carried out. In chapter 6, the key findings and future work

are illustrated and concluded.

Chapter 1
Introduction

Chapter 2
Literature
Review

Chapter 3
Network Calculus and
AFDX Network Model

Chapter 4
Develop of AFDX

Network Simulation
Program

Chapter 5
Experiment Design,
Data Analysis and

Validation

Chapter 6
Conclusion And
Future Work

Figure 1-1 Thesis Structure

1.4 Summary

In this chapter, the background and motivation of this project have been

introduced first. AFDX is considered as the next generation of avionics data bus,

the time delay which reflects the performance of AFDX network should be

studied. Simulation of AFDX network makes research more easily to be

6

conducted. Secondly, the objectives of this project are represented. Finally, the

structure of this thesis is listed.

7

2 LITERATURE REVIEW

2.1 AFDX Introduction

AFDX has already applied on Airbus A380, A350, Boeing 787, COMAC ARJ21,

and other aircraft. ARINC 664 standards, also known as AFDX (short for

Avionics Full Duplex Switched Ethernet), has been published in 2005. AFDX

[1][8][9] transmission rate up to 100Mb/s which is 1000 times faster than its

predecessor ARINC 429. The deterministic behaviour and redundant

architecture meet the avionics requirement. Nowadays, most future civil

transport aircraft are going to adopt this standard communication network [2].

IEEE 802.3 is a LAN (local area network) technology which provides network

access service. Devices connect to switches or other infrastructure devices by

various types of cables. AFDX standard is based on Ethernet technologies

especially IEEE 802.3. As the commercial 802.3 hardware are low cost, AFDX

tries to use them as much as possible. Although IEEE 802.3 provides high

exchange communication capacity, it could not meet the safety-critical avionics

systems‘ requirements due to its uncertain data exchange behaviour and frame

loss. AFDX has introduced a new mechanism to overcome these problems

which IEEE 802.3 has. To determine the communication behaviour, AFDX adds

the virtual link. The virtual link with a maximum dedicated bandwidth provides

guaranteed maximum network transmission delay. Redundancy management is

proposed to solve the frame loss issue. For each virtual link, frames are

transmitted across both redundant networks. Meanwhile, the ―First Valid wins‖

policy is applied. The first frame reaches either two networks is accepted while

the second frame is just discarded. This redundancy management guarantees

the data exchange when any one network component fails.

AFDX network consists of three elements which are end system, AFDX switch

and virtual link.

8

Equipment A

Application 1

Application N

.

.

.

.

End
System

Filtering
&

Policing
Function

Switching
Function

Switch End
System

End
System

Application 1

Application N

.

.

.

.

Application 1

Application N

.

.

.

.

Equipment B

Equipment C

Virtual Link 2

Virtual Link 1

Figure 2-1 Illustration of AFDX Network

Figure 2-1 represents these three elements. End system is working as a source

or receptor of AFDX data on the network. Source end system receives data

from source avionics application and transfers those data to destination end

system. After destination avionics application receives data from destination

end system, the transmission finished. During the transmission, data are

transmitting on virtual links between source and destination end systems. AFDX

switch is proposed to connect end systems to network, receive, handle and

transmit the data to destination end system.

2.1.1 End System

End system (or avionic computing LRUs) exchanges data (messages) based on

the concept of virtual links with traffic shaping, redundancy management,

integrity checking and routing provided by AFDX switches using configuration

tables. Avionics application sends the data to end system with unregulated

flows of post fragmented packets. Traffic regulator in end system shapes those

uncontrolled flows into regulated flows according to Bandwidth Allocation GAP

of each virtual link.

9

Avionics
application

VL

Traffic
Regulator

Unregulated flows of
Post fragmented

packets

Regulated flows

BAG
Redundancy
Management

A Network

B Network

End System

Figure 2-2 Source End System

Bandwidth Allocation GAP, also known as BAG, is the minimum time interval in

the millisecond of the first bit of two consecutive frames of the same virtual link.

BAG is used for managing data flow. (See Figure 2-3). BAG values equal to 2k

ms interval, (k is an integer from 0 to 7).

Packet 1 Packet 2 Packet 3

Packet 1 Packet 2 Packet 3

BAG BAG BAG

Unregulated
Input Flow To

Regulator

Regulated
Output Flow

From
Regulator

Figure 2-3 Unregulated and Regulated Flow

After shaping, each flow will send no more than one frame in every interval of

BAG. Then each frame in the flow will be forwarded to both networks by

redundancy management. By using redundancy management, data

communication could continue even one complete network lost.

10

A Network
Redundancy Management
Eliminate redundant

frames

Integrity Checking
Detect and eliminate

invalid frames

Integrity Checking
Detect and eliminate

invalid frames

Application

Application

Source
End System

Destination End System

B Network

Figure 2-4 Destination End System

After data frames across network and reach destination end system, integrity

checking will first detect and eliminate invalid frames. Then the ―First valid wins‖

policy is introduced which means that the first valid data frame reaches the

redundancy management will be accepted and transferred to avionics

application.

2.1.2 Virtual Links

A virtual link has these characters:

A virtual link is a logical connection which connects one end system to one or

more end systems. Network designer can configure the upper bound bandwidth

of each virtual link [2].

The bandwidth of a virtual link can be allocated by end system and would not be

affected by other partitions which use this virtual link.

Each virtual link should not exceed its upper bound size and transmission rate

which will be checked by the switch. These parameters store in the switch,

follow by the switch and end systems. The switch can also change virtual link

priorities to secure the performance of time-sensitive messages.

Ethernet switch receives incoming frames from the input port and routes them

to output port base on the destination address in Ethernet transmission. In

AFDX network, virtual link ID is invented as a unique mark of a virtual link (See

Figure 2-5). This mark replaces source address, target address(es) and data

11

content amount of the frame which stores in switch‘s configuration table. Virtual

link id represents the source of the virtual link where the frame comes.

Preamble

Field
Length

Source
Address

Destination
Address

Length
802.2
Header
&Data

Frame
Check

Sequence

7 1 66 46-15002 3

Start of
Frame

Replace with Virtual link id

Figure 2-5 AFDX Network Packet Format

A virtual link is a logical connection for network data in transmission– see Figure

2-6. The upper bound of latency and jitter are guaranteed due to the network

bandwidth is allocated. The virtual link connects source end system and

destination end system(s) together by using the switch which means that an

end system may be designed only to receive VLs and not transmit virtual links,

or on the contrary. In that way, an end system could have zero virtual links,

neither originates or receives. The virtual link sends frames for end system. A

virtual link can only have one end system as the source, but one or more

destination end systems are permitted.

The sub-virtual link is introduced to use the virtual link more efficient. One virtual

link could possess up to 4 sub-virtual links. Each sub-virtual link follows First In,

First Out regulation. Each First In, First Out queue is accessed by virtual link

using round robin algorithm.

Publisher

A664
Com port

SubscriberVLA664
Com port

A664
Com port

A664
Com port

A664
Com port

A664
Com port

AFDX Network

Figure 2-6 Chart of Virtual Link

12

2.1.3 AFDX Switch

Based on 802.3 Ethernet techniques, AFDX is a full duplex network. The

transmission medium connected each end system is a network cable which

contains two pairs of wires. Those two pairs of wires have different functions,

one is to send frame (Tx), the other is to receive frame (Rx). (See Figure 2-7)

End System

 Switching Function

Tx
Buffer

Rx
Buffer

Rx
Buffer

Tx
Buffer

End
System

Full
Duplex
Links

Filtering & policing
Function

End
System

Switch

Monitoring
Function

Configuration
Table

Figure 2-7 AFDX Switch

AFDX switch has several blocks. Filtering and policing function filters frames

base on rules such as frame integrity, frame length and destination. Switching

function routes frames to their destinations through appropriate output ports.

The configuration data which controls the switch are stored in the configuration

table. End system in AFDX switch is utilised to receive and transfer data. The

monitoring function is introduced to monitor and log all operations of the switch.

The switch has two kinds of buffers. Rx buffers are used to store incoming

frames while Tx buffers are used to store outgoing frames. Both buffers operate

under FIFO mechanism. Switch processor checks all the incoming frames

13

virtual link IDs sequences. All the sequences should follow the same order as

Rx FIFOs. These frames whose sequences are correct will be transferred to the

proper Tx buffers, waiting for transmission.

To avoid contention, buffers are used by the switch. Breach of traffic contract

might overflow input buffer caused network data loss, is protected by fault

containment. Switch buffer allocated to one end system which could manage

the contention when two or more end systems send messages to that end

system.

Redundancy guarantees a high degree of availability. For instance, cluster

switches and two logical connections. CRC, one of the error detection

mechanisms, is used to ensure the high integrity. Messages are delayed

inevitably due to the process of resolving contention which called as latency.

Switch controls the data traffic in the data bus, following the configuration in the

configuration table. As the subsystems have their specific requirements of the

network performance, the network designer has to meet these demands which

are proposed by avionics application designer during their design. The

configuration table considered as an avionics application designer‘s

requirements set for network performance to supply the avionics applications.

Network designer expresses all the network performances designed for the

avionics applications in the configuration table. As the switch can read the

configuration table, it is possible for network performances to meet the

demands of avionics applications. This mechanism achieves the certification for

network and avionics applications since the designers monitor data bus

performance and collect evidence for identification.

2.1.4 Latency and Jitter

Two types of latency, latency in transmission and latency in reception, are

defined in ARINC 664 P7.

The definition of latency in transmission is the duration of the last bit of an

avionics application data which is ready to be sent by end system and the last

bit of the corresponding Ethernet frame transfer to the physical media.

14

The definition of latency in reception is the duration of the last bit of an avionics

application data accepted by the physical media and the last bit of the

corresponding data is available to the end system avionics application.

According to ARINC 664 P7, the upper bound latency of the end system in

transmission should be less than 150μs+frame delay. The upper bound latency

of the end system in reception should be less than 150μs.

The time one end system receives a message from the other end systems

could be different, even from the same end system. The upper bound time

subtracting lower bound time is Jitter. Several aspects could affect Jitter such

as Network topology, hardware, the number of virtual links on a single port.

Each virtual link has a maximum allowable jitter which stores in the

configuration file.

2.1.5 Network Topology

At first, Ethernet was not used on aircraft. It is used for the commercial general

purpose, to connect devices, terminals as well as systems together and to

communicate with each other, air traffic control systems, weather broadcasting

systems and navigation systems for instance. As passengers‘ entertainment

systems aboard on the plane, Ethernet was used to connect each device to one

domain for management and data sharing.

In Figure 2-8, the devices are divided into two different domains. These two

domains connect into a star topology network by two switches.

From this figure, ARINC 664 P7 terminals comprise the avionics systems which

are part of each domain. In each domain, the network is connected to the switch

which is called domain switch. End systems in same domain communicate with

each other by domain switch. When end systems exchanging data in different

domains, data are routed through each domain switch, from source to

destination.

15

Switch Switch

End
System

End
System

End
System

End
System

Domain
A

Domain
B

Figure 2-8 AFDX Star Topology

2.2 AFDX Delay Research Techniques

Several technical methods have been proposed to analyse and evaluate AFDX

network delay performances.

Network calculus (or worst case Network Calculus) theory is one of the most

common theoretical approaches which is used to obtain end-to-end upper

bound delay [4] [5] [6]. The network calculus could provide the mathematical

upper bound latency of any network element which possesses queue capability.

Moreover, this approach could obtain queue-size bounds as well. As the worst

case scenario considers each node crossed by a given flow and calculus

maximum possible jitter caused by the previously node, the results obtained by

Network calculus is obviously pessimistic [11]. This theory is mainly used for

avionics network certification. In the communication network, the arrival curve

and service curve are introduced to describe the characteristics of data flows

and the scheduler multiplex respectively. A scheduler or multiplexer is a device

which receives several input data flows and then forwards those streams into a

single line. Thus, the arrival curve is used to represent virtual links in [7]. The

network calculus approach obtains a pessimistic upper bound delay which can

hardly be reached. To get a tighter computation, several optimizations are taken

by researchers. The ‗Group‘ concept is introduced to Network Calculus to obtain

more accurate delay values. Those virtual links which come out from the same

multiplexer and transfer into another multiplexer together are treated as ‗Group‘.

16

These virtual links share at least two paths which will not be serialized by the

following multiplexers after they have been serialized by the first one. By

utilising this concept, less delay spent in multiplexers. Tighter bounds are

obtained up to 40% better than Network Calculus without ‗group‘ [12]. Periodic

Virtual Link, a virtual link sends frames strictly periodically, is also introduced to

gain a more precisely upper bound delay [13]. Periodic virtual link is

schedulable with the offset which can obtain a reduction of 49% upper bound

delay than network calculus approach.

Due to the massive configuration work on the real network, exact stochastic

analysis of industrial avionics network is impracticable. Pessimistic stochastic

analysis [15], considered as an approximation of the exact stochastic analysis,

is applied to solve this issue. The pessimistic stochastic analysis provides a

guaranteed upper bound end-to-end delay which is greater than the exact

stochastic analysis. Based on the pessimistic assumptions, the stochastic

network calculus approach is a pessimistic analysis. This approach provides a

probabilistic upper bound delay of a given flow which belongs to a specific

network. By comparing the pessimistic upper bound delay with the industrial

AFDX network experiment upper bound delay, pessimistic upper bound delay is

no more than four times than the experiment one [16].

Trajectory approach [10] is applied to get the upper bound on end-to-end upper

bound delay in distributed systems [11]. In Trajectory approach, the switch

output port is treated as a process node. For a packet m from flow f, the

trajectory approach will identify all the impacts of end-to-end delay on every

node this packet cross. This approach is suitable for the scenario for a group of

sporadic data flows without considering when the packets arrived. Trajectory

approach focuses on the trajectory of a packet in worst case scenario rather

than any visited node in the holistic approach. This approach only considers the

possible scenario. As a timing analysis approach, trajectory approach

concentrates on given flow, trace a packet and construct the packet sequences

in each passing node. This approach is used for obtaining the upper bound

arrival times for every packet. According to [14], Trajectory approach is more

17

precious than the Network Calculus. The ‗Group‘ concept is also applied in

Trajectory approach to obtain a better upper bound delay. By utilizing this

concept, 10% better tighter average upper bounds are obtained than the

Trajectory approach without ‗group‘.

The response time analysis (RTA) technique has been used extensively to

schedulability experiment and other characteristics for the diverse real-time

operating system [17] [18] [19] [20]. RTA bases on the critical instant and busy

period. A critical instant allows detecting the worst response time for the given

task. Each task of simultaneous activation from fixed priority scheduling of

single processor is a critical instant [21]. Response time represents the end-to-

end delay which means the worst-case response time is the upper bound of the

end-to-end delay. By detecting the response time of each task in an interval

starting at a critical instant as soon as the job been released and comparing the

result to the related deadline, schedulability test for the periodic task set can be

acquired as well as the sporadic task. The multiplexer in AFDX can be

represented as a processor while RTA is introduced to the worse-case data

transmitting delay analysis in the real-time operating system [4].

In [22] [23], the Petri Net Theory is proposed to simulate the AFDX network for

AFDX modelling and performance analysis. A deterministic and stochastic Petri

nets (DSPN) model is achieved. In this model, data frame length is 791 bytes.

Three sub models contains in DSPN model are periodic message control sub

model, event message sub model and message transmission sub model. The

periodic message control and event message represent the end system in

AFDX network while the message transmission sub model expresses the AFDX

switch. Authors compute the network load, the time delay of this model and

believe this model can be applied to AFDX simulation. Since the switch queue

end-to-end delay is not considered in this simulation, it still not similar to the

realistic AFDX network.

Alur and Dill first introduced the timed automata [24]. It is a finite automata with

real and positive variables increasing uniformly with time. A transition has three

labels which are a condition on clock values, actions and the new value of clock.

18

The model checking approach bases on timed automata is proposed to

evaluate the performance of the AFDX contains investigating each state of the

system as well as detecting an exact worst-case end-to-end delay [25].This

approach is used to represent the AFDX network action by time. For the end

system, each state of the frame is represented by a node and the transition

expresses the transmission action. For switch, each node represents a location

in the queue of the transmit port. Time of transition will be upgraded after each

action. The delay can be obtained by calculus the deviation of the new value

and old value of clock. The model checking approach has detected all the

possible states of the system. Thus, authors believe that an exact worst-case

end-to-end delay has been obtained as well as its related scenario. The

authors also uncertain if this approach can be applied to a realistic AFDX

network.

2.3 AFDX Simulation Techniques

2.3.1 Real-time Software AFDX Network Simulation

Experiments have to be taken to obtain realistic results. Those results are used

to verify the designs. Since not every researcher can utilise a realistic AFDX

network environment to study the behaviour and performance of the AFDX

network, simulations have been carried out to fix this issue.

The Network simulation 2 (NS2) is proposed to simulate the AFDX network [26]

[27]. Figure 2-9 represents the simulation model of the AFDX network end

system and switch system. NS2 simulates the functions of the end system and

AFDX switch. In end system, the NS2 application layer protocol is used as an

application procedure queue. By utilising the traffic shaping sub-function, the

flow-shaper is achieved on the queue. The multiplexer is realized by the virtual

link scheduling algorithm while the de-multiplexer possesses the redundancy

and integrity functions. The AFDX switch and virtual link are also obtained by

NS2, which shows that using NS2 for AFDX simulation is practicable. In AFDX

switch, the filtering and policing function are simulated by the filtering and

policing function in NS2. The switch scheduling algorithm is used to simulate

the multiplexer and de-multiplexer. A queue with limited delay and allocated

19

bandwidth is employed to simulate the virtual link. After that, this simulation is

proposed to research end-to-end delay performance. The results show that the

jitter of this simulation is between -0.5 ms and 0.5 ms which meets the

requirement of ARINC 664 P7.

Figure 2-9 The AFDX End System and Switch System Simulation Model [26]

The QNAP2 [29] (Queuing Network Analysis Package) is applied to simulate

the AFDX network [28]. QNAP2, a commercial package, can be utilised to

analyse the performance of queuing network by analytical and simulation

approaches. In this software, the end system is represented by four types of

queues which are application queues, regulator queues, ―Multiplexer‖ queue

and the ―DeMultiplexer‖ queue. The switch is represented by three different

queues which are input queues, ―CPU‖ buffer and output queues. The

measurements units are also introduced in this simulation. Each frame has

placed a time-stamp for obtaining the duration time. This simulation has also

been validated which proves that the QNAP2 can be used for AFDX network

simulation for end-to-end delay research. The results show that the max delay

of simulation is much larger than the mean delay.

The BIP [32] (Behaviour, Interaction, Priority) framework, partially achieved in

the IF toolset [30] and the PROMETHEUS tool [31], is proposed for modelling

the AFDX network. BIP is a language which can build components from atomic

components, connect and priority relations. The atomic components are utilised

to build systems. The connects provide possible interactions between systems.

20

The priority relations select possible interaction. By using BIP, the end system

and AFDX switch are simulated. An AFDX experiment architecture is achieved

(See Figure 2-10). Several scenarios have also been tested to validate this

simulation which proves that this simulation is suitable for the end-to-end delay

performance research.

Figure 2-10 The Architecture of The Experiments [33]

The MAST suite is suitable for simulating a real-time system [34]. As an event-

driven model, MAST can build complex dependence patterns of diverse tasks

[36]. This characteristic makes the MAST ideal object-oriented and event-driven

architecture for real-time systems. Offset-based techniques are also applied to

the MAST for accurate results. Figure 2-11 represents the tools which will be

included in the MAST. As the simulation model is a distributed system, several

response-time analysis approaches for the processors [47] [48] [49] [50] [51]

are proposed and combined with the composition approach [52]. Then the

MAST is used to simulate the AFDX network. After obtaining the result by

MAST, authors compare their results with the model checking approach,

Network Calculus, Network Calculus with grouping, Trajectory approach and

optimized Trajectory approach. The comparison represents that the results gain

from MAST are only slightly better than Network Calculus and more pessimistic

than other approaches [35].

21

Graphical
Editor

MAST System
Description

Results
Description

Analysis and
Simulation Tools

Graphic Display of
Results

Standard UML Model+
Real-Time View

Figure 2-11 MAST Toolset Environment [34]

The TrueTime [38] is a real-time network simulation software platform. In [4],

authors utilise TrueTime to simulate an AFDX network for evaluating the

response time analysis technique. The simulation model is represented in

Figure 2-12. Three different scheduling policies proposed to this simulation are

BAG-based, rate-based and FCFS schemes. Among these scheduling policies,

BAG-based shows the smallest end-to-end delay. In [39], authors utilise the

TrueTime to study the Generic Cell Rate Algorithm (GCRA) model which gives

a tighter upper bound delay than the (σ,ρ) model.

2.3.2 Programming Software AFDX Network Simulation

A programming software simulation of the AFDX end system is established on

VxWorks Operating System [40]. This simulation contains the traffic shaper as

well as the virtual link scheduler. The source end system is achieved by

introduced the transmitting algorithm to Tx process while the destination end

system is obtained by introduced the receiving algorithm to Rx process. Then

the simulation is carried out on Power PC 7448 and bridge tsi109. According to

the experimental results, this software implementation obtains a better jitter

performance than the theoretical one which means the simulation is successful.

An AFDX emulator is achieved in Ada and verified under the realistic

environment by PCs and switches [41]. In this simulation, the scheduler task

22

and the listener task are introduced for sending data and receiving data

respectively. Outbound buffer and inbound buffer are established as virtual links.

The outbound buffer has four internal FIFO queues which use as the sub-virtual

link. The internal queues can also fragment messages sent by avionics

application. Research in [42] uses C++ to simulate an AFDX network for

OMNET++. A software named A-Stack [43] is also used as AFDX software

simulation platform. This commercial software is certified by DO-178B Level A

standard which is a software consideration in the airborne system [44].

Figure 2-12 TrueTime Simulation Model [4]

2.4 Summary

This chapter introduces AFDX and related studies. Firstly, AFDX and relative

knowledge are listed. Then the research approaches of AFDX have been

reviewed. The theoretical approaches are utilised to obtain the mathematical

network performances. At the same time, the simulations approaches are used

for verification. Simulation with the real-time software which excluded network

hardware is not similar to the realistic environment while the programming

23

software simulation with network hardware is more similar to the real AFDX

network.

24

3 Network Calculus Model and AFDX Delay Analysis

3.1 Data Flow Features in Data Network Concepts Cumulative

Functions

In the Network Calculus, the cumulative function or flow, R(t), is defined as the

aggregate of bits which can be seen on the data flows in time interval [0,t]. In

the network, a system which could be a switch or an end system handles the

input data and sends them with a variable delay. As represented in Figure 3-1,

both R(t) and R*(t) are the cumulative functions. R(t), an input function,

demonstrates the total input data of the input flow in the time interval [0,t]. R*(t),

an output function, represents the entire output data of the output flow in the

time interval [0,t].

System

Input flow Output flow

R(t) R*(t)

Figure 3-1 Cumulative Function in Network

The cumulative function is considered as a wide-sense increasing function.

Moreover, when t equals to 0, the cumulative function also equals to 0 as

convention. Take Figure 3-1 for instance, R(0)=0 and R*(0)=0. Both discrete

and continuous time models can apply this cumulative function. A minimum

granularity can always be defined in the realistic world, for instance, bit, word,

cell or even packet, hence discrete time with a limited aggregate of values for a

cumulative function can be granted. However, a continuous time is more

convenient to consider no matter cumulative function is continuous or not. A

fluid model is proposed to describe the continuous function while the left or

right-continuous function is used to describe an uncontinuous function.

Three types of cumulative functions are listed below. The first function is the

discrete time model cumulative function which time t can be represented as t ∈

N = {0, 1, 2, 3,...}. The second function is a fluid mode cumulative function

25

which time t can be represented as t ∈ R+ = [0,+∞) and R is a continuous

function. The third function is the general, continuous time model cumulative

function which time t can be represented as t ∈ R+ and R is a left- or right-

continuous function.

Figure 3-2 Input and Output Function [53]

A single server queue is represented in Figure 3-2, both the input function and

output function. In this figure, each packet has to wait 3 time units until it been

served. The output function R1* which is a fluid model serves the packet when

the first bit has been received and the packet departures one bit after another at

a fixed rate. For instance, the initial packet arrives during the times 1 to 2 and

departures during the times 1 to 4. The output function R2* serves the packet

when it has been received completely and is considered leave the system only

when this packet has been entirely transmitted. This mechanism is considered

as the store and forward mechanism. In R2*, after time 1, the first packet arrives

instantly and departures instantly at time 4. In the output function R3*, the first

packet arrives at time 2 and leaves at time 5 which is considered as a discrete

time model.

26

The cumulative function R(t) is assumed that it has a derivative
dR

dt
= r(t) such

that R t = r(s)ds
t

0
 which is a fluid model. Then the function r is considered as

the rate function.

If the time slot δ is chosen and sampled by

𝑺 𝒏 = 𝑹 𝒏𝜹 (3-1)

A continuous time model cumulative function R(t) could be mapped into a

discrete time model cumulative function S(n), n∈N.

This mapping could lead to an information loss. A continuous time model

cumulative function can be obtained without information loss from S(n), n∈N by

letting:

𝑹′(𝒕) = 𝑺(
𝒕

𝜹
) (3-2)

In this formula, the cumulative function R′ is always left-continuous.

By using the formula (3-1), any result obtained from a continuous time model

could also be used to the discrete time. In general, the ATM applies the discrete

time model while the continuous time model is introduced to dealing with the

variable size packets, even not a fluid model.

3.2 Virtual Delay

As long as the input and output functions are confirmed, the delay can be

obtained.

For a lossless system, the virtual delay at time t is d t = inf{τ ≥ 0: R(t) ≤ R∗(t +

τ)}.

The virtual delay is considered as the horizontal deviation (The deviation of the

input and output function in the horizontal (See Figure 3-3). If the input and

output function are continuous (fluid model), then it can be seen from the Figure

3-1 that R* (t +d (t)) = R(t) and that d(t) is the smallest value fitting this formula.

27

R1

R1*

bits

time

horizontal

deviation

Figure 3-3 Horizontal Deviation

In Figure 3-2, the values of virtual delay are different for these three models. In

the first subfigure, the delay of the first packet which the last bit experienced is d

(2) equals to 2 time units. Moreover, the virtual delay equals to d (1) which is 3

time units on the second subfigure. The virtual delay of the fourth packet on

subfigure 2 is d (8.6) equals to 5.4 time units. It takes 2.4 units of waiting time

and 3 units of service time to complete the transmission.

3.3 Arrival Curves

3.3.1 Definition of Arrival Curve

To provide the guarantees to data flows, the traffic sent by the sources should

be limited. Arrive curve is proposed to limit this traffic. The concept of arrival

curve is defined below.

Define α, which is a wide-sense increasing function. If t ≥ 0 and only if for s ≤ t

while the flow R is constrained by α, then

R(t)−R(s) ≤ α(t − s) (3-3)

In this way, the α is the arrival curve of the function R and the R can be called

α-smooth.

As shown in Figure 3-4, the condition is over a set of overlapping intervals.

28

Figure 3-4 Arrival Curve [53]

3.3.2 Affine Arrival Curves

For instance, if α t = rτ , it is to say that, for any time interval τ , the total

number of bits of the flow is no more than rτ. It also can be said that this flow

has a peak rate. One example is that the fast Ethernet has a restriction rate of

100M/s.

If α t = b while b is constant, it means that an arrival curve of the flow will send

flow less than b.

According to their relationship with leaky buckets, the affine arrival curves γr,b

can be represented below:

γr,b (t) = rt+b for t > 0 and 0 otherwise is proposed.

If γr,b is the arrival curve of one flow, it means that b bits of data will be

transferred each time. At the same time, the maximum transmission rate is less

than r b/s. In the arrival curve, b represents the burst tolerance and r expresses

the rate. Figure 3-4 illustrates these two parameters.

3.3.3 Stair Functions as Arrival Curves

The arrival curve is represented as the form kvT,τ in the ATM. Meanwhile, vT,τ is

used to express the stair function which is listed below:

𝑉𝑇,𝜏(𝑡) =
𝑡+𝜏

𝑇
 for t > 0 and 0 otherwise.

29

vT,τ t = vT,0(t + τ), then VT,τ can be considered as the results from vT,0 by a

time shift to the left. In this equation, the time interval is represented as T and

the tolerance is expressed as τ. Both parameters are illustrated in time units.

Take an ATM flow for example that a flow transfers fixed size packets and up to

k unit of data. Assume all packets are separated by the T time units. KvT,0 is the

arrival curve of this flow.

If one stream is multiplexed with other streams, it can be considered that the

packets of this flow are sent to a queue. At the same time, those flows

multiplexed with this flow are also sending data to this same queue. This queue

introduces a variable delay which can be considered has a maximum bound

equal to τ time units. In this scenario, if R(t) represents the input function while

R*(t) is the output function, both functions are for the flow at the multiplexer. As

R∗(s) ≤ R(s − τ), it can be deduced that:

𝑹∗ 𝒕 − 𝑹∗ 𝒔 ≤ 𝑹 𝒕 − 𝑹 𝒔 − 𝝉 ≤ 𝑲𝒗𝑻,𝟎 𝒕 − 𝒔 + 𝝉 = 𝑲𝒗𝑻,𝝉(𝒕 − 𝒔) (3-4)

Then KvT,τ is the arrival curve of R*. It can be inferred that a periodic flow, T

represents its period, and k is the fixed size of the packet. If this flow has a

variable delay which is less than τ, then KvT,τ can be utilised to represent its

arrival curve. The function vT,τ is utilised to demonstrate the minimum time

interval between packets.

R(t) is utilised as a left-continuous cumulative function of a flow, while time is

discrete or continuous. If this flow sent packets which size are all fixed.

Meanwhile, all these packets sizes are k data units and arrival with no time

delay. tn is proposed to represent the arrival time of the nth packet, the

properties which illustrated below have the same meaning:

1. for all m, n, nT − τ ≤ tm+n − tm

2. kvT,τ is the arrival curve of the flow.

Since all the packets sizes are k data units and the packets generate

consecutively, it can be inferred that the R(t) can be represented as nk, while n

∈ N. Moreover, the time interval between two consecutive packets is ≥ T − τ.

30

R(t) is the input function of one flow while the α(t) is assumed as a wide

increasing function. For both functions, t ≥ 0. Set αl(t) the limit of α at t. It can be

assumed that αl(t) = sups<t α(s). Moreover, if the function R(t) has an arrival

curve which is α, then αl is also the arrival curve of the function R(t).

R(t) is the input function of one flow, t ∈ R+, or a discrete time flow R(t) while t

∈ N. If this flow sends packets at a fixed size k with no delay, then for some T

and τ, set r =
k

T
 and b = k(

τ

T
+ 1). Then this function R(t) is constrained by γr,b or

by kvT,τ.

3.3.4 Leaky Bucket and Generic Cell Rate Algorithm

The data of the flow input function R(t) could be analysed by creating a Leaky

Bucket Controller. It assumes that the bucket is empty at first and then will

contain the fluid which size is b. There is a hole in the bucket and the contents

in it would leak at a rate of r units until it is empty.

If the function R(t), known as the amount of data, would not cause the overflow

in the bucket, the data is declared conformant. Otherwise, it is non-conformant.

The definition of Leaky Bucket is shown in Figure 3-5. The overflow data which

can‘t be poured into the bucket is considered as ―non-conformant‖ data.

Figure 3-5 Leaky Bucket Controller [53]

A buffer with an input function R(t), which the service rate is r. This rate r is set

as a fixed rate. In the beginning, there is no data in this buffer. Assumed that all

31

data received into the buffer during the time interval [0, t], the data in buffer at

time t can be illustrated as below:

𝒙 𝒕 = 𝒔𝒖𝒑𝒔:𝒔≤𝒕 𝑹 𝒕 − 𝑹 𝒔 − 𝒓(𝒕 − 𝒔) (3-5)

Considering a leaky bucket controller, b is utilised to represent the bucket size. r

is proposed to express the leak rate of this controller. It can be said that the

arrival curve γr,b constrains the flow of this leaky bucket controller. The following

properties are also correct:

1. The flow of conformant data has γr,b as an arrival curve of these conformant

data which consist the flow;

2. All data is conformant if γr,b is the arrival curve of the input function.

R(t) is the input function of one flow. Meantime, this flow sends data at fixed

size k data units and has no time delay. This input function R(t) can be discrete

or continuous. Moreover, the function R(t) is left-continuous. The properties

illustrated below have the same meaning:

1. the flow is conformant to GCRA(T, τ)

2. kvT,τ is an arrival curve of this flow

A flow obeys the GCRA (T, τ) which transfers packets at a fixed size. It is said

that this flow also can be represented as the leaky bucket controller. The

parameters of this leaky bucket controller r and b can be illustrated as below:

𝒃 =
𝝉

𝑻
+ 𝟏 𝜹 (3-6)

𝒓 =
𝜹

𝑻
 (3-7)

The packet size is represented by δ in units of data.

Considering a set of I leaky bucket controllers (or GCRAs), ri expresses the rate

of the leaky bucket controller i while the bi represents the tolerant of the same

controller i, for 1≤i≤I. The flow of the conformant data has an arrival curve as:

𝜶 𝒕 =𝒎𝒊𝒏𝟏≤𝒊≤𝑰 𝜸𝒓𝒊,𝒃𝒊
 𝒕 = 𝒎𝒊𝒏𝟏≤𝒊≤𝑰(𝒓𝒊𝒕 + 𝒃𝒊) (3-8)

32

3.4 Service Curves

As mentioned above, the arrival curve is proposed to constrain the flows of the

integrated services networks. Guarantees to flows are needed for reservations

purposes which are done by packet schedulers [54]. The service curve is

introduced to abstract the details of the packet scheduling. Two examples are

presented to get a better understanding of the service curve.

The first example of a scheduler is a Generalized Processor Sharing (GPS)

node [55]. A GPS node serves several flows simultaneously. Each flow is set at

a given rate. Moreover, the node has some backlogs as well. The guarantee is

that during a time window t, if the given rate of the node is r, thus it receives

data which amount is, at least, equal to rt. Since the GPS node bases on a fluid

model, it only can be considered as a theoretical concept. In the real network,

node transfers with packets.

Consider a GPS node with an input function R and output function R∗. The given

rate is r. In this scenario, assumed overflow will not occur. For all time t,

considered t0 as the beginning of the last busy period for the flow up to time t. It

can be obtained that:

𝑹∗ 𝒕 − 𝑹∗ 𝒕𝟎 ≥ 𝒓(𝒕 − 𝒕𝟎) (3-9)

In this part, the function R is assumed as left-continuous. At time t0 there is no

data which means backlog equals to 0 as R (t0) − R∗ (t0) = 0. Combining this

formula with the formula (3-9):

𝑹∗ 𝒕 − 𝑹 𝒕𝟎 ≥ 𝒓(𝒕 − 𝒕𝟎) (3-10)

Then it can be shown that, for all time t: R∗(t) ≥ inf0≤s≤t [R (s) + r (t − s)],

which can be written as

𝑹∗ ≥ 𝑹 ⊗ 𝜸𝒓,𝟎 (3-11)

In the formula (3-11), the operational character ⊗ represents the min-plus

convolution. F is a wide-sense increasing function equals to zero when negative

33

arguments. If f and g are two curves of F, the min-plus convolution can be

represented as f ⊗ g t = inf0≤u≤t(f t − u + g(u)).

Here is the second example. Assume a network node which the maximum

delay of a given flow R is bounded by T. The first in, first out mechanism is

proposed in this example. The delay bound could be translated to d(t) ≤ T for all

t. Since R∗ is always wide-sense increasing, according to the definition of d(t), it

can be obtained that R∗ (t + T) ≥ R(t). On the contrary, it can be deduced that if

R∗ (t + T) ≥ R(t), then d(t) ≤ T. It can be said that if R∗ (t + T) ≥ R(t) for all t, the

maximum delay is bounded by T. This formula can also be expressed as

𝑹∗(𝒔) ≥ 𝑹(𝒔 − 𝑻) (3-12)

for all s ≥ T.

The ―impulse‖ function δT defined by

δ T (t) = 0 if 0 ≤ t ≤ T and δ T (t) = +∞ if t > 𝑇.

For any wide-sense increasing function x(t), defined for t ≤ 0, X ⊗ δT t =

X(t − T) if t ≥ T and X ⊗ δT t = X(0) otherwise. Then the maximum delay can

thus be illustrated as

𝑹∗ ≥ 𝑹 ⊗ 𝜹𝑻 (3-13)

It can be seen from these two examples above that an input-output relationship

of the same form is inferred (formula (3-12) and (3-13)).

34

Figure 3-6 Service Curve [53]

Consider a system S with a flow through it. This flow has the input and output

function which are R and R∗. It can be said that system S offers to the flow a

service curve β if and only if β is wide sense increasing. At the same time, β(0)

= 0 and R∗ ≥ R ⊗ β.

If the service curve β is continuous, it means that for all t, when t0 ≤ t

𝑹∗ 𝒕 ≥ 𝑹𝒍 𝒕𝟎 + 𝜷(𝒕 − 𝒕𝟎) (3-14)

Where 𝑅𝑙 𝑡0 = 𝑠𝑢𝑝 𝑠<𝑡0 𝑅(𝑠) is the limit to the left of R at t0. If R is left-

continuous, then Rl(t0) = R(t0).

3.5 Network Delay Bound

In the network calculus, one important quantity is the maximum horizontal

deviation between two curves f and g of the function F. The function F is a wide-

sense increasing function equals to zero when negative arguments. This

horizontal deviation is represented as h(f,g) while h f, g = supt≥0 inf d ≥

0|f(t) ≤ g(t + d)

35

f(t)

g(t)

t

h(f,g)

Figure 3-7 The Horizontal Deviation Between f and g

Assume a flow, constrained by the arrival curve α, traverses a system that

offers a service curve of β. The virtual delay d(t) for all t satisfies: d(t) ≤ h(α,β).

Then h(α,β) is the network delay bound this flow experiences.

3.6 AFDX Network Time Delay Analysis

3.6.1 AFDX Network Time Delay Model

Three delays which consist of the AFDX network delay are the end system

delay, the AFDX switch delay and the propagation delay (See Figure 3-8).

Switch Delay

Propagation
Delay

End System
Delay

Figure 3-8 AFDX Network Time Delay

36

The end system delay is consisted of the Band Allocated Gap, the scheduler

delay and the hardware process delay.

The switch delay is consisted of the scheduler delay and hardware process

delay.

The propagation delay is consisted of the frames transmission delay and the

signal transmission delay.

3.6.1.1 End System Time Delay Model

The end system is used to send and to receive the AFDX packets between the

avionics applications and the AFDX switches. All these packets are generated

by the avionics applications and transmitted through the virtual links. The traffic

regulator introduces the BAG to control the traffic rate on each virtual link which

constraints the bandwidth utility of each virtual link. The scheduler handles the

concurrency data traffic depending on the particular scheduling mechanism

which introduces the additional latency (See Figure 3-9).

Avionics
application

Avionics
application

Avionics
application

VL
1

VL
2

VL
3

Scheduler
MUX

Traffic
Regulator

Unregulated flows of
Post fragmented

packets

Regulated flows Single
multiplex

flow

BAGs+τ

BAG1

BAG2

BAG3

End System

Figure 3-9 End System Delay Model

3.6.1.2 Switch Model

An AFDX switch is proposed to receiving the AFDX packets from the source

end system and forwarding those packets to the destination end systems.

37

Usually, the AFDX switch contains one FIFO buffer for each output port. Also,

the input ports buffers are not involved. This is common in switch models

[14][15][56] .

An example of the AFDX switch model for virtual link scheduling is shown in

Figure 3-10.

Buffer

Buffer

Input port

Forwarding

Output port

VLn

VL1

S
c
h
e
d
u
l
e
r

VLn

VL1

S
c
h
e
d
u
l
e
r

t

t+delay

Figure 3-10 AFDX Switch Time Delay Model

The Ethernet frames transmit through the exclusive buffers of input ports. It is

known that the minimum size of the frame is 576 bits while the minimum inter-

frame gap is 96 bit times. When the 10 Mb/s Ethernet is proposed, the minimum

transmission time is 57.6+9.6 microseconds. If this frame transmits on 100Mb/s

Ethernet, the transmission time is 5.76+0.96 microseconds.

This switch module forwards the received packet from the input port to

destination virtual link queue by checking a static forwarding table. This check

needs a stationary time cost no matter how large the packet size is. To meet

this requirement, a powerful forwarding capacity of AFDX switch should

possess which can transfer each received packet to its corresponding output

port queue before the next packet arrives.

As shown in Figure 3-10, the structure of multiple virtual links queues and a

scheduler consolidated at each output port are familiar to the end system. In

this section, the output waiting in the queue is the main delay component which

38

will be analysed. Messages at each output port in the virtual link queues will be

scheduled and then transferred into the physical link.

3.6.2 AFDX Traffic and Service Model

In this part, a brief introduction to the theory of network calculus will be given,

and then the approaches utilising network calculus to represent the AFDX data

flows and the entities will then be illustrated.

According to [53], the network data flows can be modelled by the leaky bucket

or generic cell rate algorithm, i.e. the (σ,ρ) model and the GCRA model. The

rate-latency function β t = R ∙ (t − T) is the general way to illustrate the service

curve of AFDX network. In this formula, R is the service rate while T is the sum

of AFDX node initial time and the queuing delay [57] [58].

3.6.2.1 AFDX Illustration with Network Calculus

The AFDX virtual link is usually described by the leaky bucket model which

illustrates the virtual link flow after being regulated by the BAG and before this

flow enters the end system scheduler. The arrival curve of this model can be

represented as below:

𝜶𝟎 𝒕 =
𝑳𝒎𝒂𝒙

𝑩𝑨𝑮
𝒕 + 𝑳𝒎𝒂𝒙 (3-15)

Where:

Lmax represents the largest frame size of this virtual link.

BAG expresses the minimum time interval between two consecutive frames of

the same virtual link.

In this project, the traffic regulator is assumed to be powerful enough which can

process and transfer frames instantly. No extra delay is imposed. Thus, the

delay from traffic regulator will be added to the end-to-end delay for obtaining

the total time delay.

The AFDX data flow leaves the end system but before enters the first switch is

modelled and represented in Figure 3-11. Since there is only one end system

scheduler for various virtual links, it also assumes that the scheduler in end

39

system brings a jitter τ. Then the (σ,ρ) and GCRA model can be expressed as

follows.

End system Scheduler Switch Scheduler

α0 α1 orα2

VL flow

β(t) β(t)

Figure 3-11 Virtual Link Model Cross End System and Switch

According to the (σ,ρ) model, the virtual link coming out from the end system is

modelled as

𝜶𝟏 𝒕 =
𝑳𝒎𝒂𝒙

𝑩𝑨𝑮
𝒕 + 𝑳𝒎𝒂𝒙 (𝟏 +

𝝉

𝑩𝑨𝑮
) (3-16)

Where:

Lmax is as same as represent by formula (3-15).

BAG is as same as represent by formula (3-15).

𝜏 is jitter imposed by the scheduler in the end system.

According to [53], τ can be measured but should be excluded from the end-to-

end delay. Therefore, the sustainable rate of flow σ is 𝐿𝑚𝑎𝑥 ⁄ 𝐵𝐴𝐺, and burst ρ

is 𝐿𝑚𝑎𝑥 . (1 +
𝜏

𝐵𝐴𝐺
).

When the GCRA model is applied, the virtual link flow can be illustrated as

𝜶𝟐(𝒕) = 𝑳𝒎𝒂𝒙
(𝒕+𝝉)

𝑩𝑨𝑮
 (3-17)

Where:

Lmax is as same as represent by formula (3-16).

BAG is as same as represent by formula (3-16).

𝜏 is as same as represent by formula (3-16).

The periodic tasks usually utilise the GCRA model to illustrate their flow

characters, especially the network flows.

40

The rate-latency service curve proposed to illustrate the service capability of the

scheduler of the switch and end system is listed below:

𝜷 𝒕 = 𝑹(𝒕 − 𝑻𝟎 − 𝑻𝒔) (3-18)

Where:

R is the service rate of the output port of end system or switch, for instance,

10/100 Mbps in AFDX network.

T0 represents the initial time of system.

Ts expresses the queuing delay due to the resource competition among the

virtual links.

As mentioned before, the horizontal distance between the arrival curve and

service curve is the end-to-end delay bound. Basing on the ―Pay Burst Only

Once‖ phenomenon, once a data flow traverses several service nodes, the

sequential service nodes can be treated as one integrated node. For this

integrated node, its service curve is the convolution of the service of all the

nodes which have been consolidated into this integrated node.

3.6.2.2 End-to-End Delay Analysis

As can be seen in Figure 3-12, a single flow passes the switch scheduler is

shown. In this section, the latency of this flow will be analysed, both GCRA

model and (σ,ρ) model. Since this model is as same as the general process

sharing model, the queuing delay Ts in formula (3-18) is set to 0.

R

VL flow

Single Hop Delay

Scheduler

(σ,ρ)or GCRA

Figure 3-12 Delay Bound For Single Virtual Link Cross Scheduler

41

(Delay bound for (σ,ρ) model) An AFDX node S has a rate latency service curve

β. As defined in the formula (3-18), the service curve β t = R(t − T0 − Ts) .

Since the Ts equals to 0, the service curve is β t = R(t − T0). Assume that the

arrival curve of the input flow follows the (σ,ρ) model. Thus, it can be assumed

that the delay bound of the flow traverses the node is

𝑫 𝝈,𝝆 = 𝑻𝟎 +
𝑳𝒎𝒂𝒙 𝟏+

𝝉

𝑩𝑨𝑮

𝑹
 (3-19)

Where:

Lmax is the maximum frame size.

T0 is the initial time of the node.

𝜏 is the jitter .

R is the network service rate.

This formula has been proved from the Theorem 1.4.3 [53].

(Delay Bound for GCRA Model) An AFDX node S has a rate latency service

curve β. As defined by the formula (3-18), the service curve β t = R(t − T0 −

Ts). Since Ts = 0, service curve is β t = R(t − T0). Assume that the arrival

curve of the input flow follows the GCRA model. Moreover, the service curve of

the rate is greater than the arrival curve. Then it can be inferred that the delay

bound for the data flow is

𝑫𝑮𝑪𝑹𝑨 =
𝑳𝒎𝒂𝒙

𝑹
+ 𝑻𝟎 +

𝑳𝒎𝒂𝒙

𝑹
− 𝑩𝑨𝑮 − 𝝉

+
 (3-20)

Where:

Lmax is the packet size.

R is the network service rate.

T0 is the network node initial time.

BAG is the period of flow.

𝜏 is the release jitter.

42

Note that X + means max (0, x).

Proof: The delay bound of the first packet in the flow can be illustrated as below

𝑫𝟏 =
𝑳𝒎𝒂𝒙

𝑹
+ 𝑻𝟎 (3-21)

The delay bound of the second packet in the flow can be expressed as below

𝑫𝟐 =
𝟐𝑳𝒎𝒂𝒙

𝑹
+ 𝑻𝟎 − (𝑩𝑨𝑮 − 𝝉) (3-22)

According to [53], the T-SPEC model can be applied to the arrival curve of the

AFDX GCRA model with α(t) = min(M + pt, rt + b) . Furthermore, the service

rate R is larger than the rate of arrival curve r which infers that the delay of the

second packet is bigger than the succeeding packets. In this way, the upper

bounds delay will occur when receiving the first two packets. By utilising the

formula (3-21) and (3-22), the delay bound for the flow can be illustrated:

𝑫𝑮𝑪𝑹𝑨 =
𝑳𝒎𝒂𝒙

𝑹
+ 𝑻𝟎 +

𝑳𝒎𝒂𝒙

𝑹
− 𝑩𝑨𝑮 − 𝝉

+
 (3-23)

The GCRA model provides a tighter delay bound than the (σ,ρ) model at a

heavy load network.

Proof: According to formula (3-19) and (3-23), the subtraction of delay bound

obtained by the (σ,ρ) model and the GCRA model is represented below

𝑫 𝝈,𝝆 − 𝑫𝑮𝑪𝑹𝑨 =
𝑳𝒎𝒂𝒙∙𝝉

𝑹∙𝑩𝑨𝑮
−

𝑳𝒎𝒂𝒙

𝑹
− 𝑩𝑨𝑮 − 𝝉

+
 (3-24)

If
Lmax

R
− BAG − τ ≤ 0, then it can be inferred that D σ ,ρ − DGCRA =

Lmax

R
∙

τ

BAG
>

0 . On the contrary, if
Lmax

R
− BAG − τ > 0 , then D σ ,ρ − DGCRA =

Lmax

R
∙

τ

BAG
−

Lmax

R
+ BAG − τ = BAG − τ 1 −

Lmax

R∙BAG
 . Since the service rate (R) is always

larger than the arrival rate
Lmax

BAG
 , It can be deduced that

Lmax

R∙BAG
< 1 , 1 −

Lmax

R∙BAG
 > 0, then D σ ,ρ − DGCRA > 0.

43

3.6.3 End-to-End Delay of GCRA Model

In this section, the service curve offered by only one switch scheduler to each

virtual link flow will be analysed firstly, and the end-to-end delay of one

particular virtual link flow across this switch scheduler will be gained. Secondly,

the total time delay of a given virtual link flow which across several nodes will be

obtained. Moreover, the phenomenon ―Pay Burst Only Once‖ is considered.

3.6.3.1 Single Hop Delay Bound Analysis

As can be seen from Figure 3-13, a scheduler is applied to distribute the

network resource among virtual links. The service curve provided to each virtual

link flow and the corresponding delay bound would be obtained with the

following content.

VL1

Scheduler

(σ,ρ)or GCRA

VL2

VLn

VL1,VL2...VLn.
.
.

Physical link

resource
competition

Figure 3-13 Switch Scheduling [39]

Assuming that an AFDX Switch scheduler M offers a rate latency service curve

β to multiple virtual links flows as defined by the formula (3-18). Then the

service curve provided to each single flow j can be represented as below

𝜷𝒋 𝒕 = 𝑹 ∙ 𝒕 − 𝑻𝟎 −
 𝑳𝒔 𝒎𝒂𝒙

𝒔≠𝒋
𝒔∈𝑺

𝑹
 (3-25)

Where:

S represents the set of all incoming flows.

Ls max is the maximum frame size of flow s.

If all the arrival curves follow the (σ,ρ) model which can be illustrated as

44

𝜶𝒋𝟏 𝒕 =
𝑳𝒋 𝒎𝒂𝒙

𝑩𝑨𝑮𝒋
𝒕 + 𝑳𝒋 𝒎𝒂𝒙 𝟏 +

𝝉𝒋

𝑩𝑨𝑮𝒋
 (3-26)

Then the delay bound can be deduced as follow

𝑫𝒋 _(𝝈,𝝆) = 𝑻𝟎 +
 𝑳𝒔 𝒎𝒂𝒙+𝑳𝒋 𝒎𝒂𝒙

𝝉𝒋

𝑩𝑨𝑮𝒋
𝒔∈𝑺

𝑹
 (3-27)

If all the arrival curves follow the GCRA model which can be illustrated as

𝜶𝒋𝟐 𝒕 = 𝑳𝒋 𝒎𝒂𝒙
𝒕+𝝉𝒋

𝑩𝑨𝑮𝒋
 (3-28)

Then the delay bound is

𝑫𝒋 _𝑮𝑪𝑹𝑨 =
𝑳𝒋 𝒎𝒂𝒙

𝑹
+ 𝑻𝟎 +

 𝑳𝒔 𝒎𝒂𝒙
𝒔≠𝒋
𝒔∈𝑺

𝑹
+

𝑳𝒋 𝒎𝒂𝒙

𝑹
− (𝑩𝑨𝑮𝒋 − 𝝉𝒋)

+

 (3-29)

Proof: When a packet in flow j arrives at the scheduler, it may be blocked by

only one packet of other flow since the forwarding processor has been assumed

powerful enough to forward the first packet before the succeeding packet

arrives. Therefore, the worst case queuing time is
Ls max

R

s≠j
s∈S as a result of the

non-preemption of the presently processed packets. Then the scheduler will

process the packet with full service rate R which makes βj t = R ∙ (t − T0 −

Ls max

R

s≠j
s∈S) to be the service curve offered to flow i.

3.6.3.2 Multi-Hop End-to-End Delay Analysis

The packet end-to-end time delay consists of three main parts which are the

delay in the end system, delay in the switch and delay on the link propagation.

This end-to-end delay can be illustrated below:

Delay = DES + DSwitch + Dpropagation (3-30)

Where:

DES is the latency spent in end system.

DSwitch is the latency expended in switch.

Dpropagation is the propagation delay of the link propagation.

45

The propagation delays on link propagation are assumed upper bounded by

Tprop
max .

The total service curve of a given VL flow should be obtained first to get the

multi-hop end-to-end delay bound. After that, the total service curve should be

applied to the formula (3-29).

3.6.3.3 Multi-Hop Total Service Curve

In [58], the end-to-end service curve for a given flow is represented as below:

𝜷𝒆𝟐𝒆 = 𝒎𝒊𝒏𝒉∈𝟏,…,𝑯 𝑹𝒉(𝒕 − 𝑯
𝑳𝒎𝒂𝒙

𝑹𝒕𝒓𝒂𝒏𝒔
− 𝑯𝑻𝒇 − 𝑻𝒌𝒉) (3-31)

Where:

H is the total number of the switch nodes.

Rh is the service rate provided to the given flow at hop h.

Min(Rh) is the minimum service rate of all network nodes through the

transmission path for a given flow.

Rtrans is the physical transmission rate.

Tf denotes the time in checking the forwarding table.

Tkh is the queuing time in node h.

By applying the formula (3-29) to gain a given virtual link flow when the switch

applies Round-Robin as its schedule policy, the total service curve for given

flow VLj can be expressed by the following formula.

𝜷𝒋 𝒆𝟐𝒆(𝑹𝑹) = 𝒎𝒊𝒏𝟏≤𝒉≤𝑯 𝑹𝒉𝒋 ∙ (𝒕 − 𝑯 ∙
𝑳𝒋𝒎𝒂𝒙

𝑹𝒕𝒓𝒂𝒏𝒔
− 𝑯 ∙ 𝑻𝒇 − 𝑯 ∙ 𝑻𝟎 −

 𝑳𝒔𝒎𝒂𝒙𝒔∈𝑺𝒉 𝒂𝒏𝒅 𝒔≠𝒋

𝑹𝒉𝒋
𝟏≤𝒉≤𝑯)

(3-32)

Where:

Sh is the set of flows coming into the node h.

Rhj is the service rate provided to the flow j in node h.

46

3.6.3.4 Multi-Hop End-to-End Delay Analysis

In this section, a given virtual link is assumed to traverse through H switches.

By computing the maximum horizontal distance between the virtual link arrival

curve and total service curve, after adding the link propagation end-to-end delay,

the end-to-end delay is obtained.

When switches use the scheduler and each virtual link follows the traditional

(σ,ρ) model, the bound for delay without BAG of flow j is illustrated as below

𝑫𝒋 𝒆𝟐𝒆(𝝈,𝝆) =
𝑳𝒋 𝒎𝒂𝒙(𝟏+

𝝉𝒋

𝑩𝑨𝑮𝒋
)

𝒎𝒊𝒏𝟏≤𝒉≤𝑯 𝑹𝒉𝒋
+ 𝑯 ∙

𝑳𝒋 𝒎𝒂𝒙

𝑹𝒕𝒓𝒂𝒏𝒔
+ 𝑯 ∙ 𝑻𝒇 + 𝑯 ∙ 𝑻𝟎 +

 𝑳𝒔 𝒎𝒂𝒙
𝒔≠𝒋
𝒔∈𝑺𝒉

𝑹𝒉𝒋
+ (𝑯 + 𝟏)𝑻𝒎𝒂𝒙

𝒑𝒓𝒐𝒑
𝟏≤𝒉≤𝑯

(3-33)

Proof: The delay in end system is
Lj max (1+

τj

BAG j
)

min 1≤h≤H Rhj
, the propagation delay is

(H + 1)Tmax
prop

, and the delay in all H switches is H ∙
Lj max

Rtrans
+ H ∙ Tf + H ∙ T0 +

 Ls max

s≠j
s∈Sh

Rhj
1≤h≤H

Hence combining (3-27) and (3-31), formula (3-33) is obtained.

When switches utilises the scheduler and each virtual link follows the GCRA

model, the delay bound without BAG is illustrated as below

𝑫𝒋 𝒆𝟐𝒆(𝑮𝑪𝑹𝑨) =
𝑳𝒋 𝒎𝒂𝒙

𝒎𝒊𝒏𝟏≤𝒉≤𝑯(𝑹𝒉𝒋)
+ 𝑯 ∙

𝑳𝒋 𝒎𝒂𝒙

𝑹
+ 𝑯 ∙ 𝑻𝒇 + 𝑯 ∙ 𝑻𝟎 +

 𝑳𝒔𝒎𝒂𝒙
𝒔≠𝒋
𝒔∈𝑺𝒉

𝑹𝒉𝒋
𝟏≤𝒉≤𝑯 +

[
𝑳𝒋 𝒎𝒂𝒙

𝒎𝒊𝒏𝟏≤𝒉≤𝑯 𝑹𝒉𝒋
− (𝑩𝑨𝑮𝒋 − 𝝉𝒋)]+ + (𝑯 + 𝟏) ∙ 𝑻𝒎𝒂𝒙

𝒑𝒓𝒐𝒑
 (3-34)

Proof: The proof is similar to the formula (3-33) which will not be listed again.

3.7 Total Time Delay Analysis

As elaborated above, the delay among the end system scheduler, switch and

transmission propagation has been achieved, the (σ,ρ) model and GCRA model

respectively. This project tries to obtain the total delay from the traffic regulator,

end system scheduler, switch and transmission propagation. As assumed

before, the traffic regulator in this project is powerful enough which will not

47

impose an extra delay to the whole communication. Thus, the entire

transmission time this project focuses on can be illustrated as below:

For the (σ,ρ) model

𝑫𝒋 𝑳𝒎𝒂𝒙(𝝈,𝝆) = 𝑩𝑨𝑮𝒋 +
𝑳𝒋 𝒎𝒂𝒙(𝟏+

𝝉𝒋

𝑩𝑨𝑮𝒋
)

𝒎𝒊𝒏𝟏≤𝒉≤𝑯 𝑹𝒉𝒋
+ 𝑯 ∙

𝑳𝒋 𝒎𝒂𝒙

𝑹𝒕𝒓𝒂𝒏𝒔
+ 𝑯 ∙ 𝑻𝒇 + 𝑯 ∙ 𝑻𝟎 +

 𝑳𝒔 𝒎𝒂𝒙
𝒔≠𝒋
𝒔∈𝑺𝒉

𝑹𝒉𝒋
+𝟏≤𝒉≤𝑯

(𝑯 + 𝟏)𝑻𝒎𝒂𝒙
𝒑𝒓𝒐𝒑

 (3-35)

For the GCRA model

𝑫𝒋 𝑳 𝒎𝒂𝒙(𝑮𝑪𝑹𝑨) = 𝑩𝑨𝑮𝒋 +
𝑳𝒋 𝒎𝒂𝒙

𝒎𝒊𝒏𝟏≤𝒉≤𝑯(𝑹𝒉𝒋)
+ 𝑯 ∙

𝑳𝒋 𝒎𝒂𝒙

𝑹
+ 𝑯 ∙ 𝑻𝒇 + 𝑯 ∙ 𝑻𝟎 +

 𝑳𝒔𝒎𝒂𝒙
𝒔≠𝒋
𝒔∈𝑺𝒉

𝑹𝒉𝒋
𝟏≤𝒉≤𝑯 +

[
𝑳𝒋 𝒎𝒂𝒙

𝒎𝒊𝒏𝟏≤𝒉≤𝑯 𝑹𝒉𝒋
− (𝑩𝑨𝑮𝒋 − 𝝉𝒋)]+ + (𝑯 + 𝟏) ∙ 𝑻𝒎𝒂𝒙

𝒑𝒓𝒐𝒑
 (3-36)

According to [39], the GCRA model could obtain a tighter delay bound than the

(σ,ρ) model. To obtain a tighter delay, the GCRA model is proposed in this

project.

During the AFDX data divided process, each divided message will be added the

extra data which are the source port, destination port, destination IP address,

sequencer number and length of data. All those data occupy another

4+4+4+4+4=20 bytes. This makes each divided message only contains (Lmax-20)

bytes of AFDX data. Thus, the total delay of the whole AFDX network can be

illustrated as

𝑫𝒋 𝒘𝒉𝒐𝒍𝒆 𝒕𝒊𝒎𝒆(𝑮𝑪𝑹𝑨) =
𝑷

(𝑳𝒋 𝒎𝒂𝒙−𝟐𝟎)
 ∙ (𝑩𝑨𝑮𝒋 +

𝑳𝒋 𝒎𝒂𝒙

𝒎𝒊𝒏𝟏≤𝒉≤𝑯(𝑹𝒉𝒋)
+ 𝑯 ∙

𝑳𝒋 𝒎𝒂𝒙

𝑹
+ 𝑯 ∙ 𝑻𝒇 + 𝑯 ∙ 𝑻𝟎 +

 𝑳𝒔𝒎𝒂𝒙

𝒔≠𝒋
𝒔∈𝑺𝒉

𝑹𝒉𝒋
𝟏≤𝒉≤𝑯 + [

𝑳𝒋 𝒎𝒂𝒙

𝒎𝒊𝒏𝟏≤𝒉≤𝑯 𝑹𝒉𝒋
− (𝑩𝑨𝑮𝒋 − 𝝉𝒋)]+ + (𝑯 + 𝟏) ∙ 𝑻𝒎𝒂𝒙

𝒑𝒓𝒐𝒑
) (3-37)

In this formula, P is the data size sent by the avionics application.

In each experiment, the avionics data has a fixed size 640 bytes. In this project,

the Tf is set to 10 μs according to the datasheets of switches used in this

simulation. T0 is 0 due to the mechanism of the FACADE platform. Meantime, τ

is also considered as 0 since no more than three virtual links will execute

48

simultaneously. That is to say, the total time delay values calculated in this

thesis are all acquired by using the GCRA model with formula (3-37).

3.8 Summary

This chapter introduces the network calculus. Firstly, the definitions of the

cumulative function, arrival curve as well as service curve are introduced. Then

the delay bound is represented which can be deduced by the arrival curve and

service curve. Secondly, the end system delay model and the AFDX switch

delay model are represented. Thirdly, the arrival curve and service curve of

AFDX network are illustrated, the (σ,ρ) model and GCRA model respectively.

Fourthly, the latency for a single flow cross the switch scheduler is analysed.

Fifthly, the end-to-end delay is illustrated, from the single hop delay to the

multiple hop delay, both the (σ,ρ) model and GCRA model. Finally, the total

time delay of this project bases on the GCRA model is obtained.

49

4 DEVELOPMENT OF FACADE AND AVIONICS

APPICATION SIMULATION PLATFORM

4.1 The Framework of FACADE

The AFDX network simulation platform applied in this thesis named FACADE is

same as the previous project [59] [60] [61]. Some modifications have been

made to obtain an appropriate platform for experiment purpose. The

architecture of the FACADE is shown in Figure 4-1.

Txer

Sequencer

Round Robin Scheduler

Virtual Link Scheduler

Rxer

Dispatcher

Assembler
Data

Reception
Module(Raf)

Data
Transmission
Module(Af)

Database
Module

(CreateDB)

Configuration
File

Database
File

End
System 2

End
System 3

End System 1

Program Module

Program Sub-module

End System

File

Facade Module

Message Queue

File I/O

AFDX

Figure 4-1 Architecture of FACADE

As presented in the figure, there are four main modules in the FACADE platform

which are the Database module, FACADE module, Data Transmission module

and Data Reception module. The main functions of each module will be shown

below:

Database Module

The database files can be built by two different methods, creating and

maintaining by users manually or generating by platform automatically. The

manual mode could increase the complex of the platform utilisation and may

cause the abnormal of the platform if the database file goes wrong. In this

platform, the database files are built by the platform itself. The Database

50

module creates database files for each end system respectively. Those

database files contain the parameters of the source end systems, destination

end systems as well as virtual links. All those parameters should be loaded

when other modules are executing. In other words, the Database module

should be executed before other modules to create database files. When the

Database module is executed, the parameters stored in database files will be

printed on the screen for error correction.

Data Transmission Module (Af)

The Data Transmission module is proposed to receive the AFDX data from the

avionics application. It acts as an interface of the FACADE platform. After

receiving the data, the Data Transmission module will transfer those data to the

Txer sub module.

Data Reception Module (Raf)

The Data Reception module is proposed to receive the AFDX data from the

Assembler sub module. It acts as an interface of the FACADE platform. After

receiving the data, the Data reception module transfers those data to the

avionics application, the transmission completed.

FACADE Module

The FACADE module is the main part of the whole FACADE platform. It can be

divided into two main partitions: the AFDX transmission partition and the AFDX

reception partition.

The AFDX transmission partition contains four sub modules: Txer, Sequencer,

Round Robin Scheduler and Virtual Link Scheduler. The Txer sub module is

invited to initialize each related sub module running environment and to transmit

the AFDX data. After initialization, the Txer sub module will receive the AFDX

data from the Af module. After that, those received AFDX data will be

transformed into the AFDX fragmented messages. Then those fragmented

messages will be transferred to corresponding destination end systems thought

the UDP port by using UDP socket.

51

The initialization of Txer sub module contains several functions which are:

 Loading the configuration by reading the configuration files.

 Loading the parameters of the end systems and virtual links by reading the

database files.

 Initialize the message queue, semaphore and Mutex for corresponding sub

modules.

 Allocating the storage memory for the running environment parameters.

 Executing and managing the other modules of the AFDX transmission

partition.

The function of Sequencer, Round Robin Scheduler and Virtual link Scheduler

are listed below:

 Sequencer: This sub module divided received AFDX data into fragmented

messages. After that, the fragmented messages will be added a sequence

number and then transmitted into corresponding sub-virtual links.

 Round Robin Scheduler: This sub module is proposed to transmit the

messages from sub-virtual link to corresponding virtual link follow the round

robin algorithm.

 Virtual Link Scheduler: This sub module sends fragmented messages

over the virtual link to corresponding destination end system through the

UDP port by utilising UDP socket. The parameters of the virtual link are

stored in the database files which have been loaded by the Txer sub

module.

Another partition, AFDX reception partition, is used to receive the AFDX

fragmented messages and convert them into the original AFDX data. Then

those data will be sent to the Raf module. The AFDX reception partition

contains three sub modules: Rxer, Dispatcher and Assembler.

The Rxer sub module listens to the specific UDP ports which have been

predefined in the database files. Those AFDX fragmented messages sent by

the source end systems will then be received through the UDP port by using

UDP socket. The contents and sequence numbers of those messages will be

52

obtained by reading those messages. After that, those messages are

assembled and retrieved into the original data. Finally, those data will be sent to

the Raf module.

The Rxer sub module is woken by the Txer sub module. It also has to initialize

the running environment for corresponding modules. The initialization functions

are:

 Loading the configuration by reading the configuration files.

 Loading the parameters of the end systems and virtual links by reading the

database files.

 Initializing the message queue, semaphore and Mutex for corresponding

sub modules.

 Allocating storage the memory for the running environment parameters.

 Executing and managing other sub modules of the AFDX reception partition.

The function of Dispatcher and Assembler are listed below:

 Dispatcher: Receiving the fragmented messages from the Rxer sub

module, obtaining the contents and sequencer number of each message

and send them to the Assembler sub module.

 Assembler: Receiving the fragmented messages from Dispatcher sub

module, assembling those messages by orders and retrieve them into the

original AFDX data. After that, all these original AFDX data will be

transferred to the Raf module.

4.2 Data Exchange Behaviour

As represented in the Figure 4-2, after every module and sub module are ready,

the avionics application can start to transmit the AFDX data at any time. When

AFDX data have been sent by the avionics application, those data will be

received by the Af module first. Secondly, the AFDX data will be sent to the

Txer sub module. The Txer sub module will obtain the contents of the data and

then sent them to the Sequencer sub module. The Sequencer sub module is

invited to divide AFDX data packets into the fragmented messages. Then those

consecutive fragmented messages will be added a sequence number

53

sequentially and sent to the corresponding sub-virtual links. After that, those

fragmented messages will be managed by the Round Robin Scheduler sub

module. This module is proposed to transmit those fragmented messages from

the sub-virtual links to corresponding virtual links following the round robin

algorithm. After the fragmented messages reaching their corresponding virtual

links, they will be sent to the corresponding destination end systems via specific

UDP port which is defined in the database files by using the UDP socket.

After been sent by the Virtual Link Scheduler sub module, those fragmented

messages will be transmitted to the destination end systems through Ethernet

switch. In each destination end system, the Rxer sub module is proposed to

listen to specific UDP port. Once those messages arrive, the Rxer sub module

will receive and gain the contents of them. After that, the Rxer sub module will

send those contents to the free Dispatcher thread and release the storage

places for the following messages. After the Dispatcher sub module obtains

those contents, it will then send those contents to the Assembler sub module. In

the Assembler sub module, the queue is invited to storage the fragmented

messages belong to one AFDX data. After the last fragmented message has

been received, the original AFDX data is retrieved. This original AFDX data will

then be sent to the avionics application through the Raf module. After that, the

whole AFDX data transmission completed.

54

Txer

Virtual link Scheduler

Af

sequencer

Round Robin
Scheduler

Sub
Virtual
link

End
system 2

Avionics
Application

Rxer module

Dispatcher

Assembler

Raf

Avionics
Application

Rxer module

Dispatcher

Assembler

Raf

End
system 1

End
system 3

Ethernet Switch

sequencer
sequencer

Avionics
Application

Figure 4-2 Simulation Platform Data Exchange Behaviour

4.3 Detailed Design of Avionics Application Simulation Modules

In this section, each avionics application simulation module will be elaborated.

4.3.1 Avionics Data Transmission Application Module

The Avionics data transmission application (ADTA) module is implemented by

the author to simulate the avionics application data transmission function. This

module creates the avionics data in the particular format which can be

transmitted to the FACADE platform. The flow chart of this module is

represented in Figure 4-3.

In this module, the socket for data transmission is created at first. Then the

parameters of server are allocated. After ‗Data‘ dedicated space which stored

the avionics data is allocated by function intializeIM, the function addDataIM is

called to move the avionics data into ‗Data‘. After that, the rawdata ‗Rd‘ is

introduced to store ‗Data‘. This rawdata can be transmitted on the AFDX

network. The function innerSerializeIM is called to serialize the data ‗Data‘ into

the rawdata ‗Rd‘. Then ‗Rd‘ is sent to the FACADE platform. Once this action

55

completed, the ADTA module will record the transmission time and then release

the allocation memory of ‗Data‘ as well as ‗Rd‘. As long as no ‗SIGINT‘ signal

received, the ADTA module would transmit the avionics data to the AFDX

network continuously.

Data validation function is developed to inspect if there is any invalid AFDX data

during the data transmission period. At first, the author considers applying the

CRC check to this module. Since the execution duration of this module and the

FACADE platform are already quite high, the author abandons this method.

Then the author utilises one section of the data as the data validation part.

Before each AFDX data is transferred, one serial number which sets as data

check bit is copied into this AFDX data. Once this AFDX data is received by

Avionics Data Reception Application which will be introduced next, this data

check bit will be verified. If this check bit is not as same as it supports to be, the

received AFDX data is invalid.

For the loss data detection purpose, the loss data detection function is also

invited to both avionics application simulation modules and FACADE platform.

At first, the author plans to use the three times handshake mechanism. Once

again, due to the platform efficiency, this mechanism is not invited in this project.

The author applies a simpler way to fix this issue which is the data counting.

During the communication, both transmission and reception module will count

the number of the data. Once the transfer completed, these numbers are

displayed on the screen which can be utilised to judge if there are any missing

AFDX data during the transmission section.

The functions in ADTA module are listed in Table 4-1.

Table 4-1 Functions in ADTA Module

Number API Description

1 initializeIM

Initializing the ImplicitMessage, allocating memory

for its buffer and setting its parameter to the initial

values. This function does not allocate memory for

the ImplicitMessage itself. It must have been

56

allocated beforehand by the user

2 initializeQueue

Initializing the whole Queue, allocating memory for

its buffer and setting its parameters to the initial

values. This function does not allocate memory for

the structure Queue itself. It must have been

assigned beforehand by the user.

3 addQueue
This function adds the Queueable data to the

Queue.

4 addDataIM
This function adds the data, which are pointed by

data, to the ImplicitMessage.

5 destroyIM

This function frees all the previous allocated

memory of the inside ImplicitMessage, but not the

memory of the ImplicitMessage itself. It has to be

released manually if needed.

6 destroyQueue

This function releases all the previous allocated

memory of the inside Queue, but not the memory

of the structure Queue itself. It has to be released

manually if needed.

7 innerSerializeIM
This function converts the whole ImplicitMessage

into a RawData.

8 innerSerializeQueue
This function converts the whole Queue into a

RawData.

9 bareSerializeQueue

This function converts the whole Queue into a byte

buffer pointed by data and returns the size by the

parameter length.

10 viewQueue
This function looks for the index element inside the

Queue and retrieves it, without removing it off.

57

start

end

sockfd=socket()

serverName
serverLength

initializeIM(&Data)

Sendto(udpSocket,Rd.data,Rd.length)

destroyIM(&Data)

*buf=malloc
Rd.data=buf

innerSerializeIM((ImplicitMessage) Data, &Rd)

Time_(messagetime,filename)

Free(Rd.data)
Rd.data=NULL

N Y

addDataIM(&Data)

SIGINT

Figure 4-3 Flow Chart of Avionics Data Transmission Application Module

58

4.3.2 Avionics Data Reception Application Module

Avionics data reception application (ADRA) module is implemented by the

author to simulate the avionics application data send function. This module

receives avionics data in a particular format which is transmitted from the

FACADE platform. The flow chart of this module is represented in Figure 4-4.

In this module, a socket for data reception is created and bound at first. Then

the parameters of the server are allocated. After ‗Data‘ dedicated space which

stored the avionics data is allocated by function intializeIM, the API recvfrom is

called to receive avionics data from FACADE platform to ‗buffer.' Then data in

‗buffer‘ is moved into the rawdata Rd for deserialization. After Deserializing, the

rawdata ‗Rd‘ is copied into ‗Data‘ and an array is created to obtain each data in

the ‗Data‘. After gaining all the data, the storage memories for both ‗buffer‘ and

‗Data‘ will be released. As long as no ‗SIGINT‘ signal received, the ADRA

module would receive the avionics data from the FACADE platform

continuously.

The ADRA also has the data check function, loss data detection function and

time recording and outputting function which have been elaborated before.

The functions in ADTA module are listed in Table 4-2.

Table 4-2 Functions in ADRA Module

Number API Description

1 initializeIM

Initializing the whole Queue, allocating memory for

its buffer and setting its parameter to the initial

values. This function doe not allocate memory for

the ImplicitMessage itself, it must have been

allocated beforehand by the user

2 initializeQueue

Initializing the whole Queue, allocating memory for

its buffer and setting its parameters to the initial

values. But, this function does not allocate

memory for the structure Queue itself, it must have

been allocated beforehand by the user.

59

3 addQueue
This function adds the Queueable data to the

Queue.

4 addDataIM
This function adds the data, which are pointed by

data, to the ImplicitMessage.

5 destroyIM

This function frees all the before allocated memory

of the inside ImplicitMessage, but not the memory

of the ImplicitMessage itself. It has to be released

manually if needed.

6 destroyQueue

This function frees all the before allocated memory

of the inside Queue, but not the memory of the

structure Queue itself. It has to be released

manually if needed.

7 innerDeserializeQueue This function converts a RawData into a Queue.

8 innerDeserializeIM
This function converts a RawData into an

ImplicitMessage.

60

start

end

sockfd=socket()

serverName
serverLength

initializeIM(&Data)

to.temp=Data.q.buffer

Buffer[i]=’\0'

Rd.length=size
Rd.data = buffer

innerDeserializeIM(&Data,(RawData) Rd)

Time_(messagetime,filename)

 destroyIM(&Data)

N Y

Recvfrom(udpSocket, (void *)buffer)

SIGINT

Status = bind(udpSocket)

Figure 4-4 Flow Chart of Avionics Data Reception Application Module

61

4.4 Detailed Function Design of FACADE Platform

4.4.1 Af Module

In previous work, the Af module is utilised to create avionics data and to send

them to Txer sub module (See Figure 4-5). Since both Af module and Txer sub

module are portions of the FACADE platform, independent modules which use

AFDX network for data exchanging should be introduced as avionics application.

The avionics application simulations have been presented before as ADTA,

ADRA. Thus, a modified Af module has been achieved by the author for

receiving data from the avionics application and sending these data to

subsequent AFDX module.

In this modified Af module, the UDP socket is created and bound after

initialization of running environment of the Af module. Then the implicit message

‗m‘ is initialized for storing avionics data from ADTA module. After the data from

ADTA is received and preserved in ‗buffer‘, these data are copied into the

rawdata ‗Rd‘ and then deserialized into the message ‗m‘ for further transmission

in the AFDX network. Later, the message ‗m‘ is send to the Txer sub module

and the transmit time is recorded. As soon as the transfer complete, the

avionics data storage memory ‗buffer‘ as well as message ‗m‘ would be

released for the next round. As long as no ‗SIGINT‘ signal received, the Af

module would receive the avionics data from avionics application, reformat and

send these data to the AFDX network continuously.

In this project, the total time delay is defined as the transmission duration

between Af module receives AFDX data from ADTA module and Raf module

sends data to ADTA module.

To record the data transmission time, the time record and output function is

invited. This function records the current time of transmission and output this

time into a file which named after the transmission port.

62

start

end

initializeFramework()

udpSocket=
socket(PF_INET)

sendMessage(port,m)

destoryIM()

destoryFramework()

bind(udpSocket)

initializeIM(&m)

innerDeserializeIM
(&m,(RawData) Rd)

SIGINT
N

Y

Recvfrom(udpsocket,buffer)

Figure 4-5 Flow Chart of Af Module

63

4.4.2 Raf Module

In the previous work, the Raf module is utilised to receive the avionics data and

decapsulate them into a readable data. As the same reason mentioned before

with Af module, in this project, a modified Raf module has been achieved by the

author for receiving the AFDX data from corresponding AFDX sub module and

sending these data to ADRA module (See Figure 4-6).

In this modified Raf module, the UDP socket is created after initialization of the

running environment of Raf module. Then the AFDX data from the Assembler

sub module are obtained. After the AFDX data have been captured and stored

in the rawdata ‗Rd‘, they are ready to be sent to the ADRA module. As long as

no ‗SIGINT‘ signal received, the Raf module would receive the AFDX data from

the FACADE platform and send these data to the ADRA module continuously.

To record the data reception time, the time record and output function is invited.

This function records the current time when data is sent to ADRA module and

output this time into a file which named after the reception port.

64

start

end

initializeFramework()

receiveMessage(port,m)

sendto(udpSocket,Rd.data)

destoryIM()

destoryFramework()

udpSocket =
socket(PF_INET)

initializeIM()

SIGINT

Y

N

Figure 4-6 Flow Chart of Raf Module

65

4.4.3 CreateDB Module

The CreateDB module is proposed to create the database files which will be

loaded by the corresponding modules and sub modules. Those database files

should be prepared before the FACADE platform execution. This module is

achieved by three main files which are main5.c, dbm.c, dbm.h. Both dbm.c and

dbm.h are utilised to achieve the database operation APIs which are listed in

Table 4-3. Main5.c stores the parameters of the source end systems,

destination end systems as well as virtual links and uses the function listed in

Table 4-3 to create the database files which contain the parameters of end

systems and virtual links. After the CreateDB module execution, each end

system will possess its specific database files.

Table 4-3 Functions in CreateDB Module

Number API Description

1 writeSourceDB

Reading data of the source end systems and

duplicate these data into the array of source end

systems.

2 readSourceDB
Reading and obtaining data from the array of

source end systems.

3 writeDestDB

Reading data of destination end systems and

duplicating these data into the array of destination

end systems.

4 readDestDB
Reading and obtaining data from the array of

destination end systems

5 writeVLDB
Reading data of virtual links and duplicating these

data into the array of virtual links

6 readVLDB
Reading and obtaining data from the array of

virtual links

7 createTxerSourceDB

Reading and obtaining data from array of the

source end system and create corresponding

source end system database file

66

8 createTxerVLDB

Reading and obtaining data from the array of

virtual link and create corresponding virtual link

database file

9 createTxerDestDB

Reading and obtaining data from the array of

destination end system and create the

corresponding destination of source end system

database file

10 createRxerDestDB

Reading and obtaining data from the array of

destination end system and create corresponding

destination of destination end system database file

4.4.4 FACADE Module

As presented before, Af and Raf modules are the interfaces of the FACADE

platform while the CreateDB module generates the database files of this

platform. The main AFDX network data exchange behaviour is achieved by the

FACADE module. The FACADE module consists of seven sub modules which

are listed below:

 Txer sub module

 Sequencer sub module

 Round Robin Scheduler sub module

 Virtual link Scheduler sub module

 Rxer sub module

 Dispatcher sub module

 Assembler sub module

All these sub modules will be represented in the following section.

4.4.4.1 Txer Sub module

Txer sub module is proposed to initialize the Txer sub module, Sequencer sub

module, Round Robin Scheduler sub module and Virtual Link Scheduler sub

module as well as their corresponding parameters. Moreover, the Txer sub

module receives the data flows from the Af module and transmit those data

67

flows to the idle sequencer thread. The flow chart of Txer sub module is

represented in Figure 4-7.

Firstly, the Txer sub module calls the main function initializeTxer to initialize the

running environment of the Txer sub module. The processes which function

initializeTxer achieved are represented below:

1. Calling the API sigprocmask to block the signal ‗SIGTERM‘ and ‗SIGINT‘

[62], preventing the Txer sub module from unexpected interruption during

the initialization period.

2. Calling the function loadConfigurationTxer to load the source end system

configuration files.

3. Calling the function loadDBTxer to allocate the storage memories for

parameters of the source end systems, destination end systems and virtual

links. After that, the loadDBTxer will obtain these parameters by reading the

database files of end systems and virtual links which are created by the

CreateDB module. At the end of function loadDBTxer, the API atexit [63] is

invited to release these allocated storage memories after the simulation

platform exit.

4. Calling the function setEnvironmentRxer to allocate the storage memories

and initialize the parameters of Rxer sub module, Dispatcher sub module

and Assembler sub module.

5. Calling the function LaunchRxerTxer. This function calls the function runTxer

to initiate the Rxer sub module, Dispatcher sub module and Assembler sub

module. At the end of the function LaunchRxerTxer, the API atexit is invited

to terminate the Rxer sub module after the simulation platform exit by using

the function waitForRxer.

6. Calling the function launchRRSandVLSTxer to initiate the Round Robin

Scheduler sub module and Virtual Link Scheduler sub module. The API

atexit is also invited at the end of this function to terminate the Round Robin

Scheduler sub module and Virtual Link Scheduler sub module after the

68

simulation platform exit by using the function waitForRRSandVLS.

7. Calling the function setSequencersEnv to allocate the storage memories for

corresponding parameters of the Sequencer sub module which are the

sequencer thread id ‗sequencer_set‘ , the sequencer semaphore

‗sequencer_sem‘ , the storage for messages from Txer sub module

‗petition_tray‘ , and the storage for fragmented messages send to sub-virtual

link ‗fmessage‘ , the storage for messages of Sequencer sub module ‗in_tray‘

and its mutex ‗in_tray_mutex‘ , the indication for idle sequencer thread

‗free_sequencer‘ and its mutex ‗free_sequencer_mutex‘ . At the end of this

function, the API atexit is invited to release the storage memories of the

parameters of the Sequencer sub module after the simulation platform exit

by using the function freeSequencerEnv.

8. Calling the function launchSequencers to initialize the Sequencer sub

module. When the simulation platform exited, the API atexit is proposed to

terminate the Sequencer sub module by calling the function

waitForSequences.

9. Calling the function openMQTxer to create the message queue ‗txer_mq‘

and its semaphore. This message queue is utilised to receive the data flows

which are sent by the Af module. When the simulation platform exited, the

API atexit is proposed to release this message queue.

10. Procedures 2-9 are the initializations of the Txer sub module and

corresponding sub modules. After these procedures complete, the function

initializeTxer reactivates the signal ‗SIGTERM‘ and ‗SIGINT‘ which means

that the Txer sub module could be terminated since then.

Then, after the function initializeTxer complete, the function runTxer would enter

the while loop. In this loop, the runTxer receives the data flows from the

message queue ‗txer_mq‘ and stores these data flows into the buffer

‗txer_petition‘. Then the data in ‗txer_petition‘ are copied into the ‗in_tray‘. After

then, the runTxer will search for the idle sequencer thread. Once an idle thread

is found; the data in ‗in_tray‘ will be sent to this thread for further operation.

69

Start

InitializerTxer()

mq_receive(mq_id,&txer_petition)

in_tray=txer_petition

out=false

out=true

(i<sequencer_threads)&&
(free_sequencer[i]==true)

i<sequencer_threads

out=true
sem_post(sequencer_sem+i)
free_sequencer[i]=false

i++

sem_wait(&go_txer)

LoadDBTxer()

SetEnvironmentRxer()

LaunchRxerTxer()

SetSequencersEnv()

LaunchRRSandVLsTxer()

SetEnvironmentTxer()

LaunchSequencers()

OpenMQTxer()

sigemptyset(&set)
sigaddset(&set, SIGTERM)
sigaddset(&set, SIGINT)

sigprocmask(SIG_BLOCK, &set, NULL)

sigemptyset(&act.sa_mask)
sigaction(SIGTERM, &act, 0)
sigaction(SIGINT, &act,0)

sigprocmask(SIG_UNBLOCK, &set, NULL)

!out==true

sem_wait(&sequencer_ready)
i=0

N

N

Y

Y

Y

N

N

Y

Y

N

Figure 4-7 Flow Chart of Txer Sub module

70

4.4.4.2 Sequencer Sub module

As mentioned before, the Txer sub module will send the processed data to the

Sequencer sub module. After data arrived, the Sequencer sub module will

segment the data into fragmented messages, add a sequence number to each

fragmented message and send these messages to corresponding sub-virtual

links. The flow chart of the Sequencer sub module is illustrated in Figure 4-8.

Firstly, the main function of the Sequencer sub module sequencer initialises

‗out_seq‘ to false. This argument is utilised to indicate whether the fragmented

message is the last message of the whole data which received from the Txer

sub module.

Secondly, the Sequencer sub module enters the while loops and detects the

value of ‗out_seq‘. If the ‗out_seq‘ equals to true, it indicates that the Sequencer

sub module has already received the final data from the Txer sub module, the

while loop will end after this execution. If the ‗out_seq‘ equals to false, the

Sequencer sub module will receive the data from Txer sub module buffer

‗in_tray‘ and send them to the sequencer buffer ‗petition_tray‘. Then the data in

‗petition_tray‘ will be divided into fragmented messages following the predefined

parameter Lmax. The Lmax defines the largest size of the data packet which can

be transmitted on the virtual link related to the parameter ‗petition_tray.port‘.

After that, those fragmented messages will be copied into the ‗fmessage‘ and

added a sequence number which ranges from 0 to 255 sequentially. Among all

these sequence numbers, 0 is defined as a specific number which can only be

inserted into the last fragmented message of data. This design makes it

possible for the FACADE platform to recognize whether the platform has

received the last fragmented message of one data. After adding the sequence

numbers, the ‗fmessage‘ will be sent to corresponding sub-virtual links ‗env-

>sub_queue‘ according to the value ‗petition_tray.port‘ by calling the functions

subVirtualLink and addQueue. At last, the Sequencer sub module calculates the

size of remaining data in the ‗petition_tray‘ and assigns this value to the

‗remain_byte‘s. The ‗remain_bytes‘ greater than 0 means there are remaining

data waiting to be fragmented. Those remaining data will cover the original data

71

in the ‗petition_tray‘ and execute the while circulation until the ‗remain_bytes‘

equals to 0.

72

ID:thread_id

out_seq=false

!out_seq==true

Sem_post(&sequencer_ready)
sem_wait(&sequencer_sem+id)

calculate seq
0:the final message
1-255:normal message

fmessage[id].m.sequence = seq

current_size=petition_tray[id].length

fmessage=petition_tray[id];seq

Seq_wait(env->subVL_full)
addQueue:From:fmessage
To:env[i].sub_queue
sem_post(env->work)

current_size>myLmax

Remain_bytes=
current_size-myLmax

remain_bytes<=0

free_sequencer[id]=true

end

remain_bytes=0

N

Y

N

Y

N
Y

start

petition_tray[id]=in_tray

isEndPetition(in_tray)

pthread_mutex_lock(&in_tray_mutex)

pthread_mutex_unlock
(&in_tray_mutex);

out_seq=true

Y

Y

N

pthread_mutex_unlock(&in_tray_mutex)

sem_post(&go_txer)

mylMax ==-1

seq = 0
&fmessage[id].source_port=
&petition_tray[id].port

N

Figure 4-8 Flow Chart of Sequencer Sub module

73

4.4.4.3 Round Robin Scheduler Sub module

The Round Robin Scheduler sub module bases on the round robin algorithm. It

sequences the fragmented messages in their correct orders and sends them

from the sub-virtual links to corresponding virtual link. The flow chart of Round

Robin Scheduler sub module is represented in Figure 4-9.

Firstly, the main function of Round Robin Scheduler sub module

roundRobinScheduler initialises the struct ‗env‘ to store the virtual link related

environment arguments. Secondly, the module will enter the do loop and the

semaphore ‗env->work‘ reduces one to indicate the reduction of the idle sub-

virtual links ‗subvl_queues‘. The ‗subvl_queues‘ is introduced to store the data

waiting to be sent to corresponding virtual link. Thirdly, the module estimates

whether the ‗subvl_queues‘ is empty. If ‗subvl_queues‘ is empty, the data in this

sub-virtual link have been transmitted completely which means this sub-virtual

link is idle. The argument count will add one to indicate the rise amount of the

unused sub-virtual links. If the ‗subvl_queues‘ is not empty, the data in

‗subvl_queues‘ will be transmitted into the ‗subvl_m‘. Then the module will send

the data in ‗subvl_m‘ to corresponding virtual link ‗env->vl_queue‘.

74

start

out=false
finishing=false

again=false

!finishing==true

again=false;k=0;count=0

k<env->n_queues

k++

!isEmptyQueue(env-
>subvl_queue(k))

again=|=!isEmptyQueue()

isLastMessage(env->subvl_m[k])

finishing=true
addMessageToVLQueue()

again==true

finishing&&count==env->n_queue

end

sem_wait(env->work)

count++

processMessage(env-
>subvl_m[k]):

sem_wait(env->vl_full)

Y

N

Y

N

Y

N

N

Y

N

Y

Y

N

!isLastMessage(env->subvl_m[k]
&&!removeQueue(Env->subvl->queue[k],
Env->subvl_m[k])

Y

N

out==true

Figure 4-9 Flow Chart of Round Robin Scheduler Sub module

75

4.4.4.4 Virtual Link Scheduler Sub module

The Virtual Link Scheduler sub module transmits the data packets following the

time interval BAG which is predefined in the virtual link database files. This sub

module sends the data packets to the physical link. These data packets will be

transmitted to the corresponding UDP port of destination end system by

network devices. The flow chart of Virtual Link Scheduler sub module is

illustrated in Figure 4-10.

Firstly, the Virtual Link Scheduler sub module initializes the struct ‗env‘ which is

proposed to store the virtual link related environment arguments. Secondly, the

module read the BAG value ‗vls.bandwidthAllocationGap‘ of the chosen virtual

link which will transmit the data packets later. The sub module will send the data

packets following the BAG as its time interval. Lately, the Virtual Link Scheduler

sub module creates a UDP socket which will then be utilised to send the data

packets to the destination end system. After all operations mentioned above

has been completed, the sub module will enter the do loop and exit the loop till

the parameter ‗out‘ equals to true.

In this ‗do‘ loop, first data of the virtual link queue ‗vl_queue‘ will be copied into

the fragmented message ‗vl_m‘. The ‗vl_m‘ is introduced to store the

fragmented messages which are processed by the Virtual Link Scheduler sub

module. If the message in ‗vl_m‘ is not the final message of all messages, the

sub module will copy the data from the ‗vl_queue‘ to the ‗vl_m‘ successively.

Then the data in ‗vl_m‘ will be sent to corresponding destination end system by

UDP socket. If the message in ‗vl_m‘ is the final message, the message has

already been forwarded to the last loop. Then the parameter out becomes true,

the ‗do‘ loop terminates.

76

start

out=false
finishing=false
again=false

!finishing==true

again=false;k=0;count=0

k<env->n_queues

k++

!isEmptyQueue(env-
>subvl_queue(k))

again=|=!isEmptyQueue()

isLastMessage(env->subvl_m[k])

finishing=true
addMessageToVLQueue()

again==true

finishing&&count==env->n_queue

end

sem_wait(env->work)

count++

processMessage(env-
>subvl_m[k]):

sem_wait(env->vl_full)

Y

N

Y

N

Y

N

N

Y

N

Y

Y

N

!isLastMessage(env->subvl_m[k]
&&!removeQueue(Env->subvl->queue[k],
Env->subvl_m[k])

Y

N

out==true

Figure 4-10 Flow Chart of Virtual Link Scheduler Sub module

77

4.4.4.5 Rxer Sub module

As mentioned before, the Rxer sub module is invoked by the Txer sub module

using the function LaunchRxerTxer. This sub module is proposed for the

destination end system to receive the data flows transferred from the source

end system. The flow chart of the Rxer sub module is shown in Figure 4-11.

The operations achieved by the Rxer sub module are represented as below:

1. The API sigprocmask is called to unblock signal ‗SIGTERM‘ and ‗SIGINT‘

which have been blocked by the Txer sub module when initializing the Rxer

sub module. Then the Rxer sub module can be terminated since then.

2. Calling the function loadDBRxer to load the configuration file of the

destination end system. Firstly, the loadDBRxer will allocate the storage

memories to the key and port of destination end systems. Secondly, the

loadDBRxer will obtain these two parameters from the configuration file and

store them in the allocated storage memories.

3. Calling the function setEnvironmentRxer which has already been introduced

in the Txer sub module section.

4. Calling the function setDispatcherEnv to allocate the storage memories and

initialise the assembler queue ‗assembler_queue‘, the assembler thread

Mutex ‗assembler_queue_mutex‘, the assembler thread resource

semaphore ‗assembler_full‘ and the assembler thread running state

semaphore ‗assembler_work‘.

5. Calling the function launchDispatcher to boot the Dispatcher sub module.

6. Calling the function openAssemblerMQ to allocate the storage memories

and initialize the message queue ‗AFDXport_id‘ and the message queue

semaphore ‗AFDXport_sem‘.

7. Calling the function launchAssembler to boot the Assembler sub module.

8. Calling the function server. Firstly, the function server will create and bind

the UDP socket ‗in_port_set‘. This UDP socket is utilised to receive the data

78

flows from the source end system. Then the received data are stored in the

‗rxer_message‘. Later, the server function will obtain the data sequence

number ‗sequence‘, data of the data flows ‗data‘, the destination port of

destination end system ‗dest_port‘, the source port of the data flow

‗source_port‘, the source IP address of the data flow ‗ip_address‘ and then

copy them into the ‗rxer_message‘. At last, function server will search the

idle Dispatcher thread and send the received data to it.

79

start

InitializeRxer()

i++
FD_SET(in_port_set[i], &readfds)

Recfromsize=
Recvfrom(in_port_set[i],rxer_message)

out=false

out==true

free_dispatcher[i]==true

free_dispatcher[i]=false

free_dispatcher[i]==true

sem_post(dispatcher_sem[i])
out=true

sem_wait(dispatcher_ready)

i++

sem_wait(&go_rxer)

loadDBRxer()

setenvironmentRxer()

setDispatcherEnv()

launchDispatcher()

openAssemblerMQ()

launchAssemblers()

N

Y

Y

N

Y

N

sigemptyset(&set)
sigaddset(&set)

act.sa_handler = sigtermHandlerRxer
sigprocmask(SIG_UNBLOCK, &set, NULL);

server_address=INADDR_ANY

i=0;i<n_in

Y

Recfromsize==-1
Y

N

i=0;i<n_in;

i++;
in_port_set[i] = socket(AF_INET);

server_address.sin_port = in_keys[i];
bind(in_port_set[i]);

setsockopt(in_port_set[i]);

Y

N

N

Figure 4-11 Flow Chart of Rxer Sub module

80

4.4.4.6 Dispatcher Sub module

The Dispatcher sub module is introduced to receive the fragmented message

from the Rxer sub module. After obtaining specific values from this message,

those values will be sent to the Assembler sub module.

Firstly, the Dispatcher sub module main function dispatcher enter the while loop.

Then Dispatcher sub module will estimate whether the fragmented message in

‗rxer_message‘ is the final message. If it is the final message, the argument

out_dis will turn to true and the loop will terminate after this execution. If the

message in ‗rxer_message‘ is not the last message, The Dispatcher sub

module will obtain destination port, data, the length of data as well as the

sequence number of this fragmented message and copy those data into

‗dispatcher_message‘. Later, the ‗dispatcher_message‘ will be transmitted to

the Assembler sub module queue ‗assembler_queue‘.

81

start

id:dis_thread ID

out_dis=false

!out_dis==true end

sem_post(dispatcher_ready)
sem_wait(dispatcher_sem+id)

isEndFragmentedMessage(rxer_message)

memcopy:
From:rxer_message
To:dispatcher_message

sem_post(&go_rxer)

in_key[id]!=dispatcher_message
[id].dest_post

messageToAssembler
addQueue:
From:dispatcher_message[id]
To:assembler_queue[i]
sem_wait(&assembler__full[i])

free_dispatcher[id]=true

out_dis=true

Y

N

N

Y

N
Y

init!=cur

Y
N

Figure 4-12 Flow Chart of Dispatcher Sub module

82

4.4.4.7 Assembler Sub module

The Assembler sub module receives the fragmented messages from the

Dispatcher sub module and stores these messages in the ‗buffer‘. After all the

fragmented messages belong to one particular message have been received

completely, those fragmented messages in the ‗buffer‘ will be assembled and

transferred into the original message and then sent to the Raf module by using

a message queue.

Firstly, Assembler sub module main function assembler enters the do loop.

Then in this loop, the pending fragmented messages in the ‗assembler_queue‘

will be copied into ‗fagm‘. After that, the Assembler sub module will estimate

whether ‗fagm‘ is the final message. If the message in ‗fagm‘ is the last

message which means the transmission has been completed, the argument out

turns to true and the do loop will terminate after this execution. If the message

in ‗fagm‘ is not the final message, the fragmented message in

‗assembler_queue‘ will be copied into the ‗buffer‘, waiting for data assembly.

Then the Assembler sub module will detect the value of ‗fagm.m.sequence‘ to

estimate whether the ‗buffer‘ has received all the fragmented messages of one

data. If the transmission is completed, the fragmented messages in the ‗buffer‘

will be sent as a whole message to the Raf module through the message queue.

If not, the ‗buffer‘ will send the stored data till the Assembler sub module

receives all the fragmented messages.

83

start

id:ass thread ID

malloc:buffer
char *tail=NULL
size=0;fage=0

tail=buffer

out = true;

tail+=fagm.rd.length
size+=fagm.rd.length

fagm.m_sequence==0

sem_wait(AFDXport_sem[id])

sem_post(AFDXport_sem[id])

sem_post(AFDXport_sem[id])
tail=buffer;

size=0;

Y

N

!removeQueue(&(assembler_queue[i
d]), (Queueable)tail)

!isEndFragmentedMessage(fagm)

N

mq_send(AFDX_id[id].buffer)==-1

errno == EAGAIN

in_ports[id].isSampling

mq_receive(AFDXport_id[id])==-1

sem_post(AFDXport_sem[id])

Y

Y

Y

N

N

N

N

Y

N

Y

N

!removeQueue(&(assembler_queue[i
d]), (Queueable)&fagm)

!out

End

Y

Y

N

Y

Figure 4-13 Flow Chart of Assembler Sub module

84

4.5 Execution of Simulation Platform

4.5.1 Execution of FACADE Platform

In the compilation section, the makefile is invited to compile the simulation

platform which can increase the efficiency of the compilation. After the makefile

has been run, several executable files are generated which are CreateDB, afdx,

af, raf. The CreateDB file is utilised to execute the database module while the

afdx file is proposed to run the FACADE module. Af and raf files are invited to

execute the Af module and Raf module respectively.

The execution steps and functions of each command of the FACADE platform

are listed below:

 ./make clean: to delete the previous executable files and database files

 ./make: to create the executable files.

 ./createDB: to create the database files.

 ./afdx b <ES number> <Database file version>: to execute the FACADE

module of the simulation platform.

 ./af <Data sending port> <ES number> <DB version> <value> <Local data

exchange port>: to execute the Af module.

 ./raf <Data receive port> <ES number> <DB version> <Server data

exchange port>: to execute the Raf module.

About each end system, the fourth section of the IP address is defined as ES

number. Since the database files are generated every time before the whole

simulation platform execution, the ‗DB‘ version is 1. The ‗Value‘ is defined as 0

for reservation utilisation. The ‗Local data exchange‘ port and ‗Server data

exchange port‘ are the UDP ports which are proposed to communicate with

avionics applications. These two ports can be any ports except those busy ports

occupied by operation systems or other processes.

Ctrl +c should be applied to terminate the FACADE platform. The FACADE

module should be terminated before other modules.

85

4.5.2 Execution of Avionics Application Simulation Modules

In the compilation of avionics application simulation modules, the makefile is

also invited to compile these modules. After the makefile has been run, two

executable files generated which are linux-client and linux-server. The linux-

client is proposed to send the AFDX data to the FACADE platform. The linux-

server is invited to receive the AFDX data from the FACADE platform.

The execution steps of the avionics application simulation modules are listed

below:

 ./make clean- to delete the previous avionics application simulation modules

 ./make- to create the avionics application simulation modules

 ./send <server-port>- to execute the linux-client.

 ./receive <local-port>- to execute the linux-server.

The server-port of linux-client application should be as same as Local data

exchange port of the Af module. The local-port of linux-server application should

be as same as server data exchange port of the Raf module.

4.6 Validation of Platform

In this section, avionics application simulation modules and FACADE platform

will be verified. To simplify the verification, only two end systems are involved in

this test which IP addresses are 192.168.1.8 and 192.168.1.3.

Figure 4-14 shows the preparation of the FACADE platform and Avionics

application simulation modules of 192.168.1.8. As shown in figure, five windows

are represented. The left window on the top is the Af module which is utilised to

receive AFDX data from avionics application simulation module and then

transfers those data to the FACADE platform. The left window on the bottom is

the Raf module which is utilised to receive the data from FACADE platform and

then sends those data to the avionics application simulation module. The right

window on the top shows the execution the states of FACADE platform which is

the FACADE module. The right window in the middle represents the ADTA

module of avionics application simulation module which is utilised to send the

AFDX data to the FACADE platform. The right window on the bottom shows the

86

ADRA module of avionics application simulation module which is utilised to

receive the AFDX data to the FACADE platform.

Figure 4-14 Preparation of FACADE and Avionics Application Simulation

platform

Figure 4-15 illustrates the data change execution of the simulation platform and

two modules. The functions of those windows in Figure 4-15 are as same as

them in Figure 4-14 which will not be elaborated again. As can be seen from

Figure 4-15, each module is working properly. After the AFDX data are sent or

received by each module, all of them will display the states in the windows. The

data check function and data counting function are both represented by each

module.

87

Figure 4-15 Data Exchange of FACADE and Avionics Application Simulation

Platform

4.7 Summary

In this chapter, the architecture of the FACADE platform is first represented.

Secondly, the data exchange behaviour of the simulation platform is then

illustrated. Thirdly, the detailed design of avionics application simulation

modules is introduced. In this section, both ADTA module and ADRA module

are elaborated. Then the detailed design of the FACADE platform is

represented. In this part, the Af module, Raf module and CreateDB module are

shown at first. After that, the FACADE module is elaborated. This module

achieved the main functions of the AFDX network and is the main part of the

FACADE platform. In the FACADE module, seven sub modules consist of the

whole platform are shown. Next, the execution steps of both AFDX network

simulation platform and avionics application simulation modules are listed as

88

well as notice when terminating the FACADE platform. Finally, the verification of

these two simulation platforms is represented.

89

5 EXPERIMENT DESIGN AND EXECUTION

5.1 Introduction

The FACADE platform is proposed to research the associations between the

total time delay and other variances which are Lmax, BAG, the amount of

destination end systems in one specific virtual link, the amount of virtual links in

one particular network and the amount of switches one specific virtual link

traverses. According to the delay formula obtained in chapter 3, the variables

Lmax, BAG, the amount of virtual links in AFDX network and the amount of

switches one specific virtual link traverses could affect the performance of total

time delay while the amount of destination end systems in one specific virtual

link will not. To valid these, five experiments are designed.

In the experiment section, five computers executing under Fedora system are

utilised as the end systems. Two switches, which models are HP Procurve

4000M, are proposed as the network devices. To obtain the total time delay, the

experiments are designed to detect the time interval of the AFDX data

transmission between the source end system and the target destination end

system. At the very beginning, the author plans to use the Linux command

‗time.' This command can obtain the execution duration of the system time and

user time of one command. After the trail, the author realizes that although the

period of transmission of the source end system is obtained as well as the

duration of reception of the target destination end system, these data can only

be utilised to calculate the mean time duration of the transmission or reception

respectively. The duration of every AFDX transmission data can‘t be gained

from those mean values. Since the total time delay can be obtained by

calculating the time difference between the transmission time and reception

time, the time recording function has been invited to the simulation platform and

validated. This function has been presented in chapter 4.

90

5.2 Time Synchronization

Since the time recording function has already been proved working properly, the

following issue is how to synchronize the time of end systems utilised in these

experiments.

The author tries two different approaches to achieve this goal. The first

approach is the automatic time synchronization. The Fedora system can

synchronize time regularly. The NTP service is utilised to synchronize the time.

In this case, the time synchronization is only needed for these five computers

while the internet time is not requisite. Then the computer 192.168.1.14 is

chosen as a time server while other computers are the clients. The steps of time

synchronization are listed below:

 rpm –qa | grep ntp - to detect the installation information of Operating

System service NTP. If the NTP service has not been install yet, then the

installation CD should be prepared to install this function.

 chkconfig ntpd on - to configure the automatic start-up of the NTP service

when the operating system boots.

 ps –ef | grep ntp - ntp - to check whether the NTP service is running

properly.

 service ntpd start - to start the NTP service if it is not running.

To configure the time server, the file ntp.conf under file directory /etc should be

modified. Thus, the file on computer 192.168.1.14 should be modified. The

modifications of file ntp.conf on computer 192.168.1.14 are represented below:

 Note the ‗restrict default ignore‘- to enable the NTP server function.

 Input ‗restrict 192.168.1.0 mask 255.255.255.0‘- to permit the computers in

192.168.1.0/24 to update time with the time server 192.168.1.14.

Till now, the modification of the file ntp.conf has been completed. Then the NTP

service of 192.168.1.14 should be restarted by using the following commands:

 /etc/init.d/ntpd restart - to restart the NTP service.

 chkconfig ntpd on - to configure the automatic start-up of the NTP service

when operating system boots.

91

 Add TCP port 123 and UDP port 123 in the firewall configuration.

Since the time server has been configured completely, the modifications on time

client are listed below:

 Note the ‗server 127.127.1.0‘ and ‗fudge 127.127.1.0 stratum 10‘- to stop

the computer synchronizing time with the local hardware.

 Input ‗server 192.168.1.14‘ - to synchronize time with the time server

192.168.1.14.

 In the file crontab under file directory /etc, input ‘01 * * * * root ntpdate –u

192.168.1.14‘- to synchronize time with 192.168.1.14 every hour. Due to the

operating systems version, the Fedora system applied in the experiments

can‘t execute this automatic task less than one hour. That means one hour

is the smallest time interval of this automatic execution.

The configurations of time client have been completed so far. As long as the

connection between time server and time client exists, the time synchronization

should be executed every hour.

Although the time server and client have been configured, several issues have

been discovered during the test. One is that the automatic synchronization of

several computers does not work normally. Those computers can‘t obtain the

correct time from the time server which make the calculated total time delay

values not accurate. The author considers that the computers applied for

experiments are too old which have already been used for more than ten years.

The version of operating system is Fedora 5 which has been conducted for

more than a decade. These two reasons could cause the abnormal of automatic

time synchronization.

The other issue is that even time automatic synchronization is working normally,

the synchronization frequency is once every hour. As mentioned before, those

computers have been used for more than ten years. The clock of them is not

working properly. Even during the duration between the successive time

synchronization, the time deviation can up to second. This time deviation is

unacceptable in these experiments.

92

Since the issues represented above, the automatic time synchronization can‘t

be invited in these experiments. Then the manual time synchronization is

proposed. Before each experiment, the time synchronizations between clients

and time server are executed manually. The command is ‗ntp –u 192.168.1.14‘.

This command runs the time synchronization when the command is executed.

The time deviation is then deduced to milliseconds. This deviation is considered

acceptable for these experiments.

5.3 Experiment Detailed Design and Total Time Delay Calculus

In the experiment design section, five experiments are designed. Those

experiments are utilised to research the associations between the total time

delay and other variables which are Lmax, BAG, the amount of end systems in

one specific virtual link, the amount of virtual links in one specific network and

the amount of switches one specific virtual link traverses. Five experiments are

designed to achieve these goals. Moreover, the experiment results will be

compared with calculus results to verify the FACADE platform. The approach

applied in the experiments is variable control method. The detailed designs of

these five experiments are elaborated next.

5.3.1 Experiment 1(Variable Lmax)

This experiment aims to study the association between total time delay and Lmax.

The illustration of this experiment is represented in Figure 5-1.

93

Figure 5-1 Diagram of Experiment 1

As shown in Figure 5-1, four computers which IP addresses are 192.168.1.14,

192.168.1.11, 192.168.1.8 and 192.168.1.3 are applied. These computers are

proposed as the end systems. The mark ES is the end system id of this

computer. For instance, ES 14 is the end system id of the computer which IP

address is 192.168.1.14. Two switches, switch 1 and switch 2, are proposed as

the AFDX network switches. The black dotted line in the figure represents the

physical links between the end systems and switches. The solid red line in the

figure represents the virtual link amount the end systems. In this experiment,

the ES 14 is invited as the source end system while other three end systems

are destination end systems. Only one virtual link exists in this experiment

which virtual link id is 400, and it has a unique sub-virtual link. The BAG value of

this virtual link is 32ms. In this experiment, Lmax of the virtual link 400 is set as

the variable which ranges from 100 bytes to 700 bytes, raise 100 bytes each

time. This experiment will record the transmission time of FACADE platform on

the ES 14 and the reception time of FACADE platform on the ES 8. These two

values are utilised to calculate the total time delay between these two end

systems. As the Lmax changes, the experiment will be executed seven times

94

while seven groups of data will be gained. Those data will then be analysed to

detect the association between Lmax and total time delay.

The total time delay of experiment 1 is represented in Table 5-1.

Table 5-1 Total Time Delay of Experiment 1

Lmax/bytes 100 200 300 400 500 600 700

Time/ms 256.64 128.512 96.528 64.448 64.544 64.64 32.368

5.3.2 Experiment 2 (Variable BAG)

This experiment is designed to study the association between total time delay

and BAG. The illustration of this experiment is represented in Figure 5-2.

As shown in the figure, in this experiment, ES 14 is invited as the source end

system while other three end systems are destination end systems. Only one

virtual link exists in this experiment which virtual link id is 400, and it has a

unique sub-virtual link. The Lmax value of this virtual link is 200 bytes. In this

experiment, the BAG of the virtual link 400 is set as the variable which ranges

from 2ms to 64ms, increasing each time continuously. This experiment will

record the transmission time of FACADE platform on the ES 14 and the

reception time of FACADE platform on the ES 8. These two values are utilised

to calculate the total time delay between these two end systems. As the BAG

values change, the experiment will be executed six times while six groups of

data will be gained. Those data will then be analysed to detect the association

between BAG and total time delay.

95

Figure 5-2 Diagram of Experiment 2

The total time delay of experiment 2 is represented in Table 5-2.

Table 5-2 Total Time Delay of Experiment 2

BAG/ms 2 4 8 16 32 64

time/ms 8.512 16.512 32.512 64.512 128.512 256.512

5.3.3 Experiment 3 (Variable Amount of Destination End Sources)

This experiment is designed to study the association between total time delay

and the amount of destination end systems in one specific virtual link. The

illustration of this experiment is represented in Figure 5-3.

As illustrated in the figure, in this experiment, ES 14 is invited as source end

system while other four end systems are destination end systems. Three virtual

links exist in this experiment which virtual link id is 400, 410 and 420. Virtual link

400 and virtual link 420 have one sub-virtual link. The virtual link 400 is

represented as the solid red line while the virtual link 420 is shown as the solid

purple line. The virtual link 410 illustrated as the dark blue solid line has two

sub-virtual links. Those two sub-virtual links belong to virtual link 410 are

96

represented as solid light blue line and solid green line respectively. The Lmax

values of these three virtual links are all 200 bytes and the BAG values are all

32ms. In this experiment, the amount of destination end systems in one specific

virtual link is set as the variable. The virtual link 400 contains three destination

end systems which are ES 11, ES 8 and ES3. The virtual link 410 has two sub-

virtual links which ids are 1 and 2. The sub-virtual link 1 has three destination

end systems which are ES 11, ES 8 and ES 3 while the sub-virtual link 2 has

three destination end systems which are ES 11, ES 5 and ES 3. That means

the virtual link 410 has six destination end systems in one virtual link. The virtual

link 420 has four destination end systems which are ES 11, ES 8, ES 3 and ES

5. This experiment will record the transmission time of FACADE platform on ES

14 and the reception time of FACADE platform on ES 8. These two values are

utilised to calculate the total time delay between these two end systems. As

only one virtual link executing each time, the experiment will be executed three

times while three groups of data will be gained. Those data will then be

analysed to detect the association between the amount of destination end

systems in one specific virtual link and total time delay.

The total time delay of experiment 3 is represented in Table 5-3.

Table 5-3 Total Time Delay of Experiment 3

Scenario 1vl

3 destination end

systems

1vl

4 destination end

systems

2 sub-vl in 1vl

6 destination end

systems

Time/ms 128.512 128.512 128.512

97

Figure 5-3 Diagram of Experiment 3

5.3.4 Experiment 4 (Variable Amount of Virtual Links)

This experiment is designed to study the association between total time delay

and the amount of virtual links in one specific AFDX network. The illustration of

this experiment is represented in Figure 5-4.

As illustrated in the figure, in this experiment, when one end system is invited as

source end system of one virtual link, the other end systems are acted as

destination end systems. Three virtual links exist in this experiment which virtual

link ids are 300, 400 and 500. Each virtual link contains only one sub-virtual link.

In virtual link 300, ES 8 is the source end system while ES 11, ES5 and ES 3

are set as destination end systems. In virtual link 400, ES 14 is the source end

system while ES 8, ES 11 and ES 3 are destination end systems. In virtual link

500, ES 3 is the source end system while ES 5, ES 8 and ES 11 are destination

end systems. Virtual link 300, 400 and 500 are represented as the solid green

98

line, solid red line and solid blue line respectively. The Lmax values of these

three virtual links are 200 bytes and the BAG values are 32ms. In this

experiment, the amount of virtual links in the AFDX network is set as the

variable. At the first execution, virtual link 400 is the only executing virtual link.

Virtual link 400 and 500 will be run together in the second execution. At the third

execution, all these three virtual links will be executed. Experiment 4 will record

the transmission time of FACADE platform on ES 14 and the reception time of

FACADE platform on ES 8. These two values are utilised to calculate the total

time delay between these two end systems. As the virtual links adding, the

experiment will be executed three times while three groups of data will be

gained. Those data will then be analysed to detect the association between the

amount virtual links in one specific AFDX network and total time delay.

Figure 5-4 Diagram of Experiment 4

99

The total time delay of experiment 4 is represented in Table 5-4.

Table 5-4 Total Delay Time of Experiment 4

Scenario 1 VL 2 VL 3 VL

Time/ms 128.512 128.64 128.768

5.3.5 Experiment 5 (Variable Amount of Traverse Switches)

This experiment is designed to study the association between total time delay

and the amount of switches between source end system and destination end

system. The illustration of this experiment is represented in Figure 5-5.

Figure 5-5 Diagram of Experiment 5

As shown in the figure, in this experiment, ES 14 is invited as the source end

system while other three end systems are destination end systems. Only one

virtual link exists in this experiment which virtual link id is 400. Moreover, it has

100

a unique sub-virtual link. The Lmax value of this virtual link is 200 bytes and the

BAG value is 32ms. In this experiment, the amount of switches between the

source end system and destination end systems is set as the variable. In the

first execution, ES 8 is connected to switch 2. The amount of switches virtual

link 400 traverses is two. In the second execution, ES 8 is represented as ES 8‘

and connected to switch 1. The amount of switches virtual link 400 traverses is

one. This experiment will record the transmission time of FACADE platform on

ES 14 and the reception time of FACADE platform on ES 8. These two values

are utilised to calculate the total time delay between these two end systems. As

the amount of switches virtual link 400 traverses changed, the experiment will

be executed twice while two groups of data will be gained. Those data will then

be analysed to detect the association between the amount of switches one

specific virtual link traverses and total time delay.

The total time delay of experiment 5 is represented in Table 5-5.

Table 5-5 Total Time Delay of Experiment 5

Scenario Same Switch Different Switch

Time/ms 128.32 128.512

5.4 Experiment States

As represented before, five experiments had been designed. Then these

experiments would be executed. In the experiments, avionics applications were

utilised to send AFDX data. The AFDX data were transferred more than three

thousand times in every single experiment. For each experiment, the data were

sent by avionics application simulation platform at the same frequency.

Moreover, the data sizes were same. During the experiments, several issues

occurred. Some experiments had not been executed as anticipation. The

experiments states will be elaborated below.

Experiment 1 set the Lmax as the variable which values from 100 bytes to 700

bytes, increasing 100 bytes each time. The experiment only succeeded when

the Lmax equals to 200 bytes. The FACADE platform crashed when Lmax equals

101

to other values. Due to the time shortage, the author failed to fix this issue.

Then the author tried to narrow the values of Lmax to execute the experiment.

After testing numerous times, the experiment 1 was taken when the Lmax values

equal to 200 and 220 bytes. Only two groups of data were obtained instead of

seven.

In experiment 2, BAG was set as the variable which values from 2 ms to 64 ms,

increasing continuously. The experiment successfully gained data except when

BAG was 2 ms. When BAG equals to 2 ms, more than 40% of the total time

delay values were negative values and invalid. The author considers that

although the time synchronization has been executed each time before the

experiment, the time accuracy still can‘t support to detect the small time interval.

Because the computers applied in this experiment are too outmoded. After

completed the experiment 2, five groups of data were gained instead of six.

In experiment 3, the amount of destination end systems in one particular virtual

link was set as the variable. In this experiment, three different virtual links were

invited which would be utilised respectively. The experiment was executed

successfully when virtual link 400 was utilised to transfer data as well as virtual

link 410. However, simulation platform crashed when virtual link 420 was

utilised. The author fell to fix this issue due to the lack of time. In experiment 3,

two groups of data were obtained instead of three.

In experiment 4, the amount of virtual links in the AFDX network was set as the

variable. In this experiment, three virtual links were invited. The virtual links

would be utilised one more than the previous experiment each time. Experiment

4 was completed successfully while no issue happened. Three groups of data

were obtained successfully as expected.

In experiment 5, the amount of switches one specific virtual link traverses was

set as the variable. In this experiment, ES 8 will firstly be connected to the

different switch from source end system ES 14 and then connected to the same

switch with ES 14 for the second execution. Experiment 5 was completed

successfully while no issue happened. Two groups of data were obtained

successfully as expected.

102

5.5 Experiment Data Analysis

After obtaining the experiment data, the mean of each group was calculated

each experiment separately. Although the values of the mean are different from

group to group, it still can‘t confirm the variable in each experiment initiate this

change. Then the author decides to utilise the student‘s t-test to detect this

issue. Student‘s t-test is a statistical hypothesis test which can be used to

determine if two sets of data are significantly different from each other. To use

this test, the groups of data should follow the normal distribution [64]. So the

data obtained from experiments should be tested if they follow the normal

distribution first.

5.5.1 Normal Distribution Test

The test result of data from experiment 1 is illustrated in Figure 5-6.

Figure 5-6 Normality Test Result of Experiment 1

In this experiment, two groups of data have been exchanged successfully. Each

group has 3076 delay data. The first group is under the Lmax value equals to 200

bytes while the other group is under the Lmax value equals to 220 bytes. After

the Normality test by applied the Lilliefors approach, the p-value is 3.21038 E-18

when Lmax value is 200 bytes. When Lmax value equals to 220 bytes, the p-value

is 5.34996 E-31. Both p-value values are extremely less than 0.05 which means

both groups of data do not follow the normal distribution.

The test result of data from experiment 2 is illustrated in Figure 5-7.

103

Figure 5-7 Normality Test Result of Experiment 2

In this experiment, five groups of data have been exchanged successfully. Each

group has 3056 delay data. The first group is under the BAG value equals to 4

ms while the following groups are under the BAG values equal from 8 ms, 16

ms, 32 ms, 64 ms. After the Normality test by applied the Lilliefors approach,

the p-value is 1.10339 E-163 when the BAG value is 4 ms. When the BAG values

equal from 8 ms, 16 ms, 32 ms and 64 ms, the p-value values are 2.191432 E-27,

9.10427 E-45, 3.13867 E-17 and 8.04462 E-9. All the p-value values are less than

0.05 which indicates all the groups of data do not follow the normal distribution.

The test result of data from experiment 3 is illustrated in Figure 5-8.

Figure 5-8 Normality Test Result of Experiment 3

In this experiment, two groups of data have been exchanged successfully. Each

group has 3200 delay data. The first group has three destination end systems in

one virtual link while the following group has six destination end systems in one

virtual link. After the Normality test by applied the Lilliefors approach, the p-

104

value is 1.97219 E-22 when the virtual link has three destination end systems.

When the virtual link has six destination end systems, the normality test p-value

equals to 9.46597 E-41. Both p-value values are extremely less than 0.05 which

indicates both groups of data do not follow the normal distribution.

The test result of data from experiment 4 is illustrated in Figure 5-9.

Figure 5-9 Normality Test Result of Experiment 4

In this experiment, three groups of data have been exchanged successfully.

Each group has 3300 delay data. The first group has only one virtual link

executing in the whole AFDX network while the second group and third group

have two and three virtual links respectively. After the Normality test by applied

the Lilliefors approach, the first group gets a p-value which is 4.52878 E-43. At

the same time, the second group and third group have p-values which are

8.42774 E-23 and 9.65838 E-16. All the p-value values are extremely less than

0.05 which indicates all groups of data do not follow the normal distribution.

The test result of data from experiment 5 is illustrated in Figure 5-10.

Figure 5-10 Normality Test Result of Experiment 5

105

In this experiment, two groups of data have been exchanged successfully. Each

group has 3300 delay data. The first group has the target destination end

system connect to the different switch with the source end system. The second

group has the target destination end system connect to the same switch with

the source end system. After the Normality test by applied the Lilliefors

approach, the first group gets a p-value which is 1.57139 E-9. The second group

has a p-value which is 8.42774 E-23. Both p-value values are extremely less

than 0.05 which indicates both groups of data do not follow the normal

distribution.

The results obtained from normality test show that all the groups of data do not

follow the normal distribution respectively. Since then all those can‘t be tested

by student‘s T-test.

5.5.2 Experiment Data Analysis

As mentioned in the last section, the student‘s t-test can‘t be applied to analyse

the data obtained from experiments. Then the scatter charts and box charts of

each experiment are invited for data analysis.

The scatter chart of experiment 1 is represented in Figure 5-11.

106

Figure 5-11 Scatter Chart of Experiment 1

In this figure, the horizontal axis is the number of AFDX data while the vertical

axis represents the values of total time delay, unit in second. The black scatters

in the figure represent the total time delay values when the Lmax equals to 200

bytes while the red scatters illustrate the total time delay values when the Lmax

equals to 220 bytes. As can be seen from this scatter chart, when the Lmax

equals to 200 bytes, the total time delay rose sharply at first. After they reach

the peak at around 200, the values decline steadily. Then the values rose

markedly to another height at around 1100 and reduce steadily again since then.

On the other hand, when the Lmax equals to 220 bytes, the performance of total

time delay rose steadily till around 1900. Then at this point, the values of delay

decrease sharply and rose steadily again since then. The trends of these two

groups of data indicate that when Lmax equals to 200 bytes, the values of total

time delay decline as the AFDX data transmission. On the contrary, the total

time delay when Lmax equals to 220 bytes raise smoothly.

107

The box charts of these two groups of data are illustrated in Figure 5-12.

Figure 5-12 Box Chart of Experiment 1

In this figure, the data of experiment 1 are represented as box chart. The

horizontal axis is the values of total time delay, unit in second. The black box

represents the data when the Lmax is 200 bytes while the red box shows the

data when the Lmax is 220 bytes. As shown in this figure, the mean when Lmax is

200 bytes is less than the mean when Lmax is 220 bytes. It indicates when Lmax

is 200 bytes, it gets a smaller total time delay than Lmax is 220 bytes.

The means of data from experiment 1 are illustrated in Figure 5-13.

Figure 5-13 Statistics Data of Experiment 1

In Figure 5-13, the first row represents the total time delay of experiment 1

when Lmax equals to 200 bytes. The second row shows the total time delay

when Lmax equals to 220 bytes. As shown in Figure 5-13, when Lmax equal to

108

200 bytes and 220 bytes, the mean of total time delay are 398.89 ms and

430.59 ms. The maximum total time delays are 487.83 ms and 509.21 ms when

Lmax are 200 and 220 bytes respectively. Both total time delays are much larger

than the delay calculus before which are 128.512 ms and 128.550 ms

respectively.

Table 5-6 Comparison between Calculus Delay and Experiment Delay

(Experiment 1)

Lmax/bytes Calculus

Delay/ms

Mean of

Total Time

Delay/ms

Multiples

(Mean

Compares

to Calculus)

Maximum of

Total Time

Delay/ms

Multiples

(Maximum

Compares

to Calculus)

200 128.512 398.89 3.10 487.83 3.80

220 128.550 430.59 3.35 509.21 3.96

The scatter chart of experiment 2 is represented in Figure 5-14.

Figure 5-14 Scatter Chart of Experiment 2

109

In this figure, the horizontal axis is the number of AFDX data while the vertical

axis represents the values of total time delay, unit in second. The green scatters

represent the total time delay values when the BAG is 64 ms. The purple

scatters illustrate the total time delay values when the BAG is 32 ms. The blue,

red and black scatters indicate the total time delay values when the BAG are 16

ms, 8 ms and 4 ms respectively. When the BAG is 64 ms, the delay values

declined from the beginning to around 800, then the delay rose sharply around

900 and deduced steadily again. When the BAG is 32 ms, the delay values

increase sharply from the start to around 200. Then the delay decreased

smoothly since then. When the BAG is 16 ms, the delay values were smooth

than the previous. The values kept level and smooth in the whole data

exchange duration. When the BAG is 8 ms, the delay values decreased steadily

from the beginning to around 1700 and rose sharply around 1800. After that, the

delay declined since then. When the BAG is 4 ms, the delay values kept

smoothly from the beginning to around 650 and reduced. Then the delay went

straight till around 1900 and increased. After that, the delay continued smoothly

till around 2500 and reduced again. Finally, the delay went straight till the end.

The box charts of these five groups of data are represented in Figure 5-15.

In this figure, the data of experiment 2 are represented as box chart. The

horizontal axis is the values of total time delay, unit in second. The green one

represents the data when the BAG is 64 ms while the purple one illustrates the

data when the BAG is 32 ms. Meanwhile, the blue, red and black box chart

show the data of 16 ms, 8 ms and 4 ms respectively.

110

Figure 5-15 Box Chart of Experiment 2

The statistics data from experiment 2 are illustrated in Figure 5-16.

Figure 5-16 Statistics Data of Experiment 2

In Figure 5-16, five rows of data are shown. All these rows represent the

statistics data of experiment 2 when BAG equal to 4 ms, 8 ms, 16 ms, 32 ms

and 64 ms from the first row to the fifth row respectively. As shown in Figure 5-

16, when BAG equal from 4 ms to 64 ms, the means of total time delay are

106.14 ms 150.23 ms, 241.75 ms, 399.30ms and 753.87 ms respectively.

111

Meanwhile, the maxima of total time delay are 167.54 ms, 236.96 ms, 312.16

ms, 487.83 ms and 865.44 ms. All the total time delay are much larger than the

calculus delay which are 16.512 ms, 32.512 ms, 64.512 ms, 128.512 ms and

256.512 ms.

Table 5-7 Comparison between Calculus Delay and Experiment Delay

(Experiment 2)

BAG/ms Calculus

Delay/ms

Mean of

Total Time

Delay/ms

Multiples

(Mean

Compares

to Calculus)

Maximum of

Total Time

Delay/ms

Multiples

(Maximum

Compares

to Calculus)

4 16.512 106.14 6.43 167.54 10.15

8 32.512 150.32 4.62 236.96 7.29

16 64.512 241.75 3.75 312.16 4.84

32 128.512 399.30 3.11 487.83 3.80

64 256.512 753.87 2.94 865.44 3.37

The scatter chart of experiment 3 is represented in Figure 5-17.

In this figure, the horizontal axis is the number of AFDX data while the vertical

axis represents the values of total time delay, unit in second. The black scatters

represented the total time delay of one sub-virtual link while the red scatters

illustrated the total time delay of two sub-virtual links. The distributions of these

two data are quite similar. Box chart and statistic data will demonstrate the

difference more clearly which will be represented next.

112

Figure 5-17 Scatter Chart of Experiment 3

The box charts of these five groups of data are represented in Figure 5-18.

In this figure, the data of experiment 3 are represented as box charts. The

horizontal axis is the values of total time delay, unit in second. It can be seen

from this figure that the two sub-virtual links scenario has a larger mean of total

time delay while the one sub-virtual link scenario has a smaller mean of delay.

The scale of each quartile about these two scenarios is quite similar. And the

difference between these two means is quite small.

113

Figure 5-18 Box Chart of Experiment 3

The statistics data from experiment 3 are illustrated in Figure 5-19.

Figure 5-19 Statistics Data of Experiment 3

In Figure 5-19, the first row represents the statistics data of total time delay

when the virtual link has three destination end systems. The second row shows

the statistics data of total time delay when the virtual link has six destination end

systems. As shown in Figure 5-19, when the amount of destination end systems

are three and six respectively, the means of total time delay are 351.04 ms and

354.21 ms. Meanwhile, the maxima of total time delay are 421.05 ms and

424.28 ms when the virtual link has three destination end systems and six

114

destination end systems. Both total time delays are much larger than the

calculus delays which are 128.512 ms and 128.512 ms.

Table 5-8 Comparison between Calculus Delay and Experiment Delay

(Experiment 3)

Destination

End

systems In

one Virtual

link

Calculus

Delay

Mean of

Total Time

Delay

Multiples

(Mean

Compares to

Calculus)

Maximum of

Total Time

Delay

Multiples

(Maximum

Compares to

Calculus)

3 128.512 351.04 2.73 421.05 3.28

6 128.512 354.21 2.76 424.28 3.30

The scatter chart of experiment 4 is represented in Figure 5-20.

Figure 5-20 Scatter Chart of Experiment 4

115

In this figure, the horizontal axis is the number of AFDX data while the vertical

axis represents the values of total time delay, unit in second. The black scatters

represented the total time delay values when there is one virtual link in the

experiment AFDX network. The red and blue scatters illustrate the total time

delay values when there are two and three virtual links in the experiment AFDX

network respectively. As can be seen in this figure, when the amount of virtual

link is one, the delay reduced steadily from the beginning to around 2250 and

then increased sharply till around 2400. Since then the delay declined steadily

till the end. The other two scatters have the similar expressions. When virtual

link amount is two, the delay reduced steadily from the beginning to around

1850 and then rose dramatically till around 2200. Since then the delay declined

steadily till the end. When virtual link amount is three, the delay reduced

steadily from the beginning to around 1200 and then increased sharply till

around 1400. Since then the delay declined steadily till the end.

The box charts of these three groups of data are represented in Figure 5-21.

In this figure, the data of experiment 4 are represented as box chart. The

horizontal axis is the values of total time delay, unit in second. The black one

represents the delay data when there is one virtual link in the experiment AFDX

network while the red one illustrates the delay data when there are two virtual

links. The blue box shows the delay data when there are three virtual links.

116

Figure 5-21 Box Chart of Experiment 4

The statistics data from experiment 4 are illustrated in Figure 5-22.

Figure 5-22 Statistics Data of Experiment 4

In Figure 5-22, three rows of data express the statistics data of total time delay

when virtual links in AFDX network are one, two and three respectively. As

shown in Figure 5-22, when the amount of virtual links in AFDX network are one,

two and three respectively, the means of total time delay are 406.85 ms, 412.03

ms and 412.47 ms. Meanwhile, the maxima of total time delay are 504.3 ms,

515.06 ms and 502.87 ms. However, all the experiment delay are much larger

than the calculus delay which are 128.512 ms, 128.64 ms and 128.768 ms.

117

Table 5-9 Comparison between Calculus Delay and Experiment Delay

(Experiment 4)

Amount of

Virtual Link

Calculus

Delay/ms

Mean of

Total Time

Delay/ms

Multiples

(Mean

Compares to

Calculus)

Maximum of

Total Time

Delay/ms

Multiples

(Maximum

Compares

to Calculus)

1 128.512 406.85 3.17 504.3 3.92

2 128.64 412.03 3.20 515.06 4.00

3 128.768 412.47 3.20 502.87 3.91

The scatter chart of experiment 5 is represented in Figure 5-23.

Figure 5-23 Scatter Chart of Experiment 5

118

In this figure, the horizontal axis is the number of AFDX data while the vertical

axis represented the values of total time delay, unit in second. The black

scatters represented the target destination end systems connected to the

different switches from the source end system. The red scatters illustrated the

target destination end systems connected to the same switch with the source

end system. As can be seen from the figure, when the target destination end

system and source end system were connected to the different switches, the

values of total time delay declined from the beginning till around 800 and then

increased sharply. Since then, most of the values declined steadily till the end.

When target destination end system and source end system were connected to

the same switch, most total time delay values declined steadily from beginning

till the end.

The box charts of these two groups of data are represented in Figure 5-24.

Figure 5-24 Box Chart of Experiment 5

119

In this figure, the data of experiment 5 are represented as box chart. The

horizontal axis is the values of total time delay, unit in second. The black box

indicates the target destination end system and source end system are

connected to the different switches while the red box refers these two end

systems are connected to the same switch. It can be seen from the figure that

when these two end systems are connected to the same switch, the mean of

total time delay is smaller than the mean of delay when these two end systems

are connected to the different switches.

The statistics data from experiment 5 are illustrated in Figure 5-25.

Figure 5-25 Statistics Data of Experiment 5

In Figure 5-25 two rows of data represents the statistics data of total time delay.

The first line shows the delay when two switches between source and

destination end systems while the second row expresses the delay when one

switch between source and destination end systems. As shown in Figure 5-25,

when the amount of switch one virtual links cross is two and one respectively,

the means of total time delay are 418.17 ms and 398.17 ms. Meanwhile, the

maxima of total time delay are 507.39 ms and 475.19 ms. Both of the total time

delays are much larger than the calculus delay which are 128.32 ms and

128.512 ms.

Table 5-10 Comparison between Calculus Delay and Experiment Delay

(Experiment 5)

Amount of

Switches

Virtual Link

Cross

Calculus

Delay/ms

Mean of

Total Time

Delay/ms

Multiples

(Mean

Compares to

Calculus)

Maximum of

Total Time

Delay/ms

Multiples

(Maximum

Compares

to Calculus)

120

2 128.512 418.17 3.25 507.39 3.95

1 128.32 398.17 3.10 475.19 3.70

5.6 Summary

In this chapter, experiment objectives are introduced first. These experiments

are designed to research the associations between total time delay and other

variables which are Lmax, BAG, the amount of destination end systems in one

specific virtual link, the amount of virtual links in one specific network and the

amount of switches between source and destination end systems. Secondly,

the experiment environment is represented and the approaches to obtain the

total time delay are introduced. At first, the author tries to use command ‗time‘

but failed. Then the author applies the NTP service for time synchronization.

While the automatic time synchronization is convenient but inaccurate, manual

time synchronization is much more accurate. Then the manual time

synchronization is adopted in this project. Thirdly, the detailed design five

experiments are elaborated respectively. Fourthly, the experiment execution

states and data analysis are introduced. Fifthly, the experiment execution states

and the issues during the experiments are elaborated. Then, to apply student‘s

t-test for data analysis, all those data obtained from experiments are tested to

detect whether they followed the normal distribution. At last, since those data

can‘t be analyzed by student‘s t-test, scatters chart and box chart are

introduced. Meanwhile, statistics data of the total time delay are proposed and

compare with the calculus results.

121

6 CONCLUSIONS AND FUTURE WORK

6.1 Introduction

At the beginning of the research, the author studies the recently AFDX research

related articles. Several approaches have been summarised. The theoretical

approaches are mainly utilised to invite the mathematical approaches for

obtaining the tighter AFDX network time delay. Simulations methods are used

for proving the theoretical approaches. This type of approaches can also

provide useful information for AFDX network design. Some researchers invited

real-time software to simulate the AFDX network environment for research

purpose. Without hardware influence, this type of simulations may miss the

impact from hardware and not similar to the realistic environment. On the

contrary, the programming software simulation with network hardware is more

realistic. This approach simulates the AFDX network data exchange behaviour

with both software and hardware is similar to the industrial environment. This

programming software implementation platform can also be applied for the

education and research purpose.

Then the AFDX time delay model is given by using the Network Calculus. In this

section, the whole AFDX network is divided into three main components which

are end system, switch and physical propagation. The time delay models of the

end system and switch are given to obtain the total time delay. In this part, both

(σ,ρ) model and GCRA model are introduced. To get a tighter delay bound, the

GCRA model is applied in this project. Then the formula for total time delay is

illustrated which then be utilised to gain the calculus results.

In this project, an executable FACADE platform has been enhanced bases on

the previous platform. The former students have successfully developed a

flexible platform. However, this platform can only show the data exchanging

between source end system and destination end systems. It can‘t prove

whether the data transmitted by the FACADE platform is valid or not. Moreover,

this simulation platform can‘t prove whether there is any missing data. The

author has successfully modified the previous simulation platform. This

122

modification platform can be utilised to detect whether the data is invalid after

received by destination end system. Missing AFDX data can also be identified.

Moreover, this modified simulation platform is suitable for experiment purpose

which can be utilised to obtain the total time delay. Users can modify the

architecture of the AFDX network base on their experiment objectives.

To study the association between total time delay and other variables which are

Lmax, BAG, the amount of destination end systems in one specific virtual link,

the number of virtual links in one particular network and the amount of switches

between source and destination end systems. After that, the experiment

environment is represented and the approaches to obtain the total time delay

are introduced. At first, the author tries to use command ‗time‘ but failed. Then

the NTP service is proposed for the time synchronization. After the trail, the

manual time synchronization approach is applied in this project due to the time

accuracy. Next, five experiments are designed. Then these five experiments are

elaborated respectively.

After that, the experiment execution states and data analysis are introduced.

Firstly, the experiment execution states and the issues during the experiments

are listed. Secondly, to apply student‘s t-test for data analysis, all those data

obtained are tested whether they follow the normal distribution. Thirdly, since

the student‘s t-test can‘t be proposed in this project, the scatters chart, box

chart and statistics data are invited to analyse the obtained data. Meanwhile,

the calculus results and experiment results of total time delay are compared,

and the conclusions are represented.

6.2 Conclusions

In this section, the conclusions obtained from the project are summarised as

follows:

Each AFDX data packet in this project will be divided into four fragmented

messages for further transmission no matter Lmax is 200 or 220 bytes. Since

larger divided AFDX data needs more time to transfer on the network. Lmax

equals to 200 bytes has a smaller means of total time delay than Lmax equals to

123

220 bytes. This suggests the designer to consider the influence of Lmax to the

total time delay of the AFDX network according to the requirement of avionics

application.

The larger the BAG is, the greater the total delay it obtains. The author

considers that the larger BAG leads to longer transmission duration. Although

regulator regulates the unregulated flows, the extra waiting time it brings to the

data transmission constrains the utility of each virtual link.

The number of destination end systems in one virtual link may affect the total

time delay of this virtual link. Results from this project can‘t validate. More

studies should be conducted.

The total time delay of one particular virtual link may be affected by other virtual

links in the same AFDX network. The more virtual links across the switch which

the target virtual link through, the larger a total time delay it seems to be. More

studies should be conducted for verifying.

The more switches between source and destination end systems, the larger a

total time delay it will be. More switches introduced more scheduler delay and

hardware process time which leads to larger total time delay.

The means and maxima of all the groups of data from experiments are obtained.

After comparing those data with the experiment data, it can be seen that the

calculus results from AFDX time delay model are much smaller than the delay

from experiments. The mean of total time delay could be 6.43 times of calculus

one. The maximum of total time delay could be 10.15 times of the calculus one.

The author considers that due to the background system process running in the

operating system, the system resource can be occupied. When FACADE

platform is executing, the execution time could be extremely higher than it

needs.

6.3 Future Work

Platform Error

124

During the experiment, when the author tried to modify the Lmax values of the

FACADE platform, the platform crashed after it transferred dozens of AFDX

data. Due to this reason, the experiment 1 can only obtain two groups of data.

The same situation happened when more destination end systems were added

to the same sub-virtual link which makes the experiment 3 can‘t be executed as

it predefined. Because of the time shortage, the author failed to fix these issues.

This problem should be handled for the robust of FACADE platform in the future.

Platform Efficiency

During the experiments, the author had done numerous experiments and a

large number of total time delay values were obtained. The experiment data are

quite high than the calculus delays. The author considered that the delay values

can be smaller by reducing the background system process and optimizing the

simulation platform process. To achieve this, the operating system applied in

this project may need to be optimized by eliminating the unneeded system

processes. Moreover, the time consumption among these modules and sub

modules can be detected for further platform optimization.

More Accurate Time Obtained Method

According to experiment 2, when BAG is 2 ms, more than 40% obtained

transmission time values are negative. The author considers that although the

manual time synchronization approach has been proposed to gain accurate

time among these experiment computers, it still not accurate enough for

obtaining a smaller time value. That is why the author chose BAG equals to 32

ms for other experiments.

The following task could focus on the time deviations of each client. As long as

the ranges of time deviations are obtained, the experiment delay could be more

accurate.

Another possible way is to send packet by destination end system once this

packet arrives and then to record both of total time delays. The average of

these total time delays may be the exact total time delay.

125

126

REFERENCES

[1] Airlines Electronic Engineering Committee. (2005). ARINC Specification

664P7: Aircraft Data Network, Part 7–Avionics Full Duplex Switched Ethernet

(AFDX) Network. Aeronautical Radio Inc.

[2] Moir, I., Seabridge, A., & Jukes, M. (2013). Civil avionics systems. John

Wiley & Sons.

[3] Airlines Electronic Engineering Committee. (2003). ARINC 653—Avionics

Application Software Standard Interface.

[4] Tawk, M., Zhu, G., Savaria, Y., Liu, X., Li, J., & Hu, F. (2011, October). A

tight end-to-end delay bound and scheduling optimization of an avionics AFDX

network. In Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA

30th (pp. 7B3-1). IEEE.

[5] Cruz, R. L. (1991). A calculus for network delay. I. Network elements in

isolation. Information Theory, IEEE Transactions on, 37(1), 114-131.

[6] Cruz, R. L. (1991). A calculus for network delay. II. Network elements in

isolation. Information Theory, IEEE Transactions on, 37(1), 132-141.

[7] Fraboul, C., & Frances, F. (2002). Applicability of Network Calculus to the

AFDX. contract report PBAR-JD-728.0821.

[8] Airlines Electronic Engineering Committee. (2002). ARINC Specification

664P1: Aircraft Data Network, Part 1–Systems Concepts and

Overview. Aeronautical Radio Inc.

[9] Airlines Electronic Engineering Committee. (2002). ARINC Specification

664P2: Aircraft Data Network, Part 2–Ethernet Physical and Data Link

Layer. Aeronautical Radio Inc.

[10] Martin, S., & Minet, P. (2006, April). Schedulability analysis of flows

scheduled with FIFO: application to the expedited forwarding class. In Parallel

and Distributed Processing Symposium, 2006. IPDPS 2006. 20th

International (pp. 8-pp). IEEE.

127

[11] Bauer, H., Scharbarg, J. L., & Fraboul, C. (2009, September). Applying and

optimizing trajectory approach for performance evaluation of AFDX avionics

network. In Emerging Technologies & Factory Automation, 2009. ETFA 2009.

IEEE Conference on (pp. 1-8). IEEE.

[12] Frances, F., Fraboul, C., & Grieu, J. (2006). Using network calculus to

optimize the AFDX network.

[13] Li, X., Scharbarg, J. L., & Fraboul, C. (2010, September). Improving end-to-

end delay upper bounds on an AFDX network by integrating offsets in worst-

case analysis. In Emerging Technologies and Factory Automation (ETFA), 2010

IEEE Conference on (pp. 1-8). IEEE.

[14] Bauer, H., Scharbarg, J. L., & Fraboul, C. (2010). Improving the worst-case

delay analysis of an AFDX network using an optimized trajectory

approach.Industrial Informatics, IEEE Transactions on, 6(4), 521-533.

[15] Diaz, J. L., Lopez, J. M., Garcia, M., Campos, A. M., Kim, K., & Bello, L. L.

(2004, December). Pessimism in the stochastic analysis of real-time systems:

Concept and applications. In Real-Time Systems Symposium, 2004.

Proceedings. 25th IEEE International (pp. 197-207). IEEE.

[16] Scharbarg, J. L., Ridouard, F., & Fraboul, C. (2009). A probabilistic analysis

of end-to-end delays on an AFDX avionic network. Industrial Informatics, IEEE

Transactions on, 5(1), 38-49.

 [17] George, L., Rivierre, N., & Spuri, M. (1996). Preemptive and non-

preemptive real-time uniprocessor scheduling.

[18] Davis, R. I., Burns, A., Bril, R. J., & Lukkien, J. J. (2007). Controller Area

Network (CAN) schedulability analysis: Refuted, revisited and revised. Real-

Time Systems, 35(3), 239-272.

[19] Andersson, B., & Tovar, E. (2009, July). The Utilization Bound of Non-

Preemptive Rate-Monotonic Scheduling in Controller Area Networks is 25

percent. In SIES 2009. IEEE Symposium on Industrial Embedded Systems.

128

[20] Tindell, K., Burns, A., & Wellings, A. J. (1995). Calculating controller area

network (CAN) message response times. Control Engineering Practice, 3(8),

1163-1169.

[21] Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for

multiprogramming in a hard-real-time environment. Journal of the ACM

(JACM), 20(1), 46-61.

[22] Li, D. J., Zhang, J. D., & Liu, B. (2010, June). Periodic message-based

modeling and performance analysis of AFDX. In Wireless Communications,

Networking and Information Security (WCNIS), 2010 IEEE International

Conference on (pp. 162-166). IEEE.

[23] Jiandong, Z., Dujuan, L., & Yong, W. (2010, May). Modelling and

performance analysis of AFDX based on Petri net. In Future Computer and

Communication (ICFCC), 2010 2nd International Conference on (Vol. 2, pp. V2-

566). IEEE.

[24] Alur, R., & Dill, D. L. (1994). A theory of timed automata. Theoretical

computer science, 126(2), 183-235.

[25] Charara, H., Scharbarg, J. L., Ermont, J., & Fraboul, C. (2006). Methods for

bounding end-to-end delays on an AFDX network. In Real-Time Systems, 2006.

18th Euromicro Conference on (pp. 10-pp). IEEE.

[26] Dong, S., Xingxing, Z., Lina, D., & Qiong, H. (2010, October). The design

and implementation of the AFDX network simulation system. In Multimedia

Technology (ICMT), 2010 International Conference on (pp. 1-4). IEEE.

[27] Lina, D., Dong, S., Xingxing, Z., & Qiong, H. (2010, October). The research

of AFDX system simulation model. In Multimedia Technology (ICMT), 2010

International Conference on (pp. 1-4). IEEE.

[28] Charara, H., & Fraboul, C. (2005, July). Modelling and simulation of an

avionics full duplex switched ethernet. In Telecommunications, 2005. advanced

industrial conference on telecommunications/service assurance with partial and

129

intermittent resources conference/e-learning on telecommunications workshop.

aict/sapir/elete 2005. proceedings (pp. 207-212). IEEE.

[29] Véran, M., & Potier, D. (1984). QNAP 2: A portable environment for

queueing systems modelling.

[30] Bozga, M., Graf, S., Ober, I., Ober, I., & Sifakis, J. (2004). The IF toolset.

InFormal Methods for the Design of Real-Time Systems (pp. 237-267). Springer

Berlin Heidelberg.

[31] Gössler, G. (2001). Prometheus-a compositional modeling tool for real-time

systems.

[32] Basu, A., Bozga, M., & Sifakis, J. (2006, September). Modeling

heterogeneous real-time components in BIP. In Software Engineering and

Formal Methods, 2006. SEFM 2006. Fourth IEEE International Conference

on (pp. 3-12). Ieee.

[33] Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A., & Sifakis, E.

(2010, January). Verification of an afdx infrastructure using simulations and

probabilities. In Runtime Verification (pp. 330-344). Springer Berlin Heidelberg.

[34] González Harbour, M., García, J. G., Gutiérrez, J. P., & Moyano, J. D.

(2001). Mast: Modeling and analysis suite for real time applications. In Real-

Time Systems, 13th Euromicro Conference on, 2001. (pp. 125-134). IEEE.

[35] Gutiérrez, J. J., Palencia, J. C., & Harbour, M. G. (2012). Response time

analysis in AFDX networks with sub-virtual links and prioritized switches. XV

Jornadas de Tiempo Real.

[36] García, J. G., Gutiérrez, J. P., & Harbour, M. G. (2000). Schedulability

analysis of distributed hard real-time systems with multiple-event

synchronization. InReal-Time Systems, 2000. Euromicro RTS 2000. 12th

Euromicro Conference on (pp. 15-24). IEEE.

130

[37] Jiqiang, X., Weimin, Y., & Ronggang, B. (2011, July). Study on Real-Time

Performance of AFDX Using OPNET. In Control, Automation and Systems

Engineering (CASE), 2011 International Conference on (pp. 1-5). IEEE.

[38] TrueTime, http://www.control.lth.se/truetime/

[39] Li, J., Guan, H., Yao, J., Zhu, G., & Liu, X. (2012, November). Performance

enhancement and optimized analysis of the worst case end-to-end delay for

AFDX networks. In Green Computing and Communications (GreenCom), 2012

IEEE International Conference on (pp. 301-310). IEEE.

[40] Chen, X., Xiang, X., & Wan, J. (2009, June). A software implemetation of

afdx end system. In New Trends in Information and Service Science, 2009.

NISS'09. International Conference on (pp. 558-563). IEEE.

[41] Fernández, J., Pérez, H., Gutiérrez, J. J., & Harbour, M. G. (2015). AFDX

Emulator for an ARINC-Based Training Platform. In Reliable Software

Technologies–Ada-Europe 2015 (pp. 212-227). Springer International

Publishing.

[42] Hornig, R.: Avionics Full-Duplex Switched Ethernet for OMNeT++ (2012).

https://github.com/omnetpp/afdx

[43] Khazali, I., Boulais, M. A., & Cole, P. (2009, October). AFDX software

network stack implementation—Practical lessons learned. In Digital Avionics

Systems Conference, 2009. DASC'09. IEEE/AIAA 28th (pp. 1-B). IEEE.

[44] Johnson, L. A. (1998). DO-178B, Software considerations in airborne

systems and equipment certification. Crosstalk, October.

[45] Bril, R. J., Lukkien, J. J., & Verhaegh, W. F. (2009). Worst-case response

time analysis of real-time tasks under fixed-priority scheduling with deferred

preemption. Real-Time Systems, 42(1-3), 63-119.

[46] Bril, R. J., Lukkien, J. J., & Verhaegh, W. F. (2007, July). Worst-case

response time analysis of real-time tasks under fixed-priority scheduling with

http://www.control.lth.se/truetime/
https://github.com/omnetpp/afdx

131

deferred preemption revisited. In Real-Time Systems, 2007. ECRTS'07. 19th

Euromicro Conference on (pp. 269-279). IEEE.

[47] Mäki-Turja, J., & Nolin, M. (2008). Efficient implementation of tight

response-times for tasks with offsets. Real-Time Systems, 40(1), 77-116.

[48] Palencia, J. C., & Harbour, M. G. (1999). Exploiting precedence relations in

the schedulability analysis of distributed real-time systems. In Real-Time

Systems Symposium, 1999. Proceedings. The 20th IEEE (pp. 328-339). IEEE.

[49] Palencia, J. C., & Harbour, M. G. (2003, July). Offset-based response time

analysis of distributed systems scheduled under EDF. In Real-Time Systems,

2003. Proceedings. 15th Euromicro Conference on (pp. 3-12). IEEE.

[50] Spuri, M. (1996). Holistic analysis for deadline scheduled real-time

distributed systems.

[51] Tindell, K., & Clark, J. (1994). Holistic schedulability analysis for distributed

hard real-time systems. Microprocessing and microprogramming, 40(2), 117-

134.

[52] Rivas, J. M., Gutiérrez, J. J., Palencia, J. C., & Harbour, M. G. (2011, July).

Schedulability analysis and optimization of heterogeneous edf and fp distributed

real-time systems. In Real-Time Systems (ECRTS), 2011 23rd Euromicro

Conference on (pp. 195-204). IEEE.

[53] Le Boudec, J. Y., & Thiran, P. (2001). Network calculus: a theory of

deterministic queuing systems for the internet (Vol. 2050). Springer Science &

Business Media.

[54] Keshav, S. (1997). Computer networking: An engineering approach.

[55] Okino, C. M. (1998). A framework for performance guarantees in

communication networks (Doctoral dissertation, Ph. D. Dissertation, UCSD,

1998. 210 BIBLIOGRAPHY).

[56] Martin, S., & Minet, P. (2006, April). Schedulability analysis of flows

scheduled with FIFO: application to the expedited forwarding class. In Parallel

132

and Distributed Processing Symposium, 2006. IPDPS 2006. 20th

International (pp. 8-pp). IEEE.

[57] Hua, Y., & Liu, X. (2011, April). Scheduling design and analysis for end-to-

end heterogeneous flows in an avionics network. In INFOCOM, 2011

Proceedings IEEE (pp. 2417-2425). IEEE.

[58] Ji, X., Li, J., Li, H., Zhou, H., Hu, F., Liu, X., & Zhu, G. (2011, March).

Analysis of Deterministic End-to-end Delay in Multi-hop AFDX Avionics Network

System. In PECCS (pp. 434-440).

[59] Diez Barrero,D. (September 2009) Distributed avionics databus simulation.

Individual research project MSc.Cranfield: Cranfield University, School of

Engineering.

[60] Tommaso Falchi Delitala. (September 2009) Simulation of Switched

Avionic Databus, A real-time software AFDX simulation. Individual research

project MSc, Cranfield: Cranfield University, School of Engineering.

[61] Chen, T. (2011). Development and simulation of hard real-time switched-

Ethernet avionics data network. Individual research project MSc, Cranfield:

Cranfield University, School of Engineering.

[62] Rago, S. A. (1993). UNIX System V network programming. Pearson

Education.

[63] Mauerer, W. (2010). Professional Linux kernel architecture. John Wiley &

Sons.

[64] Student‘s T-test, https://en.wikipedia.org/wiki/Student%27s_t-test

https://en.wikipedia.org/wiki/Student%27s_t-test

133

