59 research outputs found

    Disruptive Technologies in Smart Farming: An Expanded View with Sentiment Analysis

    Get PDF
    Smart Farming (SF) is an emerging technology in the current agricultural landscape. The aim of Smart Farming is to provide tools for various agricultural and farming operations to improve yield by reducing cost, waste, and required manpower. SF is a data-driven approach that can mitigate losses that occur due to extreme weather conditions and calamities. The influx of data from various sensors, and the introduction of information communication technologies (ICTs) in the field of farming has accelerated the implementation of disruptive technologies (DTs) such as machine learning and big data. Application of these predictive and innovative tools in agriculture is crucial for handling unprecedented conditions such as climate change and the increasing global population. In this study, we review the recent advancements in the field of Smart Farming, which include novel use cases and projects around the globe. An overview of the challenges associated with the adoption of such technologies in their respective regions is also provided. A brief analysis of the general sentiment towards Smart Farming technologies is also performed by manually annotating YouTube comments and making use of the pattern library. Preliminary findings of our study indicate that, though there are several barriers to the implementation of SF tools, further research and innovation can alleviate such risks and ensure sustainability of the food supply. The exploratory sentiment analysis also suggests that most digital users are not well-informed about such technologies

    Study of Requirements and Design of Sensors for Monitoring Water Quality and Feeding Process in Fish Farms and Other Environments

    Full text link
    Se están realizando muchos esfuerzos en la acuicultura para alcanzar la sostenibilidad, sin embargo aún está lejos de ser sostenible. Sus impactos sobre el medio ambiente pueden prevenirse y corregirse mediante el uso de sensores, desarrollando la conocida como acuicultura de precisión. La calidad del agua afecta el rendimiento de los peces. La temperatura y la salinidad son algunos factores que afectan al crecimiento de los peces. Sin embargo, otros factores como la turbidez, el fotoperíodo y el oxígeno disuelto entre otros pueden afectar a las necesidades nutritivas de los peces. Ajustar la cantidad de alimento necesario es crucial para garantizar la sostenibilidad de la acuicultura y para aumentar el beneficio económico de las instalaciones. Al monitorear la calidad del agua, es posible estimar las necesidades de alimentación. Sin embargo, no es suficiente. El monitoreo del comportamiento de los peces, especialmente durante el período de alimentación, puede ayudar a adaptar el alimento proporcionado. Entonces, si está tan claro que el monitoreo puede ayudar a la producción acuícola, ¿por qué no vemos este sistema de monitoreo en las instalaciones acuícolas? ¿Por qué en la mayoría de las instalaciones la alimentación se da manualmente sin considerar el comportamiento de alimentación de los peces? El precio de los sensores para monitorizar las piscifactorías es extremadamente alto. Los sensores empleados son, en la mayoría de los casos, los mismos que se utilizan para la oceanografía. Los sistemas propuestos en la literatura cubren pocos parámetros de calidad del agua y generalmente no consideran el comportamiento de alimentación de los peces. Son necesarios sensores de bajo costo adecuados para la monitorización de la acuicultura. Esos sensores deben ser de bajo costo, bajo consumo de energía, fáciles de usar y con la posibilidad de incluirlos en una red para enviar los datos. Por lo tanto, podremos utilizar esta red de sensores y sensores para controlar la actividad, enviar alarmas si es necesario y automatizar los procesos. Además, si incluimos Internet, los datos se pueden ver de forma remota. El uso de esos sensores puede ayudar a la producción acuícola. En esta tesis mostramos el estudio de los requisitos y el diseño de sensores para monitorizar la calidad del agua y el proceso de alimentación en piscifactorías y otros entornos. Primero estudiamos en detalle los requisitos de los sensores en acuicultura. Luego mostramos el estado del arte de los sensores actuales para el monitoreo de la calidad del agua y para el monitoreo de la acuicultura. A continuación, presentamos el diseño y desarrollo de nuestros propios sensores de bajo costo y su aplicación en instalaciones de piscifactorías con sistema abierto y sistema de recirculación. Además, mostramos la posibilidad de monitorizar hasta 10 parámetros incluyendo calidad del agua (temperatura, salinidad, turbidez y presencia de hidrocarburo / capa de aceite), ambiente del tanque (nivel de agua, iluminación, presencia de trabajadores) y comportamiento de alimentación de peces (profundidad de natación de bajura, estimación de los cambios en la velocidad de nado de bajíos y la caída de alimento). El sistema propuesto, capaz de monitorear todos estos parámetros, tiene un bajo coste y bajo consumo de energía. El precio estimado es inferior a 100 € por tanque. Además, mostramos el uso de algunos de los sensores antes mencionados para el ajuste automático del proceso de alimentación de peces. Finalmente, mostramos como algunos de los sensores desarrollados se utilizan en otras áreas acuáticas naturales como manglares y estuarios. Además, se presenta un sistema inteligente para monitorear y rastrear la contaminación en los cuerpos de agua.There are many efforts done in the aquaculture to reach its sustainability, although in reality, it is far from being sustainable. Its negative impacts on the environment can be prevented and corrected by the use of sensors, developing precision aquaculture. The water quality affects to the fish performance. The temperature and salinity are some factors that affect to the fish growth. Nevertheless, other factors such as turbidity, photoperiod and dissolved oxygen among other can affect to the fish feeding needs. To adjust the amount of feed needed is crucial to ensure the sustainability of the aquaculture and to increase the economic profit of the facilities. Monitoring the water quality allows estimating the feed needs. However, it is not enough. To monitor the fish behavior, especially during the feeding period can help to adapt the provided feed. Then, if it is so clear that the monitoring can help to the aquaculture production, why we do not see this monitoring systems in the aquaculture facilities? Why in most of the facilities the feed is given manually without considering the fish feeding behavior? Nevertheless, the current price of the sensors for monitoring the fish farms is extremely high. The employed sensors are in most of the cases, the same that are used for oceanography. The proposed systems in the literature only cover some water quality parameters and usually do not consider fish feeding behavior. It is need low-cost sensors suitable for aquaculture monitoring. Those sensors must also be low-energy consumption, easy to use and with the option to include them in a network in order to send the data. Thus, we can use these sensors and sensors network to monitor the activity, to send alarms if it is necessary and to automatize processes. Moreover, including Internet, the data can be seen remotely. The use of those sensors can help to the aquaculture production. In this thesis, we show the study of requirements and design of sensors for monitoring water quality and feeding process in fish farms and other environments. First, we study in detail the requirements of sensors in aquaculture. Then, we show the state of the art of the current sensors for water quality monitoring and for aquaculture monitoring. Following, we present the design and development of some low-cost sensors and their applications in fish farm facilities with open system and recirculating system. Moreover we show a complete system which monitors up to 10 parameters including water quality (temperature, salinity, turbidity and presence of hydrocarbon/oil layer), tank environment (water level, illumination, presence of workers), and fish feeding behavior (shoal swimming depth, estimation of changes on shoal swimming velocity and feed falling). Moreover, it accomplishes the features of low-cost and low energy consumption. The estimated price for proposed system is less than 100€ per tank. In addition, we show the use of some of the aforementioned sensors for automatic adjustment of fish feeding process. Finally, some of the developed sensors are plied in other natural aquatic areas such as mangroves, and estuaries. Moreover, an intelligent system for pollution monitoring and tracking in water bodies are presented.S'estan realitzant molts esforços en l'aqüicultura per assolir la sostenibilitat, malgrat això, encara està lluny de ser sostenible. Els seus impactes sobre el medi ambient es poden prevenir i corregir mitjançant l'ús de sensors, desenvolupant la coneguda com a aqüicultura de precisió. La qualitat de l'aigua afecta el rendiment dels peixos. La temperatura i la salinitat són alguns factors que afecten el creixement dels peixos. A més a més, altres factors com la terbolesa, el fotoperíode i l'oli dissolt entre uns altres poden afectar a les necessitats nutritives dels peixos. Ajustar la quantitat d'aliment necessari és crucial per garantir la sostenibilitat de l'aqüicultura i per augmentar el benefici econòmic de les instal·lacions. Al monitoritzar la qualitat de l'aigua, és possible estimar les necessitats d'alimentació. No obstant això, no és suficient. Monitoritzar el comportament dels peixos, especialment durant el període d'alimentació, pot ajudar a adaptar el subministrament alimentari. Aleshores, si es tan clar que el monitoratge pot ajudar a la producció aqüícola, per què no veiem aquest sistema de monitoratge en les instal·lacions aquàtiques? Per què a la majoria de les instal·lacions la alimentació es dóna manualment sense considerar el comportament alimentari dels peixos? El preu dels sensors per controlar les piscifactories és extremadament alt. Els sensors empleats són, en la majoria dels casos, els mateixos que es fan servir per a l'oceanografia. Els sistemes proposats en la literatura monitoritzen pocs paràmetres de qualitat de l'aigua i generalment no consideren el comportament dels peixos durant l'alimentació. Són necessaris sensors de baix cost adequats per a la monitorització de l'aqüicultura. Aquests sensors han de ser de baix cost, baix consum d'energia, senzills d'usar i amb la possibilitat d'incloure'ls en una xarxa per enviar-los. Per tant, podrem utilitzar aquesta xarxa de sensors i sensors per controlar l'activitat, enviar alarmes si és necessari i automatitzar els processos. A més, si incloem Internet, les dades es podran veure de forma remota. L'ús d'aquests sensors pot ajudar a la producció aqüícola. En aquesta tesi es mostra l'estudi dels requisits i el disseny de sensors per a monitoritzar la qualitat de l'aigua i el procés d'alimentació en piscifactories i altres entorns. Primer, estudiem en detall els requisits dels sensors en aqüicultura. A continuació, es mostra el estat de l'art dels sensors actuals per al monitoratge de la qualitat de l'aigua i per al monitoratge de l'aqüicultura. A continuació, presentem el disseny i desenvolupament dels nostres propis sensors de baix cost i la seva aplicació en instal·lacions d'aqüicultura amb sistema obert i sistema de recirculació. A més, mostrem la possibilitat de monitoritzar fins a 10 paràmetres, incloent-hi la qualitat de l'aigua (temperatura, salinitat, terbolesa i presència d'hidrocarburs / capa d'oli), ambient del tanc (nivell d'aigua, il·luminació, presència de treballadors) i alimentació del consum de peces (profunditat de natació de baix, estimació dels canvis en la velocitat de naixement de baixos i la caiguda d'aliment). El sistema proposat, capaç de controlar tots aquests paràmetres, té un baix cost i baix consum d'energia. El preu estimat és inferior a 100 € per tanc. A més, mostrem l'ús d'alguns dels sensors abans esmentats per a l'ajust automàtic del procés d'alimentació de peces. Finalment, mostrem com alguns dels sensors desenvolupats es fan servir en altres àrees aquàtiques naturals com manglars i estuaris. A més, es presenta un sistema intel·ligent per monitoritzar i rastrejar la contaminació en els cossos d'aigua.Parra Boronat, L. (2018). Study of Requirements and Design of Sensors for Monitoring Water Quality and Feeding Process in Fish Farms and Other Environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/106369TESI

    A Survey on Smart Agriculture: Development Modes, Technologies, and Security and Privacy Challenges

    Get PDF
    With the deep combination of both modern information technology and traditional agriculture, the era of agriculture 4.0, which takes the form of smart agriculture, has come. Smart agriculture provides solutions for agricultural intelligence and automation. However, information security issues cannot be ignored with the development of agriculture brought by modern information technology. In this paper, three typical development modes of smart agriculture (precision agriculture, facility agriculture, and order agriculture) are presented. Then, 7 key technologies and 11 key applications are derived from the above modes. Based on the above technologies and applications, 6 security and privacy countermeasures (authentication and access control, privacy-preserving, blockchain-based solutions for data integrity, cryptography and key management, physical countermeasures, and intrusion detection systems) are summarized and discussed. Moreover, the security challenges of smart agriculture are analyzed and organized into two aspects: 1) agricultural production, and 2) information technology. Most current research projects have not taken agricultural equipment as potential security threats. Therefore, we did some additional experiments based on solar insecticidal lamps Internet of Things, and the results indicate that agricultural equipment has an impact on agricultural security. Finally, more technologies (5 G communication, fog computing, Internet of Everything, renewable energy management system, software defined network, virtual reality, augmented reality, and cyber security datasets for smart agriculture) are described as the future research directions of smart agriculture

    Design of an Urban Garden Aquaponics System

    Get PDF
    The project objective is to create a durable, off-the-grid, large-scale aquaponics system consisting of over 90 sq. ft of growing space, a 650-gallon fishpond, and four types of sensors to transmit water quality data to the internet for remote water quality monitoring. The end goal of the project is to supplement produce grown in the garden to further increase fresh, nutritional options available in meals cooked and distributed by Loaves and Fishes Family Kitchen to combat food insecurity in San Jose. This report presents the need for a system, details the various subsystems, and the rationale for the designs. It serves as a comprehensive guide to all the work that has been completed, provides an outlook for future iterations, and demonstrates the viability of aquaponics as an efficient method to grow food

    Optimisation of small-scale aquaponics systems using artificial intelligence and the IoT: Current status, challenges, and opportunities

    Get PDF
    Environment changes, water scarcity, soil depletion, and urbanisation are making it harder to produce food using traditional methods in various regions and countries. Aquaponics is emerging as a sustainable food production system that produces fish and plants in a closed-loop system. Aquaponics is not dependent on soil or external environmental factors. It uses fish waste to fertilise plants and can save up to 90–95% water. Aquaponics is an innovative system for growing food and is expected to be very promising, but it has its challenges. It is a complex ecosystem that requires multidisciplinary knowledge, proper monitoring of all crucial parameters, and high maintenance and initial investment costs to build the system. Artificial intelligence (AI) and the Internet of Things (IoT) are key technologies that can overcome these challenges. Numerous recent studies focus on the use of AI and the IoT to automate the process, improve efficiency and reliability, provide better management, and reduce operating costs. However, these studies often focus on limited aspects of the system, each considering different domains and parameters of the aquaponics system. This paper aims to consolidate the existing work, identify the state-of-the-art use of the IoT and AI, explore the key parameters affecting growth, analyse the sensing and communication technologies employed, highlight the research gaps in this field, and suggest future research directions. Based on the reviewed research, energy efficiency and economic viability were found to be a major bottleneck of current systems. Moreover, inconsistencies in sensor selection, lack of publicly available data, and the reproducibility of existing work were common issues among the studies

    Advancing Urban Flood Resilience With Smart Water Infrastructure

    Full text link
    Advances in wireless communications and low-power electronics are enabling a new generation of smart water systems that will employ real-time sensing and control to solve our most pressing water challenges. In a future characterized by these systems, networks of sensors will detect and communicate flood events at the neighborhood scale to improve disaster response. Meanwhile, wirelessly-controlled valves and pumps will coordinate reservoir releases to halt combined sewer overflows and restore water quality in urban streams. While these technologies promise to transform the field of water resources engineering, considerable knowledge gaps remain with regards to how smart water systems should be designed and operated. This dissertation presents foundational work towards building the smart water systems of the future, with a particular focus on applications to urban flooding. First, I introduce a first-of-its-kind embedded platform for real-time sensing and control of stormwater systems that will enable emergency managers to detect and respond to urban flood events in real-time. Next, I introduce new methods for hydrologic data assimilation that will enable real-time geolocation of floods and water quality hazards. Finally, I present theoretical contributions to the problem of controller placement in hydraulic networks that will help guide the design of future decentralized flood control systems. Taken together, these contributions pave the way for adaptive stormwater infrastructure that will mitigate the impacts of urban flooding through real-time response.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163144/1/mdbartos_1.pd

    Determination of Time Dependent Stress Distribution on Potato Tubers at Mechanical Collision

    Get PDF
    This study focuses on determining internal stress progression and the realistic representation of time dependent deformation behaviour of potato tubers under a sample mechanical collision case. A reverse engineering approach, physical material tests and finite element method (FEM)-based explicit dynamics simulations were utilised to investigate the collision based deformation characteristics of the potato tubers. Useful numerical data and deformation visuals were obtained from the simulation results. The numerical results are presented in a format that can be used for the determination of bruise susceptibility magnitude on solid-like agricultural products. The modulus of elasticity was calculated from experimental data as 3.12 [MPa] and simulation results showed that the maximum equivalent stress was 1.40 [MPa] and 3.13 [MPa] on the impacting and impacted tubers respectively. These stress values indicate that bruising is likely on the tubers. This study contributes to further research on the usage of numerical-methods-based nonlinear explicit dynamics simulation techniques in complicated deformation and bruising investigations and industrial applications related to solid-like agricultural products
    corecore