11,289 research outputs found

    Enforcement and Spectrum Sharing: Case Studies of Federal-Commercial Sharing

    Get PDF
    To promote economic growth and unleash the potential of wireless broadband, there is a need to introduce more spectrally efficient technologies and spectrum management regimes. That led to an environment where commercial wireless broadband need to share spectrum with the federal and non-federal operations. Implementing sharing regimes on a non-opportunistic basis means that sharing agreements must be implemented. To have meaning, those agreements must be enforceable.\ud \ud With the significant exception of license-free wireless systems, commercial wireless services are based on exclusive use. With the policy change facilitating spectrum sharing, it becomes necessary to consider how sharing might take place in practice. Beyond the technical aspects of sharing, that must be resolved lie questions about how usage rights are appropriately determined and enforced. This paper is reasoning about enforcement in a particular spectrum bands (1695-1710 MHz and 3.5 GHz) that are currently being proposed for sharing between commercial services and incumbent spectrum users in the US. We examine three enforcement approaches, exclusion zones, protection zones and pure ex post and consider their implications in terms of cost elements, opportunity cost, and their adaptability

    The development of performance, interference, sharing and coordination criteria

    Get PDF
    The criteria for sharing and coordination between the Earth Exploration Satellite service and other radio services is not fully developed at this time. The purpose is to develop a plan showing how the necessary criteria might be developed. Some criteria does exist in the form of general restrictions, protection criteria, and coordination procedures for space and terrestrial services sharing the same bands. Determining suitable criteria for EES bands depends on the use of the band and the shared services. For example the criteria developed for EES passive sensing band will be developed in a manner different than for a telemetry band. In either case the resultant criteria will be related to, and can be referenced from the system noise power or equivalent noise temperature

    Sharing the 620-790 MHz band allocated to terrestrial television with an audio-bandwidth social service satellite system

    Get PDF
    A study was carried out to identify the optimum uplink and downlink frequencies for audio-bandwidth channels for use by a satellite system distributing social services. The study considered functional-user-need models for five types of social services and identified a general baseline system that is appropriate for most of them. Technical aspects and costs of this system and of the frequency bands that it might use were reviewed, leading to the identification of the 620-790 MHz band as a perferred candidate for both uplink and downlink transmissions for nonmobile applications. The study also led to some ideas as to how to configure the satellite system

    New space research frequency band proposals in the 20- to 40.5-GHz range

    Get PDF
    Future space research communications systems may require spectra above 20 GHz. Frequency bands above 20 GHz are identified that are suitable for space research. The selection of the proper bands depends on consideration of interference with other radio services, adequate bandwidths, link performance, and technical requirements for practical implementation

    An analysis of bi-directional use of frequencies for satellite communications

    Get PDF
    The bi-directional use of frequencies allocated for space communications has the potential to double the orbit/spectrum capacity available. The technical feasibility of reverse band use (RBU) at C-band (4 GHz uplinks and 6 GHz downlinks) is studied. The analysis identifies the constraints under which both forward and reverse band use satellite systems can share the same frequencies with terrestrial, line of sight transmission systems. The results of the analysis show that RBU satellite systems can be similarly sized to forward band use (FBU) satellite systems. In addition, the orbital separation requirements between RBU and FBU satellite systems are examined. The analysis shows that a carrier to interference ratio of 45 dB can be maintianed between RBU and FBU satellites separated by less than 0.5 deg., and that a carrier to interference ratio of 42 dB can be maintained in the antipodal case. Rain scatter propagation analysis shows that RBU and FBU Earth stations require separation distances fo less than 10 km at a rain rate of 13.5 mm/hr escalating to less than 100 km at a rain rate of 178 mm/hr for Earth station antennas in the 3 to 10 m range

    HAPS Gateway Link in the 5850-7075 MHz and Coexistence with Fixed Satellite Service

    Get PDF
    Gateway link is essential to connect HAPS platform to terrestrial based networks. This crucial link is incorporated in HAPS fixed service spectrum allocation in considerably high frequencies, renders the link for more attenuations by atmospheric gases, and rain effects, especially when the regional climate is not favorable. However, under the agenda item 1.20 of World Radio Conference-2012 (WRC-12) new HAPS allocation in the 5850-7075 MHz band is proposed. Although, spectrum features are incomparably reliable, on the contrary, Fixed Satellite Service (FSS) uplink transmissions will have signal levels much higher than those in HAPS systems and have the potential for causing interference at the HAPS gateway receiver. In this article a key aspect of co-channel interference phenomena is investigated to facilitate optimum frequency sharing in the band in question. By proposing mitigation techniques and statistical method this generic prediction model enhances the capability of the HAPS spectrum sharing and provides flexibility in spectrum planning for different fixed services

    Sharing criteria and performance standards for the 11.7-12.2 GHz band in region 2

    Get PDF
    Possible criteria for sharing between the broadcasting-satellite and the fixed-satellite services are considered for each of several parameters in three categories: system, space station, and earth station. Criteria for sharing between the two satellite services and the three terrestrial services to which the 12-GHz band is allocated are discussed separately, first for the case of the fixed and mobile services and then for the broadcasting service

    Guidelines for spaceborne microwave remote sensors

    Get PDF
    A handbook was developed to provide information and support to the spaceborne remote sensing and frequency management communities: to guide sensor developers in the choice of frequencies; to advise regulators on sensor technology needs and sharing potential; to present sharing analysis models and, through example, methods for determining sensor sharing feasibility; to introduce developers to the regulatory process; to create awareness of proper assignment procedures; to present sensor allocations; and to provide guidelines on the use and limitations of allocated bands. Controlling physical factors and user requirements and the regulatory environment are discussed. Sensor frequency allocation achievable performance and usefulness are reviewed. Procedures for national and international registration, the use of non-allocated bands and steps for obtaining new frequency allocations, and procedures for reporting interference are also discussed

    Remote sensing frequency sharing studies, tasks 1, 2, 5, and 6

    Get PDF
    The following tasks are discussed: adjacent and harmonic band analysis; analysis of impact of sensor resolution on interference; development of performance criteria, interference criteria, sharing criteria, and coordination criteria; and spectrum engineering for NASA microwave sensor projects

    Calculation of allowable orbital spacings for the fixed-satellite service

    Get PDF
    Minimum satellite separations are calculated which satisfy a given carrier-to-interference protection ratio for the Fixed-Satellite Service (FSS) on a single-entry basis, assuming circular antenna beams. The results are presented in the form of universal contour curves, in which antenna-centered angles are the coordinates, and also in terms of the more conventional longitude and latitude separations. It is shown that orbit capacity increases with decreasing service-area size and that, for practical service areas, capacity is increased if the longitude of a satellite does not differ too greatly from that of the service area it serves
    corecore