10,058 research outputs found

    A Single-Stage LED Driver Based on ZCDS Class-E Current-Driven Rectifier as a PFC for Street-Lighting Applications

    Get PDF
    This paper presents a light-emitting diode (LED) driver for street-lighting applications that uses a resonant rectifier as a power-factor corrector (PFC). The PFC semistage is based on a zero-current and zero-derivative-switching (ZCDS) Class-E current-driven rectifier, and the LED driver semistage is based on a zero-voltage-switching (ZVS) Class-D LLC resonant converter that is integrated into a single-stage topology. To increase the conduction angle of the bridge-rectifier diodes current and to decrease the current harmonics that are injected in the utility line, the ZCDS Class-E rectifier is placed between the bridge-rectifier and a dc-link capacitor. The ZCDS Class-E rectifieris driven by a high-frequency current source, which is obtained from a square-wave output voltage of the ZVS Class-D LLC resonant converter using a matching network. Additionally, the proposed converter has a soft-switching characteristic that reduces switching losses and switching noise. A prototype for a 150-W LED street light has been developed and tested to evaluate the performance of the proposed approach. The proposed LED driver had a high efficiency (>91%), a high PF (>0.99), and a low total harmonic distortion (THD i <; 8%) under variation of the utility-line input voltage from 180 to 250 V rms . These experimental results demonstrate the feasibility of the proposed LED scheme

    Driving electronics for OLED lighting

    Get PDF
    This paper proposes the concept of integrating an OLED (foil) and its driving electronics into one module. A complete light system consisting of these modules is the ultimate goal of this work. The main focus in this article is on the design of the driver chip and the circuit implementation. The measurement results confirm that it is possible to control the light output of the different modules

    High frequency electronic ballast provides line frequency lamp current

    Get PDF
    Most electronic ballasts for fluorescent lamps provide a sinusoidal lamp current at the switching frequency. The high-frequency current flowing through the lamp can generate significant radiated noise, which is unacceptable in noise-sensitive applications, such as fluorescent lights in airplanes. Using shielded enclosures for the lamps may solve the problem, but it is expensive. A discontinuous conduction mode (DCM) electronic ballast topology is presented which drives the lamp with line frequency current, just like a magnetic ballast. However, compared to a magnetic ballast, its weight is substantially reduced due to operation at 40 kHz switching frequency. The topology also ensures unity power factor at the input and stable lamp operation at the output

    Sustav za efikasno upravljanje solarnom energijom

    Get PDF
    Solar power is the major renewable energy source opted by developing countries as stand-alone / Grid enabled system. Industries and educational institutions are opting for solar energy to combat power crisis. This paper proposes knowledge based, self configurable, smart controller to efficiently use solar energy according to load, under frequent grid failure environment. It is enabled with fault identification and isolation. Extension to higher power capacity is easily achieved with plug and play mechanism. Proposed control architecture is implemented using Field Programmable Gate Array (FPGA), that supports modular level implementation with well defined interfaces for each sub-system. It can be used with low power as well as high power photo-voltaic system. Efficiency of the proposed architecture is demonstrated for the photo-voltaic system installed in educational institution.Solarna energija spada među glavne obnovljive izvore energije odabrana od strane zemalja u razvoju kao samostalnih izvora ili umrežene s ostalim izvorima. Industrija i edukacijske institucije predlažu solarnu energiju u borbi protiv energetske krize. U ovome radu predstavljen je samokonfigurabilan regulator za efikasno korištenje solarne energije s obzirom na opterećenje i česte promjene u mreži. To je omogućeno uz identifikaciju kvara. Ekstenzija na visoke snage jednostavno se postiže sa uređajem koji se može odmah koristiti. Regulator je implementiran koristeći programirljive logičke sklopove (FPGA) koji podržavaju modularnu implementaciju svake razine sa sučeljem prema svakom podsustavu. Predloženi sustav može biti korišten za niske snage kao i za visoke snage kod fotonaponskih sustava. Efikasnost predložene arhitekture testirana je na fotonaponskom sustavu postavljenom na edukacijskoj instituciji

    The Effects of Spread-Spectrum Techniques in Mitigating Conducted EMI to LED Luminance

    Get PDF
    Rapid voltage and current changes in recently ubiquitous LED driver have a potency to interfere other devices. Solutions with special converter design, component design, EMI filter, and spread-spectrum techniques have been proposed. Due to cost-size-weight constraints, spread-spectrum technique seems a potential candidate in alleviating EMI problem in LED application. In this paper, the effectiveness of conducted EMI suppression performance of the spread-spectrum technique is evaluated. Spread-spectrum techniques applied by giving disturbance to the system LED driver with 3 profile signals, filtered square, triangular, and sine disturbance signal to the switching pattern of a buck LED driver. From the test results, 472.5 kHz triangular and 525 kHz sine signal can reduce EMI about 42 dBuV whilethe filtered square signal can reduce EMI 40.70 dBuV compare with fundamental constantfrequency reference 669 kHz. The average reduction in the power level of the third signal inthe frequency range of 199 kHz to 925 kHz for 5.154281 dBuV and the filtered square signal can reduce the average power level better than other signal disturbance of 5.852618 dBuV.LED luminance decrease when the spread-spectrum technique is applied to the system about 2814 lux

    Modelling the human perception of shape-from-shading

    Get PDF
    Shading conveys information on 3-D shape and the process of recovering this information is called shape-from-shading (SFS). This thesis divides the process of human SFS into two functional sub-units (luminance disambiguation and shape computation) and studies them individually. Based on results of a series of psychophysical experiments it is proposed that the interaction between first- and second-order channels plays an important role in disambiguating luminance. Based on this idea, two versions of a biologically plausible model are developed to explain the human performances observed here and elsewhere. An algorithm sharing the same idea is also developed as a solution to the problem of intrinsic image decomposition in the field of image processing. With regard to the shape computation unit, a link between luminance variations and estimated surface norms is identified by testing participants on simple gratings with several different luminance profiles. This methodology is unconventional but can be justified in the light of past studies of human SFS. Finally a computational algorithm for SFS containing two distinct operating modes is proposed. This algorithm is broadly consistent with the known psychophysics on human SFS

    Irn Bru Motor Open Day Demonstrator

    Get PDF
    Diseño e implementación de una etapa de potencia que controla el movimiento rotatorio de un motor cuyo rotor es una lata de refresco "Irn Bru". Control de la frecuencia de rotación mediante dispositivo Android por comunicación Bluetooth

    Design and Construction of a Pure Sine Wave Inverter

    Get PDF
    This research is a design and implementation of a sine wave inverter circuit developed to run AC appliances at a low cost which high efficiency. The design consists of two stages i.e. the DC-DC step up stage and a DC-AC Inverter stage. The DC-DC step up converter is based on a push-pull design to step 24VDC to 300VDC. Pulse width modulation was used i.e. the SG3525 pulse width Modulator. The DC-AC inverter stage comprised of four power mosfets in an H-bridge configuration, driven by a 40 kHz square wave encoded/modulated by a 50Hz sine wave that was derived from a TL084 quad op amp sine wave oscillator. An output voltage range of about 240-260VAC from 300VDC input was obtained. A low pass filter was used to filter out the high frequencies and thus isolate the harmonics so a 50 Hz fundamental frequency was retained

    Dynamic Display of BRDFs

    Get PDF
    This paper deals with the challenge of physically displaying reflectance, i.e., the appearance of a surface and its variation with the observer position and the illuminating environment. This is commonly described by the bidirectional reflectance distribution function (BRDF). We provide a catalogue of criteria for the display of BRDFs, and sketch a few orthogonal approaches to solving the problem in an optically passive way. Our specific implementation is based on a liquid surface, on which we excite waves in order to achieve a varying degree of anisotropic roughness. The resulting probability density function of the surface normal is shown to follow a Gaussian distribution similar to most established BRDF models
    • …
    corecore