1,289 research outputs found

    SAGA: A project to automate the management of software production systems

    Get PDF
    The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. The SAGA system consists of a small number of software components that are adapted by the meta-tools into specific tools for use in the software development application. The modules are design so that the meta-tools can construct an environment which is both integrated and flexible. The SAGA project is documented in several papers which are presented

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse

    Sustainability in design: now! Challenges and opportunities for design research, education and practice in the XXI century

    Get PDF
    Copyright @ 2010 Greenleaf PublicationsLeNS project funded by the Asia Link Programme, EuropeAid, European Commission

    Nanosatellite fabrication and analysis

    Get PDF
    The advancements in technologies used in the aerospace industry have allowed universities to experiment with and develop small-scale satellites. Universities are taking advantage of the relatively low development costs of nanosatellite programs to give students experience in the field of spacecraft design. The purpose of Santa Clara University\u27s team, Nanosatellite Fabrication and Analysis, is to create a process to expedite the design, analysis, and fabrication phase of nanosatellite structures for students working on future satellite missions. The objective is to design four baseline nanosatellite structures to accommodate a range of potential missions where the designs are simple enough to be completely fabricated by students utilizing only the tools found in the Santa Clara University\u27s machine lab. Finite element analysis is conducted to ensure the designs meet NASA standards for natural frequency and that it can survive the forces it is subjected to during a launch. SatTherm, an easy to use thermal analysis tool for small spacecrafts, was used to conduct initial thermal simulations of the nanosatellite to determine the type of thermal components that will work for future missions. The success of team Nanosatellite Fabrication and Analysis proves that students can fabricate the structural frame of a nanosatellite using only the tools available in SCU\u27s machine lab

    Abstraction : a notion for reverse engineering.

    Get PDF

    Specification and Verification of Media Constraints using UPPAAL

    Get PDF
    We present the formal specification and verification of a multimedia stream. The stream is described in a timed automata notation. We verify that the stream satisfies certain quality of service properties, in particular, throughput and end-to-end latency. The verification tool used is the real-time model checker UPPAAL

    Improved micro-contact resistance model that considers material deformation, electron transport and thin film characteristics

    No full text
    This paper reports on an improved analytic model forpredicting micro-contact resistance needed for designing microelectro-mechanical systems (MEMS) switches. The originalmodel had two primary considerations: 1) contact materialdeformation (i.e. elastic, plastic, or elastic-plastic) and 2) effectivecontact area radius. The model also assumed that individual aspotswere close together and that their interactions weredependent on each other which led to using the single effective aspotcontact area model. This single effective area model wasused to determine specific electron transport regions (i.e. ballistic,quasi-ballistic, or diffusive) by comparing the effective radius andthe mean free path of an electron. Using this model required thatmicro-switch contact materials be deposited, during devicefabrication, with processes ensuring low surface roughness values(i.e. sputtered films). Sputtered thin film electric contacts,however, do not behave like bulk materials and the effects of thinfilm contacts and spreading resistance must be considered. Theimproved micro-contact resistance model accounts for the twoprimary considerations above, as well as, using thin film,sputtered, electric contact
    • 

    corecore