19,123 research outputs found

    Robust Modeling of Epistemic Mental States

    Full text link
    This work identifies and advances some research challenges in the analysis of facial features and their temporal dynamics with epistemic mental states in dyadic conversations. Epistemic states are: Agreement, Concentration, Thoughtful, Certain, and Interest. In this paper, we perform a number of statistical analyses and simulations to identify the relationship between facial features and epistemic states. Non-linear relations are found to be more prevalent, while temporal features derived from original facial features have demonstrated a strong correlation with intensity changes. Then, we propose a novel prediction framework that takes facial features and their nonlinear relation scores as input and predict different epistemic states in videos. The prediction of epistemic states is boosted when the classification of emotion changing regions such as rising, falling, or steady-state are incorporated with the temporal features. The proposed predictive models can predict the epistemic states with significantly improved accuracy: correlation coefficient (CoERR) for Agreement is 0.827, for Concentration 0.901, for Thoughtful 0.794, for Certain 0.854, and for Interest 0.913.Comment: Accepted for Publication in Multimedia Tools and Application, Special Issue: Socio-Affective Technologie

    Compositionality in the language of emotion

    Get PDF
    Emotions are signaled by complex arrays of face and body actions. The main point of contention in contemporary treatments is whether these arrays are discrete, holistic constellations reflecting emotion categories, or whether they are compositional-comprised of smaller components, each of which contributes some aspect of emotion to the complex whole. We address this question by investigating spontaneous face and body displays of athletes and place it in the wider context of human communicative signals and, in particular, of language. A defining property of human language is compositionality-the ability to combine and recombine a relatively small number of elements to create a vast number of complex meaningful expressions, and to interpret them. We ask whether this property of language can be discerned in a more ancient communicative system: intense emotional displays. In an experiment, participants interpreted a range of emotions and their strengths in pictures of athletes who had just won or lost a competition. By matching participants' judgements with minutely coded features of face and body, we find evidence for compositionality. The distribution of participants' responses indicates that most of the athletes' face and body features contribute to displays of dominance or submission. More particular emotional components related, for example, to positive valence (e.g. happy) or goal obstruction (e.g. frustrated), were also found to significantly correlate with certain face and body features. We propose that the combination of features linked to broader components (i.e, dominant or submissive) and to more particular emotions (e.g, happy or frustrated) reflects more complex emotional states. In sum, we find that the corporeal expression of intense, unfiltered emotion has compositional properties, potentially providing an ancient scaffolding upon which, millions of years later, the abstract and constrained compositional system of human language could build

    Multimodal emotion recognition

    Get PDF
    Reading emotions from facial expression and speech is a milestone in Human-Computer Interaction. Recent sensing technologies, namely the Microsoft Kinect Sensor, provide basic input modalities data, such as RGB imaging, depth imaging and speech, that can be used in Emotion Recognition. Moreover Kinect can track a face in real time and present the face fiducial points, as well as 6 basic Action Units (AUs). In this work we explore this information by gathering a new and exclusive dataset. This is a new opportunity for the academic community as well to the progress of the emotion recognition problem. The database includes RGB, depth, audio, fiducial points and AUs for 18 volunteers for 7 emotions. We then present automatic emotion classification results on this dataset by employing k-Nearest Neighbor, Support Vector Machines and Neural Networks classifiers, with unimodal and multimodal approaches. Our conclusions show that multimodal approaches can attain better results.Ler e reconhecer emoções de expressões faciais e verbais é um marco na Interacção Humana com um Computador. As recentes tecnologias de deteção, nomeadamente o sensor Microsoft Kinect, recolhem dados de modalidades básicas como imagens RGB, de informaçãode profundidade e defala que podem ser usados em reconhecimento de emoções. Mais ainda, o sensor Kinect consegue reconhecer e seguir uma cara em tempo real e apresentar os pontos fiduciais, assim como as 6 AUs – Action Units básicas. Neste trabalho exploramos esta informação através da compilação de um dataset único e exclusivo que representa uma oportunidade para a comunidade académica e para o progresso do problema do reconhecimento de emoções. Este dataset inclui dados RGB, de profundidade, de fala, pontos fiduciais e AUs, para 18 voluntários e 7 emoções. Apresentamos resultados com a classificação automática de emoções com este dataset, usando classificadores k-vizinhos próximos, máquinas de suporte de vetoreseredes neuronais, em abordagens multimodais e unimodais. As nossas conclusões indicam que abordagens multimodais permitem obter melhores resultados

    Tätigkeitsbericht 2014-2016

    Get PDF

    Tätigkeitsbericht 2009-2010

    Get PDF

    Tätigkeitsbericht 2011-2013

    Get PDF

    A system for recognizing human emotions based on speech analysis and facial feature extraction: applications to Human-Robot Interaction

    Get PDF
    With the advance in Artificial Intelligence, humanoid robots start to interact with ordinary people based on the growing understanding of psychological processes. Accumulating evidences in Human Robot Interaction (HRI) suggest that researches are focusing on making an emotional communication between human and robot for creating a social perception, cognition, desired interaction and sensation. Furthermore, robots need to receive human emotion and optimize their behavior to help and interact with a human being in various environments. The most natural way to recognize basic emotions is extracting sets of features from human speech, facial expression and body gesture. A system for recognition of emotions based on speech analysis and facial features extraction can have interesting applications in Human-Robot Interaction. Thus, the Human-Robot Interaction ontology explains how the knowledge of these fundamental sciences is applied in physics (sound analyses), mathematics (face detection and perception), philosophy theory (behavior) and robotic science context. In this project, we carry out a study to recognize basic emotions (sadness, surprise, happiness, anger, fear and disgust). Also, we propose a methodology and a software program for classification of emotions based on speech analysis and facial features extraction. The speech analysis phase attempted to investigate the appropriateness of using acoustic (pitch value, pitch peak, pitch range, intensity and formant), phonetic (speech rate) properties of emotive speech with the freeware program PRAAT, and consists of generating and analyzing a graph of speech signals. The proposed architecture investigated the appropriateness of analyzing emotive speech with the minimal use of signal processing algorithms. 30 participants to the experiment had to repeat five sentences in English (with durations typically between 0.40 s and 2.5 s) in order to extract data relative to pitch (value, range and peak) and rising-falling intonation. Pitch alignments (peak, value and range) have been evaluated and the results have been compared with intensity and speech rate. The facial feature extraction phase uses the mathematical formulation (B\ue9zier curves) and the geometric analysis of the facial image, based on measurements of a set of Action Units (AUs) for classifying the emotion. The proposed technique consists of three steps: (i) detecting the facial region within the image, (ii) extracting and classifying the facial features, (iii) recognizing the emotion. Then, the new data have been merged with reference data in order to recognize the basic emotion. Finally, we combined the two proposed algorithms (speech analysis and facial expression), in order to design a hybrid technique for emotion recognition. Such technique have been implemented in a software program, which can be employed in Human-Robot Interaction. The efficiency of the methodology was evaluated by experimental tests on 30 individuals (15 female and 15 male, 20 to 48 years old) form different ethnic groups, namely: (i) Ten adult European, (ii) Ten Asian (Middle East) adult and (iii) Ten adult American. Eventually, the proposed technique made possible to recognize the basic emotion in most of the cases
    corecore