1,041 research outputs found

    Process-Based Design and Integration of Wireless Sensor Network Applications

    Get PDF
    Abstract Wireless Sensor and Actuator Networks (WSNs) are distributed sensor and actuator networks that monitor and control real-world phenomena, enabling the integration of the physical with the virtual world. They are used in domains like building automation, control systems, remote healthcare, etc., which are all highly process-driven. Today, tools and insights of Business Process Modeling (BPM) are not used to model WSN logic, as BPM focuses mostly on the coordination of people and IT systems and neglects the integration of embedded IT. WSN development still requires significant special-purpose, low-level, and manual coding of process logic. By exploiting similarities between WSN applications and business processes, this work aims to create a holistic system enabling the modeling and execution of executable processes that integrate, coordinate, and control WSNs. Concretely, we present a WSNspecific extension for Business Process Modeling Notation (BPMN) and a compiler that transforms the extended BPMN models into WSN-specific code to distribute process execution over both a WSN and a standard business process engine. The developed tool-chain allows modeling of an independent control loop for the WSN.

    An Efficient Security Mechanisms for Different Sort of Attacks in CWSN

    Get PDF
    One of the major important aspects of wireless sensor networks WSNs is their capability to collect and process huge amounts of information in parallel with the help of small power limited devices enabling their use in observation target detection and various other monitoring applications Recently new ideas have been proposed to develop cognitive WSNs CWSNs to enhance awareness about the network and environment and make adaptive decisions based on the application goals A CWSN is a special network which has many constraints compared to traditional wireless network But the major problem is security In this paper discovering various security threats in these networks and various defense mechanisms to counter these vulnerabilities Various types of attacks on CWSNs are categorized under different classes based on their natures and targets and corresponding to each attack class appropriate security mechanisms are discusse

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    QOS GROUP BASED OPTIMAL RETRANSMISSION MEDIUM ACCESS PROTOCOL FOR WIRELESS SENSOR NETWORKS

    Get PDF
    This paper presents, a Group Based Optimal Retransmission Medium Access (GORMA) Protocol is designed that combines protocol of Collision Avoidance (CA) and energy management for low-cost, shortrange, low-data rate and low-energy sensor nodes applications in environment monitoring, agriculture, industrial plants etc. In this paper, the GORMA protocol focuses on efficient MAC protocol to provide autonomous Quality of Service (QoS) to the sensor nodes in one-hop QoS retransmission group and two QoS groups in WSNs where the source nodes do not have receiver circuits. Hence, they can only transmit data to a sink node, but cannot receive any control signals from the sink node. The proposed protocol GORMA provides QoS to the nodes which work independently on predefined time by allowing them to transmit each packet an optimal number of times within a given period. Our simulation results shows that the performance of GORMA protocol, which maximize the delivery probability of one-hop QoS group and two QoS groups and minimize the energy consumption
    • …
    corecore