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Nomenclature  

!!: Reliability of the machinery when the first deterioration of the machinery is detected 

!!: Reliability of the machinery when the ""# deterioration of the machinery is detected 

"!: Time of first deterioration of the machinery 

#$: Time of ""# deterioration of the machinery 

#"!: First prediction of the time of failure of the machinery when first deterioration of the 

machinery is detected 

#"": Prediction of the time of failure of the machinery at the ""# time deterioration has been 

detected 

a: universal factor 
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1. Introduction & Project Definition 

1.1 Chapter Outline 

In this Chapter, the impact of shipping in the world economy will be showcased as well as the 

importance of maintenance for the operation of a ship in the ever-increasing globalized market. 

In addition, the structure of the MPhil will be discussed together with a summary of each 

chapter. Finally, the research question that this MPhil is trying to address will be presented as 

well as the main aim and objectives to answer this question. 

1.2 Shipping and Maintenance 

The globalization of the world economy has led to increased competition in the maritime 

transport market.  



 
Figure 1: Development of international maritime trade by cargo type, selected years (Billion tons loaded) (UNCTAD, 2020) 

A look in Figure 1 (UNCTAD, 2020) at how the various market segments have evolved since 

1990 shows that growth in maritime trade over the past three decades has been sustained by 

bullish trends in containerized trade volumes starting in the 2000s, coinciding with the wave 

of hyper-globalization. In addition, shipping is a vital facilitator of the world trade since it 

carries most of the value of world trade and it boosts the world GDP (Gross Domestic Product). 

Figure 2 shows some data concerning the economic value of shipping (OECS, 2016). From 

Figure 2, IMO (International Marine Organization) estimated that 90% of the world’s trade is 

carried by ships while shipping also helped increasing the world’s GDP by an impressive 73% 

in a two-decade period. Furthermore, seaborne trade has increased 112% over the same period 

and contributed 3.5 trillion euro in the EU’s trade value with the rest of the world in 2015. 

 



 
Figure 2: The economic value of shipping (OECS, 2016) 

Since shipping is the moving power behind the world’s economy it is very important to assure 

that ships are operated correctly and efficiently. It is not by chance that in recent years, the 

management cost of the life cycle of a ship has become the main management tool of shipping 

companies. One of the key cost items that determine the competitiveness of the vessel is the 

cost of maintenance and repair. Maintenance and repair costs are part of a bigger family of 

operational costs called fixed operational costs that together with the running operational costs 

are the total operational costs of a ship. Fixed operational costs are those whose objective is to 

maintain the ship in seaworthy conditions to offer transport services, even though the vessel 

can be laid‐up, in contrast of the running operational that depend on every specific voyage and, 

especially, on the ports of call, distance crossed, cargo handling operations, the possible need 

of passing some channels and other (Gerardo, 2012). Concerning the fixed operational costs, 

from OpCost 2018 database (Moore, 2018) in Figure 3 it can be seen the five fixed operational 

costs for different types of ships. 



 
Figure 3: Fixed Operational Costs Structure for different types of ships (Moore, 2018) 

OpCost is a unique ship operating costs benchmarking tool, and it includes all major sectors 

and currently covers operating costs for 26 vessel types. Most of the costs in Figure 3 are not 

easy to reduce, for example even though the biggest portion of the operational costs is the crew 

cost, it is not a flexible cost (Bayer, 2016). Insurance also has a very limited chance to negotiate 

for cost. Except company staff salaries, all other administration aspects (office rent, 

transportation, and communication, stationary) are in the procurement and purchase. The stores 

and spare & repair cost together account for more than 20% of the operational expenses. 

Stopford (2008) also agrees that maintenance amounts to 16% of the shipping company fixed 

operating costs. Other studies have shown that the contribution of maintenance can be as big 

as 40% of the overall fixed operational costs (Alhouli et al., 2009) thus highlighting even more 

how important is maintenance in the everyday operation of ships. These data together with the 

fact that maintenance costs are more flexible to reduce (Dekker, 1996), is the reason why 

maintenance has become an area of active research for shipping companies.  

However, maritime industry faces unique challenges in the execution of scheduled and 

unscheduled maintenance. Ships spend significant periods at sea far from the logistically 

supported areas (Rustenburg et al., 2001) and a ship at sea is isolated from onshore repair and 

maintenance facilities, and, if a failure occurs during the passage, the required replacement 

parts may not be available on board. The rising cost of ship operation is a problem, since the 

failure of a vital piece of equipment can be very expensive and may put the safety of the whole 

ship at risk. Added to this is the cost of out of service (off hire), when the ship is in the downtime 



period because of the failure. Additionally, it may cause increases of the cargo expenses and 

may pose danger to the environment as well (Rothblum, 2000). Finally, in many cases serious 

accidents and interruptions are related to poor maintenance, or, more specifically, to poor 

maintenance planning (Reason and Hobbs, 2003)  

To sum up, shipping is a major contributor in the world’s economy and therefore the operation 

of the ships is of utmost importance.  Ship maintenance is a crucial factor in a ship’s 

performance and, in turn, can heavily affect the shipping company’s revenue. There should be 

an optimal maintenance level for all the equipment on ships and therefore a balance between 

maintenance cost and over-maintenance. Over-maintenance is the term used for the case of 

excessive use of maintenance activities more than required level. Thus, establishing an 

appropriate framework with which to measure maintenance performance to have an optimal 

level and to plan maintenance policy has vital importance for the shipping organization.  

1.3 Structure of MPhil 

This thesis is consisting of seven chapters and the flowchart in Figure 4 depicts the names of 

these chapters and how they are connected. 



 
Figure 4: Structure of MPhil 

Following Figure 4 and in more detail: Chapter one contains an introduction that gives a brief 

description of the impact of shipping for the global economy and the importance of 

maintenance for the operation of ships. In addition, the structure of the MPhil is shown as well 

as the details of each chapter. Chapter two gives the project definition which includes the 

research question as well as the list of objectives for answering it. 

Chapter three gives a thorough critical review of all the different maintenance approaches and 

their advantages and disadvantages. More focus will be given in describing the predictive 

maintenance strategy and specifically the data-driven approach for condition-based 

maintenance. All the algorithms and techniques used for data-driven approaches are also being 

shown. Finally, a review of the database types used previously for data-driven solutions in 

shipping is given. 
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Chapter four introduces the purposed condition-based maintenance framework which consists 

of an object-oriented database, a semi-supervised machine learning algorithm and a novel 

failure model. Firstly, the scheme of the object-oriented database is shown together with an 

example for better understanding of how values are stored and utilised. Then the semi-

supervised machine learning algorithm is explained and how it detects possible deterioration. 

Finally, the novel failure model is analysed mathematically and the way it predicts failure 

through the use of temporal detection of deteriorations of a machinery. 

Chapter five contains all the case studies for the evaluation of different parts of the proposed 

maintenance framework as well as a real-world application of the whole system. In more detail, 

the capability of the machine learning algorithm to understand when a machinery has 

deteriorated is evaluated by using a database containing data of degradation of a turbine and 

compressor of a propulsion system of a Navy ship. Next, the new failure model is evaluated 

with a dataset of failure data for bearings of a motor. Finally, the last case studies are evaluating 

the whole condition-based maintenance framework with the prediction of the time of failure of 

three diesel generators of a tanker. Chapter six provides a conclusion to the MPhil as well as 

the future steps. 

Chapter six is a discussion on the entire MPhil thesis, summarising what it has been done 

overall and for answering the main aim and objectives of the thesis 

Chapter seven gives the conclusion to this thesis and proposes future work to be done in the 

research field.  

1.4 Research Question 

As it was shown in chapter one, shipping is the “engine” of global economy and maintenance 

is an important cost of the operation of the ships, thus making it a very important area for 

research. Therefore, now is more necessary than ever to answer to the question: 

Why there is a need for condition-based maintenance framework in the shipping industry? 



The research question will be answered through the main aim and objectives of this MPhil. 

Concerning the former, the main aim is to develop a novel condition-based maintenance 

framework for application within the marine industry and suggest solutions for the best ship 

maintenance strategy. The objectives that will facilitate the main aim are:  

• Perform a thorough critical review on various methods of fault detection, reliability 

tools, maintenance processes and databases used and consider their advantages and 

disadvantages.  

• Develop a novel condition-based maintenance framework, including: A condition 

monitoring database, a machine learning method to detect deterioration and a new 

modelling theory for system failure. 

• Application and validation of the selected machine learning algorithm through the 

case of a Navy ship propulsion plant system and examining the decay of its main 

compulsory engine consisting of a compressor and a turbine. 

• Application and validation of the developed failure modelling theory by using 

failure data of bearings of an AC motor. 

• Application and validation of the condition-based maintenance framework by using 

real data from a tanker ship to predict the failure of its Diesel Generators (DG). 

 

1.5 Chapter Summary 

This Chapter showed that shipping is very important for the global economy and facilitates the 

development of countries individually (GDP increase). In addition, the operation of these ships 

is governed by different costs, one of which is maintenance. Even though maintenance is not 

the highest of the operational costs it is a flexible one and can be reduced with adoption of new 

technologies and strategies. However, maintenance is a complex problem and in order to be 

optimized other aspects need to be considered before, like safety. Finally, this thesis contains 

six chapters named: Introduction, Project Definition, Critical Review, Development of New 

CBM Framework, Case Studies and Conclusion and Future Work. Finally, the research 

question was presented as well as the main aim and objectives of this MPhil that will be used 

to answer it. The main aim is to introduce a novel condition-based maintenance framework for 

application within the marine industry and suggest solutions for the best ship maintenance 



strategy. The objectives are ranging from thorough critical review to numerous applications of 

the new condition-based maintenance framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Literature and Critical review 

2.1 Chapter Outline 

In this chapter, a critical review of different maintenance methods used for ship maintenance 

will be discussed. Then the predictive maintenance will be analysed further and most 

importantly the Condition Based Maintenance (CBM), approaches for diagnosis and prognosis 

in CBM and applications in shipping. Finally, the most common types of databases used for 

CBM will be reviewed. 

2.2 Maintenance approaches 

In the previous chapters it was shown that maintenance is a very important cost for shipping 

operation and various methodologies have been used in the past to optimize it and increase its 

effectiveness. A critical review of these methods will follow.  Maintenance approaches in 

shipping can be divided in three major approaches (Lazakis et al. 2009), namely: Corrective, 

Predictive and Preventive maintenance.  

 
Figure 5: Different Maintenance Approaches (Lazakis et al. 2009) 

From Figure 5 it can be seen that the maintenance methods are divided into four categories, 

namely: Corrective Maintenance, Planned Preventive Maintenance (PPM) and Predictive 

Maintenance. The next sections will analyse each of these maintenance methods in details. 

Maintenance 
methods

Corrective PPM

Predictive



2.3 Corrective Maintenance 

Starting with corrective maintenance, it is one of the three main maintenance methods in 

shipping also called run-to-failure, hard- time or reactive maintenance (Wilson et al., 2014; 

Zaal, 2016). Corrective maintenance refers to performing maintenance when a failure or 

breakdown occurs (Basim et al., 2003). The International Association of Classification 

Societies (IACS) has identified in Rec 74 (2018) the steps to be followed when corrective 

maintenance is being used in shipping. Figure 6 shows that steps. 

 
Figure 6: The corrective action plan (IACS, 2018) 



According to Figure 6 the first steps are to identify the problem and understand the cause of it. 

Then solutions are being purposed and evaluated until one is accepted. After that the solution 

is implemented and its effectiveness is evaluated. If it is effective, then the problem is closed 

otherwise more solutions need to be proposed and the previous steps are followed again. One 

benefit of this approach is the simplicity of the planning as seen also in Figure 6. In addition, 

for purely random failures and low failure costs this may be a cost-effective method (Pintelon 

et al., 1992).  

On the other hand, this maintenance approach is not considered effective mainly because ships 

are forced to react to problems rather than anticipating and planning in advance (Jimenez et al. 

2020). In addition, there is always the possibility that a fault can go unnoticed leading to 

unpredictable consequences for the crew and the ship. These consequences can vary from 

expensive damages to dangerous situations involving explosions (Starr et al. 2010). In addition, 

the uncertainty of the failure requires a breakdown crew to be available on standby together 

with a large spares inventory which is almost always costly (Lazakis et al. 2009).  Finally, 

corrective maintenance does not focus on the root cause of the equipment failure and therefore 

the mean time before failure will be much lower than proactive maintenance (Bai et al. 2016). 

Recently, various studies on corrective maintenance have been conducted. Nachimuthu et al. 

(2019) suggested a decision-making model for corrective maintenance of offshore wind 

turbines considering uncertainties. A mathematical model is proposed to assist wind farm 

stakeholders in making critical resource- related decisions for corrective maintenance at 

offshore wind farms (OWFs), considering uncertainties in turbine failure information. The 

finding shown that the model could lead to more than 80% cost savings in comparison with 

traditional practises.  

Wang et al. (2014) proposed a corrective maintenance scheme for engineering equipment. 

Firstly, the Failure propagation graph (FPG) is built to represent failure mechanism with the 

extended FMECA. Then, the FPG updating, and fault diagnosis process are proposed based on 

the constructed FPG. Finally, a binary decision tree is originally built to determine the failure 

ascertainment order for corrective maintenance and the proposed scheme is implemented on a 

boring machine tool and proves to be valid and practical. From the results from the case study 

the proposed corrective maintenance scheme is easily implemented for engineering 

applications and proves to be powerful in the corrective maintenance for engineering 



equipment. Shabrina et al. (2018) extracted knowledge and experience from operators based 

on knowledge transformation and creates e-Learning content for correct corrective 

maintenance activities that are fixing the bearings on the machine spindle. Erkoyuncu et al. 

(2017) presented an approach focusing on building a process for understanding the trade-offs 

within corrective maintenance activities at the equipment type level. The main benefit of the 

presented approach is a better prediction of the maintenance system performance and therefore 

an enhanced cost and availability estimation becomes available. Table 1 sums up all the 

advantages and disadvantages of corrective maintenance.  

Table 1: Advantages and Disadvantages of Corrective Maintenance 

Advantages Disadvantages 

•Planning is simple – the organisation need 

only adapt to match the failure rate. 

•A component fault may go unnoticed, leading to 

expensive consequential damage 

 

•Work is not scheduled until it is really needed.  •Dangerous and/or expensive failure consequences 

should be expected. 

 •No data are available regarding the past, present 

and possible future state of the 

machine. 

 

 •A large breakdown crew may need to be available 

on standby.  

 

 •A large spares inventory is necessary to ensure 

quick repair. 

 

 •Failures exceeding the capacity of the repair team 

lead to “fire-fighting”. 

 



 •Failure can, and probably will, occur at an 

inconvenient time, e.g., when the ship is at full load, 

or while it is starting. 

 

 •Does not focus on the root cause of damage 

2.4 Planned Preventive Maintenance (PPM) 

Planned preventive maintenance generally has the form of scheduled inspections (Figure 7), 

which are performed to assess whether a component or equipment can still operate 

satisfactorily or determine the item’s deterioration (Mobley, 2002). According to Marquez 

(2007), the goal of preventive maintenance is to reduce the possibility of failure due to 

equipment degradation.  

 
Figure 7: General form of planned preventive maintenance (Mobley, 2002) 

Since preventive maintenance tries to determine a series of checks, replacements and/or 

component revisions with a frequency related to the failure rate, it is effective in overcoming 

the problems associated with the wearing of components (Dagkinis et al. 2013). In addition, 

preventive maintenance can reduce the number of spares required since the time of 

maintenance is known beforehand. Furthermore, more effective use of time is accomplished 

since fixed time intervals help reduction of downtime (Lazakis et al. 2009).  

On the other hand, random failures which are the most common in shipping (see MSDP (1982) 

and Alen (2001)) cannot be prevented with fixed time maintenance schedule. In addition, for 

the case of using planned preventive maintenance for helicopter gearboxes, it was found that 

almost half of the units were removed for overhauling even though they were in a satisfactory 



operating condition (Lee et al. 2008). This unnecessary strip down and bearing changes may 

cause problems like a phenomenon called infant mortality and is shown in Figure 8 (Verma et 

al. 2018). Figure 8 shows the failure rate of a machinery against the time of operation indicating 

that infant mortality happens when the machinery has just started to operate after maintenance 

due to human error. 

 
Figure 8: Probability of failure over the life of equipment (Verma et al. 2018) 

Concerning the marine industry, preventive maintenance is the most common technique for 

minimizing the full cost occurred onboard such as the cost of investigation and repair and 

component downtime. The marine industry is regulated by schedules enforced through 

classification societies (e.g., ABS, DNV, etc.) and supported by standards recognised by 

insurance companies (e.g., P&I club). It is normal for a vessel to be taken out of service for a 

total survey after a predetermined time (DNV, 2015). This will include dry docking of the ship, 

cleaning and inspecting the hull and attending to all of the below water equipment and because 

this is a hugely expensive all other internal surveys and refits are scheduled to coincide. 

Because of the cost and logistics of this process, operators strive for longer and longer periods 

between dry dockings. However, the internal machinery usually requires maintenance between 

dry dockings and the challenge is always to keep the vessel in service. Therefore, a considerable 



amount of redundancy is built into the shipboard systems with reserve or duplicate equipment, 

spares carried on board or stocked at ports along the ship’s itinerary (Starr et al., 2010).  

Since planned preventive maintenance was suggested research has suggested different 

variations of it in order to improve it. A variant of planned preventive maintenance is condition-

based preventive maintenance, which was developed by Mann et al. (1995) and uses sensors 

for monitoring the machine conditions to predict when equipment failures may appear. The 

paper showed that conventional preventive maintenance policies that have the same time 

interval time may easily neglect system’s reliability. This is because the system deteriorates 

with increased usage and age (Liao et al. 2009). In addition, Liu et al. (2014) investigates 

dynamic preventive maintenance policies that the maintenance strategies are performed from 

a value perspective and component values are modelled as a function of the reliability 

distribution unlike the traditional cost-based preventive maintenance policies. This 

maintenance system is implemented when the stability falls below a certain threshold.  

Furthermore, Alsyouf et al. (2016) calculated the optimal replacement time for critical 

components and then reduced the overall cost by suggesting an actual preventive maintenance 

scheme. The author also developed a control chart to monitor the time between failures based 

on the calculated failure rate. Huang et al. (2015) takes a two-step approach that simultaneously 

considers the time and use of a repairable product and considers periodic preventive 

maintenance to develop a two-dimensional warranty policy for the repairable product. Sheu et 

al. (2015) proposes optimal preventive maintenance for multi-state systems. This study 

proposes a recursive approach to efficiently calculate the time-dependent distribution of a 

multi-state system and finds the optimal PM schedule that minimizes the average cost rate for 

each type of repair. Table 2 shows the advantages and disadvantages of Planed Preventive 

Maintenance. 

Table 2: Advantages and Disadvantages of Planned Preventive Maintenance 

Advantages Disadvantages 

•A more effective use of time.  •The machinery may not fail according to 

a fixed time period (calendar or run hours). 

 



•Spares are only ordered as required.  •Random failures may still occur.  

 

 

•Improved safety and quality 

•The method depends on statistical 

analysis; in many cases suitable and 

correct failure data are not present. 

  

 

•Reduction of downtime 

•The asset may not need maintaining, 

spares and labour are used unnecessarily, 

and the asset is unavailable during 

maintenance. 

 

 • Unnecessary strip down and bearing 

changes may cause problems. 

2.5 Predictive Maintenance 

In predictive maintenance the regular monitoring of the actual condition, operating efficiency 

and other indicators of the operating condition of machinery will provide the data required to 

ensure the maximum interval between repairs and minimize the cost of unscheduled 

maintenance created by machine failures (Mobley, 2002). According to Fedele (2011) 

predictive maintenance can be defined as on-condition assessment of assets, employing real 

time programming by avoiding unnecessary downtime, inspections and reactive failures due to 

human mistakes. Figure 9 shows the different types of predictive maintenance, namely: Risk 

Cantered Maintenance (RCM), Risk Based Inspection (RBI) and Computerized Maintenance 

Management System (CMMS). 



 
Figure 9: Types of Preventive Maintenance  

Predictive maintenance has the strong advantage of being able to plan maintenance according 

to the actual condition of the machinery through sensor data. This has the benefit of reduction 

in maintenance costs by 25%–30% (You et al., 2010). Those numbers are backed up also by a 

survey of 500 plants that have implemented predictive maintenance methods and indicates 

substantial improvements in reliability, availability and operating costs such as: actual costs 

normally associated with the maintenance operation reduced by more than 50 per cent and 

reduced number of catastrophic, unexpected machine failures by an average of 55 per cent 

(Mobely, 2001). In addition, preventive maintenance minimizes equipment failure rates, 

improve equipment condition, prolong the life of the equipment and reduce the maintenance 

costs better than the previous mentioned maintenance techniques (Jezzini et al. 2013). 

On the other hand, predictive maintenance requires that the data are collected with proper 

techniques and interpret correctly (Tomlinson, 2016). In addition, one of the biggest challenges 

in applying predictive models is the validation of the method (Tinga et al. 2017) because in 

order to check the accuracy, model predictions will have to be compared with real failures. 

However, this is only feasible when the complete usage history of the system or component is 

available, and the service life or the decrease in condition of the component can be assessed on 

a regular basis. Furthermore, concerning shipping, many systems today contain embedded 

monitoring systems, but data is often not stored, and the total time history of operation is 

unavailable. In addition, the sampling frequency is often different from system to system and 

sometimes can be inadequate- e.g., hourly measurements are useless for rapidly changing diesel 

engine parameters such as speed or load (Kwon, 2018). Table 3 shows the main advantages 

and disadvantages of Predictive Maintenance. 

Predictive 
Maintenance

RCM CBM CMMS



Table 3: Advantages of using Predictive Maintenance  

Advantages Disadvantages 

•Providing actual data for planning the repair 

activities 

 

•Not adequate frequency of data gathering. 

 

•Early detection of potential failure modes •The correct interpretation of vast amounts of 

data has led to several initiatives not being 

successful. 

•Minimisation of unscheduled repairs •The reliance on technically complex 

monitoring systems. 

 

•Maximisation of the availability and 

operability of the system 

 

•Random Failures cannot be detected. 

In the bellow sub-sections, the different types of predictive maintenance will be analysed 

further. 

2.5.1 Reliability Centred Maintenance 

Reliability Centred Maintenance (RCM) is a highly structured method for maintenance 

planning, developed firstly for the airline industry (Rausand et al. 2008) and later introduced 

in different industrial fields (Moubray 2001) such as: transportation (Carretero et al, 2003), the 

nuclear (Kadak & Matsuo, 2007), defence (MoD, 2006) and the offshore sector (Conachey & 

Montgomery, 2003). According to the standard IEC 60300-3-11, RCM is an approach to 

recognize efficient preventive maintenance operations on items and set maintenance work 

interval according to the specific procedures (IEC, 2010).  



 
Figure 10: The steps of performing RCM (IEC, 2010) 

As a risk-based approach, RBI provides means to evaluate the consequences and likelihood of 

component failure from specific degradation mechanisms and develop inspection approaches 

that will effectively reduce the associated risk of failure (ABS, 2018). Figure 10 shows the 

steps of performing RCM, namely: For the selected machinery the function of the system which 

it is part of, is defined. Then by using this definition the failure modes need to be identifies. 

Then, there is an analysis of the causes of the failure modes and the effects that these failures 

have. The effect is evaluated by one of four methodologies, namely:  FMEA (Failure modes 

and effects analysis), HAZOPS (A hazard and operability study), FTA (Fault tree analysis) and 

RBI (Risk-based inspection).  



FMEA is an engineering technique used to define, identify, and eliminate known and/or 

potential problems, errors, and so on from the system, design, process, and/or service before 

they reach the customer (Omdahl, 1988; ASQC, 1983).  

 
Figure 11: FMEA Tasks (Ben-Daya, 2009) 

In Figure 11 the tasks of FMEA are shown. The term severity refers to the consequence of the 

failure when it happens. The term occurrence refers to the probability or frequency of the failure 

occurring, and detection is the probability of the failure being detected before the impact of the 

effect is realized (Ben-Daya, 2009). These three factors are then multiplied in order to produce 

the risk priority number (RPN) to reflect the priority of the failure modes identified. 

On the other hand, HAZOP emerged with the purpose of recognizing potential hazards in 

establishments that operate using extremely harmful materials. The major care was to abolish 

every source that can probably lead to a serious accident, such as explosions, fires and toxic 

release (Swann et al., 1995). Nevertheless, with the passage of time, HAZOP’s handling was 

expanded to various other kinds of services because of its capability, not only to recognize 



hazards, but also to identify functional deviations from the preferred state (Marhavilas et al., 

2020). 

 
Figure 12: HAZOP Procedure (Silvianita et al., 2014) 

Figure 12 shows the steps for performing HAZOP (Silvianita et al., 2014). The first step is to 

identify and examine the system/activity that is going to be analysed. The second step is to 

define the potential hazards and significant impact on the system by using guideword and 

deviation parameters. The third step is to analyse the findings that focus on the critical hazards 

as well as critical operational problems. The final step is to record the results of HAZOP using 

special spreadsheets which generally include the guideword, deviation, possible causes, 

outcome, safeguards and suggestion action. 



Moving on to FTA, the development of FTA is an outgrowth of the systems safety approach 

(Recht, 1965) initiated in the space industry in the late 1950's and early 1960's (Wood et al. 

1979). It is a systematic safety analysis tool that proceeds deductively from the occurrence of 

an undesired event (accident) to the identification of the root causes of that event (Goodman, 

1988). Figure 13 shows the six basic steps used to develop a fault tree analysis (Dhillon, 2008). 

 
Figure 13: Steps for FTA (Dhillon, 2008) 

Firstly, the system definition needs to be defined as well as the system’s undesirable event. 

Then the logic model will be generated by constructing the fault tree using logic and other 

symbols. The third step is to evaluate the fault tree qualitatively. The fourth step is to obtain 

basic data (e.g., elementary parts’ failure rate and failure occurrence probabilities). The fifth 

step is to evaluate the fault tree quantitatively. Finally, the last stop is to recommend appropriate 

corrective actions. 

Risk Based Inspection (RBI) provides a modelling process for organizations to control its 

reliability, safety and health aspects, ensure maintenance compliance and to iteratively improve 

the technical performance and cost of projects (Sutton, 2015). It requires structured and 

coherent information management in order to maximize its integration in the target 

computerized management information system for maintenance and inspection. RBI can be 

performed in qualitative, quantitative and semi-quantitative way. The results of each method 

are almost the same, but with the qualitative method results can be evaluated quickly. 

System 
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Qualitative 
evaluation of the 
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Quantitative method involves more detail and calculation, but with more accuracy. Semi-

quantitative method uses qualitative speed and quantitative accuracy. In Figure 14 the RBI 

planning process can be seen (API, 2008). Both the probability of failure and their possible 

consequences can be previously estimated, quantitatively and qualitatively, depending on the 

considered system characteristics and the data available for evaluation (Soares et al., 2015).  

 
Figure 14: RBI Planning Process (API, 2008) 

Then the risk is ranked with the help of an RBI Matrix like the example in Figure 15 where 

categories of consequence and probability are organized in such a way that the greatest risk 

position is toward the upper right corner (Zhaoyang et al., 2010). Different array sizes can be 

used but regardless of the selected matrix, the categories of consequence and probability should 

provide sufficient discrimination between the evaluated items (Goyet, 2001). Once the 

equipment risk is known and an acceptable risk criterion established, risk management has to 

be conducted. Some risks could be identified as low, and no mitigation measure will be 

required. 



 
Figure 15: RBI Matrix (Zhaoyang et al., 2010) 

Back to the steps of RCM, after the evaluation of the failure effects with some of the above 

methods (FMEA, HAZOPS, FTA and RBI) the most appropriate maintenance can be 

determined.  

RBI has been used to describe the structural components of a ship or offshore installation 

(Serratella et al, 2007, Ku et al, 2004 and Faber, 2002). RBI is an interesting maintenance 

perspective with an incremental stepwise procedure used to examine sensitive equipment such 

as pressure vessels, heat exchangers and piping in complex industrial plants El-Reedy (2012). 

Vessels that are designed to be moored on station for the duration of their service life such as 

Offshore Floating Structures such as FPSO and Floating Liquefied Natural Gas (FLNG) are 

impractical to return periodically to dry dock for inspection and maintenance. Risk-based 

Inspection (RBI), in the case of these vessels, provides a flexible approach to help operators 

mitigate risk and improve reliability leading to a longer time on station, by optimising 

maintenance schedules and reducing unnecessary inspection activities (Ozguc, 2020). On the 

other hand, utilizing RBI requires very robust planning and strong management as well as an 

initial investment before the shipowner can see the benefits of this methodology. In addition, 

Gabbar et al. (2003) combined RCM with a CMMS in the case of a water-feed process of a 

nuclear power plant and Rausand and Vatn (2008) illustrated an RCM application in the 

railway sector. Fonseca and Knapp (2000) demonstrated the combination of RCM with a 



software package in the chemical process industry. In the shipping industry, RCM is related to 

the machinery equipment of the vessel (Lazakis et. al 2009).  

From the above someone can understand that RCM is a widely applied methodology. However, 

it may become challenging to implement into complex systems (e.g., ship) because of the need 

of extensive use of resources and it requires company’s top management support during RCM 

employment (Starr et al. 2010). Moreover, RCM it does not make full provision for the use of 

condition monitoring techniques, so that the development of potential failures is not followed 

until just before failure.  It is this last remark which highlights a significant RCM shortcoming; 

that is the lack of an overall maintenance management system which will be flexible enough 

to suit each specific company/ship in the maritime domain. Table 5 shows the advantages and 

disadvantages of RCM. 

Table 4: Advantages and Disadvantages of RCM  

Advantages Disadvantages 

•Good audit trail •Failure data is not easy to obtain because equipment and 

components are usually replaced before failures to avoid 

high consequential costs especially in the process and 

chemical industries. 

 

•Consistent decision-making •Reliability may not be the main focus – manufacturing 

plants typically focus on availability. 

 

•Step- by-step procedure •The RCM structure is not concerned with the outcome 

of monitoring. 

 

•Resource intensive 

2.5.3 Computerised Maintenance Management System (CMMS) 

As machinery and equipment become more complex there was the need for implementation of 

automated maintenance management systems enhanced by computerized, flexible tools for 



managing critical assets (Dikis et al. 2014). Computerised Maintenance Management System 

(CMMS) can manage maintenance information effectively and efficiently (Liu et al. 2010). 

CMMSs are software programs based on a computer for adjustment and connection which is 

employed to manage resource usage and work actions and to control extensive data on the 

labour force, inventory, restoration programs (Cholasuke et al., 2004). CMMS converts 

maintenance information into appropriate data for decision-making. In this regard, a 

computerized management system can substantially enhance the opportuneness and 

correctness of storing and retrieving the necessary data. Figure 16 shows the steps involved in 

a CMMS plan (Bagadia, 2006). 



 
Figure 16: Steps in a CMMS Plan (Bagadia, 2006) 

From Figure 16, in more detail: First a computer software program assists in generating, 

planning and reporting of work orders. Then the request to perform maintenance work is being 

approved by maintenance supervisors or several levels of management (if large expenditures 

are required). The CMMS also includes scheduling/planning of work and labour tracking. The 

data recording varies from simple lists of hours of work to comprehensive records containing 

equipment history and cost accounting. Concerning the former, complete maintenance history 

on equipment which can help making decisions regarding maintenance and/or replacing it. 



Concerning the latter, every time work is done on an equipment the cost is computed and 

recorded. This information is important for performing a replacement analysis. Finally, as 

management information is developed, control reports are summarised covering performance, 

equipment data, etc. which help plant managers with the decision-making process. 

CMMS is coming more and more essential in the industry area (Raouf et al., 1993). It intends 

to diminish the total time out and frequency of machines breakdown as enhancing the 

performance and efficiency of maintenance operations by delivering precise information which 

is important in making intelligent (O’Hanlon, 2004). In addition, it helps gaining information 

from raw data and enhancing decision making by automating existing processes (Fernandez et 

al. 2003). 

On the other hand, the installation of CMMS may cause opposition to adjust and requires 

education for those who handle delicate system. Also, due to the high degree of equipment 

dependency, a failure can interrupt the entire process (Marquez et al., 2004).  In addition, a 

CMM requires an effective control mechanism for restoring and managing information 

(Swanson, 2003). Also, virtually no commercially available CMMS offers decision support, 

and this can be a serious drawback as the key to systematic and effective maintenance is 

managerial decision-making that is appropriate to the particular circumstances of the machine, 

plant or organisation (Labib, 2008). This decision-making process is made all the more difficult 

if the CMMS package can only offer an analysis of recorded data. As an example, when a 

certain preventive maintenance schedule is input into a CMMS, (e.g., to change the oil filter 

every month) the system will simply produce a monthly instruction to change the oil filter and 

is thus no more than a diary. Table 5 shows the facilities offered by commercially available 

CMMS, showcasing that the decision analysis is a “black hole”, meaning systems that are 

hungry for data and resources and provide the decision-maker with information that they 

already know. 



Table 5: Facilities offered by Commercially Available CMMS Packages (Labib, 2008) 

 

In shipping CMMS integrate all the necessary information (e.g., planned and unplanned 

maintenance events, machinery monitoring, inventory/spare parts lists) in one database which 

connects different departments of the shipping company with the ship (Lazakis et al. 2009). 

This gives valuable time for the ship crew to manage an increasing daily workload much more 

effectively and perform their duties better.  On the other hand, CMMS requires more skilled 

personnel and thus additional training for handling new technologies. Finally, there is a 

significant number of interdependent equipment when using CMMS which increases the 

probability of failures that can disrupt the correct operation of the system. 

A system that improves the RCM process integrated with CMMS was proposed by Gabbar et 

al. (2003). The proposed solution was integrated with design and operational systems and 

consolidated some successful maintainability approaches to formulate an effective solution for 

optimized plant maintenance. A case study was used to show the effectiveness of the proposed 

RCM-based CMMS solution in optimizing plant maintenance over the traditional approaches. 

Moreover, in the study of Labib (2004) proposed an intelligent model that can be linked to 

CMMSs to add value to data collected in the form of provision of decision support capabilities 

and thus overcome the “black hole” problem that was mentioned before.  That model was based 

on combining the analytic hierarchy process (AHP) with fuzzy logic control to render a 

“Decision Making Grid”. Carnero and Novés (2006) developed the evaluation system for 

selecting computerized maintenance management software in an industrial plant using multi-

criteria approaches. This system facilitates the activities of the planner of the system, as well 

as avoids the problems that an erroneous selection of the software brings, since the CMMS will 

adapt to the conditions and utilities needed by the industrial plant in these computer packages. 

Table 6 shows some advantages and disadvantages of CMMS. 



Table 6: Advantages and Disadvantages of CMMS 

Advantages Disadvantages 

•Helps to cope with the complexity of the 

work on a daily operational routine while 

keeping the cost of such a system in 

reasonable levels. 

•Requires education for those who handle delicate 

system. 

 

•Gaining information from raw data and 

enhancing decision making by automating 

existing processes. 

•Due to the high degree of equipment dependency, a 

failure can interrupt the entire process. 

 

 

•Technical consideration of the asset in 

question, improved asset reliability, cost- 

effectiveness. 

• “Black hole” when it comes to decision analysis. 

 

 •A number of participants needed substantial time for 

implementation 

2.5.4 Condition Based Maintenance 

Finally, the last method of predictive maintenance techniques is called Condition Based 

Maintenance (CBM). is the most modern and popular maintenance technique discussed in the 

literature (Dieulle et al., 2001, Han and Song, 2003, Moya, 2004). The scope of Condition 

Based Maintenance is to detect the upcoming failures before even taking place (Mechefske, 

2005). In other words, CBM has as a goal to understand the risks and predeterminate strategic 

actions, leading to reliability and operational cost reduction (SKF, 2012a). In a more technical 

aspect, Butcher (2000) defined CBM as a set of maintenance actions based on real-time or near 

real-time assessment of equipment condition, which is obtained from embedded sensors and/or 

external tests & measurements taken by portable equipment. The motivation of CBM is that 

99% of equipment failures are preceded by certain signs, conditions, or indications that a failure 

is going to occur (Bloch & Geitner, 1983). Figure 17 shows the procedure for the MIMOSA 

Open Standard Architecture Condition Based Maintenance (OSA-CBM). 

 



 
Figure 17:Procedure for CBM Approach (Prajapati et al., 2012) 

OSA-CBM is designed by MIMOSA which is an organization involved in the development of 

the standards for CBM and is a standard for information flow to help realize an end-to-end 

CBM system (Prajapati et al., 2012). First the use of the asset under question is being 

determined as well as the data to be collected related to this usage. In the data gathering level, 

large amount of field data is collected by various data acquisition methods using sensors, wired 

and wireless techniques, and stored in a database. Before data gathering, it is necessary to 

identify which data should be gathered during asset usage period for CBM. For the analysing, 

it is required to develop an algorithm that assesses the behaviour and degrading level of an 

asset and predicts its remaining lifetime. Analysing has two parts in CBM: diagnostics and 



prognostics. Diagnostics consists of fault detection, fault isolation determining the location of 

the fault, and fault identification determining the fault mode (Gruber et al., 2013). Diagnostics 

requires data pre/post-processing, data interpretation, data fusion, and several statistics 

methods with asset specific knowledge. On the other hand, prognostics corresponds to the 

estimation of the time to failure and the risk for one or more existing and future failure modes 

based on anticipated future usage (Mejia et al., 2012). Prognostics deals with estimation of 

system health index and predictions of Remaining Useful Life (RUL) (Chen et al., 2012) and 

is a word recently coined by the scientific community to address the combination of diagnosis 

and prognosis (Audisio et al., 2004). Finally, the final step is the knowledge transformation 

which refers to advisory generation for maintenance (repair or replace). 

After presenting the steps of CBM it would be useful to review the international standards of a 

CBM system.  There are several international standards related to CBM approach as it can be 

seen in Table 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 7: CBM International Standards 

Standards Subject 

IEEE 1451 

 

Smart transducer interface for sensors and actuators 

IEEE 1232 

 

Artificial Intelligence exchange and service tie to all test 

environments 

ISO 13372 Condition monitoring and diagnostics of machines-

Vocabulary 

 

ISO 13373-1 

 

Condition monitoring and diagnostics of machines-

Vibration condition monitoring-Part 1. General 

procedures 

 

ISO 13373-2 

 

Condition monitoring and diagnostics of machines-

Vibration condition monitoring-Part 2. Processing, 

analysis and presentation of vibration data 

 

ISO 13374 

 

MIMOSA OSA-CBM formats and methods for 

communicating, presenting and displaying relevant 

information and data 

 

 

ISO 13380 

 

Condition monitoring and diagnostics of machines-

General guidelines on using performance parameters 

 

ISO 13381-1 

 

Condition monitoring and diagnostics of machines-

Prognostics, general guidelines 



 

ISO 14224 

 

Petroleum, petrochemical and natural gas industries-

collection and exchange of reliability and maintenance 

data for equipment 

 

ISO 17359 

 

Condition monitoring and diagnostics of machines- 

General guidelines 

 

ISO 18435 

 

MIMOSA OSA-EAI diagnostic and maintenance 

applications integration 

 

ISO 55000 

 

Asset management 

From Table 7, some of the international standards are the condition monitoring and diagnostics 

standards for machinery industry, such as: ISO 13372, ISO 13373, ISO 13380, and ISO13381. 

In addition, ISO 13374 addresses the MIMOSA OSA-CBM representing formats and methods 

for communicating, presenting, and displaying relevant information and data. There are also 

standards related to the issues of integration and data sharing among manufacturing facilities 

for CBM like ISO 18435 (MIMOSA OSA-EAI). Recently, not only machinery industry but 

also plant engineering industry, e.g., petroleum, petrochemical and natural gas industry, starts 

to have more interest in the CBM policy, as it can be seen in ISO 14224. 

Moving on to the advantages of this method, one great benefit of CBM is that minimizes the 

failures occurred by human error during maintenance operations, also called infant mortality 

since less invasive maintenance needs to be performed (Dhillon and Liu, 2006). In addition, 

CBM allows to perform better planned maintenance, reduce or eliminate unnecessary 

inspections, and decrease time-based maintenance intervals with confidence (Chen et al. 2012). 

Furthermore, the application of CBM systems in industry has been reported to be one way of 

decreasing maintenance budgets (Bengtsson, 2004; Horner et al., 1997). Also, CBM can 

discover the root cause of failure and that means that the cause can be eliminated/ engineered 

out (Yam et al., 2001). On the other hand, according to Hashemian and Bean (2011), a 30% of 

industrial equipment does not benefit from CBM. That is mostly because of the investment cost 



for CBM which is usually high. In addition, to implement the CBM, it is prerequisite to install 

and use monitoring equipment and to develop some level of modelling or decision-making 

strategy (Ellis, 2009). Also, to implement the CBM, not only investment of hardware but also 

training on staff is required which will cause expensive cost. In addition, the technologies and 

technical methods for the CBM approach are still in their infancy which means that there are 

some limitations in ensuring the accuracy of diagnostics and prognostics (Shin et al. 2015). 

Finally, CBM is not applicable to all retained assets and should only be applied if condition 

monitoring techniques are useful and cost-effective (Horner et al., 1997). 

Concerning applications of CBM, Trutt, Sottile, and Kohler (2002) presented a CBM method 

for induction motor windings based on a voltage mismatch technique. The proposed method 

demonstrated the robust nature of the monitoring process not only under conditions of power 

supply imbalance but also in situations where motor construction imperfections exist, and 

mechanical loads are unpredictable (Ahmad et al., 2012). Yang, Mathew, and Ma (2005) 

monitored and diagnosed rolling bearing defects at inner and outer race faults based on 

vibration signals. A new basis pursuit method was applied in the extraction of features from 

signals collected. Shonet (2003) noted that in order to effectively implement CBM, 

performance metrics for components and systems should be developed. Liu and Wang (2006) 

presented a CBM process that integrated data collection and vibration signal analysis to assess 

equipment conditions and maintain the operational performance of hydropower turbine units. 

Mehta et al. (2015) suggests a way to prevent fatal errors by combining information from two 

or more sensors and the intelligence in the CBM system is described using the Bayesian 

probabilistic decision framework and the data generated during validation. Table 8 shows the 

advantages and disadvantages of CBM. 

 

 

 

 

 

 

 

 

 



Table 8: Advantages and Disadvantages of CBM 

Advantages Disadvantages 

•Enhance machine’s availability, 

reliability, efficiency and safety. 

 

•CBM is not applicable to all retained assets and should 

only be applied if condition monitoring techniques are 

useful and cost-effective. 

•Discovers the root cause of failure. 

 

 

• Expensive initial investment of hardware and training 

on staff is required. 

•Minimizes infant mortality. •Is a rather new approach and thus has some limitations. 

 

•Reduced maintenance budget through 

controlled spare part inventories. 

 

2.6 Approaches for Diagnostics and Prognostics in CBM 

As it was mentioned before, there are two major Condition Based Maintenance (CBM) 

approaches (Manno et al., 2014): 

• Data driven approach 

• Model driven approach  

 

These two approaches will be analysed further in the next sub-sections. 

 

2.6.1 Data Driven Approach 

The data driven approach is also known as the data mining approach or the machine learning 

approach and is a rather new approach which uses historical data to automatically learn a model 

of system behaviour (Schwabacher, 2005).  Data-driven approaches use real data obtained from 

data acquisition system and track features revealing the components degradation and to forecast 

the global behaviour of a system (Marton et al., 2013). Figure 18 shows a high-level 

representation of a data driven CBM framework (DNV, 2014).  



 
Figure 18: Data-Driven CBM framework (DNV, 2014) 

According to Figure 18 the data driven approach uses systematically a database to store data 

referring to: historical operational values of the system, new operational values of the system 

and the output of the model of the system (diagnostics and prognostics). In addition, the 

database also has the usage of feeding new data to update the model that was trained with the 

historical data with the new observations and thus increase the accuracy long term. The models 

used in data-driven approaches can be divided into two categories: artificial intelligence (AI) 

techniques (neural networks, fuzzy systems, decision trees, etc.), and statistical techniques 

(multivariate statistical methods, linear and quadratic discriminators, partial least squares, etc.) 

(Dragomir et al., 2009; Lam et al., 2010).  



By using data driven CBM, maintenance can be predicted before failure occurs to ensure 

continuous production, product quality, and enterprise efficiency (Morant et al. 2016). In 

addition, a data driven approach can process a wide variety of data types and exploit the 

nuances in the data that cannot be discovered by rule-based systems (Peng et al., 2010). 

Furthermore, data-driven approaches have the ability to transform high-dimensional noisy data 

into lower dimensional information and thus reduce a complex problem to a solvable solution 

(Luo et al., 2003).  Finally, data driven CBM facilitate model building via identification of 

dynamic relationships among data elements (Poongodai et al., 2013). On the other hand, data 

driven CBM system’s efficacy is highly dependent on the quantity and quality of system 

operational data (Niu, 2017). In addition, performance is limited by the availability/quality of 

the database (Bengtsson, 2003). Table 9 summarises the advantages and disadvantages of the 

data driven approach. 

 

 

 

 

 

 

 

 

 

 

 



Table 9: Advantages and Disadvantages of Data Driven Approach 

AI 

Appro

ach 

Description Classification Advantages Disadvantages 

Data 

Driven 

•Automatically fit a 

model of system 

behaviour to 

historical data, 

rather than hand-

coding a model. 

•Conventional 

numerical 

algorithms: 

Linear 

regression 

Kalman filters 

 

•Machine 

learning 

algorithms: 

Neural networks 

Decision trees 

Support vector 

machines. 

 

• Can process a wide 

variety of data types. 

 

•Very adaptable. 

 

•Ability to transform 

the high-dimensional 

data into lower-

dimensional data 

 

•Facilitate model 

building via 

identification of 

dynamic 

relationships among 

data elements. 

•Their efficacy is highly 

dependent on the 

quantity and quality of 

system operational data. 

 

•Performance is limited 

by the 

availability/quality of 

the database. 

2.6.2 Model Driven Approach 

In contrast to the data-driven approach, the model driven approach incorporates a physical 

understanding of the targeted system (Shin et al. 2015). It includes more classical AI techniques 

such as rule based expert systems, finite-state machines and qualitative reasoning (Sugeno et 

al. 1993).  Figure 19 shows a high-level representation of a model driven CBM framework 

(DNV, 2014). 

 



 
Figure 19: Model-Driven CBM framework (DNV, 2014) 

From Figure 19 in the model driven CBM the diagnostics/prognostics come after comparing 

the observations obtained by sensors with the predictions of different system conditions from 

the simulation of the system by a mathematical model. Model based algorithms encode human 

knowledge via a hand-coded representation of the system and can be either physics based, or 

AI based (Schwabacher et al., 2007). Hand-coded model uses qualitative, rather than 

numerical, variables to describe the physics of the system (Weld & de Kleer, 1990) while 

model-based AI techniques include rule-based expert systems, finite-state machines and 

qualitative reasoning (Williams & Nayak, 1996; Kurien & Nayak, 2000). 

Model-driven approaches can have high precision and give guide efficient diagnostic 

procedures for specific situations (Atamuradov et al., 2017). In addition, in many situations, 

the changes in feature vector are closely related to model parameters (Chelidze et al., 2002). 

Thus, it can also establish a functional mapping between the drifting parameters and the 

selected prognostic features can be established (Luo et al., 2003).  

On the other hand, model-driven approaches are known for their Inability to generalize (they 

are specific to one system), to deal with new conditions and to learn from their mistakes 



(Medjaher et al. 2013). Furthermore, the model-based approach requires very specific 

knowledge which may not be available for a specific problem and thus a good model is very 

difficult to build up (Caesarendra et al., 2010). Table 10 summarises the advantages and 

disadvantages of the model driven approach. 

Table 10: Advantages and Disadvantages of Model Driven Approach 

AI 

Approach 

Description Classification Advantages Disadvantages 

Model 

Driven 

•Encode human 

knowledge via a 

hand-coded 

representation of 

the system. 

•Physics based: 

System of differential 

application. 

 

•Classical AI 

Techniques: 

Rule-based expert 

systems  

Finite-state machines  

Qualitative Reasoning. 

 

•Can guide 

efficient 

diagnostic 

procedures 

for specific 

situations. 

 

•Can 

establish a 

functional 

mapping 

between 

parameters 

and selected 

prognostic 

features 

•Inability to generalize. 

 

•Inability of the model 

to adjust in new 

conditions. 

 

•Inability of the model 

to learn from its errors. 

 

•Require very specific 

knowledge. 

 

2.7 Steps of Data-Driven CBM 

This thesis is more concerned about data-driven approaches rather than the traditional model-

driven approaches. A data-driven Condition Based Maintenance System (CBMS) generally has 

the following steps (Lee et al., 2004): 

• Data acquisition step 

• Data processing step 

• Maintenance decision-making step 



 
Figure 20: Process of a Data-Driven CBMS (Lee et al., 2004) 

The first step is the data acquisition step (information collecting), to obtain data relevant to 

system health. The second step is the data processing step (information handling), to handle 

and analyse the data or signals collected in first step for better understanding and interpretation 

of the data. Finally, the third step is the maintenance decision-making step (decision-making), 

to recommend efficient maintenance policies. In the following sections the three steps of the 

CBM approach will be analysed, namely: data acquisition, data processing and diagnostics 

and/or prognostics. 

2.7.1 Data Acquisition 

As it was shown in Figure 20, the first step of a CBM system is to acquire data to perform the 

analysis. Acquired data can be split into two categories (Jardine et al., 2006): 

 

• Event Data 

• Condition Monitoring Data 

 

The first category refers to events such as overhauls, installations, replacements and the second 

one refers to data used to assess the health of the machinery such as pressures, temperatures, 

flows and other. Table 11 shows an example of the event data from a maintenance database 

(Robles et al., 2012). 

Data 
Acquisition

Data 
Processing

Diagnostics 
and/or 

Prognostics



Table 11: Example of Recorded Events from a Maintenance Database (Robles et al., 2012) 

 

On the other hand, Figure 21 shows an example of condition monitoring data coming from two 

sensors and then plotted in a scatter plot against each other (Hiruta et al., 2019). 

 
Figure 21: Example of Condition Monitoring Data (Hiruta et al., 2019) 

Both of the above categories are important for a successful CBMS. In that case, the sampling 

of the data can be implemented in two ways namely, continuous condition monitoring and 

periodic condition monitoring (Cocconcelli et al., 2018). Regarding the former, sensors are 

recorded continuously. This sampling policy is recommended for those critical components 

with a high impact on the costs and a short time-to-failure. Regarding the latter, sensors are 

recorded at scheduled time intervals. This policy is particularly suitable for components with a 

medium–high time-to-failure. 



2.7.2 Data Processing 

The very first step of data processing is always data cleaning and this needs to be done for both 

event data and condition monitoring data. The event data are usually added manually so a lot 

of mistakes are always made. On the other hand, in condition monitoring data the error may 

come from sensor faults and in that case a sensor fault isolation is usually the common practise 

(Xu et al., 2003). Performing data cleaning in condition monitoring especially is of paramount 

importance since it reduces the probability of having a CBMS with ‘garbage in-garbage out’ 

situation, where invalid data values determine the algorithm’s diagnostic and prognostic 

behaviour (Sabari et al., 2014). Usually, the number of variables in the raw data is big and there 

can be complex correlation patterns hidden (Guatum et al., 2015). In that case, is better to 

perform multivariate analysis techniques such as principal component analysis (PCA), random 

projection (RP) with Johnson-Lindenstrauss lemma, independent component analysis (ICA), 

and Self-Organized Maps (SOM) in order to reduce the dimensions of the problem and 

eliminate unnecessary correlations between the features (Thrun et al., 2020). 

The PCA method finds a new coordinate system that is obtained from the old one by translation 

and rotation only and it moves the centre of the coordinate system with the centre of the data 

(Jolliffe et al. 2016). This transformation implies a dimensionality reduction of the original 

data so, a few of these components are sufficient to adequately represent the hidden sources of 

variability in the process (Wold et al., 1987). It moves the x-axis into the principal axis of 

variation where you see the most variation relative to all the data points and it moves further 

axis down the road into an orthogonal less important directors of variation. 

PCA returns an importance value (measures the amount of spread) which is much larger for 

the first axis of variation and very small for the second axis of variation and always gives 

independent features. This method is heavily used with unsupervised learning in order to 

provide to the machine learning algorithms data with only the important independent features 

(Zhong et al. 2016). Figure 22 shows an illustration of the PCA method (Niculescu et al., 2016). 



 
Figure 22: Illustration of the PCA Method (Niculescu et al., 2016) 

PCA finds the main variability directions in the data and defines a new coordinate system, 

using optimal rotations. The axes of this system are defined by the eigenvectors a1 and a2. The 

eigenvalues λ1 and λ2 correspond to the data variance in the newly defined coordinate system. 

PCA’s key advantages are its low noise sensitivity, the decreased requirements for capacity 

and memory, and increased efficiency given the processes taking place in a smaller dimension 

(Phillips et al., 2005; Asadi et al., 2010; Karamizadeh et al., 2013).  

On the other hand, the covariance matrix is difficult to be evaluated in an accurate manner and 

even the simplest invariance could not be captured by the PCA unless the training data 

explicitly provides this information (Diao et al., 2008). In addition, PCA cannot handle non-

linear data (Juvonen et al., 2014). In the various real-world problems, the PCA is frequently 

used in data sets with some intrinsic complexity (Tuncer et al., 2008; Horenko et al., 2006; 

Rothenberger et al., 2003; Atsma & Hodgson, 1999; Barbieri et al., 1999).  

The PCA is applied as a cluster analysis tool to form machine groups and part families 

simultaneously (Hachicha et al., 2006). Application of PCA has been in representing the data 

using a smaller number of variables (Wall et al., 2003). For example, PCA have been used to 

represent face images efficiently (Sirovich et al., 1987; Turk et al., 1991). Hernandez et al. 



(2018) also used PCA in an application of Image Compression- an original image was taken 

and compressed by using different principal components. Finally, Wang (2018) used PCA, 

categorical regression tree and back propagation network for the prediction of engine failure 

time and experimental and analytical comparisons showed that the proposed method provided 

significantly improved prediction accuracy to the previous used method. 

Moving on to the RP: It is also a dimensionality reduction method. It is computationally more 

efficient than PCA but with less quality (Schu et al, 2016). The difference from PCA is that RP 

just uses a random line for projection from d dimensions to k dimensions (Linial et al., 1995; 

Johnson et al., 1984; Achlioptas, 2003). RP uses the Johnson-Lindenstrauss lemma (Johnson 

et al., 1984) where dataset of N points in high-dimensional space can be mapped down to a 

much lower dimension in a way that preserves the distance between the points to a large degree 

(Vempela, 2005). Figure 23 shows a Johnson-Lindenstrauss lemma illustration (Fejri, 2017). 

 
Figure 23: Johnson-Lindenstrauss Lemma Illustration (Fejri, 2017) 

From Figure 23 the linear application Φ, provided by Johnson-Lindenstrauss lemma, is simply 

a way to project the dataset points in another space, without moving too much the distance of 

each pairwise of points. Concerning the benefits of choosing the RP method: Firstly, it is simple 

and efficient to use (Lin et al., 2003). In addition, PC can be used also to reduce the dimension 

of a mixture of Gaussians (Dasgupta 2000). On the other hand, a drawback of RP is that it is 

highly unstable – different random projections may lead to radically different clustering results 

(Fern et al., 2003). In addition, it offers less accuracy than the PCA method (Deegalla et al., 

2007). 



Concerning application of the RP: Zhou et al. (2015) used RP and k-Nearest Neighbor Rule 

for fault detection in semiconductor manufacturing processes. The authors concluded that the 

proposed method not only could reduce the computational complexity and storage space, but 

also approximately guarantee the advantages of kNN rule in dealing with the problems of 

multimode batch trajectories and nonlinearity that often coexist in semiconductor processes. 

Papadimitriou et al. (1998) use RP in the pre-processing of textual data. Kurimo (1999) applies 

RP to the indexing of audio documents. In Damasevicius et al. (2016) the authors proposed a 

method that does feature extraction and feature dimensionality reduction by using 

computationally efficient RP and can recognize of daily human activities. Kleinberg (1997) 

and Indyk and Motwani (1998) use RP in nearest-neighbor search in a high dimensional 

Euclidean space, and also present theoretical insights. In Liu et al. (2006) the authors 

introduced data perturbation technique using RP transformation where some noise is added to 

the data before being sent to the cloud server. 

The next data processing technique is the ICA. In contrast with PCA which maximize variance, 

the ICA assumes that the features are a mixture of statistical independent sources and it tries to 

isolate the independent sources (Hyvarinen et al. 2000) by assuming they have non-Gaussian 

distributions (Ge et al. 2007). Figure 24 illustrates the differences between the PCA and ICA 

(Lubo-Robles, 2018). 



 
Figure 24: Differences Between PCA and ICA (Lubo-Robles, 2018) 

In Figure 24, attributes a1 and a2 are scaled by their means and standard deviations. The first 

eigenvector v1 is a line that least-squares fits the data cloud and best represent the variance of 

the data. PC1 is a projection of each data point onto v1. The second eigenvector v2 is a 

perpendicular to v1 and for two dimensions these two eigenvectors best represent the data. In 

contrast, the independent components IC1 and IC2 are latent variables whose order is 

undefined, and they are not orthogonal between each other (Hyvarinen et al. 2000; Tibaduiza 

et al., 2012). One advantage of using ICA is that it is generally more precise than the PCA 

method.  On the other hand, ICA attempts to find statistically independent new dimensions. In 

contrast to PCA, which only requires that the different dimensions be uncorrelated, this is a 

stronger constraint (Edelman, et al., 1997). In addition, concerning algorithm speed, ICA is 

computationally more intensive than PCA, as it is a more complex algorithm (Jung et al., 1998).  

Stefatos et al. (2010) proposed a dynamic ICA approach for fault detection and diagnosis. The 

authors concluded that the proposed approach is able to accurately detect and isolate the root 

causes for each individual fault. ICA finds application in many areas such as: separation of 

mixed voices or images (Dagher et al., 2006; Kwak et al. 2008), analysis of several types of 



data (Jutten et al., 1991), feature extraction (Delfosse et al., 1995), speech and image 

recognition (Cardoso, 1997), data communication (Oja et al., 1992), sensor signal processing 

(Cvejic  et al., 2007; Cardoso  et al., 1996), system identification (Yang et al., 2007; Shifeng et 

al., 2007) and biomedical signal processing (Van  Dun et al., 2007, Waldert, 2007; Tan, 2001; 

Cichocki, 1996). 

Finally, SOM maps input data to neurons in such a way that the distance relationships between 

input signals are mostly preserved (Kohonen 2013). Every data item is mapped into one point 

in the map and the distances of the items in the map reflect similarities between the items 

(Kohonen 1998). The SOM can be interpreted as a topology for preserving mapping from input 

space onto the two-dimensional grid of the map (Raptodimos et al., 2018). Figure 25 shows the 

structure of the SOM network (Ghaseminezhad et al., 2011). 

 
Figure 25: The Structure of the SOM Network (Ghaseminezhad et al., 2011) 

As shown in Figure 25, the SOM network is an array of M = m × m processing neurons. The n 

components of the input vector x are connected to each neuron in the array. A synaptic weight 

wij is defined for a connection from the ith component of the input vector to the jth neuron. 

Therefore, an n-dimensional vector wj of synaptic weights is associated with each neuron j. 

Figure 26 shows a schematic representation of SOM (Kind et al., 2014). 



 
Figure 26: A schematic representation of a SOM (Kind et al., 2014) 

In Figure 26 the colour of the map encodes the organization of groups of objects with similar 

properties. The. main benefit of SOM maps is the detection of nonlinear relationships between 

variables (Lawrence et al., 1999) compared to the other techniques that require linear 

relationships. On the other hand, SOM requires a number of parameters that to be set 

beforehand. That means that the size and topology of the map needs to be determined, as well 

as the values for the training parameters and one must spend time on the optimization of the 

mapping (Wehrens, 2009). 

In Birgelen et al. (2018) SOM were used for anomaly localization and predictive maintenance. 

and concluded that the anomaly localization provides information to better locate the origin of 

the degradation giving experts a head-start on the analysis. In addition, Schwart al. (2020) 

presented a fault mode identification methodology based on SOM and concluded that without 

prior knowledge on the faults, the proposed algorithm was able to identify the number of 

operational modes as well as the fault mode number for the five datasets. Table 12 shows a 

summary of the processing techniques discussed in this section. 

 



Table 12: Summary of Processing Techniques 

Dimensionality reduction 

techniques 

Advantages Disadvantages 

PCA •Visualize high-dimensional 

data. 

•Reduce noise. 

•Independent features. 

•The number of components is 

determined by variance 

criteria. 

 

•Computationally intensive. 

•Assumes linearity between 

principal components and 

original features. 

•Difficulty to express the 

results of the principal 

component projection in a 

straightforward manner. 

 

Random Projection •Fast. 

•Low computational power.   

•Less quality than PCA. 

•Uses a random line of 

projection. 

 

ICA •Better overall results. 

 

•Assumes statistically 

independency of the features. 

• Computationally expensive. 

 

SOM  •Detection of nonlinear 

relationships between 

variables. 

 

•Subjective nature of defining 

clusters and establishing 

relationships between 

variables. 

2.8 Diagnostics 

Diagnostics can be performed either with unsupervised learning, supervised learning or semi-

supervised learning. In contrast to supervised learning that usually makes use of human-

labelled data, unsupervised learning allows for modelling of probability densities over inputs 



(Hinton et al., 1999). Semi-supervised learning is using large amount of unlabelled data, 

together with some labelled data (Zhu, 2005) and thus falls between unsupervised learning and 

supervised learning. Figure 27 shows examples of real-life problems in the context of 

supervised and unsupervised learning tasks (Yip et al., 2013).  

 
Figure 27: Examples of Supervised, Unsupervised and Semi-Supervised Learning (Yip et al., 2013) 

In Figure 27, the first example is supervised learning where the model (blue line) is learned 

based on the positive and negative training examples, and the genomic region without a known 

class label (purple circle) is classed as positive according to the model. In unsupervised 

learning, all examples are unlabelled, and they are grouped according to the data distribution. 

In semi-supervised learning, information of both labelled and unlabelled examples is used to 

learn the parameters of the model. In this illustration, a purely supervised model (dashed blue 

line) classifies the purple object as negative, while a semi-supervised model that avoids cutting 

at regions with a high density of genomic regions (solid blue line) classifies it as positive. In 

the sub sections bellow an overview of the most important algorithms in each category for the 

purpose of diagnostics will be presented. 

2.8.1 Unsupervised Learning 

Starting with the unsupervised learning algorithms, there are a number of them that can be used 

for fault detection (Amruthnath et al., 2018), namely: K-Means, Gaussian Mixture Models, 

Hierarchical Clustering and Density-based spatial clustering of applications with noise 

(DBSCAN).  

K-means is the most used algorithm for clustering (Fahim et al., 2006). The K-means algorithm 

classifies the data into K different independent clusters through an iterative, converging process 

(Hossain et al., 2019). Figure 28 shows the steps of the k-means algorithm (Wang et al., 2011). 



 
Figure 28: Steps of k-Means Algorithm (Wang et al., 2011) 

Firstly, a K value is selected by the user where K is the number of clusters to be formed. First 

k data objects are selected as initial cluster centres. Then the Euclidean distance between each 

data point is compared to the nearest centre of a K centroid (Fahim et al., 2006). Finally, all the 

data points are used to create some group and this process will be continuing until minimum. 

Figure 29 shows an illustration of k-means clustering (Xu et al., 2011). 



 
Figure 29: Example of K-Means Clustering (Xu et al., 2011) 

From Figure 29 it can be seen that the number of clusters has been selected to be 3 and thus the 

algorithm has produced the decision lines accordingly to separate the data into three clusters. 

K-means algorithm has many advantages such as simple mathematical ideas, fast convergence, 

and easy implementation (Li et al., 2017). A fundamental problem of the k-means algorithm is 

that requires the number of clusters to be defined beforehand, which is responsible for different 

cluster shapes and outlier effect (Ahmed et al., 2020). In addition, k-means performs poor if 

the data are not uniform (circular or spherical) (Schelling et al., 2020). Furthermore, the k-

means algorithm does not guarantee finding the optimal solution because it converges to the 

local minima (Hill-climbing algorithm) instead of the global minima (Komarasamy et al., 

2013). Finally, k-means require the user to specify the number of clusters beforehand (Jung et 

al., 2003). 

One example of k-means used for fault detection is for Rolling element bearing fault detection 

(Yiakopoulos et al. 2011). Wu et al. (2010) presents the development of an algorithm based on 

K-Means clustering and probabilistic neural network for classifying the industrial system fault. 

According to the authors, the proposed algorithm not only provides an accepted degree of 

accuracy in fault classification under different fault conditions and the result is also reliable. 

Majid et al. (2012) developed a fault detection and diagnosis system of complex processes 



usually involve large volumes of highly correlated data. he results of applying the clustering 

technique on real data sets show that the boundary of each class of faults can be identified. 

Moving on to hierarchical clustering, a hierarchical clustering algorithm applied to a data set 

produces a series of nested partitions, usually designated by hierarch (Sousa et al., 2014). A 

hierarchy is a complex and difficult structure to interpret, so that, it is usual to post-process a 

hierarchy to find the best partition in it. The post-processing consists in cutting off the 

dendrogram through horizontal lines at determined levels. Figure 30 shows a dendrogram 

showing the result of the hierarchical clustering (Tseng et al., 2013). 

 
Figure 30: A Dendrogram (Tseng et al., 2013) 

In Figure 30, when a threshold (e.g., 0.07) is set and then the dendrogram can be split into 

several clusters as marked by the dots at their roots. There are three aggregation methods, 

namely, single-linkage (SL), complete-linkage (CL) and average-linkage (AL). Hierarchical 

clustering (single-link) starts by using each point as a cluster then calculates the distances 

between the points (the two closer points between the clusters) and connects the ones closer to 

each other. Then it checks the distance between clusters and remaining points. Finally, by 

looking the dendrogram that has been created we can understand which is the best number of 

clusters. The Complete link starts exactly the same as the single link, but it uses as distances 

the furthest points of the clusters (Murtagh et al., 2011).  It is considered better than the single 

link as it gives us compact clusters. The average link takes the distances for every point between 

the two clusters and take the average. Finally, the ward’s method takes the distance from the 

centre of each clusters (Lee et al., 2014).  



One advantage of hierarchical clustering is that there is no need to define number of clusters in 

advance in contrast with k-means (Bhagat et al., 2016). In addition, dendrograms provide an 

additional ability to visualize (Bisson et al., 2012). On the other hand, hierarchical clustering 

scales poorly in both memory and computing time with increasing (Embrechts et al., 2013). 

Also, hierarchical clustering is sensitive to noise and outliers (Ros et al., 2019). 

Fault detection of fault component in wide area backup protection system can be performed 

successfully by hierarchical cluster analysis and calculation (Zhang et al., 2009). Zhang et al. 

(2012) presented sensor fault detection for industrial systems using a hierarchical clustering-

based graphical user interface. The authors shown through use of real-time operational data, 

that in operation sensor faults can be detected and identified by the hierarchical clustering-

based graphical user interface. 

Finally, Gaussian mixture models (GMM) is a parametric probability density function 

represented as a weighted sum of Gaussian component densities (Reynolds, 2009). Instead of 

hard assigning a data point to a particular Gaussian component, it assigns probability of a 

Gaussian component belonging to a data point. GMM parameters are estimated from training 

data using the iterative Expectation-Maximization (EM) algorithm or Maximum A Posteriori 

(MAP) estimation from a well-trained prior model (McLachlan et al., 2008; Shi et al., 2011). 

EM is the most popular technique used to determine the parameters of a mixture with a priori 

given number of components (Maretic et al., 2014). EM is an iterative technique for maximum 

likelihood estimation where the maximum likelihood of the data increases with each 

subsequent iteration, meaning it is guaran-teed to converge (Dempster et al., 1977). Figure 31 

shows the steps of EM (Kumar, 2018). 



 
Figure 31: Expectation Maximization Algorithm (Kumar, 2018) 

From Figure 31 it can be seen that EM consists of two steps, namely: Expectation step and 

Maximization step. After each step the parameters of the Gaussian function are calculated, such 

that the likelihood of the model approaches a local maximum. Figure 32 shows an example of 

GMM with 4 components (Takagi et al., 2009). 

 
Figure 32: Example Gaussian Mixture Model (Takagi et al., 2009) 

One advantage of using GMM is that it is a soft clustering technique, meaning that points can 

be part of more than one cluster and thus increases the flexibility of the model (Enami et al., 



2012). In addition, GMM provides more cluster shape flexibility, and this increases the 

accuracy of the model (Greve et al., 2015). On the other hand, GMM is sensitive to initialization 

values (Li et al., 2018). Furthermore, GMM is possible to converge to a local optimum. (Zhang 

et al., 2008). Finally, GMM has a slow convergence rate. (Park et al., 2009). 

The effectiveness of the GMM framework can be seen on an industrial fault simulator of rotary 

machine (Zhou et al. 2017). Torres et al. (2014) suggested gaussian mixture models approach 

for multiple fault detection. The author a presented a case study using the DAMADICS 

benchmark, where this approach was validated. Yu et al. (2009) proposed a machine fault 

diagnosis based on Gaussian mixture model. The authors concluded that experimental results 

based on the application on bearing fault diagnosis have shown that GMM can reliably 

diagnose not only the type of bearing faults, but also the degree of fault severity that are 

associated with incipient faults, moderate faults, and severe faults. Table 13 shows a summary 

of the unsupervised learning algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 13: Summary of Unsupervised Learning Algorithms 

Clustering Models Advantages Disadvantages 

K-Means •Most commonly used 

algorithm. 

•Performs better when uniform 

data (spherical). 

•Performs good with a large 

number of clusters. 

•Performs good if the number 

of clusters is known. 

•Local minima (Hill-climbing 

algorithm). 

•Performs poor if the data are 

not uniform (circular or 

spherical). 

•Need to specify number of 

clusters. 

Hierarchical Clustering •Resulting Hierarchical 

representation can be very 

informative. 

•Provides an additional ability 

to visualize. 

•Don’t need to specify number 

of clusters. 

•Sensitive to noise and outliers. 

•Computationally intensive. 

Gaussian Mixture  •Soft clustering. 

•Cluster shape flexibility. 

•Sensitive to initialization 

values. 

•Possible to converge to a local 

optimum. 

•Slow convergence rate.  

2.8.2 Supervised Learning 

Moving on, the most used supervised learning algorithms, for fault diagnosis are (Lo et al., 

2019): Bayesian Networks (BN), Artificial Neural Network (ANN), Support Vector Machines 

(SVM), Hidden Markov Models (HMM) and Decision Tress (DT) & Random Forest (RF). 

Starting with Bayesian Networks, they are a schematic representation of the Bayes theorem of 

posterior probabilities (Daly et al., 2011). In order to use BN, there is the need to specify the 

probabilities of each node and the network structure (Ademujimi et al., 2017). In some cases, 



a Naïve Bayesian Network can be used where there is the assumption that the features are 

conditionally independent given class (Rish, 2001). Then, the problem can be simplified 

because the probability of two events happening together is just a product now. Surprisingly 

enough this method has hold on in many cases (spam e-mails classifier), but it becomes weaker 

the stronger the dependency between the features is and the complexity of the data (e.g., in the 

case of machinery data in shipping). Figure 33 shows a Bayesian network for automobile 

troubleshooting problem (Heckerman et al., 1970).  

 
Figure 33: Example of a Bayesian network (Heckerman et al., 1970) 

From Figure 5, the component nodes of the network are: “Battery”, “Starter”, “Spark Plugs”, 

“Fuel Pump”, “Fuel Line” and “Fuel”. The device node is “Engine Starts” and in this network 

it is decomposed to into the subsystems “Engine Turns Over” and “Fuel Subsystem”. The 

“Engine Starts” exhibits a noisy max relationship with its parents, where “Engine Starts” is 

Abnormal, if either subsystem is Abnormal. To show the cause/effect relationship between 

nodes different authors choose different approach such as: failure mode and effect analysis 

(FMEA), cause and effect diagrams, fault- tree analysis and variation sensitivity matrix (De et 

al, 2010; Pradhan et al, 2007; Nguyen et al, 2016; Liu & Jin, 2013). Data obtained from sensors 

can then be used to generate the conditional probabilities of the network (Ademujimi et al., 

2017). BN provide a method for avoiding overfitting of data (Heckerman, 1995) and can show 

good prediction accuracy even with rather small sample sizes and they can be easily combined 

with decision analytic tools to aid management (Kuikka et al., 1999; Jensen, 2001). In addition, 

they provide a natural way to handle missing data, they allow combination of data with domain 

knowledge, they facilitate learning about causal relationships between variables (Uusitalo, 



2007). On the other hand, the main challenge of training a BN is in the construction of the tree 

structure and several methods including expert opinion have been proposed to mitigate this 

challenge (Gheisari, 2016). In addition, their ability to deal with continuous data is limited 

(Jensen, 2001), and such data generally needs to be discretized, which may cause certain 

difficulties. 

Zhang et al. (2017) explored fault detection and diagnosis using Bayesian-network inference. 

The authors showed three cases to verify the method. The maximum probability fault can be 

found according to the way of BN reference results, which demonstrates the feasibility of the 

developed method. Verron et al. (2008) proposed a fault detection with Bayesian Network. The 

detection is viewed as a classification task like the discriminant analysis, which can be 

transposed in a Bayesian network. The authors provided an application on the Tennessee 

Eastman Process is given in order to demonstrate the approach. 

Moving on to ANNs, they are artificial adaptive systems that are inspired by the functioning 

processes of the human brain (McCulloc et al., 1943). Figure 34 shows biological neuron in 

comparison to an artificial neural network: (a) human neuron;(b) artificial neuron; (c) biological 

synapse; and (d) ANN synapses (Suzuki, 2013). 

 
Figure 34: A Biological Neuron in Comparison to an Artificial Neural Network (Suzuki, 2013) 

From Figure 34, the base elements of the ANN are the nodes, also called processing elements 

(PE), and the connections. Each node has its own input, from which it receives communications 

from other nodes and/or from the environment and its own output, from which it communicates 



with other nodes or with the environment (Grossi et al., 2008). Finally, each node has a function 

through which it transforms its own global input into output. Each connection is characterized 

by the strength with which pairs of nodes are excited or inhibited. Positive values indicate 

excitatory connections, the negative one’s inhibitory connections (McClelland, 1986; 

Anderson et al., 1988). The significance of each input is multiplied by a weight and together 

with bias they get to cell body, the processing element. In the first step the multiplied inputs 

are summed by summation function and in the second step they are propagated by transfer 

function to an output (Krenek et al., 2016). 

ANNs reveal the hidden rules of a problem (Von der Malsburg, 1973; Willshaw et al., 1976). 

This makes ANNs particularly useful in solving a problem for which it is unknown how the 

data are related to one another. In addition, ANNs are adaptive and dynamically discover the 

fuzzy rules that connect various sets (Kohonen et al., 1984; Carpenter, 1988). This means that 

if ANNs receive after training new and different data, ANNs will adjust their rules in 

accordance, integrating the old data with the new, and they can do this without any external 

instruction. On the other hand, work with artificial neural networks is always connected with 

processing of high volume of data which requires advanced commercial and open-source 

software tools (Krenek et al., 2014). In addition, when initialize the ANNs is difficult to know 

how many neurons and layers are necessary (Sidda et al., 2017). Finally, ANNs may be 

considered as ‘black boxes’ and thus it is not easy to understand and to explain its process to 

the users (Idri et al., 2002). 

Artificial neural networks have shown promising results as a robust tool for evaluating data in 

order to support predictive maintenance activities. There exist a lot of papers focused on 

application of ANN in maintenance. Mainly multi-layer perceptrons (MLP) are used for fault 

diagnosis of bearings, induction motors, non-destructive evaluation of check valve 

performance and degradation and in robotic systems (Meireles et al., 2003). Some examples 

are: Sun et al. (2013) has developed self-organising map for monitoring multi-equipment health 

management system with fault detection and a real-time monitoring. In Raptodimos et al. 

(2018) artificial neural networks were used to predict the main engine cylinders exhaust gas 

temperature of a Panamax size container ship. 

Moving on, a normal classification linear line just splits the data points while the Support 

Vector Machine (SVM) algorithm tries to find a boundary line that separates the data and forces 



this line to be as far away from the points as possible (Yue et al. 2003). So, two equidistant 

parallel lines are used to the main line and try to maximize the distance between these two lines 

or else the margin. In SVM points inside the margin are consider misclassified and add up to 

the classification error (Hamel, 2009). Figure 35 shows an illustration of SVM (Manjrekar et 

al., 2019). 

 
Figure 35: SVM Visualization (Manjrekar et al., 2019) 

Consider an example of data clusters in Figure 35, a hyperplane can be drawn to separate the 

two clusters and maximize margin width. Finding the optimum location of the hyperplane that 

maximizes margin width is a complex optimization problem. The points close to the margin 

are called support vectors and these points are critical in the determination of the hyperplane. 

When a line is not enough to separate points the Kernel trick is used in SVM: Some dimensions 

to the data are being added in order to find a high dimensional surface, project it down and get 

curves to separate the data (Tian et al. 2014). Figure 36 shows the non-linear SVM classifier 

with the kernel trick (Moreira, 2011). 



 
Figure 36: The Kernel Trick (Moreira, 2011) 

With a polynomial kernel the curves can be circles, hyperbolas, parabolas and in general more 

functions can be used to build complex boundaries. There is also the Radial Basis Functions 

(RBF) Kernel which uses radial basis functions to help separate the data points.  

Linear SVMs are easy to implement even in massive data sets and they are easy to interpret 

and understand (Doumpos et al., 2007). In addition, a further characteristic of SVM is the 

efficient learning with small amount of data, due to their simpler, more effective architecture 

and learning procedure (Pantazi et al., 2016). Furthermore, due to its strong theoretical 

foundation, good generalization capability, low sensitivity to the curse of dimensionality 

(Hughes, 1968) and ability to find global classification solutions, SVMs is usually preferred by 

many researchers over other classification paradigms (Fei et al., 2020). On the other hand, the 

selection of the kernel function parameters is challenging. (Tharwat et al., 2019).  

Application of SVM exist in fault localization, although it is not as common as BN and ANN 

(Widodo et al., 2007). Some examples of using one-class SVM for decay detection are: 

detection of decay of marine propulsion plant (Tian et al. 2019) and estimate ship systems 

condition with noon-report data (Lazakis et al. 2018). Batur et al. (2002) used support vector 

machines for fault detection. The authors used a conventional heat exchanger dynamic to 

illustrate the technique. Also, Yin et al. (2014) did a study on Support Vector Machine-Based 

Fault Detection in Tennessee Eastman Process. By comparing the indices of detection 

performance, the SVM technique showed superior fault detection ability to the PLS algorithm. 



Next, the HMMs incorporates the Markov principal saying that any future state of a system 

depends only on the current state and not the past events (Beal et al. 2002). It estimates the 

probability distributions of state transitions and that of the measurement outputs in a dynamic 

process, given unobservable states of the process (Ademujimi et al., 2017). Figure 37 shows 

an example of five states HMM (Awad et al., 2015). 

 
Figure 37: Example of five states HMM (Awad et al., 2015) 

From Figure 37, a system may be described at any time as being in one of the states S1, S2, 

S3, S4 and S5. When the system undergoes a change from state Si to Sj at regular time intervals 

with a certain probability pij, this can be described by a simple stochastic process, in which the 

distribution of future states depends only on the present state and not on how the system arrived 

at the present state. The matrix P, with elements pij, is called the transition probability matrix 

of the Markov chain. 



HMM has the ability to efficiently model any kind of data that contains spatial-temporal 

relations (Dadgar, 2015). HMM are very popular to use because of their efficiency in 

estimating parameter and doing inferences (Alghamdi, 2016). On the other hand, training 

process of HMM is usually computationally intensive (Zhang et al., 2006). 

Chen et al. (2012) used HMM for health condition monitoring on a bearing dataset. 

Furthermore, Prakash et al. (2017) for deterioration of low-speed rolling elements. Smyth 

(1994) proposed a HMMs for fault detection in dynamic systems. The model was validated on 

a real-world fault diagnosis problem and it was shown that Markov modelling in this context 

offers significant practical benefits. Wang et al. (2016) used HMM based fault detection 

approach for a multimode process. A numerical simulation example and the Tennessee 

Eastman chemical process was utilized to show that the authors proposed approach is effective. 

 

 

 

 

 

 

 

 

 

 



Table 14: Summary of Supervised Learning Techniques 

Technique Advantages Disadvantages 

BN •Avoid overfitting of data. 

•Show good prediction 

accuracy even with rather 

small sample sizes. 

•Easily combined with decision 

analytic tools to aid 

management. 

•They provide a natural way to 

handle missing data,  

•They allow combination of 

data with domain knowledge. 

•They facilitate learning about 

causal relationships between 

variables. 

•The main challenge of 

training a BN is in the 

construction of the tree 

structure. 

•Their ability to deal with 

continuous data is limited. 

 

ANN •ANNs reveal the hidden rules 

of a problem.  

•Are adaptive and dynamically 

discover the fuzzy rules that 

connect various sets. 

•Requires advanced 

commercial and open-source 

software tools. 

•Difficulty to know how many 

neurons and layers are 

necessary. 

•It is not easy to understand 

and to explain its process to the 

users. 

SVM •Easy to implement even in 

massive data sets. 

•Easy to interpret and 

understand. 

•Selection of the kernel 

function parameters is 

challenging. 



•Efficient learning with small 

amount of data. 

•Strong theoretical foundation. 

•Good generalization 

capability. 

•Low sensitivity to the curse of 

dimensionality. 

•Ability to find global 

classification solutions. 

HMM •Efficiently model any kind of 

data that contains spatial-

temporal relations 

•Efficiency in estimating 

parameter and doing 

inferences. 

•Training process is usually 

computationally intensive. 

2.8.3 Semi-Supervised Learning 

From all the approaches, semi-supervised learning has several advantages (Heras et al., 2014), 

namely:  

• Engineers are in full control to specify what should be consider as nominal.  

• Repeated anomalies can be detected since they are not in the nominal set.  

• Since no assumptions are made about the possible behaviour of the anomalies, any 

anomalous behaviour can be potentially detected. 

Some of the most used semi-supervised approaches for fault detection are: Local Outlier Factor 

(LOF) and one-class support vector machine (OC-SVM). 

Local Outlier Factor (LOF) is an algorithm first presented in 2000 by Breunig et al. (2000) and 

its purpose was to identify local outliers in a set of data. The algorithm doesn’t just categorize 

the data in a binary way namely, outliers or not but rather assigns to each data point a local 

outlier factor (LOF) score which shows the degree of a data point being an outlier, something 



similar to density-based clustering (Breunig et al., 2000). The authors first found the smallest 

hypersphere cantered at the given samples that contained the k-nearest neighbours and the LOF 

was calculated by dividing k by the volume of the hypersphere (Song et al., 2017). LOF creates 

a decision frontier from the decision function learned from a training dataset which consists of 

‘normal’ data and then assess if a new data-point is a novelty or not (scikit-learn, 2019). The 

desired decision boundary can be obtained by varying the LOF threshold (Song et al., 2017). 

Figure 38 shows an example of the local density between data points. 

 

Figure 38: Local Density (Song et al., 2017) 

As shown in Figure 38, point D has a lower local density than point A. If the red circle is the 

learned decision function from the training data, the distance between point A and B is the 

maximum distance. Thus, point D is out of the reachability distance and considered as an 

outlier. The main advantage of the LOF algorithm is that it does not need an assumption for 

the data distribution and can be applied to different data types. In addition, LOF works very 

well in many cases, while often outperforming the competitors, for example in network 

intrusion detection (Lazarevic et al., 2005) and on processed classification benchmark data 

(Campos et al., 2015). On the other hand, the performance of LOF depends on the parameter k 

which is defined as the least number of the nearest neighbours in the neighbourhood of an 

object (Papadimitriou et al., 2003). However, in LOF, the value of k is determined based on 

the average density estimate of the neighbourhood, which is statistically vulnerable to the 

presence of an outlier. Hence, it is hard to determine an appropriate value of this parameter to 

ensure the acceptable performance in the complex and large databases (Gao et al., 2011). 



Ding et al. (2018) proposed a local outlier factor-based fault detection and evaluation of 

photovoltaic system. The results of experiments reveal that the LOF has good performance in 

fault detection and fault degree evaluation in different scales of the PV systems. Zhao et al. 

(2014) suggested fault experiments in a commercial-scale PV laboratory and fault detection 

using local outlier factor. The authors concluded that in experimental results, the proposed 

method demonstrates several advantages over traditional PV monitoring systems, such as 

simplicity, quick response, easy implementation and no requirement of weather information. 

On the other hand, OC-SVM was introduced by Schölkopf et al. (1999) as a support vector 

method for novelty detection. The idea behind the OC-SVM is to describe the target class by a 

function that maps most part of it to a region where the function is nonzero. To this end, the 

origin is treated as the only available member of the non-target class (outlier), and then the 

problem is solved by finding a hyperplane with maximum margin separation from the origin 

(Munoz et al., 2010). Figure 39 shows a. example of the learned frontier for OC-SVM (Bara et 

al., 2014). 

 
Figure 39: Learned Frontier for OC-SVM (Bara et al., 2014) 

In Figure 39 it can be seen the learned frontiers of a set of two-dimensional data points. These 

two regions are the result of mapping a higher dimension hyperplane generated using a Radial 

Basis Function (RBF) kernel back to a two-dimensional representation. Although all of the 



points are part of the same class (normal) only the ones inside the frontier will be classified as 

normal, the rest being abnormal. 

OC-SVMS have a simple geometric representation, that is, they determine a few parameters of 

the normal data model only. For example, if the normal data is enclosed in a sphere, then one-

class SVM tends to determine the centre and radius of the sphere only (Shahid et al., 2013). In 

addition, OC-SVM, like LOF does not make any assumptions about the data distribution (Liu 

et al., 2019). On the other hand, OC-SVM does not perform well with reduces samples. The 

inefficient use of the OC-SVM classifier for reduced samples is due to the hard threshold used 

in the decision function for accepting a sample, which should be higher than zero (Guerbai et 

al., 2014). In addition, OC-SVM is sensitive to outliers included in the training data set (Yin et 

al., 2014). Table 15 shows a summary of the Semi-Supervised techniques. 

Table 15: Summary of Semi-Supervised Learning Techniques 

Technique Advantages Disadvantages 

LOF • Does not need an assumption 

for the data distribution. 

• Works very well in many 

cases, while often 

outperforming the competitors 

•It is hard to determine an 

appropriate value of the 

parameter k 

 

OC-SVM • Have a simple geometric 

representation  

• Does not need an assumption 

for the data distribution. 

•Poor performance when 

reduced sample.  

•Sensitive to outliers 

2.9 Prognostics 

Compared to diagnostics, the literature of prognostics is much smaller. Prognostics is defined 

as the process of predicting the Remaining Useful Time (RUL) at which a component will no 

longer perform a particular function (Okoh et al., 2014). Prognostics results are used to support 

proactive decision making. ISO definition for fault prognostics can be found in (ISO 13381-

1:2005, 2015).  Figure 40 shows an example of prognostics (Atamuradov et al., 2017). 



 
Figure 40: Prognostics (Atamuradov et al., 2017) 

Within the field of maintenance problems, Artificial Neural Networks (ANNs) and neuro-fuzzy 

systems (NFs) have successfully been used to support the detection, diagnostic and prediction 

processes, and research works emphasize on the interest of using it (Dragomir et al., 2009). 

Zhang and Ganesan (1997) used SOM for multivariable trending of the fault development to 

estimate the residual life of a bearing system. Wang and Vachtsevanos (2001) applied dynamic 

NN to predict the fault propagation process and estimate the RUL as the time left before the 

fault reaches a given value. Yam et al. (2001) applied a recurrent NN for predicting the machine 

condition trend. Dong et al. (2004) utilised a grey model and a Back Propagation NN to predict 

machine condition. Wang et al. (2004) compared the results of applying recurrent NN and 

neural–fuzzy inference systems to predict the fault damage propagation trend. Chinnam and 

Baruah (2004) presented a neural–fuzzy approach to estimating RUL for the situation where 

no failure data and no specific failure definition model are available, but domain experts with 



strong experiential knowledge are available. Tian (2009) used an artificial neural network 

(ANN) based method for achieving more accurate remaining useful life prediction of 

equipment subject to condition monitoring. 

Other approaches are Bayesian prediction method and Support Vector Machines (SVM) which 

makes use statistical estimates of condition for limited samples to define predictive learning 

base (Yang et al., 2012). Okoh et al. (2014) stated that the study so far confirms that data 

collected from sensors can be translated through ANN to predict RUL of an asset.  

Hoa (2017) used PCA using data from the using the data of the PHM’08 Challenge Problem in 

order to calculate the RUL. Hsu et al. (2018) used deep learning in order to predict the RUL of 

aero-propulsion engines and concluded that the evaluated results are compared with those of 

related methods, namely the methods using multi-layer perceptron (MLP), support vector 

regression (SVR), relevance vector regression (RVR) and convolutional neural network (CNN) 

and found it to be superior. 

2.10 Database Types for Data-Driven CBM  

Before finishing the discussion about the data driven CBM systems there is one important 

element to taggle, which is the database types. There are two types of databases to consider, 

namely: Relational databases and Object-Oriented Databases (OOD). Up until now the 

Relational Database has been the most commonly used data model and the vast majority of 

current database systems for condition monitoring are based on this model (Atzeni et al. 1999, 

Silberschatz et al. 2011). This model was proposed by Edgar F. Codd (1970). In a relational 

database the data are grouped into relations, called also entities, that are often perceived as 

tables. Each relation is made up of attributes (columns) and tuples (rows). Each tuple contains 

a set of interconnected atomic data that describes the properties of an object or an event from 

the real world (Elmasri & Navathe 2010). Each tuple in a given entity is uniquely characterized 

by one attribute (or a combination of several attributes) called a primary key which determines 

the corresponding tuple. The values of the primary key in a single relation are unique. The 

relationship between two relations is accomplished by a common attribute, which in the first 

relation represents the primary key, and in the second foreign key. The number of value quotes 

in the second relation determines also the type of relationship between the two relations, for 

in-stance: one-to-one, one-to-many and many-to-many (Kraleva et al., 2018). The latter type 



of relationship is realized through an associative relation in which the primary keys of the 

relationship are encountered (Date, 2012). Figure 41 illustrates an Entity Relation-ship diagram 

(ER-diagram) and its concrete tables within a relational database management system 

(RDBMS) (Sint et al., 2009). 

 
Figure 41: Sample Table in a Relational Database System (Sint et al., 2009) 

An advantage of relational databases is that they have a strong foundation and well documented 

literature about SQL which is the only data manipulation language that all relation databases 

use (Barbierato et al., 2014). In addition, relational databases offer stronger consistency with 

the strict schema (Singh, 2016). 

On the other hand, one downside of using relational databases is scalability because it depends 

on the vertical scalability (by adding more hardware resources like RAM, CPU, etc.) which is 

very costly and actually impractical for the reason of hardware limitation (Mohamed et al., 

2014). In addition, the best relational databases are proprietary and therefore, require great 

amounts of investment from organizations and individuals that want to benefit from their 

advanced features (Phiri & Kunda 2017). Additional hardware for upgrades also adds other 

additional costs. This makes Relational Databases to be an expensive approach to data storage 

(Zaki, 2014). Also, Relational Databases usually suffer from single point of failure even for 

very powerful servers (Moniruzzaman & Hossain, 2013). Furthermore, relational databases 

require much more time to process information making them slow (Okman et al., 2013). 

Moreover, relational databases create complex data in circumstances where data to be stored 

by users is difficult to convert into tables (Abourezq & Idrissi, 2016). Finally, machine learning 



algorithms are written in an Object-Oriented language and there is a commonly known problem 

between Relational Databases and Object-Oriented programming called Object-Relational 

Impedance Mismatch (Ireland & Bowers, 2015). This mismatch can occur when an Object-

Oriented program uses a Relational Database for persistence.  

Moving on to OOD, these databases are a type of NoSQL databases and store data in a non-

tabular way, different from a relational database (Li, 2018). Historically, OODBs developed 

first as an approach to add persistence seamlessly into object-oriented programming languages 

(OOPLs) (Dietrich & Urban, 2011). A fundamental concept in OOD is an object. An object 

consists of a private data structure, with a public interface. Objects are organized into classes, 

which can contain within them methods to carry out the operations on the objects (Garvey & 

Jackson, 1989). An object is an abstract concept, generally representing an entity of interest in 

the enterprise to be modelled by a database application. An object has state and behaviour. The 

state of an object describes the internal structure of the object where the internal structure refers 

to descriptive properties of the object.  

Viewing a person as an object, the state of the object might contain descriptive information 

such as an identifier, a name, and an address. The behaviour of an object is the set of methods 

that are used to create, access, and manipulate the object (Ogunlere & Idowu, 2015). For 

example, a person object may have methods to create the object, to modify the object state, and 

to delete the object. The object may also have methods to relate the object to other objects, 

such as enrolling a person in a course or assigning a person to the instructor of a course. A 

method has a signature that describes the name of the method and the names and types of the 

method parameters. Objects having the same state and behaviour are described by a class. A 

class essentially defines the type of the object where each object is viewed as an instance of 

the class (Ajita & Patel, 2009). An object can be an instance of only one class (Banerjee et al., 

1988; Beach, 1988) or an instance of several classes (Cluet et al., 1989; Dayal, 1989). A method 

is a specific implementation of a method signature. Figure 14 shows an example using the 

relational database approach and the OOD approach (Caseau, 1991). 



 
Figure 42: Object-Oriented vs. Relational Database (Caseau, 1991) 

In Figure 42 each n-ary relation is usually replaced by a class in the object-oriented system, 

and as many binary relations as fields in the original relation are created. A well-known 

example is the COURSE (topic, teacher, student, time) relation that is transformed into a set 

(COURSE) and four binary relations: topic, teacher, student and time. By doing so, each tuple 

of the COURSE relation is transformed into an object.  

The distributed nature of OOD makes a better choice to provide availability to users all the 

time even in the presence of hardware failures (Sharma, et al., 2016). In addition, OOD is 

cheaper as it is open source and support inexpensive upgrade (Kim, 2014). Furthermore, OOD 

supports both semi structured and unstructured data which is less complex (Kepner et al., 

2016). Also, OOD can handle large volumes data especially in big data (Nayak et al., 2013). 

Finally, to offer scalability, OOD require the use of commodity server’s- scaling horizontally 

(Singh, 2016; Sharma et al., 2016). Scaling horizontally is not significantly affected by 

hardware limitations because smaller, cheaper and less powerful server machines can be 

combined to offer higher levels of scalability instead of having one expensive server. On the 

other hand, having multiple ways of querying OOD, limits the number queries supported 

because each implementation must provide its own unique queries (Barbierato, 2014). Also, 

OOD leaves security to be handled by middleware and is not part of the database (Zaki, 2014). 

 

 

 



Table 16: Summary of Database Types 

Technique Advantages Disadvantages 

Relational Databases • Strong consistency with the 

strict schema. 

• Documented literature about 

SQL. 

•Data to be stored by users is 

difficult to convert into tables. 

 

•Expensive approach to data 

storage. 

•Suffer from single point of 

failure. 

•Require much more time to 

process information making 

them slow. 

•Vertical scalability. 

•Object-Relational Impedance 

Mismatch. 

OOD • Availability to users all the 

time 

•Open source and support 

inexpensive upgrade. 

•Supports both semi structured 

and unstructured data. 

•Can handle large volumes 

data. 

•Scaling horizontally. 

• Not uniform query language. 

•Leaves security to be handled 

by middleware. 

2.11 CBM in the Marine Sector 

In the marine sector data are usually being used for manually monitoring alarms and trends on-

board with some cases of simple automated data diagnostic and prognostic procedures (DNV 

GL, 2014). These simple diagnostic and prognostic systems combined with expert knowledge 

are part of the first generation of CBM systems. Statistical analysis of condition monitoring 

data is used by most of the existing commercial CBM systems in shipping and is meant to draw 

population inferences from a sample and create a mathematical model of the data generation 

process (Bzdok, 2018). However, failure mechanisms of machinery have been proven not so 



easy to model since they are mostly random in nature (Nowlen et al., 1978; Broberg, 1973; 

MSDP, 1982; Allen, 2001). That is why the research community has turned to data-driven 

techniques in order to solve the problem of unplanned maintenance (e.g., Lazakis et al., 2018; 

Gkerekos et al., 2017; Raptodimos et al., 2016).  

In more recently applications, Raptodimos et al. (2020) developed a Nonlinear Autoregressive 

with Exogenous Input (NARX) Artificial Neural Network for forecasting future values of the 

exhaust gas outlet temperature of a marine main engine cylinder however without taking into 

account the different operational conditions of the ship (they only take into account the 

different Rounds Per Minute of the main engine). In addition, Cheliotis et al. (2020) presented 

a novel Machine Learning (ML) and data-driven Fault Detection (FD) methodology, based 

Expected Behaviour (EB) modelling and Exponentially Weighted Moving Average (EWMA) 

control charts, and its application on ship systems. This methodology is based in using 

historical data from healthy condition of a machinery to train an algorithm and then using on-

line monitoring to compare the healthy condition data to the current one. This approach again 

does not take into account the different operational profiles of a ship (healthy data of a 

machinery are different for different operational condition) and for that is difficult to have a 

practical value. Furthermore, Lazakis et al. (2016) developed am advanced ship systems 

condition monitoring for enhanced inspection, maintenance and decision making in ship 

operations. The CBM system proposed is based in Markov Chains and Bayesian Belief 

Networks in order to take into account interdependencies between systems and sub-systems. 

However, this approach requires historical data for all the machinery evolved and does not take 

into account all the different operational profiles that a ship can be and thus reduces significant 

the practical value of the CBM. Iraklis et al. (2019) presents a novel methodology for 

intelligent, system-level engine performance monitoring, utilising noon-report data with 

minimal data assumptions. Nevertheless, the proposed model requires data of diverse set of 

load conditions for a machinery in order to train the algorithm to perform CBM, something that 

is not feasible to do for all machinery on-board a ship and thus making this approach also 

impractical.  

To sum up, the real problem that Data Scientists are facing is that most data-driven techniques 

proposed for CBM in shipping require huge amounts of historical data, including failure rate 

data, which are notoriously difficult to find. In addition, a couple of other factors also make a 

commercial CBM system a difficult task: The existence of different operational profiles of the 



ship (port manoeuvring, bad weather, cruising, etc.) and the mismatch between relational 

databases and the algorithms. Concerning the first one, a ship is a moving object moving in a 

moving environment and thus the values measured from sensors for a machinery can give very 

different results (e.g., for different payloads) not seen in the training dataset which can confuse 

a CBM system. All these problems highlight the difficulty in applying CBM in shipping, 

something that is also reflected by the fact that only 2% of the total percentage of classed ships 

have condition monitoring scheme in place (Shorten, 2012). 

In this thesis, a novel CBM framework will be presented that will be able to perform a fast and 

reliable detection of the degradation of a machinery through the use of a Condition Monitoring 

Database (CMD) with an Object-Oriented (NoSQL) nature and the semi-supervised LOF 

algorithm. The OOD was chosen mainly because of its seaming less integration with 

programming languages, and thus machine learning, while the LOF algorithm because of the 

great flexibility that semi-supervised methods provide of not needing historical or failure data. 

Then with the help of a new failure model theory derived by ellipses, the system will predict 

the time of failure of the machinery. The proposed CBM framework will require minimum 

amount of memory, no historical data and no need for prior human knowledge (experts). In 

addition, crucial parts of the developed CBM framework will be tested namely, storing data in 

the CMD and then use the data for detecting the degradation of a marine propulsion system 

with machine learning techniques as well as prediction of failure of bearings. Finally, the whole 

CBM system will be used to predict maintenance for the diesel generators of a tanker with real-

world data. 

2.12 Chapter Summary 

This Chapter contained the literature and critical review of the maintenance techniques 

commonly found in shipping. A deeper review of the predictive maintenance techniques and 

more specifically the condition-based maintenance was done. The data-driven and model-

driven approaches of CBM were explained and the data-driven CBMS were further analysed, 

namely: data pre-processing, diagnostics, prognostics and database systems. Finally, it was 

concluded with the current situation of CBM in shipping and the challenges its application is 

facing and how this thesis will tackle these problems. 



3. Development of New CBM Framework  

3.1 Chapter Outline 

Through the critical review performed on chapter 2, it has been shown that existing CBM 

frameworks in shipping have limited applicability and are mostly based on simple statistical 

analysis methods due to the lack of failure data for different machinery. In this respect, it is 

more than ever necessary to propose a CBM framework that will address these problems and 

incorporate an intelligent database with advanced machine learning techniques and failure 

modelling in order to offer better diagnostic and prognostic abilities than the existing systems. 

3.2 Proposed CBM General Framework  

In order to deal with the main problems for implementing CBM in shipping, namely: 

Requirement of huge amounts of historical data, including failure rate data, which are 

notoriously difficult to find, the existence of different operational profiles of a ship (port 

manoeuvring, bad weather, cruising, etc.) and the mismatch between relational databases and 

the algorithms, an innovate approach is followed. The new CBM framework has a simple 

architecture, it uses machine learning and an intelligent database with a novel model theory to 

predict failure. Figure 19 shows the proposed CBM general framework. 



 

Figure 19: Proposed CBM Framework. 

From Figure 19 it can be seen that there are four general steps of the proposed CBM. Firstly, 

sensors collect data then the data are being stored into a database in order to be used to 

understand when deterioration has happened and finally the prediction of failure time is 

estimated. Figure 20 expands these steps in more detail. 

Sensors collect data

Data stored in database

Understand if deterioration 
has happenned

Prediction of failure



 

Figure 20: CBM Framework Details 

First, sensors onboard the ship are used to collect values of a machinery (e.g., temperature, 

pressure, etc.). Then, the values are being stored only when the ship’s operational profile is 

stable (more on that in Chapter 5.4). When the stored values are enough, they will be used to 

train a machine learning algorithm and every new value coming for the same operational profile 

is being assessed if it represents degradation or normal operation. If the model detects 

deterioration, the time of deterioration is being fed to the failure model to predict an estimate 

of the time of failure and the whole process begins again. The following sections will analyse 

each step of the CBM framework, namely: collection of data and storing in the database, the 

machine learning algorithm and the failure model with more detail. 

3.3 Condition Monitoring Database (CMD) 

Following the overview of the new CBM Framework, an Object-Oriented Database (OOD) 

will be used to intelligently store data in order to minimize any time delays from errors or 

incompatibility that the traditional relational databases encounter when are used together with 

machine learning techniques as it was discussed in 3.12.  



3.3.1 The Zope Object Database 

The CMD database was built entirely in the Python language using the tools provided by the 

Zope Object Database (ZODB). The Zope Object Database is an open source OOD for 

transparently and persistently storing Python objects. Because the ZODB is entirely written in 

Python, no separate language is needed for database operations and there is very little impact 

on the code to make objects persistent. In addition, there is no database mapper that partially 

hides the database. Instead of managing relations using different tables with common primary 

keys, the ZODB let developers use normal Python object references. Thus, the ZODB doesn’t 

require a pre-defined structure of columns and data types for the objects it stores, which means 

that object attributes can easily change both in quantity and type (ZODB, 2017). This can often 

be a lot harder when using a relational database for storage.  

From all the above, it is more efficient to use an OOD in the new CBM framework since Object-

Oriented Databases are designed so they can be directly or effortlessly integrated with software 

that is developed using Object-Oriented programming languages (Elmasri & Navathe, 2010). 

The purpose of the database in the proposed CBM framework is to maximize the speed of the 

machine learning techniques and not to store thousands of unnecessary data. To do that, it 

intelligently stores data for training and erases them after they have been used to train the 

algorithm, making space for new training data when they are needed. That is why the new 

database was named Condition Monitoring Database or else CMD. ZODB offers an efficient 

way to store objects namely, the BTrees. This structure can hold a large collection of 

information in an efficient way by having recently, or heavily used objects kept in a memory 

cache for speed. Also, the whole database can be searched very quickly, because objects are 

stored in a balanced tree data structure (ZODB, 2017).  

 

3.3.2 CMD Logic 

In order to understand better how the CMD understands stable operational profiles and stores 

data accordingly, Figure 21 shows the logic of the CMD in the case of a data coming from 

sensors of a Diesel Generator with a frequency of one minute. 



 

Figure 21: CMD Logic 
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First, a counter is initialized, counter_1, and data coming from the sensors of the Diesel 

Generator are temporarily stored to local memory. Only if the ship has been in a stable 

operational profile for ten consecutive minutes the data storing process will start. These ten 

minutes are being counted by counter_1, which is incremented every time sensor values come 

in (since in our example the frequency is 1 minute), and the ship is in a stable operational 

profile. The ten minutes window was proposed by experts and operators and its significance is 

that after a ship achieves a stable operational profile the values of the sensors need some time 

(approximately ten minutes) before they stabilize to their normal values, for that operational 

profile. In the following sub-section, it will be discussed what conditions need to be met in 

order for a ship to be in a stable operational profile.  

Coming back to the CMD, once the counter_1 is equal to ten, and thus ten minutes with the 

ship in stable operational profile have passed, the values that represent the stable operational 

profile are stored in the local memory. If when the next DG values come from the sensors the 

ship is still in the same operational profile, the DG values will be pushed into the CMD. Then, 

if values for this operational profile do not already exist in the database, a new key will be 

created referring to the specific operational profile and the DG values will be stored there. Then 

as long as the operational profile stays the same the values from the sensors will continue to be 

stored, otherwise counter_1 will be set to zero and the whole process will start again. Once the 

amount of data for any specific operational profile reaches a threshold (two hours of data) the 

training of the algorithm will begin. The two hours of data threshold was proposed by experts 

and operators suggesting that the values of a stable operational profile do not contain large 

variance and two hours of data is enough for determining the range of the normal values of a 

machinery when working in its stable operational profile and assuming the sensor collection 

frequency is 1 minute. When the training of the algorithm starts the data storing process stops. 

Every new measurement that comes for the same operational profile is then being assessed by 

the trained algorithm if it refers to the normal condition or abnormal (deterioration). If the 

algorithm predicts deterioration for 10 consecutive minutes, then the time of deterioration is 

being sent to the failure model to predict the time of failure and the database is being cleared 

by all the data it contains (for all the operational profiles) so the whole process starts again for 

the new deteriorated state of the machinery. The 10 consecutive minutes threshold again was 

proposed by experts and operators in order to deal with random spikes of the data caused by 

the sensors. 



3.3.3 Stable Operational Profiles 

In order to understand deterioration, one needs to identify the stable operational profiles of the 

ship. After discussions with experts and operators as well as reviewing manuals of ships’ 

engine (MAN, 2010) and bridge manoeuvring systems (MAN, 2004) it was concluded that a 

ship’s engine speed is controlled by a governor to be within a range of the RPM that have been 

set from the bridge. That means that a stable speed operational profile can be identified firstly 

from when the engine speed is stable inside a predefined range. However, even though a stable 

operational profile requires a stable engine speed it also requires a stable power. The reason is 

that, for example, a ship can have the same speed for different payloads, but the power required 

is different and the operational conditions of the machinery are different. For our CBM system 

it will be required that the power of the engine also needs to be stable between a predefined 

range in order to have a stable operational profile. In addition, the weather conditions can also 

have an effect in the operational conditions of the machinery as well as the sea currents. The 

parameters that need to be kept stable to have a stable operational profile can be seen in Figure 

22. 

 

Figure 22: Stable Operational Profiles 



The parameters in Figure 22 were selected after discussions with experts and ship operator, and 

they include: The wind speed, direction, Beaufort, speed over ground and M/E Torque. By 

keeping the speed over ground and the M/E Torque stable we ensure that sea currents will not 

affecting the operational conditions (e.g., by increasing resistance to the ship). Overall, all the 

above parameters need to be kept stable in order to have a stable operational profile as it can 

be seen in Figure 22. 

3.4 Machine learning  

As it was shown, the decision for using an OOD for the CMD will significantly boost the speed 

of interaction of the machine learning techniques with the data accumulated by the system and 

reduce also the amount memory needed overall. The next step is to choose an algorithm that 

will be able to detect when the condition of the machinery is deteriorating. Since the CMD 

contains a small amount of data referring to the current condition of a stable operational 

condition of the machinery and these data need to be used in order to determine if the 

machinery’s condition is deteriorating, a semi-supervised novelty detection algorithm is 

needed. From all the semi-supervised algorithms reviewed in the literature review the LOF 

algorithm was chosen. It’s great general applicability as well as it’s demonstrated effectiveness 

compared to other algorithms are the main reasons for that choice. The LOF algorithm will be 

trained each time a threshold of amount of data is reached, sufficient enough to represent the 

current condition of the machinery when the ship is on a stable operational profile, and then it 

will assess the condition of the machinery for every new data point coming from the sensors 

for that operational profile.  Figure 23 shows the process of storing enough data for training.  



 

Figure 23: Process of Training the Algorithm 

As it can be seen in Figure 23, the CMD collects data for different stable operational profiles 

but once the amount of the data for any stable operational profile is enough (e.g., for operational 

profile 1 in Figure 23), the algorithm is trained with the data and assess any new data coming 

from this operational profile for deterioration. It is important to note that until deterioration has 

been detected in any operational profile, the data gathering process continues for all the 

operational profiles that the threshold amount has not be reached.  Figure 24 illustrated how 

the detection of deterioration is being performed. 



  

Figure 24: Predicting Deterioration 

From Figure 24, once deterioration has been detected for an operational profile the data 

gathering process stops and the database is completely cleared since the machinery now has 

entered a new deteriorated state. 

3.5 Failure Model 

Moving on, after the machine learning algorithm has detected the time that deterioration 

happened to the machinery a failure model is needed in order to predict an estimation of the 

time of failure. That failure model will have as an input the time(s) that deterioration happened 

to the machinery and will give an estimation of the time of failure that will become more and 

more precise the more data are collected.  

3.5.1 P-F Diagrams 

In order to understand the new failure model, the Potential-Failure (P-F) diagrams need to be 

presented. The P-F diagrams illustrate how a condition deteriorates until it reaches a point of 



functional failure (ABS, 2016). Figure 25 shows how most of the CBM systems currently in 

place work.  

 

Figure 25: A Potential-Failure diagram (ABS, 2016) 

Figure 25 shows how a condition deteriorates to the point at which it can be detected (Point P) 

and then, if it is not detected and corrected, continues to deteriorate until it reaches the point of 

functional failure (Point F). A functional failure is a description of how the equipment is unable 

to perform a specific function to a desired level of performance. The P-F diagrams are used 

with the ‘inspection’ interval logic where the system is periodically checked to determine the 

process of the failure and industry practice is to select an interval of about one-half of the P-F 

interval. It should be noted that the P-F interval can vary in practice, and in some cases, it can 

be very inconsistent. In these cases, a task interval should be selected that is substantially less 

than the shortest of the likely P-F intervals (ABS, 2016). With the proposed CBMS the 

speculation of a static P-F interval is eliminated by using continuous monitoring and updating 

the P-F curve accordingly. Here the end goal is to predict and update the functional failure 

dynamically and treat each machinery individually by their sensor data. In the next sub-section, 

it will be shown how the times of deterioration caught by the machine learning algorithm can 

help dynamically predict the failure of a machinery without the need of any historical or failure 

data. 



3.5.2 New General Failure Theory 

This thesis suggests an innovate way to model failure by using the intuitive P-F graph and 

mathematically solve it in order to acquire a general model of the failure mechanism. This 

general model of failure will be updated dynamically by the machine learning algorithm to 

depict the actual P-F graph at each deterioration moment for the particular machinery under 

question. Since the CBM system is only interested from the point where deterioration can be 

detected and assuming that the condition practically remains the same from the point where 

deterioration begins till the point that deterioration can be detected, Figure 7 is transformed to 

Figure 26. 

 

Figure 26: P-F Graph Starting from the Point that the Failure is Detectable (ABS, 2016) 

From Figure 26 it can be seen that the shape of the general P-F interval can be modelled as an 

ellipse starting at the point P. This intuitive understanding of failure will be mathematically 

analysed in the next sub-session. 

3.5.3 Key Concept and Theory  

Assuming that at the point P from Figure 8, when the detection of the onset of a failure is 

possible, the reliability (the probability that the machinery will perform its intended function 

adequately) of the machinery is equal to 1 (or else 100%), the equation of the ellipse will then 

be: 
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Were, 

$%: the time of failure, 

x∈ [0,+∞), 

y∈ [0,1] 

Solving for the time of failure in (1) will give: 

$% 	=, !!
$&#! (2) 

So, in a static diagram by knowing a pair of (x,y) the time of failure $% can be calculated. While 

the modelling of the failure is a general one the application to a machinery will need to be 

specific and coming from the on-line data. The idea is that from the on-line data the machine 

learning algorithm will be able to understand when the machinery is deteriorating through 

novelty detection. If we assume that the failure is following an ellipse, then the very first 

detection of changing of condition -' in time .', will be very close to the beginning of the y 

axis and the condition is assumed to be almost equal to new as it is seen in Figure 27. 



 

Figure 27: Key Concept of the new CBM System (ABS, 2016) 

That means that the time of failure can be calculated as per equation (2) assuming that the 

reliability /' is very close to 100%. The time .' is measured from the moment the machinery 

first put to work or after major maintenance. Equation 3 gives the first prediction of the time 

of failure from the CBMS. 
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However as new data are coming, and deterioration is happening the P-F diagram needs to be 

adjusted accordingly. When the second change of condition has been detected the reliability of 

the machinery would be /$ as seen in Figure 28. 



 

Figure 28: Example of the new CBM System (ABS, 2016) 

The loss of reliability it is assumed to be given by equation 4. 

/$ = /'- a * (.(/.$)  (4) 

Were, 

a: universal factor 

The new reliability will be calculated by deducting from the previous reliability a percentage 

of the fraction between the consequent times of deterioration (e.g., .(/.$). The fraction is 

preferred than the deduction of the consequent times of deterioration (.(-.$) because it is 

independent from the time measurement itself (minutes or seconds or days). It is assumed that 

the percentage factor a is universal and is not connected to the specific machinery or 

experimental set up (e.g., sensors). This can be generalized for every change of condition as 

shown in equation 5. 

/) = /)&$ - a * (.*/.*&$) (5) 

Were, 

n∈ [2,+∞), 



Then the prediction of the time of failure will be changing as in equation 5. 

!!$ 	=#
"%"
#$%%"

	 (6) 

This essentially means that different ellipses are drawn every time you have a new change of 

condition with the starting point as indicated by equation (5) and the predicted time of failure 

as indicated in equation 6. Figure 28 showed a random example with 3 predictions from 3 

different ellipses as the deterioration is progressing.  The estimation of time of failure will be, 

at any time of changing condition, the average of all the predictions until then.  

 !!$$$$$= 
&&''&&"'&&('⋯&&$

)   (7) 

Were, 

n∈ [1,+∞) 

From equation 7 it can be seen that the first prediction $%# 	is not been regarded in the average 

because it is the only one that has its condition assumed (close to 100%) and is expected to 

have larger error than the following ones since most of the machineries on a ship are not brand 

new even after major maintenance. Nevertheless, if the machinery in the time of starting the 

CBMS is brand new the first prediction $%# can be taken into account. 

3.6 Chapter Summary 

In this Chapter the framework of the proposed CBM system was outlined. First the general 

steps of the CBM were shown, namely: use of a database to store data, detecting deterioration 

from data and using a new failure model to predict possible failure of the machinery. 

Concerning the database, an object-oriented database type was chosen to be used because of 

the significant advantages compared to the relational type databases. Then, the LOF algorithm 

was chosen to detect deterioration from data because of its well-known application in detecting 

anomalies. Finally, the mathematics behind the new failure model were presented as well as 

how the times of the detected deteriorations will be used with it to predict when a machinery 

will fail. 



 

4. Case Studies 

4.1 Chapter Outline 

In this Chapter, three case studies will be presented. The first two case studies will help to 

evaluate and test the various parts of the proposed CBM framework. The first case study 

validates the power of the LOF algorithm in understanding deterioration in a Naval combined 

diesel-electric and gas-turbine propulsion plan. The second case study determines the optimum 

value of the parameter “a” from equation 4 in 4.4.3 and then validates the proposed failure 

model by using multiple failure data from bearings where the actual failure time was compared 

with the predictions of the failure model. Finally, the third case study is a real-world case study 

and will help to demonstrate the benefits of using the CBM system for diagnosis and prognosis 

of three Diesel Generators (DGs) of a tanker. 

4.2 Case Study 1 

4.2.1 Case Study 1 Outline 

After explaining the characteristics of the CBM framework the LOF algorithm will be tested 

for understanding the degradation of a marine propulsion system consisting of a compressor 

and a turbine. The CMD will also be used to store the data and allow quick access by the LOF 

algorithm. 

4.2.2 Dataset  

Coraddu et al. (2016) investigated the problem of performing Condition-Based Maintenance 

in a Naval combined diesel-electric and gas-turbine propulsion plant. Confidentiality 

constraints with Navy led to the use of a real data validated simulator and the dataset has been 

published for free use through the UCI (2016) repository. This is the data set that will be used 

for the training, validation and testing of the LOF algorithm for novelty detection. The dataset 

includes 25 features (temperatures, pressures, etc.) and for each array of the 25-array features 

the decay coefficients are given for the Propeller torque, Hull, GT Compressor and GT Turbine. 

For the validation of the LOF the decay coefficients of the compressor and turbine will be used. 



The ship speed in the dataset has been investigated with sampling the range of feasible speed 

from 3 knots to 27 knots with a granularity of representation equal to tree knots and the 

transients between different speeds were not considered (Coraddu et al., 2018). All the 

measures (25 features) which indirectly represent the state of the system have been acquired 

and stored in the dataset over all the ship speeds. The data for a ship speed of 18 kn were used 

for the training, validation and testing of the algorithm but sensitivity analysis of the final 

model was performed for all the spectrum of different ship speeds and operational profiles. 

4.2.3 Data Preparation & CMD 

First the data for a specific ship speed (18kn) were gathered. Then these data were further 

divided to the ones representing perfect condition of the machinery and to the ones representing 

all the possible degradation conditions. The perfect condition is indicated when the decay 

coefficient of the machinery equals to one and the different condition is indicated when the 

decay coefficient of the machinery is not equal to one. The next step is to store the data in the 

CMD. The data were stored successfully to the new CMD architecture and the machine 

learning algorithm used the data directly from there with maximum speed since the algorithm 

and database were both build in the python language. 

4.2.4 Logic of the Experiment 

Figure 29 shows the steps of the experiment that were followed. The algorithm was trained 

only in the values representing a specific condition (the perfect one) and then it was validated 

and tested in both predicting if the condition has changed or if the condition has remained the 

same. The experiment was done twice, once for the compressor and once for the turbine. 



 

Figure 29: Steps followed for the experiment 

4.2.5 Error Metric 

The metrics used for determining the performance of the algorithm were the accuracy in 

predicting when the condition was changed and the accuracy in predicting when the condition 

was still the same. Accuracy is defined as per equation 8. 

Accuracy = +,-./0	23	4200/4"	50/6747"2*892":;	*,-./0	23	50/674"72*8      (8) 

The numerator in equation 8 is referring to the number of correct predictions by the algorithm 

and the denominator to the total amount of predictions (including the false ones). 

4.2.6 Training, Validation and Testing Datasets 

For the experiment 80% of the data representing degradation were used for validation and the 

rest of it for testing purposes. Regarding the number of training data, from the perfect condition 

data pool, 80% were used for training, 10% for validation and 10% for testing. The purpose of 

using a validation set is to be able to establish the best hyperparameters for the LOF algorithm 

for highest accuracy. The most important hyperparameter of LOF is the number of neighbours 

for calculating the local density of a point. Through the validation process this was found to be 

one, meaning that the local density of a point is calculated by its distance from the nearest data 

point. 



4.2.7 Results 

Since the set-up of the experiment was determined, the next steps were to perform the training 

and validation of the algorithm, establish the best parameters for highest accuracy and use the 

final algorithm in the testing dataset. In addition, further experiments with lower amount of 

training data were needed in order to explore the effect that the amount of training data has on 

the accuracy of the model. Finally, a sensitivity analysis was performed for all the operational 

profiles of the ship. 

4.2.8 Parameters & Accuracy 

The best values for the parameters of the algorithm were found to be the same for both the 

turbine and the compressor experiments showing that these parameters seem not to be affected 

by the type of machinery. They have a rather general applicability when it comes in 

understanding the change, or not, of the condition of the machinery.  

 
Figure 30: Results of the experiment for the compressor 
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Figure 31: Results of the experiment for the turbine 

In Figure 30 the accuracies from the compressor experiment can be seen. The algorithm 

performs excellently with a mean accuracy for predicting correctly if the condition has changed 

or not, of 92%. In Figure 31 the accuracies from the turbine experiment can be seen. The 

algorithm again performs very well with a mean accuracy for predicting correctly if the 

condition has changed, or not, of 90%. The high accuracies of both experiments reassure us 

that the algorithm will detect any deviation of the current condition of the machinery 

successfully.  

4.2.9 Amount of Training Data 

The accuracies of the experiments refer to a specific number of training data. In the experiments 

6550 instances were used approximately for both cases (6550 for compressor 6554 for turbine). 

It is interesting to explore if the amount of data can be reduced so we can save time in training 

the algorithm. 
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Figure 32: Effect of the training data in the accuracies of the model 

As it can be seen in Figure 32, in order to have at least 80% accuracy in both detecting different 

condition or the same, the algorithm needs at least 5000 training data. Since using 6550 data 

will give a substantial higher accuracy, with no significant extra time for collecting them, there 

is no reason to use less training data and compromise the accuracy of the model. 

 

Figure 33: Effect of the training data in the accuracies of the model 

Moving on to the turbine, Figure 33 shows similar results with the one’s for the compressor. 

The model seems to require at least 5000 data points in order to achieve 80% accuracy which 
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is also indicating that the threshold of 6550 data points is also applicable in this case. In a real-

world scenario, experts and operators argue that the threshold of training data should be much 

less (equal to 2-hours of data for 1 min frequency of gathering data) because of the small 

variance of the values in a real stable operational profile which is not only dependant of the 

ship’s speed. The high threshold in these experiments is explained by the way that a stable 

operational profile was defined, namely only by ship’s speed. This assumption contains a lot 

of error as it will be shown later (in the real-world case studies) since to define a stable 

operational profile someone needs a lot more information.  

4.2.10 Sensitivity Analysis: Ship Speed 

Since the ship speed was used as the parameter indicating the operational profile of the ship, it 

is essential to see how the algorithm performs at different ship speeds. It should be noted that 

for each operational profile the algorithm is getting trained again, with the parameters that were 

established in equation 7. That means that there is no validation set in this experiment. The 

available ship speeds in the database are: 3, 6, 9, 12, 15, 21, 24, 27 kn.  

 

Figure 34: Accuracies for different ship speeds for the compressor 

Figure 34 shows the results of the sensitivity analysis for the compressor. The mean accuracies 

for correctly detecting the change of condition and that the condition is the same, across all 

speeds, is 94% and 89% respectively. That gives a total of 92% overall accuracy and shows the 

consistency of the algorithm across different operational profiles. 
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Figure 35: Accuracies for different ship speeds for the turbine. 

On the other hand, the results for the turbine can be seen in Figure 35. Here the mean accuracies 

for detecting a change or not, across all speeds, is 90% and 88% respectively. That gives a total 

of 89% overall accuracy, indicating again a sufficient amount of accuracy across all operational 

profiles. Overall, the sensitivity analysis has proven that the algorithm is robust enough to 

perform with high accuracies across all the operational profiles of the ship and for both the 

turbine and compressor cases. That means that it can be used to continuously monitor the 

degradation of the machinery throughout all the operational profiles of a ship and thus 

increasing the reliability and accuracy of the diagnostic and prognostic system. 

4.2.11 Conclusion of Case Study 1  

In this chapter the first two parts of the CBM framework were tested through the use of data 

describing the degradation of a compressor and a turbine of a naval propulsion system. The 

results of the experiments showed that the algorithm gives high accuracies in both the turbine 

and compressor cases. In addition, the operational profile doesn’t seem to affect the accuracy 

of the model as it was indicated by the sensitivity analysis performed for both the compressor 

and turbine for all the available speeds of the ship. That means that the LOF algorithm can be 

used in continuous monitoring the degradation of a ship going through different stable 

operational profiles. Finally, it was shown that the algorithm needs a threshold of amount of 

data to be trained in order to perform the best and it was concluded that this threshold for a 
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real-world case would be much less, as also suggested by experts, since the stable operational 

profile will be defined in a much stricter sense. 

4.3 Case Study 2 

4.3.1 Case Study 2 Outline 

In order to optimize and validate the proposed failure model, failure data need to be utilized. 

The purpose of this case study is two-fold: First the parameter “a” from equation (5) will be 

experimentally established by using a bearing failure dataset and secondly another bearing 

failure dataset will be used to compare the predictions of the failure model with the actual 

failure time in order to evaluate its effectiveness. 

4.3.2 Dataset 

The data was generated by the NSF I/UCR Centre for Intelligent Maintenance Systems (IMS 

– www.imscenter.net) with support from Rexnord Corp. in Milwaukee, WI (NASA, 2019). 

The dataset contains three experiments working until failure of bearings and can be summarised 

as in Appendix.  

After carefully examining the dataset there are a couple of problems that needed to be 

addressed.  The second experiment will not be used since the recording duration (7 days) does 

not start from the beginning of the experiment and so critical information about the failure 

degradation is lost. Also, the first experiment has missing recordings during the period of the 

35 days and overall, 11 days are missing across the dataset. It will be assumed that during these 

days the condition of the machinery does not change.  Overall, the first experiment has a 

duration of 35 days which is slightly more than the designed life of the bearing (see Appendix), 

but the third experiment lasts for almost 44 days which is 9 days more than the designed life 

span of the bearing. It should be also noted that for the first data set two accelerometers for 

each bearing [x- and y-axes] are used and one accelerometer for each bearing for the third data 

set. 



4.3.3 First Experiment 

The first experiment will be used as the training/validation dataset in order to establish the 

parameter best value for the parameter a in equation 5 and then this parameter will be tested 

with the third dataset. The estimation of the parameter was based in having the best accuracy 

in the predictions of the bearing’s failure. Table 12 shows the prediction of the failure of the 

bearing every time that the condition has been detected to change (deterioration) for the 

optimum value of parameter “a”. The prediction of failure starts when the second deterioration 

has been detected as it was discussed in 4.4.3. Table 17 shows the predictions of the model at 

the moments that deteriorations have been detected from the selected best value for parameter 

“a”. 

Table 17: Time of Failure for Optimal Parameter “a” 

Deterioration time (days) 						%*	for: 

      (days) 

a=0.01 Prediction 

accuracy (%) 

1.08  - - 

1.94  17.19 48.69 

11.40  21.58 60.56 

14.31  25.06 70.04 

14.58  26.92 75.10 

19.34  29.60 82.47 

26.92  35.03 97.23 

From Table 17 it can be seen that the percentage accuracy is increasing with each new detection 

of deterioration. In fact, after each detection of deterioration the accuracy of the prediction of 

the failure model increases by an average of 9% starting from a 50% accuracy at only 6% of 

the time of failure. This is what a machine learning process looks like, the algorithm can 

perform better and better predictions of the time of failure as time passes and more data are fed 

into the system. Figure 36 shows exactly this process, namely how the accuracy of predicting 

the time of failure becomes better and better by time. 



 

Figure 36: Accuracy of Prediction 

It can be seen in Figure 36 that the accuracy of prediction becomes better the more 

deteriorations are detected, starting from 50% and finishing at 100% accuracy. In more detail, 

at half of the actual time of failure there is an 85% accuracy of the predicted time of failure of 

the model. In addition, at 80% of the actual time of failure the predicted time of failure of the 

model is also the actual time of failure of the bearings. That means that the algorithm can give 

a very robust estimation of the time of failure early on and the operators can start planning 

maintenance while the information of the time of failure is pinpointed later on with more data 

coming on. The experimental established parameter “a” will now be tested with the second 

experiment. 

4.3.4 Second Experiment  

Moving on, the second failure experiment will be used for validating the already established 

parameter “a” from the first experiment. In Table 18 the results of the experiment can be seen.  
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Table 18: Time that condition was changed and prediction of time of failure 

Deterioration time (days)  %* 

0.83  - 

6.29  16.89 

10.89  21.71 

21  30.07 

23.92  35.29 

24.17  38.16 

25.75  40.30 

28.63  42.38 

As it can be seen from Table 18, similar to the previous experiment, the percentage accuracy 

of predicting the time of failure is increasing every time a new deterioration is being detected 

by an average of 9.5% starting from a 42% accuracy at 15% of the time of failure and finishing 

with 96.5% accuracy at 65% of the time of failure.  

 

Figure 37: Accuracy of prediction vs time until failure 
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It can be seen in Figure 37 that the accuracy of prediction becomes better the more changing 

of conditions are detected starting from 42% and finishing at almost 100% accuracy. In more 

detail, at almost half of the actual time of failure (54%) there is an 80% accuracy of the 

predicted time of failure of the bearings. In addition, at 65% of the actual time of failure the 

predicted time of failure is almost equal the actual time of failure of the bearings (96.5%). 

Again, the results suggest that the algorithm is able to give a robust estimation of the time of 

failure early on with high accuracy. The accuracy of the algorithm in the prediction of the time 

of failure showcase that the general failure model combined with the power of the LOF 

algorithm can successfully perform diagnosis and prognosis of a machinery. 

4.3.5 Conclusion of Case Study 2 

This case study demonstrated the effectiveness of the proposed failure modelling theory. It also 

showed that the failure prediction becomes more and more precise as more data are being fed 

to the condition-based system. Also, the failure model is able to correctly predict the time of 

failure in advance before it happens. Figure 38 shows the benefits of using the proposed 

modelling theory for predicting the time of failure of a machinery. 

 

Figure 38: Results of Case Study 
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proposed CBM system there was a 26% increase of the effective working time of the equipment 

compared to performing maintenance according to manufacturer’s suggestions. This increase 

of effective working time can become substantial through time when it can accumulate into 

hours, months or even years of extra working time. 

4.4 Case Study 3 

4.4.1 Case Study 3 Outline 

Moving on to the final case study, the purposed CBM system will be used together with real 

world data in order to perform diagnostics and prognostics for the maintenance of the cylinders 

of three diesel generators of a ship. The purpose of these case study is to demonstrate the 

effectiveness of the proposed CBM system in real world scenarios as well as to explore the 

benefits that the operators can get from using it. 

4.4.2 Dataset 

The dataset that was used contains data gathered by sensors onboard a tanker with one minute 

frequency and for a period of three months, namely: From 03/04/2018 to 03/07/2018. Table 19 

shows the basic characteristics of the tanker. The ship under question has an overall length of 

183 meters and a displacement of almost 40000 tonnes which makes it a medium range tanker. 

Table 19: Characteristics of Ship 

Characteristics of Ship  

Overall length (m) 183 

Displacement (t) 38396 

Main Engine DMD-MAN B&W 6S50MC-C 

9480 KW 

Diesel Generators MAN B&W 6L23/30H 

The dataset contains data that can be separated into two datasets: Data that help the CBM 

system determine a stable operational profile and data that are indicators of the condition of 

the Diesel Generator’s cylinders. The former data to determine a stable operational profile as 



it was discussed in 4.3.3, are:  the main engine’s (M/E) rounds per minute (RPM), the M/E’s 

power, the wind speed, the wind’s direction, the Beaufort scale, the ship’s speed over ground 

and M/E’s Torque. The later data that indicate the condition of the Diesel Generator cylinders 

are: Exhaust Gases Outlet Temperature, CFW Inlet Pressure, CFW Outlet Temperature, 

Cooling Air Temperature, LO Inlet Pressure, LO Inlet Temperature and Exhaust Gas Outlet 

Temperature.  

The proposed CBM system uses the first dataset to first identify the stable operational profile 

that the ship is at a specific time and then store under that specific operational profile the data 

from the second dataset that indicate the condition of the cylinders in order to assess 

deterioration. Figure 22 shows the CBM’s data collection process.  

 

Figure 39: CBM Data-Collection Process 
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perform its intended function adequately) of the machinery is considered perfect (»100%) 

when it is brand new or after major maintenance. Furthermore, after discussing with the ship’s 

operators it is assumed that the ship is at sea 80% of the time in a year. Furthermore, it is 

assumed that there no deterioration happened between. the last major maintenance and when 

data collection activity started. However, a sensitivity analysis of the starting reliability of the 

D/G cylinders will be performed in order to demonstrate how the starting reliability when data 

gathering activity starts affects the CBM system diagnostics and prognostics. Also, it is 

assumed that the available sensor parameters for the D/G cylinders are enough to determine 

their reliability at any time. Finally, as it was mentioned before the stable operational profile is 

assumed to be stable from M/E and weather data. Table 20 shows the assumptions that were 

made before the analysis. 

Table 20: Assumptions of Case Studies 

Condition of 

machinery is almost 

perfect after major 

maintenance. 

 

No deterioration has 

happened between 

the last major 

maintenance and 

when data collection 

activity started.  

Available 

parameters show 

the health of the 

machinery. 

 

If M/E and weather 

data are stable the 

operational profile is 

assumed stable. 

The ship is at 

sea 80% of 

the time in a 

year. 

In more detail, concerning the stable operational profiles, it is assumed that there is a stable 

operational condition when: 

• The measurements from the engine speed and engine power are deviating +-5% as 

suggested in the bridge manoeuvring systems (MAN, 2004) 

• The measurements from the weather dataset (the wind speed, wind direction, wind 

Beaufort scale, speed over ground and M/E Torque) are deviating +-10%. The +-10% 

instead of +-5% is introduced due to weather’s more volatile nature. 

By using these assumptions for the stable operational profile, the data were separated 

automatically into 5 operational profiles represented by their RPM range (but calculated by 

using all the available parameters above) as it can be seen in Figure 40. 



 

Figure 40: Percentage of RPM Range for Different Stable Operational Profiles 

From Figure 40 it can be seen that the ship was operating in a stable operational profile mostly 

in the 91-101 RPM range at 85% of the time followed by the 76-86 RPM range at only 10% of 

time. Overall, the range 76-120 RPM contains 99% of the ship’s stable operational profiles. 

4.4.5 DG1 Maintenance  

Because the proposed CBM system requires the machinery to have a starting reliability very 

close to 100%, the starting reliability of the machinery under evaluation needs to be explored. 

For that reason, the time of the last major maintenance performed to the DG1 cylinders was 

searched from the maintenance logs kept onboard the ship.  Because the maintenance log does 

not contain any major overhaul activity for the DG1 cylinders in the period of which the 

maintenance log is available, it will be assumed that the time of major maintenance was the 

time that the ship overtaken the last drydocking, namely: 17/06/2017. Table 21 shows the 

details concerning maintenance of DG1 cylinders. 
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Table 21: Overhauling Date for DG1 Cylinders 

 Assumed 
Date of 

Overhauling 

Date that 
Data 

Gathering 
Started 

Months 
between 

Overhauling 
and Data 
Gathering 
Activity 

Manufacturer 
suggestion 

between 
maintenance 

Time left 
until 

maintenance 

according to 
manufacturer  

DG1 

Cylinders 

17/06/2017 02/04/2018 9 months 2 years 1 year and 1 

month 

The months between the overhauling and the data gathering activity in column 5 in Table 21 

are very important to determine the uncertainty of CBM system’s prediction. That is because 

the longer the period between the previous major maintenance and the time the data gathering 

activity started, the more probable is that deterioration has already happened without being 

monitored in the between time. That fact compromises the assumption of the CBM system that 

the machinery is close to 100% reliable when the data gathering activity started.  Finally, in 

column 6 in Table 21 the time left until maintenance from the date that data gathering activity 

starts is calculated, from the information from manufacturer’s manual that the DG needs 

maintenance at 1 year and 11 months. 

4.4.6 DG1 Detected Deteriorations  

The total changes of condition (deteriorations) of the DG1 cylinders for the data gathering 

period: 03/04/2018-02/07/2018 were found to be four, namely: 

• 2018-04-19 09:22:00 

• 2018-04-24 17:00:00 

• 2018-04-29 04:13:00 

• 2018-05-18 22:31:00 

Figure 41 shows how deterioration happened for DG1 cylinders during the time under 

question. 



 

Figure 41: Time Map of Deteriorations-DG1 

From Figure 41 it can be seen that most of deterioration happened only during the first two 

months of the data gathering activity showcasing the randomness of the deterioration process 

and showcasing why the maintenance problem cannot be solved by fixed time intervals. 

4.4.7 DG1 Results 

One of the core assumptions of the experiment is the initial reliability of the DG1 cylinders. As 

it was shown in 5.4.5 there is a gap between the last major maintenance and the data gathering 

activity which increases the probability that deterioration has already happened in the between 

time. For that reason, a sensitivity analysis of the assumed initial reliability of the machinery 

will be performed when calculating the time of failure. The first experiment assumes that the 

reliability of the machinery is almost as good as new and then the same experiment is repeated 

for different assumed reliabilities each time reduced by 10% until the initial reliability 

condition is as low as 10%. Table 22 shows the sensitivity analysis of the assumed initial 

reliability of for DG1, and the final time of failure predicted by the CBM system. 
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Table 22: Sensitivity analysis on the Starting Condition of DG1 

Experiment Initial Reliability (%) Time of failure 

A 99.9% 10 years and 3 months 

B 90% 2 years and 4 months 

C 80% 1 year and 9 months 

D 70% 1 year and 6 months 

E 60% 1 year and 4 months 

F 50% 1 year and 3 months 

G 40% 1 year and 2 months 

H 30% 1 year and 2 months 

I 20% 1 year and 1 months 

J 10% 1 year and 1 months 

From Table 22 it can be seen that when the reliability of the machinery is assumed to be very 

high the prediction of the time of failure becomes bigger. That is logical since it is assumed 

that between the date of previous major maintenance and the time of the data gathering (9 

months) the machinery does not deteriorate at all which indicates a very slow deterioration 

process. As the assumed reliability of the machinery becomes smaller the predictions are not 

fluctuating that much indicating that this is closer to the reality. For better visualization Figure 

42 shows the predictions of the model for different assumptions of the initial reliability of the 

machinery when the data gathering activity started. 



 

Figure 42: Condition vs Years DG1 

From Figure 42 it can be seen that the CBM system suggests maintenance at the time when the 

manufacturer suggests, if the machinery was at 10-20% reliability when the data gathering 

activity started. This is very unlike to be true since only 9 months have passed since the major 

overhaul. That means that the time of maintenance could be increased further of what the 

manufacturer suggests in the vast majority of the experiments performed. Table 23 shows the 

time difference between the model’s prediction and manufacturer’s prediction for the different 

assumed conditions of the machinery when the data gathering activity started. 
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Table 23: Time Difference from Manufacturer Maintenance-DG1 

Experiment Time difference from 
manufacturer 

recommendations 

A 9 years and 2 months 

B 1 years and 3 months 

C 8 months 

D 5 months 

E 3 months 

F 2 months 

G 1 months 

H 1 months 

I 0 months 

J 0 months 

From Table 23 the results of the corner cases A and J are disregard the average increase in 

maintenance time is a bit more than 4 months. This is a considerable amount of time and during 

the lifespan of the cylinders it can accumulate to be even years of extra working time giving 

great efficiency in the operation of the ship. 

4.4.8 DG2 Maintenance  

Moving on to the DG2, the maintenance log indicated that major overhauling for the cylinders 

happened on the 25/08/2017. That means that 7 months had passed until when the data 

gathering activity started and 1 year and 3 months remaining for overhauling according to the 

manufacturer’s recommendations. Table 24 summarizes the results of DG2 cylinders’ 

maintenance schedule. 



Table 24: Overhauling Date for DG2 Cylinders 

 Assumed 
Date of 

Overhauling 

Date that 
Data 

Gathering 
Started 

Months 
between 

Overhauling 
and Data 
Gathering 
Activity 

Manufacturer 
suggestion 

between 
maintenance 

Time left 
until 

maintenance 

according to 
manufacturer 

DG2 

Cylinders 

25/08/2017 02/04/2018 7 months 2 years 1 year and 3 

months 

Again, as it was for DG1, there is a gap between the last major maintenance and the data 

gathering activity. This problem will be addressed in the sensitivity analysis of the initial 

reliability of the cylinders later on. 

4.4.9 DG2 Detected Deteriorations 

The total changes of condition (deteriorations) of the DG2 cylinders for the data gathering 

period: 03/04/2018-02/07/2018 were found to be four, namely: 

• 2018-04-19 08:54:00 

• 2018-04-24 16:12:00 

• 2018-04-29 02:19:00 

• 2018-05-18 22:29:00 

Figure 43 shows how deterioration happened for DG2 cylinders during the time under question. 



 

Figure 43: Time Map of Deteriorations-DG2 

From Figure 43 it can be seen that most of deterioration happened during the first two months 

of the data gathering activity at the same days as DG1 but different hours. The deterioration 

process is expected to be similar since the DGs are the same model and are overhauled in dates 

close to each other. Nevertheless, as it will be shown in DG3 the deterioration process can be 

different even for similar machinery. 

4.4.10 DG2 Results 

Table 25 shows the sensitivity analysis of the assumed initial reliability condition for DG2 and 

the time of failure predicted by the CBM system as it was done for DG1. The first experiment 

assumes that the reliability of the machinery is almost as good as new and then the same 

experiment is repeated for different assumed reliabilities each time reduced by 10% until the 

initial reliability condition is as low as 10%.  
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Table 25: Sensitivity Analysis on the Starting Condition of DG2 

Index Initial Reliability (%) Time of failure 

A 99.9% 8 years 

B 90% 1 years and 10 months 

C 80% 1 years and 5 months 

D 70% 1 years and 2 months 

E 60%  1 years and 1 months 

F 50% 1 year 

G 40% 11 months 

H 30% 11 months 

I 20% 11 months 

J 10% 10 months 

From Table 25 it can be seen that when the condition is very high the prediction of the time of 

failure becomes bigger. As for DG1, this is because it was assumed that between the date of 

previous maintenance and the time of the data gathering (which is 7 months) the machinery did 

not deteriorate. The more it is assumed that deterioration has not happened the bigger the time 

of failure becomes since the model understands that the degradation mechanism is very slow. 

Figure 44 is a plot of the predictions of the model in years from previous maintenance and for 

different assumptions of the condition of the machinery when the data gathering activity 

started. 



 

Figure 44: Condition vs Years DG2 

From Figure 44 it can be seen that the CBM system suggests maintenance at the time when the 

manufacturer suggests, if the machinery was between 60% and 70% reliability when the data 

gathering activity started. This is possible to be true because 7 months have passed since the 

major overhaul. On the other hand, the time of failure can be lower than the manufacturer 

suggestion if the machinery bellow 60% reliability when the data gathering activity started 

which may suggest that the equipment can fail before the next scheduled maintenance. Table 

26 shows the time difference between the model’s prediction and manufacturer’s prediction for 

the different assumed conditions of the machinery when the data gathering activity started. 
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Table 26: Time Difference from Manufacturer Maintenance -DG2 

Assumed starting condition Time difference from 
manufacturer 

recommendations 

A 6 years and 7 months 

B 7 months 

C 2 months 

D -1 months 

E  -2 months 

F -3 months 

G -4 months 

H -4 months 

I -4 months 

J -5 months 

From Table 26 the results of the corner cases A and J are disregard the average difference from 

the maintenance time suggested by the manufacturer is one month less. That means that is a 

big probability that the machinery will fail before the suggested maintenance intervals of the 

manufacturer. This could potentially cost to the shipowner a lot of costs associated with 

unplanned maintenance and increased downtime that could be avoided with the use of the 

proposed CBM system. 

4.4.11 DG3 Maintenance  

Finally, moving on to DG3, the maintenance log indicated that major overhauling for the 

cylinders happened on the 11/04/2017 and thus approximately 1 year had passed until when 

the data gathering activity started and 1 year was remaining for overhauling according to the 

manufacturer’s recommendations. Table 27 summarizes the results of DG2 cylinders’ 

maintenance schedule. 



Table 27: Overhauling Date for DG3 Cylinders 

 Assumed 
Date of 

Overhauling 

Date that 
Data 

Gathering 
Started 

Months 
between 

Overhauling 
and Data 
Gathering 
Activity 

Manufacturer 
suggestion 

between 
maintenance 

Time left until 
maintenance 

according to 
manufacturer 

 

DG3 
Cylinders 

11/04/2017 03/04/2018 1 year 2 years 1 year  

Again, as it was for DG1 and DG2, there is a gap between the last major maintenance and the 

data gathering activity. Actually, this period is the highest between the three cases (1 year) and 

a sensitivity analysis of the initial reliability of the cylinders will help understand how it affects 

predictions. 

4.4.12 DG3 Detected Deteriorations 

The total changes of condition (deteriorations) of the DG3 cylinders for the data gathering 

period: 03/04/2018-02/07/2018 were found to be four, namely: 

• 2018-04-18 20:37:00  

• 2018-04-21 00:30:00  

• 2018-04-28 20:43:00  

• 2018-05-03 11:30:00  

Figure 45 shows how deterioration happened for DG3 cylinders during the time under question. 



 

Figure 45: Time Map of Deteriorations-DG3 

From Figure 45 it can be seen that most of deterioration happened during the first two months 

of the data gathering activity but on different days than DG1 or DG2. That means that the 

deterioration pattern even for identical machines can be different. The traditional scheduled 

interval maintenance cannot account for these differences but the proposed CBM system, by 

using live analysis of data, is shown to catch these small differences that can have a big impact 

in the maintenance schedule and failure time of the machinery. 

4.4.13 DG3 Results 

Table 28 shows the sensitivity analysis of the assumed initial reliability condition for DG3 and 

the time of failure predicted by the CBM system as it was done for DG1 and DG2. Again, the 

first experiment assumes that the reliability of the machinery is almost as good as new and then 

the same experiment is repeated for different assumed reliabilities each time reduced by 10% 

until the initial reliability condition is as low as 10%.  
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Table 28: Sensitivity Analysis on the Starting Condition of DG3 

Index Initial Reliability (%) Time of failure 

A 99.9% 12 years and 5 months 

B 90% 2 years and 10 months 

C 80% 2 years and 1 months 

D 70% 1 years and 10 months 

E 60% 1 years and 7 months 

F 50% 1 years and 6 months 

G 40% 1 years and 5 months 

H 30% 1 years and 4 months 

I 20% 1 years and 4 months 

J 10% 1 years and 4 months 

From Table 28 it can be seen that from all three DGs this one gives the largen time of failure 

if it is assumed that the condition has remained the same in the period between the date of 

previous maintenance and the time of the data gathering. That is because this period is the 

biggest, namely: 1 year. Figure 46 shows a plot of the predictions of the model in years from 

previous maintenance and for different assumptions of the condition of the machinery when 

the data gathering activity started. 

 

Figure 46: Condition vs Years DG3 
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From Figure 46 it can be seen that the CBM system suggests that failure will be later than when 

the manufacturer suggests for any initial reliability assumption. For example, if it is assumed 

that the machinery has 50% reliability when the data gathering activity started, the gain in time 

of maintenance will be six months, which is very significant. Table 29 shows the time 

difference between the model’s prediction and manufacturer’s prediction for the different 

assumed conditions of the machinery when the data gathering activity started. 

Table 29: Time difference for manufacturer maintenance and model estimate DG3 

Assumed starting reliability condition Time difference from 
manufacturer 
recommendations 

A 11 years and 5 months 

B 1 year and 10 months 

C 1 year and 1 months 

D 10 months 

E 7 months 

F 6 months 

G 5 months 

H 4 months 

I 4 months 

J 4 months 

From Table 29, if the results of the corner cases A and J are disregard the average difference 

from the maintenance time suggested by the manufacturer is over 9 months. The gain in 

operational time as the assumed reliability is higher can be very significant reaching even more 

than a year of extra time, (e.g., when the reliability is at 80%) but also in the lowest assumption 

of reliability (20%) the CBM system gives extra 4 months until maintenance. That means that 

there is a big probability that the machinery will fail much after the suggested maintenance 

intervals of the manufacturer which it will result in unnecessary maintenance of the cylinders 

increasing also the probability of human errors during the maintenance. 



4.4.14 Conclusion of Case Study 3 

From the results of the final case study in the maintenance problem of the DG1, DG2 and DG3 

cylinders it is clear that the proposed CBM system could give an increased operational time 

from what the manufacturer suggested as well as a warning when the machinery fails 

beforehand. This shows that the estimations for the maintenance intervals from the 

manufacturers are either very conservative and do not take into account the real condition of 

the machinery at each maintenance interval or cannot generalize in cases where there is faster 

degradation leading to unplanned maintenance and downtime. Thus, the proposed CBM system 

could greatly benefit the shipowners and operators by giving them the ability to be in charge 

of the maintenance schedule and either avoid the costs of unplanned maintenance and failure 

or reduce significantly the number of times that maintenance needs to be performed and 

increase the operational time of the machinery.  

More specifically from the results of Case Study 3:  

In the maintenance problem of the DG1 cylinders the results showed that the reliability of the 

machinery must be very low in order to justify maintenance according to the manufacturer, 

something that is very unlikely and means that maintenance will be performed too early if the 

fixed time-intervals of the manufacturer are followed.  

For DG2, the results suggested that there is a probability the cylinders can give an early failure 

leading to unplanned maintenance which will cost considerable to the operators.  

In DG3 the CBM system identified that there was no reason to perform maintenance in the 

cylinders when the manufacturer suggested since even for the lowest assumed reliability the 

time of failure is months after when the manufacturer suggests.  

From all the above results it is shown that the proposed CBM system clearly overcomes the 

drawbacks of using the most common method of maintenance now in shipping, namely: fixed 

time intervals. The fixed time intervals suggested by the manufacturers are usually too strict or 

do not consider cases of increased degradation since there is no real-time assessment of the 

machinery leading to most of the times to unnecessary maintenance (which increases infant 

mortality) or even worse to unplanned break down of the machinery. In addition, the proposed 



CBM system has numerous advantages compared to other CBM systems proposed in the 

literature. The main advantage is the elimination of the requirement of large amount of 

historical data and/or failure data needed for each machinery that the CBM system will monitor. 

In contrast, the proposed system has a general applicability to all machinery, using data on the 

fly and calculating the time of failure in a personalised manner. Furthermore, none of the 

proposed CBM systems in current literature take into account the operational profiles of the 

ships which mean they have limited applicability in real life scenarios where a ship changes 

operational profiles constantly through its life (port, manoeuvring, on cruise, different payload, 

wind conditions, etc.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Discussion  

The problem of maintenance for shipping is a very crucial one. Not only it is paramount for the 

safety of everyone onboard but also for the smooth everyday operation of the ship. From all 

the maintenance techniques available CBM is one of the newest and has the potential to change 

the way maintenance has been applied for years. That is because a CBM systems consider the 

condition of the machinery before suggesting when to perform maintenance rather than relying 

to fixed time intervals suggested by the manufacturers.  

On the other hand, data in the marine sector are usually being used for manually monitoring 

alarms and trends on-board with some cases of simple automated data diagnostic and 

prognostic procedures. CBM systems have not been applied extensively because of the poor 

practical value of the systems being proposed since they require huge amounts of historical 

data (including failure rate data) which are notoriously difficult to find, they do not take into 

account the existence of different operational profiles of a ship (port manoeuvring, bad weather, 

cruising, etc.) and promote the mismatch between relational databases and the algorithms.  

The purpose of this thesis was to suggest a novel CBM framework which combines increased 

practical value and that addresses the above-mentioned shortcomings of the traditional CBM 

systems until now. To do that, a thorough investigation on every aspect of a CBM system was 

performed, namely: The database types, the machine learning algorithms and finally the failure 

prediction model. From that investigation it was concluded that the new proposed CBM system 

will be consisted of an object-oriented database, a semi-supervised algorithm to detect 

deterioration and an innovate failure model derived from the P-F diagrams. 

The object-oriented database not only solves the mismatch problem between the traditional 

used relational databases and the machine learning algorithms but also identifies the stable 

operational profiles of the ship and stores data selectively for minimum storage need and 

maximum efficiency in predicting deterioration.  

The machine learning part of the CBM system relies on the LOF algorithm. From all the semi-

supervised algorithms reviewed in the literature review the LOF algorithm was chosen because 

of its great general applicability as well as its demonstrated effectiveness compared to other 

algorithms. The LOF algorithm will be trained each time a threshold of amount of data is 



reached, sufficient enough to represent the current condition of the machinery when the ship is 

on a stable operational profile, and then it will assess the condition of the machinery for every 

new data point coming from the sensors for that operational profile. 

That failure model of the CBM will have as an input the time(s) that deterioration happened to 

the machinery (given by the LOF algorithm) and then it will give an estimation of the time of 

failure that will become more and more precise the more data are collected. This new 

innovative theory is based on solving mathematically the P-F diagrams that have been used 

widely for condition monitoring. Furthermore, the innovate failure model does not need any 

historical data or failure data and thus it increases the practical value of the system 

exponentially. 

All three aspects of the CBM were tested individually and as a whole through the case studies 

presented in this thesis. Firstly, the machine learning algorithm was evaluated against 

predicting the degradation of a compressor and a turbine of a naval propulsion system. In this 

case study. It was shown that the LOF algorithm has high accuracy in predicting if the condition 

has deteriorated or not for both cases of the turbine and compressor showcasing the general 

applicability of the algorithm. In addition, the number of training data for both of the machinery 

was found to be substantial mainly because of the weak assumption that a stable operational 

profile can be defined only by the ship’s speed. Finally, a sensitivity analysis of the ship speed 

was performed to establish if the algorithm performs well for different ship-speeds. The 

sensitivity analysis showed that the algorithm is robust enough to perform with high accuracies 

across all the operational profiles of the ship and for both the turbine and compressor cases. 

That means that it can be used to continuously monitor the degradation of the machinery 

throughout all the operational profiles of a ship and thus increasing the reliability and accuracy 

of the diagnostic and prognostic system. 

Next, the failure model was evaluated against predicting correctly the time of failure of 

bearings. The purpose of this case study was two-fold: The parameter “a” was experimentally 

established by using one of the bearing failure datasets and secondly to compare the predictions 

of the failure model with the real failure time in order to evaluate its effectiveness. The 

parameter “a” was established by using the first dataset and its value was validated with the 

remaining two datasets. The results of the case study showed that:  



• The failure prediction becomes more and more precise as more data are being fed to 

the condition-based system. 

• The failure model is able to correctly predict the time of failure in a good time in 

advance before it happens (final prediction at 65% of the time of failure). 

• 26% gain of effective working time versus traditional maintenance techniques 

• Fast training time (3 hours when we have 10 min intervals). 

Finally, the database, the machine learning algorithm and the failure model were used in a real-

world case study in order to predict the time of failure of three diesel generators of a ship. The 

3-month data from multiple sensors on-board a tanker ship was used to evaluate the condition 

of the cylinders of three Diesel Generators (DGs). In order to be able to perform condition 

monitoring the Condition monitoring Database (CMD) used weather data in combination with 

data of ship’s speed etc. in order to accurately understand different operational profiles of the 

ship and accordingly perform correct condition monitoring.  

Concerning the DGs cylinders data, there was always a gap between the last major maintenance 

and the data gathering activity which increased the probability that deterioration has already 

happened in the between time. For that reason, a sensitivity analysis of the assumed initial 

reliability of the cylinders was performed for the cylinders of each DGs when calculating the 

time of failure. For the sensitivity analysis, first it was assumed that the reliability of the DG’s 

cylinders was almost as good as new when the data gathering activity started and then the time 

of failure was calculated. Then the same experiment is repeated for different assumed starting 

reliabilities for the cylinders, each time reduced by 10% until the initial reliability condition is 

as low as 10%. 

For the cylinders of DG1 the CBM system suggested maintenance at the time when the 

manufacturer suggests only when the initial reliability of the cylinders was very low when the 

data gathering activity started. Because this is very unlikely to be the case, the time of 

maintenance could be increased further of what the manufacturer suggests in the vast majority 

of the sensitivity analysis cases. 

For DG2 the results suggested that there was a big probability that the cylinders will fail before 

the suggested maintenance intervals of the manufacturer. This could potentially lead to costs 

associated with unplanned maintenance and increased downtime. 



Finally, for DG3 the results showed that in the majority of the cases from the sensitivity 

analysis the machinery will fail much after the suggested maintenance intervals of the 

manufacturer which it will result in unnecessary maintenance of the cylinders. 

Overall, the real-world case study results showcased the problems associated with using fixed 

time intervals for maintenance. More specifically, the manufacturers suggestions are too strict 

and also do not consider cases of increased degradation since there is no real time assessment 

of the machinery. That is why the proposed CBM system will provide increased value to 

shipowners and operators allowing them to monitor machinery in real time and enhancing 

greatly the decision-making process for maintenance, reducing substantially the costs related 

with unplanned maintenance and increasing the effective working time of the machinery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6. Conclusion 

In conclusion, this thesis had as an aim to introduce a new practical CBM system that is 

effective in assessing the condition of a machinery continuously and give predictions of the 

estimated time of its failure. It does that by using a flexible Object-Oriented database for storing 

data, a semi-supervised machine learning technique for diagnosis and utilizing a new failure 

theory for prognostics.  

Through research it was shown that in shipping fixed time intervals are still predominantly 

used for maintenance while CBM systems have not yet been able to penetrate the market and 

change the maintenance status quote mainly because of the requirement of historical data for 

each machinery to be monitored and/or the inability to continuously monitor the machinery 

through different operational profiles (different payloads, weather conditions, ship speeds, 

etc.).  

Based on the analysis of real-world data collected after three months of operation of a tanker 

ship for the prediction of maintenance of the cylinders of the ship’s DGs it was shown that 

according to the CBM systems predictions fixed time intervals are often too strict leading to 

loss of hundreds or even thousands of additional operational times as well as introducing high 

risk of unnecessary infant mortality. In addition, no historical data or failure data were needed 

for the CBM system to start generating these predictions. On the contrary, the assess of the 

machinery is happening online and can be applied to other machinery onboard of a ship thanks 

to the new proposed failure theory utilized for prognostics. Furthermore, it was also 

demonstrated by the real-word case study that by using a machine-learning friendly database, 

the proposed CBM system can continuously monitor the health of a machinery even if the ship 

changes operational profiles. 

For future work: 

• Further testing of the whole CBM framework will be done with data collected from 

sensors on-board vessels.  

• Real time imputation of missing values. 

• Expand the framework to incorporate weather routing and fuel consumption. 



• Testing of the proposed CBM system in a real-world implementation on-board a ship 

including, but not limited: on-line sensor values and stored by the CMD, on-line 

training of the algorithm by using the CMD data and performing diagnostics and 

prognostics with the innovative modelling of general machinery failure.  
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Appendix 

In the beginning, four bearings were installed on a shaft that had a constant rotation speed of 

2000 RPM by an AC motor coupled to the shaft via rub belts (NASA, 2019). A radial load of 

6000 lbs is applied onto the shaft and bearing by a spring mechanism and all bearings are force 

lubricated (NASA, 2019).  

 

Figure 47: Bearing Test Rig and Sensor Placement Illustration (Qiu et al., 2005) 

In Figure 47 it can be seen the experiment set up. Rexnord ZA-2115 double row bearings were 

installed on the shaft and PCB 353B33 High Sensitivity Quartz ICP accelerometers were 

installed on the bearing housing (two accelerometers for each bearing [x- and y-axes] for data 

set 1, one accelerometer for each bearing for data sets 2 and 3). All failures occurred after 

exceeding designed lifetime of the bearing which is more than 100 million revolutions which 

divided by the 2000 RPM gives us the designed life equal to 34.7 days. A magnetic plug 



installed in the oil feedback pipe collects debris from the oil as evidence of bearing degradation 

and the test will stop when the accumulated debris adhered to the magnetic plug exceeds a 

certain level and causes an electrical switch to close (Qiu et al., 2005).  


