2,998 research outputs found

    Spatial Identification Methods and Systems for RFID Tags

    Get PDF
    Disertační práce je zaměřena na metody a systémy pro měření vzdálenosti a lokalizaci RFID tagů pracujících v pásmu UHF. Úvod je věnován popisu současného stavu vědeckého poznání v oblasti RFID prostorové identifikace a stručnému shrnutí problematiky modelování a návrhu prototypů těchto systémů. Po specifikaci cílů disertace pokračuje práce popisem teorie modelování degenerovaného kanálu pro RFID komunikaci. Detailně jsou rozebrány metody měření vzdálenosti a odhadu směru příchodu signálu založené na zpracování fázové informace. Pro účely lokalizace je navrženo několik scénářů rozmístění antén. Modely degenerovaného kanálu jsou simulovány v systému MATLAB. Významná část této práce je věnována konceptu softwarově definovaného rádia (SDR) a specifikům jeho adaptace na UHF RFID, která využití běžných SDR systémů značně omezují. Diskutována je zejména problematika průniku nosné vysílače do přijímací cesty a požadavky na signál lokálního oscilátoru používaný pro směšování. Prezentovány jsou tři vyvinuté prototypy: experimentální dotazovač EXIN-1, měřicí systém založený na platformě Ettus USRP a anténní přepínací matice pro emulaci SIMO systému. Závěrečná část je zaměřena na testování a zhodnocení popisovaných lokalizačních technik, založených na měření komplexní přenosové funkce RFID kanálu. Popisuje úzkopásmové/širokopásmové měření vzdálenosti a metody odhadu směru signálu. Oba navržené scénáře rozmístění antén jsou v závěru ověřeny lokalizačním měřením v reálných podmínkách.The doctoral thesis is focused on methods and systems for ranging and localization of RFID tags operating in the UHF band. It begins with a description of the state of the art in the field of RFID positioning with short extension to the area of modeling and prototyping of such systems. After a brief specification of dissertation objectives, the thesis overviews the theory of degenerate channel modeling for RFID communication. Details are given about phase-based ranging and direction of arrival finding methods. Several antenna placement scenarios are proposed for localization purposes. The degenerate channel models are simulated in MATLAB. A significant part of the thesis is devoted to software defined radio (SDR) concept and its adaptation for UHF RFID operation, as it has its specialties which make the usage of standard SDR test equipment very disputable. Transmit carrier leakage into receiver path and requirements on local oscillator signals for mixing are discussed. The development of three experimental prototypes is also presented there: experimental interrogator EXIN-1, measurement system based on Ettus USRP platform, and antenna switching matrix for an emulation of SIMO system. The final part is focused on testing and evaluation of described positioning techniques based on complex backscatter channel transfer function measurement. Both narrowband/wideband ranging and direction of arrival methods are validated. Finally, both proposed antenna placement scenarios are evaluated with real-world measurements.

    Prediction of the Spectrum of a Digital Delta–Sigma Modulator Followed by a Polynomial Nonlinearity

    Get PDF
    This paper presents a mathematical analysis of the power spectral density of the output of a nonlinear block driven by a digital delta-sigma modulator. The nonlinearity is a memoryless third-order polynomial with real coefficients. The analysis yields expressions that predict the noise floor caused by the nonlinearity when the input is constant

    Analysis and application of digital spectral warping in analog and mixed-signal testing

    Get PDF
    Spectral warping is a digital signal processing transform which shifts the frequencies contained within a signal along the frequency axis. The Fourier transform coefficients of a warped signal correspond to frequency-domain 'samples' of the original signal which are unevenly spaced along the frequency axis. This property allows the technique to be efficiently used for DSP-based analog and mixed-signal testing. The analysis and application of spectral warping for test signal generation, response analysis, filter design, frequency response evaluation, etc. are discussed in this paper along with examples of the software and hardware implementation

    Real-time Timbre Transfer and Sound Synthesis using DDSP

    Get PDF
    Neural audio synthesis is an actively researched topic, having yielded a wide range of techniques that leverages machine learning architectures. Google Magenta elaborated a novel approach called Differential Digital Signal Processing (DDSP) that incorporates deep neural networks with preconditioned digital signal processing techniques, reaching state-of-the-art results especially in timbre transfer applications. However, most of these techniques, including the DDSP, are generally not applicable in real-time constraints, making them ineligible in a musical workflow. In this paper, we present a real-time implementation of the DDSP library embedded in a virtual synthesizer as a plug-in that can be used in a Digital Audio Workstation. We focused on timbre transfer from learned representations of real instruments to arbitrary sound inputs as well as controlling these models by MIDI. Furthermore, we developed a GUI for intuitive high-level controls which can be used for post-processing and manipulating the parameters estimated by the neural network. We have conducted a user experience test with seven participants online. The results indicated that our users found the interface appealing, easy to understand, and worth exploring further. At the same time, we have identified issues in the timbre transfer quality, in some components we did not implement, and in installation and distribution of our plugin. The next iteration of our design will address these issues. Our real-time MATLAB and JUCE implementations are available at https://github.com/SMC704/juce-ddsp and https://github.com/SMC704/matlab-ddsp , respectively

    An ultra-fast digital diffuse optical spectroscopic imaging system for neoadjuvant chemotherapy monitoring

    Full text link
    Up to 20% of breast cancer patients who undergo presurgical (neoadjuvant) chemotherapy have no response to treatment. Standard-of-care imaging modalities, including MRI, CT, mammography, and ultrasound, measure anatomical features and tumor size that reveal response only after months of treatment. Recently, non-invasive, near-infrared optical markers have shown promise in indicating the efficacy of treatment at the outset of the chemotherapy treatment. For example, frequency domain Diffuse Optical Spectroscopic Imaging (DOSI) can be used to characterize the optical scattering and absorption properties of thick tissue, including breast tumors. These parameters can then be used to calculate tissue concentrations of chromophores, including oxyhemoglobin, deoxyhemoglobin, water, and lipids. Tumors differ in hemoglobin concentration, as compared with healthy background tissue, and changes in hemoglobin concentration during neoadjuvant chemotherapy have been shown to correlate with efficacy of treatment. Using DOSI early in treatment to measure chromophore concentrations may be a powerful tool for guiding neoadjuvant chemotherapy treatment. Previous frequency-domain DOSI systems have been limited by large device footprints, complex electronics, high costs, and slow acquisition speeds, all of which complicate access to patients in the clinical setting. In this work a new digital DOSI (dDOSI) system has been developed, which is relatively inexpensive and compact, allowing for use at the bedside, while providing unprecedented measurement speeds. The system builds on, and significantly advances, previous dDOSI setups developed by our group and, for the first time, utilizes hardware-integrated custom board-level direct digital synthesizers (DDS) and analog to digital converters (ADC) to generate and directly measure signals utilizing undersampling techniques. The dDOSI system takes high-speed optical measurements by utilizing wavelength multiplexing while sweeping through hundreds of modulation frequencies in tens of milliseconds. The new dDOSI system is fast, inexpensive, and compact without compromising accuracy and precision

    Referenced Approximation Technique for a Rom-Less Sweep Frequency Synthesizer

    Get PDF
    The main goal of this paper is to present a novel ROM-less direct digital frequency synthesizer for sweep instrumentation systems. It provides a main sweep channel for frequency analysis and a reference channel for phase and amplitude measurement block operating at constant frequency. For phase to amplitude converter, we propose a new trigonometric approximation technique based on a set of reference angles. In addition, we present the design of the proposed synthesizer and its evaluation in Matlab-Simulink environment. The simulation results illustrate the performances and demonstrate the effectiveness of our proposed circuit

    REAL-TIME TIMBRE TRANSFER and SOUND SYNTHESIS USING DDSP

    Get PDF

    Artimate: an articulatory animation framework for audiovisual speech synthesis

    Get PDF
    We present a modular framework for articulatory animation synthesis using speech motion capture data obtained with electromagnetic articulography (EMA). Adapting a skeletal animation approach, the articulatory motion data is applied to a three-dimensional (3D) model of the vocal tract, creating a portable resource that can be integrated in an audiovisual (AV) speech synthesis platform to provide realistic animation of the tongue and teeth for a virtual character. The framework also provides an interface to articulatory animation synthesis, as well as an example application to illustrate its use with a 3D game engine. We rely on cross-platform, open-source software and open standards to provide a lightweight, accessible, and portable workflow.Comment: Workshop on Innovation and Applications in Speech Technology (2012
    • …
    corecore