1,443 research outputs found

    A novel framework for enhancing marine dual fuel engines environmental and safety performance via digital twins

    Get PDF
    The Internet of Things (IoT) advent and digitalisation has enabled the effective application of the digital twins (DT) in various industries, including shipping, with expected benefits on the systems safety, efficiency and environmental footprint. The present research study establishes a novel framework that aims to optimise the marine DF engines performance-emissions trade-offs and enhance their safety, whilst delineating the involved interactions and their effect on the performance and safety. The framework employs a DT, which integrates a thermodynamic engine model along with control function and safety systems modelling. The DT was developed in GT-ISE© environment. Both the gas and diesel operating modes are investigated under steady state and transient conditions. The engine layout is modified to include Exhaust Gas Recirculation (EGR) and Air Bypass (ABP) systems for ensuring compliance with ‘Tier III’ emissions requirements. The optimal DF engine settings as well as the EGR/ABP systems settings for optimal engine efficiency and reduced emissions are identified in both gas and diesel modes, by employing a combination of optimisation techniques including multi-objective genetic algorithms (MOGA) and Design of Experiments (DoE) parametric runs. This study addresses safety by developing an intelligent engine monitoring and advanced faults/failure diagnostics systems, which evaluates the sensors measurements uncertainty. A Failure Mode Effects and Analysis (FMEA) is employed to identify the engine safety critical components, which are used to specify operating scenarios for detailed investigation with the developed DT. The integrated DT is further expanded, by establishing a Faulty Operation Simulator (FOS) to simulate the FMEA scenarios and assess the engine safety implications. Furthermore, an Engine Diagnostics System (EDS) is developed, which offers intelligent engine monitoring, advanced diagnostics and profound corrective actions. This is accomplished by developing and employing a Data-Driven (DD) model based on Neural Networks (NN), along with logic controls, all incorporated in the EDS. Lastly, the manufacturer’s and proposed engine control systems are combined to form an innovative Unified Digital System (UDS), which is also included in the DT. The analysis of marine (DF) engines with the use of an innovative DT, as presented herein, is paving the way towards smart shipping.The Internet of Things (IoT) advent and digitalisation has enabled the effective application of the digital twins (DT) in various industries, including shipping, with expected benefits on the systems safety, efficiency and environmental footprint. The present research study establishes a novel framework that aims to optimise the marine DF engines performance-emissions trade-offs and enhance their safety, whilst delineating the involved interactions and their effect on the performance and safety. The framework employs a DT, which integrates a thermodynamic engine model along with control function and safety systems modelling. The DT was developed in GT-ISE© environment. Both the gas and diesel operating modes are investigated under steady state and transient conditions. The engine layout is modified to include Exhaust Gas Recirculation (EGR) and Air Bypass (ABP) systems for ensuring compliance with ‘Tier III’ emissions requirements. The optimal DF engine settings as well as the EGR/ABP systems settings for optimal engine efficiency and reduced emissions are identified in both gas and diesel modes, by employing a combination of optimisation techniques including multi-objective genetic algorithms (MOGA) and Design of Experiments (DoE) parametric runs. This study addresses safety by developing an intelligent engine monitoring and advanced faults/failure diagnostics systems, which evaluates the sensors measurements uncertainty. A Failure Mode Effects and Analysis (FMEA) is employed to identify the engine safety critical components, which are used to specify operating scenarios for detailed investigation with the developed DT. The integrated DT is further expanded, by establishing a Faulty Operation Simulator (FOS) to simulate the FMEA scenarios and assess the engine safety implications. Furthermore, an Engine Diagnostics System (EDS) is developed, which offers intelligent engine monitoring, advanced diagnostics and profound corrective actions. This is accomplished by developing and employing a Data-Driven (DD) model based on Neural Networks (NN), along with logic controls, all incorporated in the EDS. Lastly, the manufacturer’s and proposed engine control systems are combined to form an innovative Unified Digital System (UDS), which is also included in the DT. The analysis of marine (DF) engines with the use of an innovative DT, as presented herein, is paving the way towards smart shipping

    Establishment of a novel predictive reliability assessment strategy for ship machinery

    Get PDF
    There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme.There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    Condition Monitoring and Management from Acoustic Emissions

    Get PDF

    A novel methodology for marine dual fuel engines sensors diagnostics and health management

    Get PDF
    The sensors abnormalities, faults, failure detection and diagnosis for marine engines are considered crucial for ensuring the engine safe and smooth operation. The development of such system(s) is typically based on the manufacturers experience on sensors and actuators faults and failure events. This study aims to introduce a novel methodology for the sensors diagnostics and health management in marine dual fuel engines by employing a combination of thermodynamic, functional control and data-driven models. The concept of an Engine Diagnostics System (EDS) is developed to provide intelligent engine monitoring, advanced sensors' faults detection as well as timely and profound corrective actions. This system employs a neural networks (NN) Data-Driven (DD) model along with appropriate logic controls. The DD model is set up based on the derived steady state data from a thermodynamic model of high fidelity and is capable of real-time prediction of the engine health condition behaviour. The concept of a novel Unified Digital System (UDS) is proposed that combines the engine's existing control and diagnostic systems with the EDS. The functionality of the UDS system is validated by employing a digital twin of the considered marine dual fuel engine by investigating scenarios for assessing the engine performance that entail abnormalities in the engine’s speed and boost pressure sensors. The simulation results demonstrate that the developed UDS is capable of sufficiently capturing the engine’s sensors abnormalities and applying appropriate corrective actions to restore the engine operation in its original state. This study benefits the development future systems facilitating the engines condition assessment and self-correction of the engine sensors' abnormalities, which will be required for smart and autonomous shipping

    Application Of Intuitionistic Fuzzy Topsis Model For Troubleshooting An Offshore Patrol Boat Engine

    Get PDF
    In this paper, an Intuitionistic Fuzzy TOPSIS model which is based on a score function is proposed for detecting the root cause of failure in an Offshore Boat engine, using groups of expert’s opinions. The study which has provided an alternative approach for failure mode identification and analysis in machines, addresses the machine component interaction failures which is a limitation in existing methods. The results from the study show that although early detection of failures in engines is quite difficult to identify due to the dependency of their systems from each other. However, with the Intuitionistic Fuzzy TOPSIS model which is based on an improved score function such faults/failures are easily detected using expert’s based opinions

    Marine Power Systems

    Get PDF
    Marine power systems have been designed to be a safer alternative to stationary plants in order to adhere to the regulations of classification societies. Marine steam boilers recently achieved 10 MPa pressure, in comparison to stationary plants, where a typical boiler pressure of 17 MPa was the standard for years. The latest land-based, ultra-supercritical steam boilers reach 25 MPa pressure and 620 °C temperatures, which increases plant efficiency and reduces fuel consumption. There is little chance that such a plant concept could be applied to ships. The reliability of marine power systems has to be higher due to the lack of available spare parts and services that are available for shore power systems. Some systems are still very expensive and are not able to be widely utilized for commercial merchant fleets such as COGAS, mainly due to the high cost of gas turbines. Submarine vehicles are also part of marine power systems, which have to be reliable and accurate in their operation due to their distant control centers. Materials that are used in marine environments are prone to faster corrosive wear, so special care also should be taken in this regard. The main aim of this Special Issue is to discuss the options and possibilities of utilizing energy in a more economical way, taking into account the reliability of such a system in operation

    Application of artificial neural network and dynamic fault tree analysis to enhance reliability in predictive ship machinery health condition monitoring

    Get PDF
    The electric power generation system of most ships is powered by a group of diesel generators generally with redundancy to accommodate peak load periods or critical situations. Blackouts onboard ships portents a potential danger to navigation as well as the security and safety of the ship. Thus, understanding the factors affecting the reliability of individual diesel generators and the most critical component to failure is key to ensuring reliable performance of the generators. Therefore, this study was conducted on diesel power generation plant consisting of four Marine Diesel Generators onboard an Offshore Patrol Vessel (OPV). Findings indicates relatively low reliability, of less than 60 per cent within the first 24 months of the 78 operational months data analysed. Similarly, reliability importance measures were adopted to identify Critical components which contribute at least 40 per cent of failures on the sub systems of the diesel generators. The use of dynamic spare gates in the dynamic fault tree analysis has highlighted possible improvements through maintenance action or use of sensors to improve sub-system as well as individual diesel generator’s reliability. Additionally, Artificial Neural Networks classification using unsupervised learning was conducted to identify patterns in the data that signifies the onset of performance degradation in the diesel generators
    • …
    corecore