7,137 research outputs found

    Demodulation of intensity and shot noise in the optical heterodyne detection of laser interferometers for gravitational waves

    Get PDF
    Demodulation of intensity noise in the optical heterodyne detector is analyzed for application in interferometric gravitational-wave detectors. The correlation function and the power spectral density of the demodulated intensity noise are derived, taking into account the effect of bandpass filtering at the photodiode and an arbitrary demodulation waveform. The analysis includes demodulation of the rf-modulated shot noise as a special case of the intensity noise. For shot-noise-limited detection, the signal-to-noise ratio is found as a function of the modulation parameters, and the optimization of the signal-to-noise ratio with respect to the demodulation phase is described

    Bayesian Model Search for Nonstationary Periodic Time Series

    Get PDF
    We propose a novel Bayesian methodology for analyzing nonstationary time series that exhibit oscillatory behaviour. We approximate the time series using a piecewise oscillatory model with unknown periodicities, where our goal is to estimate the change-points while simultaneously identifying the potentially changing periodicities in the data. Our proposed methodology is based on a trans-dimensional Markov chain Monte Carlo (MCMC) algorithm that simultaneously updates the change-points and the periodicities relevant to any segment between them. We show that the proposed methodology successfully identifies time changing oscillatory behaviour in two applications which are relevant to e-Health and sleep research, namely the occurrence of ultradian oscillations in human skin temperature during the time of night rest, and the detection of instances of sleep apnea in plethysmographic respiratory traces.Comment: Received 23 Oct 2018, Accepted 12 May 201

    Long-term temporal dependence of droplets transiting through a fixed spatial point in gas-liquid twophase turbulent jets

    Full text link
    We perform rescaled range analysis upon the signals measured by Dual Particle Dynamical Analyzer in gas-liquid two-phase turbulent jets. A novel rescaled range analysis is proposed to investigate these unevenly sampled signals. The Hurst exponents of velocity and other passive scalars in the bulk of spray are obtained to be 0.59±\pm 0.02 and the fractal dimension is hence 1.41±\pm 0.02, which are in remarkable agreement with and much more precise than previous results. These scaling exponents are found to be independent of the configuration and dimensions of the nozzle and the fluid flows. Therefore, such type of systems form a universality class with invariant scaling properties.Comment: 16 Elsart pages including 8 eps figure

    How to avoid potential pitfalls in recurrence plot based data analysis

    Full text link
    Recurrence plots and recurrence quantification analysis have become popular in the last two decades. Recurrence based methods have on the one hand a deep foundation in the theory of dynamical systems and are on the other hand powerful tools for the investigation of a variety of problems. The increasing interest encompasses the growing risk of misuse and uncritical application of these methods. Therefore, we point out potential problems and pitfalls related to different aspects of the application of recurrence plots and recurrence quantification analysis

    Physics-based large-signal sensitivity analysis of microwave circuits using technological parametric sensitivity from multidimensional semiconductor device models

    Get PDF
    The authors present an efficient approach to evaluate the large-signal (LS) parametric sensitivity of active semiconductor devices under quasi-periodic operation through accurate, multidimensional physics-based models. The proposed technique exploits efficient intermediate mathematical models to perform the link between physics-based analysis and circuit-oriented simulations, and only requires the evaluation of dc and ac small-signal (dc charge) sensitivities under general quasi-static conditions. To illustrate the technique, the authors discuss examples of sensitivity evaluation, statistical analysis, and doping profile optimization of an implanted MESFET to minimize intermodulation which makes use of LS parametric sensitivities under two-tone excitatio

    Characterizing the Dynamic Response of a Chassis Frame in a Heavy-Duty Dump Vehicle based on an Improved Stochastic System Identification

    Get PDF
    This paper presents an online method for the assessment of the dynamic performance of the chassis frame in a heavy-duty dump truck based on a novel stochastic subspace identification (SSI) method. It introduces the use of an average correlation signal as the input data to conventional SSI methods in order to reduce the noisy and nonstationary contents in the vibration signals from the frame, allowing accurate modal properties to be attained for realistically assessing the dynamic behaviour of the frame when the vehicle travels on both bumped and unpaved roads under different operating conditions. The modal results show that the modal properties obtained online are significantly different from the offline ones in that the identifiable modes are less because of the integration of different vehicle systems onto the frame. Moreover, the modal shapes between 7Hz and 40Hz clearly indicate the weak section of the structure where earlier fatigues and unsafe operations may occur due to the high relative changes in the modal shapes. In addition, the loaded operations show more modes which cause high deformation on the weak section. These results have verified the performance of the proposed SSI method and provide reliable references for optimizing the construction of the frame
    corecore