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Abstract

In this paper, a delay-dependent approach is developed to deal with the stochastic H∞ filtering problem for a

class of Itô type stochastic time-delay jumping systems subject to both the sensor nonlinearities and the exogenous

nonlinear disturbances. The time delays enter into the system states, the sensor nonlinearities and the external nonlinear

disturbances. The purpose of the addressed filtering problem is to seek an H∞ filter such that, in the simultaneous

presence of nonlinear disturbances, sensor nonlinearity as well as Markovian jumping parameters, the filtering error

dynamics for the stochastic time-delay system is stochastically stable with a guaranteed disturbance rejection attenuation

level γ. By using Itô’s differential formula and the Lyapunov stability theory, we develop a linear matrix inequality

approach to derive sufficient conditions under which the desired filters exist. These conditions are dependent on the

length of the time delay. We then characterize the expression of the filter parameters, and use a simulation example to

demonstrate the effectiveness of the proposed results.
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I. Introduction

In practice, when measuring the system output through sensors, the sensor nonlinearities usually result from

the harsh environments such as uncontrollable elements (e.g., variations in flow rates, temperature, etc.) and

aggressive conditions (e.g., corrosion, erosion, and fouling, etc.) [19]. In real-world applications, nonlinearity

is an inevitable feature for some sensors, for example, accelerometers, temperature sensors, image sensors and

strain gauges. Since the sensor nonlinearity cannot be simply ignored and often lead to poor performance

of the controlled system, many researchers have been investigating the analysis and synthesis problems for

various systems with sensor nonlinearities [3, 5, 13,16].

It is well known that the time delay exists commonly in dynamic systems and is frequently a source of

instability. Therefore, in recent years, much work has been done about time-delay systems [1, 6, 7, 17, 18,

20, 23, 24, 26]. In particular, in the case that time delays are known and small, the linear matrix inequality

(LMI) technique has been extensively used to derive delay-dependent stability criteria, see [4–7, 10, 28] for

some recent publications. On the other hand, during the past few decades, stochastic modeling has come to

play an important role in many branches of science such as biology, economics and engineering applications.
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Consequently, the time delay systems with stochastic perturbations have drawn a lot of attentions from

researchers working in related areas, see [1, 21,22] and references therein.

Markovian jump systems are the hybrid systems with two components in the state [11]. The first one refers

to the mode which is described by a continuous-time finite-state Markovian process, and the second one refers

to the state which is represented by a system of differential equations. The jump systems have the advantage

of modeling the dynamic systems subject to abrupt variation in their structures, such as component failures or

repairs, sudden environmental disturbance, changing subsystem interconnections, operating in different point

of a nonlinear plant. Recently, filtering and control for Markovian jump systems with or without nonlinear

disturbances have drawn some research attentions, see [17, 23, 24, 27, 28] for some related results. Note that

exogenous nonlinear disturbances may result from the linearization process of an originally highly nonlinear

plant or may be an external nonlinear input, and therefore exist in many real-world systems.

The filter design problem has long been one of the key problems in the areas of control and signal processing.

The purpose of the filtering problem is to estimate the unavailable state variables (or a linear combination of

the states) of a given system through noisy measurements. During the past four decades, the filtering problem

has been extensively investigated for a variety of complex systems, such as deterministic delay systems [1,8,9],

Markovian jumping delay systems [17,20,23] and stochastic delay systems [22,24], to name just a few. When

both the Markovian jump parameters and time delays appear in the stochastic systems, the H∞ filtering

problem has been studied in [24], where some useful stochastic stability conditions have been proposed by an

LMI technique. In [23], the robust H∞ filter design problem has been investigated for stochastic time-delay

systems with missing measurements. However, up to now, the H∞ filtering problem for stochastic time-delay

systems with both Markovian switching and sensor nonlinearities have not been adequately addressed yet,

which still remains as an interesting research topic.

In this paper, we aim to solve the H∞ filter design problem for a class of stochastic time-delay systems

with nonlinear disturbances, sensor nonlinearities and Markovian jumping parameters. Both the filter analysis

and synthesis problems are tackled. A delay-dependent approach is developed to design the H∞ filter for the

stochastic delay jumping systems such that, for the addressed nonlinear disturbances and sensor nonlinearities,

the filtering error system is stochastically stable with a prescribed disturbance rejection attenuation level γ.

By using Itô’s differential formula and the Lyapunov stability theory, sufficient conditions for the solvability

of the filter design problem are derived in term of linear matrix inequalities (LMIs). These conditions are

dependent on the information of the time delay, which can be easily checked by resorting to available software

packages. A numerical example and the corresponding simulation results are exploited to demonstrate the

effectiveness of the proposed filter design method.

Notation In this paper, R
n and R

n×m denote, respectively, the n dimensional Euclidean space and the set

of all n ×m real matrices. L2[0,∞) is the space of square-integrable vector functions over [0,∞); | · | refers

to the Euclidean norm in R
n, and ‖ · ‖2 stands for the usual L2[0,∞) norm. Let τ > 0, C([−τ, 0]; Rn) denote

the family of continuous functions φ from [−τ, 0] to R
n with the norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ)|, and I denote

the identity matrix of compatible dimension . The notation X ≥ Y (respectively, X > Y ) where X and Y are

symmetric matrices, means that X − Y is positive semi-definite (respectively, positive definite). For a matrix

M, MT represents its transpose, λmax(M) (respectively, λmin(M)) stands for its maximum (respectively,

minimum) eigenvalue and its operator norm is denoted by ‖M‖ = sup{|Mx| : |x| = 1} =
√

λmax(MTM).

(Ω,F , {Ft}t≥0,P) is a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e.,

the filtration contains all P -null sets and is right continuous). Denote by Lp
F0

([−τ, 0]; Rn) the family of all F0-

measurable C([−τ, 0]; Rn)-valued random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0} such that sup−τ≤θ≤0 E|ξ(θ)|p <

∞, where E{x} stands for the expectation of stochastic variable x. The shorthand diag(M1, M2, , ..., Mn)
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denotes a block diagonal matrix with diagonal blocks being the matrices M1, M2, , ..., Mn. In symmetric

block matrices, the symbol ∗ is used as an ellipsis for terms induced by symmetry. Matrices, if not explicitly

stated, are assumed to have compatible dimensions .

II. Problem Formulation

Let {r(t), t ≥ 0} be a right-continuous Markov chain on the probability space taking values in a finite state

space S = {1, 2, · · · , N} with the following transition probabilities:

P{r(t+ ∆t) = j : r(t) = i} =

{

γij∆t+O(∆t) if i 6= j,

1 + γii∆t+O(∆t) if i = j,

where ∆t > 0 and lim∆t→0O(∆t)/∆t = 0. Here, γij ≥ 0 is the transition rate from i to j if i 6= j, while

γii = −
∑N

j=1,j 6=i γij .

Consider the following stochastic time-delay system with both the sensor nonlinearity and Markovian switch-

ing:

(Σ) : dx(t) = [A(r(t))x(t) +Ad(r(t))x(t− τ) +B1(r(t))v(t) + f(x(t), x(t− τ), r(t))] dt

+E(r(t))x(t)dω(t) (1)

y(t) = ψ(u) +B2(r(t))v(t) (2)

z(t) = L(r(t))x(t) (3)

x(t) = φ(t), r(t) = r(0), ∀ t ∈ [−τ, 0], (4)

where x(t) ∈ R
n is the state, y(t) ∈ R

r is the measured output, z(t) ∈ R
q is the controlled output, v(t) ∈ R

p

is the disturbance input which belongs to L2[0,∞). f(·, ·, ·) is an unknown nonlinear exogenous disturbance

input, ψ(·) represents the sensor nonlinearity, and u = C(r(t))x(t)+Cd(r(t))x(t−τ). ω(t) is a one-dimensional

Brownian motion satisfying E{dω(t)} = 0 and E{dω2(t)} = dt. The constant τ is a real time delay satisfying

0 ≤ τ < ∞, and φ(t) ∈ Lp
F0

([−τ, 0]; Rn) is an initial function. For a fixed mode r(t) ∈ S, A(r(t)), Ad(r(t)),

B1(r(t)), B2(r(t)), E(r(t)), C(r(t)), Cd(r(t)), L(r(t)) are constant matrices with appropriate dimensions.

Assumption 1: For a fixed system mode, there exist known real constant mode-dependent matrices M1(r(t))

∈ R
n×n and M2(r(t)) ∈ R

n×n such that the unknown nonlinear vector function f(·, ·, ·) satisfies the following

boundedness condition:

|f(x(t), x(t− τ), r(t))| ≤ |M1(r(t))x(t)| + |M2(r(t))x(t− τ)| (5)

Remark 1: Exogenous nonlinear time-varying disturbances, which may exist in many real-world systems,

have been dealt with in many papers such as [23, 24]. In Assumption 1, the nonlinear disturbance term

f(x(t), x(t − τ), r(t)) in (5) contains the delayed term, which is more general than that studied in [23, 24].

Note that the H∞ filtering problem for stochastic delayed jumping systems with such kind of nonlinear

exogenous disturbances has not been thoroughly investigated in the literature.

Assumption 2: The nonlinear function ψ(·) in stochastic systems (1)-(4) represents the sector nonlinearities

satisfying the following sector condition:

(ψ(u) −K1(r(t))u)
T (ψ(u) −K2(r(t))u) ≤ 0, ∀ u ∈ R

n, (6)

where the matrices K1(r(t)) ≥ 0 and K2(r(t)) ≥ 0 (K2(r(t)) > K1(r(t))) are given mode-dependent constant

diagonal matrices.

Remark 2: As in [13], it is customary to say that the nonlinear function belongs to a sector [K1(r(t)),K2(r(t))].

The nonlinear description in (6) is quite general that include the usual Lipschitz condition as a special case.
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Note that both the control analysis and model reduction problems for systems with sector nonlinearities have

been intensively studied, see e.g. [5, 12,15].

For technical convenience, the nonlinear function ψ(u) can be decomposed into a linear and a nonlinear

part as

ψ(u) = ψs(u) +K1(r(t))u, (7)

where the nonlinear part ψs(u) belongs to the set Ψs given by

Ψs = {ψs(u) : ψT
s (u)(ψs(u) −K(r(t))u) ≤ 0}, (8)

with K(r(t)) = K2(r(t)) −K1(r(t)) > 0.

In this paper, in order to estimate z(t), we are interested in designing a filter of the following structure:

(Σf ) : dx̂(t) = F (r(t))x̂(t)dt +G(r(t))y(t)dt (9)

ẑ(t) = H(r(t))x̂(t), (10)

where x̂(t) ∈ R
n, ẑ(t) ∈ R

q, and F (r(t)), G(r(t)) and H(r(t)) are filter parameters to be determined.

Note that the set S consists of different operation modes of the system (1)-(4) for each possible values of

r(t) = i, i ∈ S. In the sequel, we denote the matrix associated with the ith mode by

Wi , W (r(t) = i),

where the matrix W could be A, Ad, B1, B2, E, C, Cd, L, M1, M2, K1, K2, K, F , G or H.

Let the filter estimation error be e(t) = z(t) − ẑ(t). By augmenting the state variables

ξ(t) =

[

x(t)

x̂(t)

]

, ξτ =

[

x(t− τ)

x̂(t− τ)

]

,

and combining (Σ) and (Σf ), we obtain the filtering error dynamics as follows:

(Σe) : dξ(t) =
[
Āiξ(t) + ĀdiNξτ + B̄iv(t) +NT f(x(t), x(t− τ), i) + Ḡiψs(u)

]
dt

+ĒiNξ(t)dω(t) (11)

e(t) = L̄iξ(t) (12)

where

Āi =

[

Ai 0

GiK1iCi Fi

]

, Ādi =

[

Adi

GiK1iCdi

]

, B̄i =

[

B1i

GiB2i

]

,

Ḡi =

[

0

Gi

]

, Ēi =

[

Ei

0

]

, L̄i =
[

Li −Hi

]

, N =
[

I 0
]

.

For the purpose of presentation simplification, we define a new state variable

η(t) = Āiξ(t) + ĀdiNξτ + B̄iv(t) +NT f(x(t), x(t− τ)) + Ḡiψs(u), (13)

and then the systems (11) can be rewritten as

dξ(t) = η(t)dt + ĒiNξ(t)dω(t). (14)
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Observe the system (11)-(12) and let ξ(t; ζ) denote the state trajectory from the initial data ξ(θ) = ζ(θ) on

−τ ≤ θ ≤ 0 in L2
F0

([−τ, 0]; Rn). Obviously, ξ(t, 0) ≡ 0 is the trivial solution of system (11)-(12) corresponding

to the initial data ζ = 0.

Before formulating the problem to be investigated, we first introduce the following stability concepts for

the augmented system (11)-(12).

Definition 1: For the system (11)-(12) and every ζ ∈ L2
F0

([−τ, 0]; Rn), the trivial solution is said to be

mean-square asymptotically stable if

lim
t→∞

E|ξ(t)|2 = 0; (15)

and is said to be mean-square exponentially stable if there exist scalars α > 0 and β > 0 such that

E|x(t, ζ)|2 ≤ αeβt sup
−2τ≤θ≤0

E|ζ(θ)|2. (16)

Definition 2: Given a scalar γ > 0, the filter error system (11)-(12) with sensor nonlinearity is said to be

stochastically stable with disturbance attenuation level γ if it is mean-square exponentially stable and, under

zero initial conditions, ‖e(t)‖E2
< γ‖v(t)‖2 holds for all nonzero v(t) ∈ L2[0,∞), where

‖e(t)‖E2
:=

(

E

{∫ ∞

0

|e(t)|2dt

})1/2

.

The purpose of this paper is to design an H∞ filter of the form (9)-(10) for the system (1)-(4) such that, for

all admissible time delays, exogenous nonlinear disturbances, sensor nonlinearities and Markovian jumping

parameters, the filtering error system (11)-(12) is stochastically stable with disturbance attenuation level γ,

where the criteria are dependent on the length of time delay.

III. Main Results

A. Filter analysis

Firstly, let us give the following lemmas which will be used in the proofs of our main results in this paper.

Lemma 1: (Schur Complement) [2] Given constant matrices Σ1,Σ2,Σ3 where Σ1 = ΣT
1 and 0 < Σ2 = ΣT

2 .

Then Σ1 + ΣT
3 Σ−1

2 Σ3 < 0 if and only if
[

Σ1 ΣT
3

Σ3 −Σ2

]

< 0,

or, equivalently [

−Σ2 Σ3

ΣT
3 Σ1

]

< 0.

Lemma 2: [25] Let x ∈ R
n, y ∈ R

n and ε > 0. Then, we have

xT y + yTx ≤ εxTx+ ε−1yT y.

Lemma 3: [25] Let Φ1, Φ2, Φ3 and Ξ > 0 be given constant matrices with appropriate dimensions, Then

for any scalar ε > 0 satisfying εI − ΦT
2 ΞΦ2 > 0, we have

[Φ1 + Φ2Φ3]
T Ξ[Φ1 + Φ2Φ3] ≤ ΦT

1 [Ξ−1 − ε−1Φ2Φ
T
2 ]−1Φ1 + εΦT

3 Φ3.

In the following theorem, the delay-dependent technique and an LMI method are used to deal with the

stability analysis problem for the H∞ filter design of the stochastic system (1)-(4), and a sufficient condition

is derived that ensures the solvability of the H∞ filtering problem.
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Theorem 1: Consider the filtering error system (11)-(12) with given filter parameters. If there exist positive

definite matrices Pi > 0, Ti > 0, Q > 0 and R > 0 such that the following matrix inequalities


















Ω1i 0 PiB̄i PiḠi +NTCT
i Ki τ̄ ĀT

i N
TR 0 PiN

T PiĀdiN

∗ Ω2i 0 CT
diKi τ̄ ĀT

diN
TR 0 0 0

∗ ∗ −γ2I 0 τ̄ B̄T
i N

TR 0 0 0

∗ ∗ ∗ −2I 0 0 0 0

∗ ∗ ∗ ∗ −τ̄R R 0 0

∗ ∗ ∗ ∗ ∗ −ε2iI 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ε1iI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


















< 0, ∀ i ∈ S (17)

[

Ti PiĀdi

ĀT
diPi R

]

> 0, ∀ i ∈ S (18)

hold, where

Ω1i := Pi(Āi + ĀdiN) + (Āi + ĀdiN)TPi + ΣN
i,j=1γijPj + L̄T

i L̄i +NTQN

+NT ĒT
i PiĒiN + τ̄ ceN

TN + 2(ε1i + ε2i)(N
TMT

1iM1iN) + τ̄Ti, (19)

Ω2i := 2(ε1i + ε2i)(M
T
2iM2i) −Q, (20)

with ce = maxi∈S ‖Ēi‖
2, then the filtering error system is stochastically stable with the disturbance attenuation

level γ for τ ≤ τ̄ (τ̄ is the upper bound of the time delay).

Proof: See Appendix for detailed proof.

In the next subsection, our attention is focused on the design of filter parameters Fi, Gi and Hi, for i ∈ S,

by using the results in Theorem 1. The explicit expression of the expected filter parameters is obtained in

term of the solution to a set of LMIs.

B. Filter synthesis

The following theorem shows that the desired filter parameters can be derived by solving several LMIs.

Theorem 2: Consider the system (11)-(12). If there exist matrices Xi > 0, Yi > 0, T̄11i > 0, T̄22i > 0,

Q > 0, R > 0, a matrix T̄12i and scalars ε1i > 0, ε2i > 0 such that the following linear matrix inequalities
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
































Π1i Π2i 0 YiB1i CT
i Ki τ̄AT

i R 0 YiAdi

∗ Π3i 0 Π4i G̃i +CT
i Ki τ̄AT

i R 0 Π5i

∗ ∗ Ω2i 0 CT
diKi τ̄AdiR 0 0

∗ ∗ ∗ −γ2I 0 τ̄BT
1iR 0 0

∗ ∗ ∗ ∗ −2I 0 0 0

∗ ∗ ∗ ∗ ∗ −τ̄R τ̄R 0

∗ ∗ ∗ ∗ ∗ ∗ −ε2iI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Yi ET
i Yi ET

i Xi LT
i −HT

i MT
1iε1i MT

2iε2i Q

Xi ET
i Yi ET

i Xi LT
i MT

1iε1i MT
2iε2i Q

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

−ε1iI 0 0 0 0 0 0

∗ −Yi Yi 0 0 0 0

∗ ∗ −Xi 0 0 0 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −2ε1iI 0 0

∗ ∗ ∗ ∗ ∗ −2ε2iI 0

∗ ∗ ∗ ∗ ∗ ∗ −Q


































< 0, ∀ i ∈ S (21)






T̄11i T̄12i YiAdi

T̄ T
12i T̄22i Π5i

AT
diYi ΠT

5i R




 > 0, ∀ i ∈ S (22)

hold, where

Π1i := YiAi +AT
i Yi + YiAdi +AT

diYi + ΣN
j=1γijYj + τ̄ ceI + τ̄ T̄11i,

Π2i := YiAi +AT
i Xi + YiAdi +AT

diXi + ΣN
j=1γijYj + τ̄ ceI + τ̄ T̄12i,

+CT
i K1iG̃

T
i + F̃ T

i + CT
diK1iG̃

T
i ,

Π3i := XiAi +AT
i Xi + G̃iK1iCi + CT

i K1iG̃
T
i +XiAdi + G̃iK1iCdi,

+CT
diK1iG̃

T
i +AT

diXi + ΣN
j=1γijXj + τ̄ ceI + τ̄ T̄22i,

Π4i := XiB1i + G̃iB2i,

Π5i := XiAdi + G̃iK1iCdi, (23)



SUBMITTED 8

then the system (11)-(12) is stochastically stable with disturbance attenuation γ for τ ≤ τ̄ . In this case, the

parameters of the desired H∞ filter (Σf ) are given as follows:

Fi := (Yi −Xi)
−1F̃i, Gi := (Yi −Xi)

−1G̃i, Hi := H̃i. (24)

Proof: Define

Pi =

[

Xi Yi −Xi

Yi −Xi Xi − Yi

]

> 0, Υ =

[

Yi I

Yi 0

]

, (25)

where Yi = Y−1
i > 0.

From (22), we have

T := Υ−Tdiag(Yi, I)

(

T̄11i T̄12i

T̄ T
12i T̄22i

)

diag(Yi, I)Υ > 0. (26)

Pre- and post-multiplying the LMIs in (21) by diag(Yi, I, ...I
︸ ︷︷ ︸

8

, Yi, I, ..., I
︸ ︷︷ ︸

5

), and (22) by diag(Yi, I, I), we have


































Π̄1i Π̄2i 0 B1i YiC
T
i Ki τ̄YiA

T
i R 0 Adi I

∗ Π3i 0 Π4i G̃i τ̄AT
i R 0 Π5i Xi

∗ ∗ Ω2i 0 CT
diKi τ̄AdiR 0 0 0

∗ ∗ ∗ −γ2I 0 τ̄BT
1iR 0 0 0

∗ ∗ ∗ ∗ −2I 0 0 0 0

∗ ∗ ∗ ∗ ∗ −τ̄R τ̄R 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ε2iI 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1iI

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

YiE
T
1i YiE

T
i Xi YiL

T
i − YiH

T
i YiG

T
1iε1i YiG

T
2iε2i YiQ

ET
1i ET

i Xi LT
i GT

1iε1i GT
2iε2i Q

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−Yi I 0 0 0 0

∗ −Xi 0 0 0 0

∗ ∗ −I 0 0 0

∗ ∗ ∗ −2ε1iI 0 0

∗ ∗ ∗ ∗ −2ε2iI 0

∗ ∗ ∗ ∗ ∗ −Q


































< 0, ∀ i ∈ S (27)
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




YiT̄11i YiT̄12i Adi

∗ T̄22i XiAdi + G̃iK1iCdi

∗ ∗ R




 > 0, ∀ i ∈ S, (28)

where

Π̄1i := AiYi + YiA
T
i +AdiYi + YiA

T
di + ΣN

j=1γijYiY
−1
j Yi + τ̄ ceY

2
i + τ̄YiT̄11iYi,

Π̄2i := Ai + YiA
T
i Xi +Adi + YiA

T
diXi + ΣN

j=1γijYiY
−1
j Yi + τ̄ ceYi + τ̄YiT12i

YiC
T
i K1iG̃

T
i + YiF̃

T
i + YiCdiK1iG̃

T
i .

From the definitions of Pi and Υi, the LMIs in (27)-(28) are equivalent to the following matrix inequalities




















ΥT
i Ω̄1iΥi 0 ΥT

i PiB̄i Λ1i τ̄ΥT
i Ā

T
i N

TR 0 ΥT
i PiN

T Λ2i Λ3i

∗ Ω2i 0 CT
diK τ̄ĀT

diN
TR 0 0 0 0

∗ ∗ −γ2I 0 τ̄ B̄T
i N

TR 0 0 0 0

∗ ∗ ∗ −2I 0 0 0 0 0

∗ ∗ ∗ ∗ −τ̄R τ̄R 0 0 0

∗ ∗ ∗ ∗ ∗ −ε2iI 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ε1iI 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ΥT
i PiΥi




















< 0, (29)

[

ΥT
i TiΥi ΥT

i PiĀdi

∗ R

]

> 0, (30)

where

Ω̄1i = Ω1i −NTET
i PiEiN

Λ1i = ΥT
i PiḠi + ΥT

i N
TCT

i Ki

Λ2i = ΥT
i PiĀdiN

Λ3i = ΥT
i N

TET
i PiΥi.

Finally, pre- and post-multiplying (29) by diag(Υ−T
i , I, ..., I

︸ ︷︷ ︸

7

,Υ−T
i ) and its transpose, (30) by diag(Υ−T

i , I)

and its transpose, we can obtain from Theorem 1 and Schur Complement Lemma that, with the given filter

parameters in (24), the system (11)-(12) is stochastically stable with disturbance attenuation γ for τ ≤ τ̄ .

Remark 3: TheH∞ filter design problem is solved in Theorem 2 for the addressed delayed stochastic jumping

systems with sensor nonlinearities and external nonlinear disturbances. LMI-based sufficient conditions are

obtained for the existence of full-order filters that ensure the mean-square exponential stability of the resulting

filtering error system and reduce the effect of the disturbance input on the estimated signal to a prescribed

level for all admissible time delays and nonlinearities. The feasibility of the filter design problem can be readily

checked by the solvability of two sets of LMIs, which can be determined by using the Matlab LMI toolbox in

a straightforward way. In the next section, an illustrative example will be provided to show the usefulness of

the proposed techniques.
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IV. An Illustrative Example

In this section, a simulation example is presented to illustrate the usefulness and flexibility of the filter

design method developed in this paper. We are interested in obtaining the upper bound τ̄ of the time

delay and designing the H∞ filter for the stochastic jumping system with nonlinear disturbances and sensor

nonlinearities.

The system data of (1)-(3) are given as follows:

[

γ11 γ12

γ21 γ22

]

=

[

−2.5 2.5

0.9 −0.9

]

, γ = 1.8.

Mode 1:

A1 =

[

−3.5 1

0 −2.7

]

, Ad1 =

[

0.15 0

0 0.21

]

, E1 =

[

0.13 0

0 0.15

]

,

B11 =

[

0.2

0.1

]

, B21 =

[

0.13

0.02

]

, M11 =

[

0.5 0

0 0.1

]

, M21 =

[

0.2 0

0 0.5

]

,

C1 = 0.5I2, Cd1 = 0.5I2, L1 = [0.3 0.7],

K11 = diag{0.3, 0.4}, K21 = diag{0.6, 0.5}.

Mode 2:

A2 =

[

−4.3 1

0 −2.5

]

, Ad2 =

[

0.22 0

0 0.1

]

, E2 =

[

0.12 0

0 0.31

]

,

B12 =

[

0.1

0.2

]

, B22 =

[

0.2

0.15

]

, M12 =

[

0.4 0

0 0.2

]

, M22 =

[

0.3 0

0 0.2

]

,

C2 = 0.6I2, Cd2 = I2, L2 = [0.6 0.8],

K12 = diag{0.4, 0.6}, K22 = diag{0.6, 0.9}.

Using Matlab LMI control Toolbox to solve the LMIs in (21) and (22), we obtain the upper bound of time

delay as τ̄ = 2.2520. Therefore, by Theorem 2, it can be calculated that for all 0 < τ ≤ 2.2520, there exist

the desired H∞ filters. For demonstration purpose, let us fix τ = 1.5. In this case, by the LMI toolbox, we

can calculate that

X1 =

[

58.5508 −10.3863

−10.3863 56.9008

]

, Y1 =

[

34.2934 −6.2039

−6.2039 31.9526

]

,

T1 =








45.1367 −16.5489 13.1486 −6.4879

−16.5489 29.2881 −6.8324 25.7375

13.1486 −6.8324 87.1278 −28.4811

−6.4879 25.7375 −28.4811 54.8590







,

X2 =

[

48.3957 −9.1244

−9.1244 44.5760

]

, Y2 =

[

29.6427 −4.9378

−4.9378 25.6274

]

,
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T2 =








35.0120 −10.6401 14.8960 −3.7476

−10.6401 10.3716 −2.1487 1.4473

14.8960 −2.1487 73.7385 −22.6410

−3.7476 1.4473 −22.6410 40.0518







,

Q =

[

29.9297 −8.6883

−8.6883 26.0809

]

, R =

[

2.2850 −0.0177

−0.0177 2.5803

]

,

s11 = 132.4881, s12 = 94.5044, s21 = 50.6824, s22 = 65.9064.

The filter parameters to be determined are as follows:

F1 =

[

−5.4748 1.8614

0.3389 −1.7616

]

, G1 =

[

0.1978 0.0053

0.0183 0.2870

]

, H1 = [0.2951, 0.7075],

F2 =

[

−6.4333 1.6877

0.1598 −3.2487

]

, G2 =

[

0.5151 0.0248

0.0561 0.2546

]

, H2 = [0.6013, 0.7987].

Fig. 1–Fig. 6 are the simulation results for the performance of the designed H∞ filter, where the sensor

nonlinearities are taken as

ψ(u) =
K1i +K2i

2
u+

K2i −K1i

2
sin(u),

which satisfies (6). It is confirmed from the simulation results that all the expected objectives are well achieved.

V. Conclusions

In this paper, we have developed a delay-dependent approach to dealing with the stochastic H∞ filtering

problem for a class of Itô type stochastic time-delay jumping systems subject to both the sensor nonlinearities

and the exogenous nonlinear disturbances. The time delays are allowed to exist in the system states, the

sensor nonlinearities, as well as the external nonlinear disturbances. By using Itô’s differential formula and the

Lyapunov stability theory, we have proposed a linear matrix inequality method to derive sufficient conditions

under which the desired filters exist. These conditions are dependent on the length of the time delay. We have

also characterized the expression of the filter parameters, and employed a simulation example to demonstrate

the effectiveness of the proposed results. Moreover, we can extend the main results in this paper to more

complex and realistic systems, such as systems with polytopic or norm-bounded uncertainties, and systems

with general nonlinearities. We will also focus on the real-time applications in network-based communications

and bioinformatics. The corresponding results will appear in the near future.
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Appendix

The Proof of Theorem 1

Proof: Recall the Newton-Leibniz formula and (14), we can write

ξτ = ξ(t) −

∫ t

t−τ
dξ(s) = ξ(t) −

∫ t

t−τ
η(s)ds −

∫ t

t−τ
ĒiNξ(s)dω(s). (31)
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It is easy to know from (31) that the following system is equivalent to (11)-(12):

dξ(t) =
[

(Āi + ĀdiN)ξ(t) − ĀdiN

∫ t

t−τ
η(s)ds− ĀdiN

∫ t

t−τ
ĒiNξ(s)dω(s)

+B̄iv(t) +NT f(x(t), x(t− τ), i) + Ḡiψs(u)
]

dt+ ĒiNξ(t)dω(t), (32)

e(t) = L̄iξ(t), (33)

ξ(t) = ρ(t), r(t) = r(0), ∀ t ∈ [−2τ, 0], (34)

where ρ(t) ∈ Lp
F0

([−2τ, 0]; R2n) is the initial function. Hence, we only need to show that the system (32)-(34)

is stochastically stable with the disturbance attenuation level γ.

Now, let Pi > 0, Q > 0, R > 0, ce = maxi∈S ‖Ēi‖
2 and define the following Lyapunov-Krasovskii function

candidate for the system (32):

V (x(t), t, i) = ξT (t)Piξ(t) +

∫ t

t−τ
ξT (s)NTQNξ(s)ds+

∫ t

t−τ

∫ t

s
ηT (β)NTRNη(β)dβds

+

∫ t

t−τ

∫ t

s
ceξ

T (β)NTNξ(β)dβds. (35)

It can be derived by Itô’s differential formula [14] that

dV (ξ(t), t, i) = LV (ξ(t), t, i)dt + 2ξT (t)PiĒiNξ(t)dω(t), (36)

where

LV (ξ(t), t, i) = ξT (t)[(Āi + ĀdiN)TPi + Pi(Āi + ĀdiN) +
N∑

j=1

γijPj +NTQN ]ξ(t)

−2ξT (t)PiĀdiN

(∫ t

t−τ
η(s)ds +

∫ t

t−τ
ĒiNξ(s)dω(s)

)

− ξT
τ N

TQNξτ

+2ξT (t)PiB̄iv(t) + 2ξT (t)PiN
T f(x(t), x(t− τ), i) + 2ξT (t)PiḠiψs(u)

+ξT (t)NT ĒT
i PiĒiNξ(t) + τηT (t)NTRNη(t) + τceξ

T (t)NTNξ(t) + τξT (t)Tiξ(t)

−

∫ t

t−τ

(
ηT (s)NTRNη(s) + ceξ

T (s)NTNξ(s) + ξT (t)Tiξ(t)
)
ds (37)

Noting (5) and Lemma 2, we have

2ξ(t)TPiN
T f(x(t), x(t− τ), i)

≤ ε−1
1i ξ

T (t)PiN
TNPiξ(t) + ε1if

T (x(t), x(t − τ), i)f(x(t), x(t − τ), i)

≤ ε−1
1i ξ

T (t)PiN
TNPiξ(t) + ε1i(|M1ix(t)| + |M2ix(t− τ)|)2

≤ ε−1
1i ξ

T (t)PiN
TNPiξ(t) + 2ε1i(ξ

T (t)NTMT
1iM1iNξ(t) + ξT

τ N
TMT

2iM2iNξτ ). (38)

Again, from Lemma 2, we obtain

−2ξT (t)PiĀdiN

∫ t

t−τ
ĒiNξ(s)dω(s) ≤ ξT (t)PiĀdiNN

T ĀT
diPiξ(t) + |

∫ t

t−τ
ĒiNξ(s)dω(s)|2. (39)

Note that in deriving (39), we have fixed the scalar parameter ε as 1, which is to maintain the simplicity of

the Lyapunov function.
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Moreover,

E|

∫ t

t−τ
ĒiNξ(s)dω(s)|2 ≤

∫ t

t−τ
E|ĒiNξ(s)|

2ds. (40)

From (13) and Lemma 3, it is not difficult to see that

τηT (t)NTRNη(t) = [Āiξ(t) + ĀdiNξτ + B̄iv(t) +NT f(x(t), x(t− τ), i) + Ḡiψs(u)]
TNT (τR)N

·[Āiξ(t) + ĀdiNξτ + B̄iv(t) +NT f(x(t), x(t− τ), i) + Ḡiψs(u)]

≤ [Āiξ(t) + ĀdiNξτ + B̄iv(t) + Ḡiψs(u)]
TNT ((τR)−1 − ε−1

2i NN
TNNT )−1N

·[Āiξ(t) + ĀdiNξτ + B̄iv(t) + Ḡiψs(u)]

+ε2if
T (x(t), x(t − τ), i)f(x(t), x(t − τ), i)

≤ [Āiξ(t) + ĀdiNξτ + B̄iv(t) + Ḡiψs(u)]
TNT ((τR)−1 − ε−1

2i NN
TNNT )−1N

·[Āiξ(t) + ĀdiNξτ + B̄iv(t) + Ḡiψs(u)]

+2ε2i(ξ
T (t)NTMT

1iM1iNξ(t) + ξT
τ N

TMT
2iM2iNξτ ). (41)

Substituting (38)-(41) into (37) and taking the mathematical expectation on both sides, we have

ELV (ξ(t), t, i) ≤ E{ξT (t)[(Āi + ĀdiN)TPi + Pi(Āi + ĀdiN) +
N∑

i=1

γijPj +NTQN

+NT ĒT
i PiĒiN + 2(ε1i + ε2i)N

TMT
1iM1iN + PiĀdiNN

T ĀT
diPi

+ε−1
1i PiN

TNPi + τceN
TN + τTi]ξ(t) − ξT

τ [2(ε1i + ε2i)N
TMT

2iM2iN

+NTQN ]ξτ + 2ξT (t)PiB̄iv(t) + 2ξT (t)PiḠiψs(u) − 2ψT
s (u)ψs(u)

+2ψs(u)KiCiNξ(t) + 2ψs(u)KiCdiNξτ

+[Āiξ(t) + ĀdiNξτ + B̄iv(t) + Ḡiψs(u)]
TNT ((τR)−1

−ε−1
2i NN

TNNT )−1N [Āiξ(t) + ĀdiNξτ + B̄iv(t) + Ḡiψs(u)]

−

∫ t

t−τ
(ηT (s)NTRNη(s) + 2ξT (t)PiĀdiNη(s) + ξT (t)Tiξ(t))ds}

≤ E{ξ̄T (t)Ωiξ̄(t)} −

∫ t

t−τ
E{ξ̄T (t, s)Γiξ̄(t, s)}ds (42)

where

ξ̄(t) = [ξT (t) ξT
τ N

T ψT
s (u)]T , ξ̄(t, s) = [ξT (t) ηT (s)NT ]T

Ωi : =






Ω11i 0 PiḠi +NTCT
i Ki

∗ Ω2i CT
diKi

∗ ∗ −2I




+






ĀT
i N

T

ĀT
diN

T

0




Φ−1

i [NĀi NĀdi 0] (43)

Γi =

[

Ti PiĀdi

ĀT
diPi R

]

, (44)

where Ω2i is defined in (20) and

Ω11i := Ω1i + ε−1
1i PiN

TNPi + PiĀdiNN
T ĀT

diPi − L̄T
i L̄i (45)

Φi := (τR)−1 − ε−1
2i NN

TNNT . (46)



SUBMITTED 16

By Schur Complement, we can obtain from (17) and (18) that, for τ ≤ τ̄ ,

Ωi < 0, Γi > 0, ∀ i ∈ S. (47)

Based on the inequality (42), the mean-square exponential stability of the system (32) can be proved as

follows. Define

λP = max
i∈S

λmax(Pi), λp = min
i∈S

λmin(Pi), λΩ = min
i∈S

(−λmax(Ωi)).

It follows from (42) that

ELV (ξ(t), t, i) ≤ −λΩE|ξ̄(t)|2 ≤ −λΩE|ξ(t)|2. (48)

From the definition of η(t) and (35), there exist positive scalars δ1, δ2 such that

λpE|ξ(t)|2 ≤ EV (ξ(t), t, i) ≤ λP E|ξ(t)|2 +

∫ t

t−2τ
δ1E|ξ(s)|2ds, (49)

and

EV (ξ(0), 0, r(0)) ≤ δ2E‖ρ‖2. (50)

Let δ be a root to the inequality

δ(λP + 2τδ1e
2δτ ) ≤ λΩ. (51)

To prove the mean-square exponentially stability, we modify the Lyapunov function candidate (35) as

V1(ξ(t), t, i) = eδtV (ξ(t), t, i), (52)

and then, by Dynkin’s formula [14], we obtain that for each r(t) = i, i ∈ S, t > 0

EV1(ξ(t), t, i) = EV1(ξ(0), 0, r(0)) + E

∫ t

0

eδs [δV (ξ(s), s, r(s)) + LV (ξ(s), s, r(s))] ds. (53)

It then follows from (48), (49) that

EV1(ξ(t), t, i) ≤ δ2E‖ρ‖
2 + E

∫ t

0

eδsδ

(

λP |ξ(s)|
2 +

∫ s

s−2τ
δ1|ξ(β)|2dβ

)

ds

−λΩE

∫ t

0

eδs|ξ(s)|2ds. (54)

Noticing the definition of δ and the fact of

∫ t

0

eδs
∫ s

s−2τ
(δ1|ξ(β)|2dβds ≤

∫ t

−2τ
δ1|ξ(β)|2

∫ β+2τ

β
eδsdsdβ

≤ 2τe2δτ

∫ t

−2τ
δ1|ξ(β)|2eδβdβ ≤ 2τe2δτ

(∫ t

0

δ1|ξ(s)|
2eδsds +

∫ 0

−2τ
(δ1|ξ(s)|

2eδsds

)

. (55)

Finally, it follows from (49), (54) and (55) that

eδtλpE|ξ(t)|2 ≤ (δ2 + 2τδδ1e
2δτ )E‖ρ‖2,

or

lim
t→∞

sup
1

t
log(E|ξ(t, ρ)|2) ≤ −δ,

which indicates that, for τ ≤ τ̄ , the trivial solution of (31) is exponentially stable in the mean square.
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In the sequel, we shall deal with the H∞ performance of the the system (32)-(34). Assume zero initial

condition, i.e., ξ(t) = 0 for t ∈ [−2τ, 0], and define

J(t) = E

{∫ t

0

[eT (s)e(s) − γ2vT (s)v(s)]ds

}

. (56)

It follows from Dynkin’s formula [14] and fact ξ(0) = 0 that

E{V (ξ(t), t, r(t))} = E

{∫ t

0

LV (ξ(s), s, r(s))ds

}

. (57)

From (56) and (57), it is easy to see that

J(t) = E

{∫ t

0

[eT (s)e(s) − γ2vT (s)v(s) + LV (ξ(s), s, r(s))]ds

}

− E{V (ξ(t), t, r(t))}

≤ E

{∫ t

0

[eT (s)e(s) − γ2vT (s)v(s) + LV (ξ(s), s, r(s))]ds

}

. (58)

Next, let

ξ̄(s, v) = [ξT (s) ξT
τ N

T ψT
s (u) vT (s)]T , ξ̄(s, β) = [ξT (s) ηT (β)NT ]T , (59)

and then, it follows from (42) that

E{eT (s)e(s) − γ2vT (s)v(s) + LV (x(s), s, i)}

≤ E{ξ̄T (s, v)Πiξ̄(s, v)} −

∫ s

s−τ
E{ξ̄T (s, β)Γiξ̄(s, β)}dβ, (60)

where

Πi : =








Ω11i + L̄T
i L̄i 0 PiB̄i PiḠi +NTCT

i Ki

∗ Ω2i 0 CT
diKi

∗ ∗ −γ2I 0

∗ ∗ ∗ −2I








+








ĀT
i N

T

ĀT
diN

T

B̄T
i N

T

0








Φ−1
i [NĀi NĀdi NB̄i 0] (61)

and Ω2i, Γi, Ω11i and Φi are defined in (20), (44), (45) and (46), respectively.

By the Schur Complement and the conditions (17)-(18), for τ ≤ τ̄ , it follows that

Πi < 0, Γi > 0 ∀ i ∈ S, (62)

and we can obtain from (58), (60) and (62) that, for all t > 0, J(t) < 0. Therefore, we arrive at

E

{∫ t

0

[zT (s)z(s)

}

ds ≤ γ2

{∫ t

0

vT (s)v(s)ds

}

,

which implies that

‖z(t)‖E2
< γ‖v(t)‖2. (63)

From the Definition 2, it is concluded that the filtering error system (11)-(12) is stochastically stable with

a disturbance attenuation level γ > 0 for τ ≤ τ̄ . The proof is now complete.


