5,596 research outputs found

    National Pastime(s)

    Get PDF
    In his new book, Baseball as a Road to God, New York University President and Professor of Law John Sexton submits that baseball can serve as a vehicle for living a more conscious life that elevates the human experience for lawyers and non-lawyers. This Essay examines the credibility of the book’s thesis in a world where human intelligence, human deliberation, and human action is being replaced by artificial intelligence, mathematical models, and mechanical automation. It uses the preeminent national pastime of baseball, and the less eminent pastimes of law and finance as case studies for the book’s thesis. It concludes that a more conscious and meaningful life is much harder to foster, but also much more important to cultivate in light of modern advances. This Essay ultimately offers a different narrative for lawyers and non-lawyers to think anew about modern law and society in light of ongoing changes in baseball, law, finance, and beyond

    Artificial intelligence within the interplay between natural and artificial computation:Advances in data science, trends and applications

    Get PDF
    Artificial intelligence and all its supporting tools, e.g. machine and deep learning in computational intelligence-based systems, are rebuilding our society (economy, education, life-style, etc.) and promising a new era for the social welfare state. In this paper we summarize recent advances in data science and artificial intelligence within the interplay between natural and artificial computation. A review of recent works published in the latter field and the state the art are summarized in a comprehensive and self-contained way to provide a baseline framework for the international community in artificial intelligence. Moreover, this paper aims to provide a complete analysis and some relevant discussions of the current trends and insights within several theoretical and application fields covered in the essay, from theoretical models in artificial intelligence and machine learning to the most prospective applications in robotics, neuroscience, brain computer interfaces, medicine and society, in general.BMS - Pfizer(U01 AG024904). Spanish Ministry of Science, projects: TIN2017-85827-P, RTI2018-098913-B-I00, PSI2015-65848-R, PGC2018-098813-B-C31, PGC2018-098813-B-C32, RTI2018-101114-B-I, TIN2017-90135-R, RTI2018-098743-B-I00 and RTI2018-094645-B-I00; the FPU program (FPU15/06512, FPU17/04154) and Juan de la Cierva (FJCI-2017–33022). Autonomous Government of Andalusia (Spain) projects: UMA18-FEDERJA-084. Consellería de Cultura, Educación e Ordenación Universitaria of Galicia: ED431C2017/12, accreditation 2016–2019, ED431G/08, ED431C2018/29, Comunidad de Madrid, Y2018/EMT-5062 and grant ED431F2018/02. PPMI – a public – private partnership – is funded by The Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbott, Biogen Idec, F. Hoffman-La Roche Ltd., GE Healthcare, Genentech and Pfizer Inc

    Eye quietness and quiet eye in expert and novice golf performance: an electrooculographic analysis

    Get PDF
    Quiet eye (QE) is the final ocular fixation on the target of an action (e.g., the ball in golf putting). Camerabased eye-tracking studies have consistently found longer QE durations in experts than novices; however, mechanisms underlying QE are not known. To offer a new perspective we examined the feasibility of measuring the QE using electrooculography (EOG) and developed an index to assess ocular activity across time: eye quietness (EQ). Ten expert and ten novice golfers putted 60 balls to a 2.4 m distant hole. Horizontal EOG (2ms resolution) was recorded from two electrodes placed on the outer sides of the eyes. QE duration was measured using a EOG voltage threshold and comprised the sum of the pre-movement and post-movement initiation components. EQ was computed as the standard deviation of the EOG in 0.5 s bins from –4 to +2 s, relative to backswing initiation: lower values indicate less movement of the eyes, hence greater quietness. Finally, we measured club-ball address and swing durations. T-tests showed that total QE did not differ between groups (p = .31); however, experts had marginally shorter pre-movement QE (p = .08) and longer post-movement QE (p < .001) than novices. A group × time ANOVA revealed that experts had less EQ before backswing initiation and greater EQ after backswing initiation (p = .002). QE durations were inversely correlated with EQ from –1.5 to 1 s (rs = –.48 - –.90, ps = .03 - .001). Experts had longer swing durations than novices (p = .01) and, importantly, swing durations correlated positively with post-movement QE (r = .52, p = .02) and negatively with EQ from 0.5 to 1s (r = –.63, p = .003). This study demonstrates the feasibility of measuring ocular activity using EOG and validates EQ as an index of ocular activity. Its findings challenge the dominant perspective on QE and provide new evidence that expert-novice differences in ocular activity may reflect differences in the kinematics of how experts and novices execute skills

    Autonomous Decision-Making based on Biological Adaptive Processes for Intelligent Social Robots

    Get PDF
    MenciĂłn Internacional en el tĂ­tulo de doctorThe unceasing development of autonomous robots in many different scenarios drives a new revolution to improve our quality of life. Recent advances in human-robot interaction and machine learning extend robots to social scenarios, where these systems pretend to assist humans in diverse tasks. Thus, social robots are nowadays becoming real in many applications like education, healthcare, entertainment, or assistance. Complex environments demand that social robots present adaptive mechanisms to overcome different situations and successfully execute their tasks. Thus, considering the previous ideas, making autonomous and appropriate decisions is essential to exhibit reasonable behaviour and operate well in dynamic scenarios. Decision-making systems provide artificial agents with the capacity of making decisions about how to behave depending on input information from the environment. In the last decades, human decision-making has served researchers as an inspiration to endow robots with similar deliberation. Especially in social robotics, where people expect to interact with machines with human-like capabilities, biologically inspired decisionmaking systems have demonstrated great potential and interest. Thereby, it is expected that these systems will continue providing a solid biological background and improve the naturalness of the human-robot interaction, usability, and the acceptance of social robots in the following years. This thesis presents a decision-making system for social robots acting in healthcare, entertainment, and assistance with autonomous behaviour. The system’s goal is to provide robots with natural and fluid human-robot interaction during the realisation of their tasks. The decision-making system integrates into an already existing software architecture with different modules that manage human-robot interaction, perception, or expressiveness. Inside this architecture, the decision-making system decides which behaviour the robot has to execute after evaluating information received from different modules in the architecture. These modules provide structured data about planned activities, perceptions, and artificial biological processes that evolve with time that are the basis for natural behaviour. The natural behaviour of the robot comes from the evolution of biological variables that emulate biological processes occurring in humans. We also propose a Motivational model, a module that emulates biological processes in humans for generating an artificial physiological and psychological state that influences the robot’s decision-making. These processes emulate the natural biological rhythms of the human organism to produce biologically inspired decisions that improve the naturalness exhibited by the robot during human-robot interactions. The robot’s decisions also depend on what the robot perceives from the environment, planned events listed in the robot’s agenda, and the unique features of the user interacting with the robot. The robot’s decisions depend on many internal and external factors that influence how the robot behaves. Users are the most critical stimuli the robot perceives since they are the cornerstone of interaction. Social robots have to focus on assisting people in their daily tasks, considering that each person has different features and preferences. Thus, a robot devised for social interaction has to adapt its decisions to people that aim at interacting with it. The first step towards adapting to different users is identifying the user it interacts with. Then, it has to gather as much information as possible and personalise the interaction. The information about each user has to be actively updated if necessary since outdated information may lead the user to refuse the robot. Considering these facts, this work tackles the user adaptation in three different ways. ‱ The robot incorporates user profiling methods to continuously gather information from the user using direct and indirect feedback methods. ‱ The robot has a Preference Learning System that predicts and adjusts the user’s preferences to the robot’s activities during the interaction. ‱ An Action-based Learning System grounded on Reinforcement Learning is introduced as the origin of motivated behaviour. The functionalities mentioned above define the inputs received by the decisionmaking system for adapting its behaviour. Our decision-making system has been designed for being integrated into different robotic platforms due to its flexibility and modularity. Finally, we carried out several experiments to evaluate the architecture’s functionalities during real human-robot interaction scenarios. In these experiments, we assessed: ‱ How to endow social robots with adaptive affective mechanisms to overcome interaction limitations. ‱ Active user profiling using face recognition and human-robot interaction. ‱ A Preference Learning System we designed to predict and adapt the user preferences towards the robot’s entertainment activities for adapting the interaction. ‱ A Behaviour-based Reinforcement Learning System that allows the robot to learn the effects of its actions to behave appropriately in each situation. ‱ The biologically inspired robot behaviour using emulated biological processes and how the robot creates social bonds with each user. ‱ The robot’s expressiveness in affect (emotion and mood) and autonomic functions such as heart rate or blinking frequency.Programa de Doctorado en IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y AutomĂĄtica por la Universidad Carlos III de MadridPresidente: Richard J. Duro FernĂĄndez.- Secretaria: ConcepciĂłn Alicia Monje Micharet.- Vocal: Silvia Ross
    • 

    corecore